
Dynamic Slicing on Java Bytecode Traces

TAO WANG and ABHIK ROYCHOUDHURY
National University of Singapore, Singapore

Dynamic slicing is a well-known technique for program analysis, debugging and understanding.
Given a program P and input I, it finds all program statements which directly/indirectly affect

the values of some variables’ occurrences when P is executed with I. In this paper, we develop

a dynamic slicing method for sequential Java programs. Our technique proceeds by backwards
traversal of the bytecode trace produced by an input I in a given program P. Since such traces

can be huge, we use results from data compression to compactly represent bytecode traces. The

major space savings in our method come from the optimized representation of (a) data addresses
used as operand by memory reference bytecodes, and (b) instruction addresses used as operand

by branch bytecodes. We show how dynamic slicing algorithms can directly traverse our compact

bytecode traces without resorting to costly decompression. We also extend our dynamic slicing
algorithm to perform “relevant slicing”; the resultant slices can be used to explain omission errors

that is, why some events did not happen during program execution. Detailed experimental results

on space/time overheads of tracing and slicing are reported in the paper.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Debuggers; D.2.5 [Soft-
ware Engineering]: Testing and Debugging—Debugging aids; Testing tools; Tracing

General Terms: Algorithms, Experimentation, Measurement

Additional Key Words and Phrases: Program slicing, Tracing, Debugging

1. INTRODUCTION

Program slicing [Weiser 1984] is a well-known technique for program debugging and un-
derstanding. Roughly speaking, program slicing works as follows. Given a programP ,
the programmer provides a slicing criterion of the form(l, V), wherel is a control location
in the program andV is a set of program variables referenced atl. The purpose of slicing
is to find out the statements inP which can affect the values ofV at l via control and/or
data flow. So, if during program execution the values ofV at l were “unexpected”, the
corresponding slice can be inspected to explain the reason for the unexpected values.

Slicing techniques are divided into two categories: static and dynamic. Static (Dynamic)
slicing computes the fragment affectingV at l (some occurrence ofl) when the input pro-
gram is executed with any (a specific) input. Thus, for the same slicing criterion, dynamic
slice for a given input of a programP is often smaller than the static slice ofP . Static
slicing techniques typically operate on a program dependence graph (PDG); the nodes of

A preliminary version of this paper appeared in the International Conference on Software Engineering (ICSE)
2004, see [Wang and Roychoudhury 2004].Authors’ addresses: Tao Wang and Abhik Roychoudhury, School
of Computing, National University of Singapore, S16 Level 5, 3 Science Drive 2, Singapore 117543. E-mail:
{wangtao,abhik }@comp.nus.edu.sg
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 2005 ACM

2 · Wang and Roychoudhury

the PDG are simple statements / conditions and the edges correspond to data / control de-
pendencies [Horwitz et al. 1990]. Dynamic slicing w.r.t. an input I on the other hand, often
proceeds by collecting the execution trace corresponding to I. The data and control depen-
dencies between the statement occurrences in the execution trace can be pre-computed or
computed on demand during slicing [Zhang et al. 2005].

Due to the presence of objects and pointers in programs, static data dependence com-
putations are often conservative, leading to very large static slices. On the other hand,
dynamic slices capture the closure ofdynamicdata and control dependencies, hence they
are much more precise, and more helpful for narrowing the attention of the programmer.
Furthermore, since dynamic slices denote the program fragment affecting the slicing cri-
terion for aparticular input, they naturally support the task of debugging via running of
selected test inputs.

Though dynamic slicing was originally proposed for debugging [Korel and Laski 1988;
Agrawal and Horgan 1990], they have subsequently also been used for program compre-
hension in many other innovative ways. In particular, the dynamic slices (or its variants
which also involve computing closure of dependencies by trace traversal) have been used
for studying causes of program performance degradation [Zilles and Sohi 2000], iden-
tifying isomorphic instructions in terms of their run-time behavior [Sazeides 2003] and
analyzing spurious counter-example traces produced by software model checking [Ma-
jumdar and Jhala 2005]. Even in the context of debugging, dynamic slices have been used
in unconventional ways e.g. [Akgul et al. 2004] studies reverse execution along a dynamic
slice. Thus, dynamic slicing forms the core of many tasks in program development and it
is useful to develop efficient methods for computing dynamic slices.

In this paper, we present an infrastructure for dynamic slicing of Java programs. Our
method operates on bytecode traces. First, the bytecode stream corresponding to an execu-
tion trace of a Java program for a given input is collected. The trace collection is done by
modifying a virtual machine; we have used the Kaffe Virtual Machine in our experiments.
We then perform a backward traversal of the bytecode trace to compute dynamic data and
control dependencies on-the-fly. The slice is updated as these dependencies are encoun-
tered during trace traversal. Computing the dynamic data dependencies on bytecode traces
is complicated due to Java’s stack based architecture. The main problem is that partial
results of a computation are often stored in the Java Virtual Machine’s operand stack. This
results in implicit data dependencies between bytecodes (involving data transfer via the
operand stack). For this reason, our backwards dynamic slicing performs a “reverse” stack
simulation while traversing the bytecode trace from the end.

Dynamic slicing methods typically involve traversal of the execution trace. This traver-
sal may be used to pre-compute a dynamic dependence graph or the dynamic dependencies
can be computed on demand during trace traversal. Thus, the representation of execution
traces is important for dynamic slicing. This is particularly the case for backwards dy-
namic slicing where the trace is traversed from the end (and hence needs to be stored). In
practice, traces tend to be huge; [Zhang et al. 2005] reports experiences in dynamic slicing
programs likegcc andperl where the execution trace runs intoseveral hundred million
instructions. It might be inefficient to perform post-mortem analysis over such huge traces.
Consequently, it is useful to develop a compact representation for execution traces which
capture both control flow and memory reference information. This compact trace should
be generatedon-the-flyduring program execution.

Our method proceeds by on-the-fly construction of a compact bytecode trace during pro-

Dynamic Slicing on Java Bytecode Traces · 3

gram execution. The compactness of our trace representation is owing to several factors.
First, bytecodes which do not correspond to memory access (i.e. data transfer to and from
the heap) or control transfer are not stored in the trace. Operands used by these bytecodes
are fixed and can be discovered from Java class files. Secondly, the sequence of addresses
used by each memory reference bytecode or control transfer bytecode is stored separately.
Since these sequences typically have high repetition of patterns, we exploit such repeti-
tion to save space. We modify a well-known lossless data compression algorithm called
SEQUITUR [Nevill-Manning and Witten 1997] for this purpose. This algorithm identifies
repeated patterns in the sequence on-the-fly and stores them hierarchically.

Generating compact bytecode traces during program execution constitutes the first phase
of our dynamic slicer. Furthermore, we want to traverse the compact execution trace to
retrieve control and data dependencies for slicing; this traversal should be done without
decompressing the trace. In other words, the program trace should be collected, stored
and analyzed for slicing – all in its compressed form. This is achieved in our dynamic
slicer which traverses the compact bytecode trace and computes the data/control depen-
dencies in compression domain. Since we store the sequence of addresses used by each
memory-reference/control-transfer bytecode in compressed format, this involves marking
the “visited” part of such an address sequence without decompressing its representation.

Finally, we extend our dynamic slicing method to support ”relevant slicing”. Traditional
dynamic slicing algorithms explain the values of variablesV at some occurrences of a
control locationl, by highlighting the executed program statements which affect the values
of V at l. They do not report the statements which affect the value ofV at l, by not being
executed. To fill this caveat, the concept of relevant slicing was introduced in [Agrawal
et al. 1993; Gyiḿothy et al. 1999]. We design and implement a relevant slicing algorithm
working on our compact bytecode traces.

Summary of Contributions.In summary, the main contribution of this paper is to report
methods for dynamic slicing of single threaded Java programs. Our slicer proceeds by
traversing a compact representation of a bytecode trace and constructs the slice as a set of
bytecodes; this slice is then transformed to the source code level with the help of Java class
files. Our slicing method is complicated by Java’s stack based architecture which requires
us to simulate a stack during trace traversal.

Since the execution traces are often huge, we develop a space efficient representation of
the bytecode stream for a single threaded Java program execution. This compressed trace is
constructed on-the-fly during program execution. Our dynamic slicer performs backward
traversal of this compressed tracedirectly to retrieve data/control dependencies, that is,
slicing does not involve costly trace decompression. Our compressed trace representation
is interesting in general as a program trace representation. For our subject programs (drawn
from standard suites such as the Java Grande benchmark suite or the SPECjvm suite) we
obtain compression in varying amounts ranging from5 − 5000 times. We show that the
time overheads for constructing this representation on-the-fly during program execution is
tolerable.

We also enhance our dynamic slicing algorithm to capture “omission errors”. The
extended dynamic slicing method is called as “relevant slicing” [Agrawal et al. 1993;
Gyimóthy et al. 1999]. The relevant slicing algorithm also operatesdirectly on the com-
pressed bytecode traces, as our dynamic slicing algorithm. Our experimental results indi-
cate that the additional capability of relevant slices (i.e. capturing omission errors) comes

4 · Wang and Roychoudhury

at the cost of modest additional overheads in terms of computation time or slice sizes.
The main changes w.r.t. the conference version [Wang and Roychoudhury 2004] of this

paper are as follows. We explain in full details the dynamic slicing and relevant slicing
algorithms (e.g. issues like (a) computing slices without trace decompression, and (b)
computing data dependencies via stack simulation, are elaborated in this version). In addi-
tion, more extensive experiments have been conducted for understanding the efficiency of
our compact trace representation and the sizes of dynamic/relevant slices.

Section Organization.The rest of this paper is organized as follows. Section 2 de-
scribes our compressed representation of Java bytecode traces. Section 3 and 4 discuss
our dynamic slicing and relevant slicing algorithms. Section 5 presents the experimental
evaluation and Section 6 summarizes related work. We conclude the paper in section 7.

2. COMPRESSED BYTECODE TRACE

In this section, we will discuss how to collect compact bytecode traces of Java programs
on the fly. This involves a discussion of the compaction scheme as well as the necessary
instrumentation. The compaction scheme used by us is exact, lossless and on-the-fly, and
it can be generalized to other kinds of instructions.

2.1 Overall representation

The simplest way to define a program trace is to treat it as a sequence of “instructions”.
For Java programs, we view the trace as the sequence of executed bytecodes, instead of
program statements. This is because only bytecodes are available for Java libraries, which
are used by Java programs. Furthermore, collecting traces at the level of bytecode has the
flexibility in tracing/not tracing certain bytecodes. For example, thegetstatic bytecode
loads the value of a static field. This bytecode does not need tracing, because which static
field to access is decided at compile-time, and can be discovered from class files during
post-mortem analysis.

However, representing a Java program trace as a bytecode sequence has its own share of
problems. In particular, it does not allow us to capture many of the repetitions in the trace.
A linear representation of the program trace as a single string loses out structure in several
ways.

— The individual methods executed are not separated in the trace representation.

— Sequences of addresses accessed by individual memory load/store bytecodes are not
separated out. These sequences capture data flow and exhibit high regularity (e.g. a read
bytecode sweeping through an array).

— Similarly, sequences of target addresses accessed by control transfer bytecodes are
not separated out. Again these sequences show fair amount of repetition (e.g.a loop branch
repeats the same target many times).

In our representation, the compact trace of the whole program consists of trace tables,
each of which is used for one method. Method invocations are captured by tracing byte-
codes which invoke methods. The last executed bytecode w.r.t. the entire execution is
clearly marked. Within the trace table for a method, each row maintains traces of a specific
bytecode or of the exit of the method. Monitoring and tracing every bytecode may incur
too much time and space overheads. We monitor only the following five kinds of bytecodes

Dynamic Slicing on Java Bytecode Traces · 5

to collect the trace, where the first two are necessary to capture data flow of the execution,
and the last three are necessary to capture control flow of the execution.

— Memory allocation bytecodes.Memory allocation bytecodes record the identities of
created objects.

— Memory access bytecodes.The bytecodes to access local variables and static fields
are not traced since the addresses accessed by these bytecodes can be obtained from the
class file. For bytecodes accessing object fields / array elements, we trace the addresses (or
identities since an address may be used by different variables in the lifetime of a program
execution) corresponding to the bytecode operands.

— Method invocation bytecodes.Java programs use four kinds of bytecodes to invoke
methods. Two of them,invokevirtual and invokeinterface , may invoke dif-
ferent methods on different execution instances. These invoked methods have the same
method name and parameter descriptor (which can be discovered in class files), but they
belong to different classes. So everyinvokevirtual andinvokeinterface byte-
code records the classes which the invoked methods belong to.

— Bytecodes with multiple predecessors.Some bytecodes have multiple predecessors
in the control flow graph. Such a bytecode records which bytecodes are executed immedi-
ately before itself.

— Method return bytecodes.If a method has multiplereturn bytecodes, the trace of
the exit of the method records whichreturn bytecodes are executed.

Monitoring the last two kinds of bytecodes (bytecodes with multiple predecessors and
method return bytecodes) and marking the last executed bytecode are required due to back-
ward traversal of the trace during post-mortem analysis. When the analysis performs for-
ward traversal of the trace, it is not necessary to monitor bytecodes with multiple prede-
cessors and method return bytecodes. Instead, each conditional branch bytecode should
record which bytecode is executed immediately after the branch bytecode (i.e. the target
address).

As mentioned earlier, our trace representation captures each method’s execution in the
trace as a trace table. Each row of the trace table for a methodm represents the execution
of one of the bytecodes ofm (in fact it has to be a bytecode which we trace). A row of a
trace table thus captures all the execution instances of a specific bytecode. The row corre-
sponding to a bytecodeb in methodm stores the sequence of values taken by each operand
of b during execution; ifb has multiple predecessors, we also maintain a sequence of the
predecessor bytecode ofb. Thus, in each row of a trace table we store several sequences
in general;each of these sequences are stored in a compressed format. Separating the
sequence of values for each bytecode operand allows a compression algorithm to capture
and exploit regularity and repetition in the values taken by an operand. This can be due
to regularity of control or data flow e.g. a read bytecode sweeping through an array or a
loop iterating many times. Before presenting how to compress trace sequences, let us look
at an example to understand the trace table representation. Note that sequences are not
compressed in this example for ease of understanding.

Example.The left part of Figure 1 presents a simple Java program, and the right part
shows the corresponding bytecode stream. Table I and II show the trace tables for methods
main andfoo , respectively. The constructor methodDemohas no trace table, because no
bytecode of this method is traced. Each row in the trace table consists of: (a) the id/address

6 · Wang and Roychoudhury

1: class Demo{
2:
3: public int foo(int j){
4: int ret;
5: if (j % 2 == 1)
6: ret= 2;
7: else
8: ret= 5;
9: return ret;
10: }
11:
12: static public void main (String argvs[]){
13: int i, k, a, b;
14: Demo obj= new Demo();
15: int arr[]= new int[4];
16:
17: a=2;
18: b=1;
19: k=1;
20: if (a>1){
21: if (b>1){
22: k=2;
23: }
24: }
25
26: for (i=0; i < 4; i++){
27: arr[i]=k;
28: k= k + obj.foo(i);
29: }
30:
31: System.out.println(k);
32: }
33: }

public static void main(String[]);

 1: new Class Demo
 2: dup
 3: invokespecial Demo()
 4: astore 5
 5: iconst_4
 6: newarray int
 7: astore 6
 8: iconst_2
 9: istore_3
 10: iconst_1
 11: istore 4
 12: iconst_1
 13: istore_2
 14: iload_3
 15: iconst_1
 16: if_icmple 22
 17: iload 4
 18: iconst_1
 19: if_icmple 22
 20: iconst_2
 21: istore_2
 22: iconst_0
 23: istore_1
 24: iload_1
 25: iconst_4
 26: if_icmpge 39
 27: aload 6
 28: iload_1
 29: iload_2
 30: iastore
 31: iload_2
 32: aload 5
 33: iload_1
 34: invokevirtual foo:(int)
 35: iadd
 36: istore_2
 37: iinc 1, 1
 38: goto 24
 39: getstatic
 40: iload_2
 41: invokevirtual println:(int)
 42: return

Demo();

 43: aload_0
 44: invokespecial Object()
 45: return

public int foo(int);

 46: iload_1
 47: iconst_2
 48: irem
 49: iconst_1
 50: if_icmpne 54
 51: iconst_2
 52: istore_2
 53: goto 56
 54: iconst_5
 55: istore_2
 56: iload_2
 57: ireturn

Fig. 1. The left part is a simple Java program, and the right part shows corresponding bytecodes. MethodDemo()
is generated automatically as the class constructor.

for a bytecode (in theBytecode column), and (b) collected traces for that bytecode (in the
Sequences column).

For our example Java program, there are 57 bytecodes altogether, and only 8 of them are
traced, as shown in the Table I and II. Bytecodes 1 and 6 (i.e. two new statements at lines
14 and 15 of the source program) allocate memory for objects, and their traces includeo1

ando2, which represent identities of the objects allocated by these bytecodes. Bytecode
30 defines an element of an array (i.e. definearr[i] at line 27 of the source program).
Note that for thisiastore bytecode, two sequences are stored. These sequences corre-
spond to the two operands of the bytecode, namely: identities of accessed array objects
(i.e. 〈o2, o2, o2, o2〉) and indices of accessed array element (i.e. 〈0, 1, 2, 3〉). Both se-
quences consist of four elements, because bytecode 30 is executed four times and accesses
o2[0], o2[1], o2[2], o2[3] respectively; each element in a sequence records one operand for
one execution of bytecode 30. Bytecodes 34 and 41 invoke virtual methods; the operand

Dynamic Slicing on Java Bytecode Traces · 7

Bytecode Sequences
1 〈o1〉
6 〈o2〉
22 〈19〉
24 〈23, 38, 38, 38, 38〉
30 〈o2, o2, o2, o2〉

〈0, 1, 2, 3〉
34 〈CDemo, CDemo, CDemo, CDemo〉
41 〈Cout〉

Table I. Trace table for methodmain(String[])

Bytecode Sequences
56 〈55, 53, 55, 53〉

Table II. Trace table for methodfoo(int)

sequences record classes which invoked methods belong to, whereCDemo represents class
DemoandCout represents the standard output stream class. Bytecodes 22, 24 and 56 have
multiple predecessors in the control flow graph. For example, bytecode 56 (i.e. return
ret at line 9 of the source program) has two predecessors: bytecode 53 (i.e. afterret=2
at line 6 of the source program) and bytecode 55 (i.e. ret=5 at line 8 of the source pro-
gram). The sequence recorded for bytecode 56 (see Table II) captures bytecodes executed
immediately before bytecode 56, which consists of bytecodes 55 and 53 in this example.
Note that every method in our example program has only onereturn bytecode, so no
return bytecode is monitored and no trace of the exit of a method is collected.

Clearly, different invocations of a method within a program execution can result in dif-
ferent traces. The difference in two executions of a method results from different operands
of bytecodes within the method. These different traces are all stored implicitly via the
sequence of operands used by the traced bytecodes. As an example, consider the trace
table of methodfoo shown in Table II. The different traces offoo result from the differ-
ent outcomes of its only conditional branch, which is captured by the trace sequence for
predecessors of bytecode 56 in Figure 1, as shown in Table II.

2.2 Overview of SEQUITUR

So far, we have described how the bytecode trace sequences representing control flow,
data flow, or dynamic call graph are separated in an execution trace. We now employ a
lossless compression scheme to exploit the regularity and repetition of these sequences.
Our technique is an extension of the SEQUITUR, a lossless data compression algorithm
[Nevill-Manning and Witten 1997] which has been used to represent control flow informa-
tion in program traces [Larus 1999]. First we briefly describe SEQUITUR.

The SEQUITUR algorithm represents a finite sequenceσ as a context free grammar
whose language is the singleton set{σ}. It reads symbols one-by-one from the input
sequence and restructures the rules of the grammar to maintain the following invariants:
(A) no pair of adjacent symbols appear more than once in the grammar, and (B) every rule
(except the rule defining the start symbol) is used more than once. To intuitively understand
the algorithm, we briefly describe how it works on a sequence123123. As usual, we use
capital letters to denote non-terminal symbols.

8 · Wang and Roychoudhury

After reading the first four symbols of the sequence123123, the grammar consists of the
single production rule

S → 1, 2, 3, 1

whereS is the start symbol. On reading the fifth symbol, it becomes

S → 1, 2, 3, 1, 2

Since the adjacent symbols1, 2 appear twice in this rule (violating the first invariant),
SEQUITUR introduces a non-terminalA to get

S → A, 3, A A → 1, 2

Note that here the rule defining non-terminal A is used twice. Finally, on reading the last
symbol of the sequence123123 the above grammar becomes

S → A, 3, A, 3 A → 1, 2

This grammar needs to be restructured since the symbolsA, 3 appear twice. SEQUITUR
introduces another non-terminal to solve the problem. We get the rules

S → B,B B → A, 3 A → 1, 2

However, now the rule defining non-terminal A is used only once. So, this rule is elimi-
nated to produce the final result.

S → B,B B → 1, 2, 3

Note that the above grammar accepts only the sequence123123.

2.3 Capturing Contiguous Repeated Symbols in SEQUITUR

One drawback of SEQUITUR is that it cannot efficiently represent contiguous repeated
symbols, including both terminal and non-terminal symbols. However, contiguous re-
peated symbols are not uncommon in program traces. Consider the example in Figure 1.
Bytecode 24 (i.e. i<4 at line 26 of the source program in Figure 1) has two predecessors:
bytecode 23 (i.e. i=0 at line 26 of the source program in Figure 1) and bytecode 38 (after
i++ at line 26 of the source program in Figure 1). Thefor loop is iterated four times, so
the predecessor sequence for bytecode 24 is:〈 23, 38, 38, 38, 38〉 as shown in Table I. To
represent this sequence, SEQUITUR will produce the following rules:

S → 23, A, A A → 38, 38

In general, if thefor loop is iteratedk times, SEQUITUR needsO(lgk) rules to rep-
resent the predecessor sequence for bytecode 24. Clearly,38 contiguously appears in the
predecessor sequence. To exploit such contiguous occurrences in the sequence representa-
tion, we propose the Run-Length Encoded SEQUITUR (RLESe).

RLESe constructs a context free grammar to represent a sequenceon the fly; this con-
trasts with the work of [Reiss and Renieris 2001] which modifies the SEQUITUR grammar
post-mortem. The right side of each rule is a sequence of “nodes”. Each node〈sym : n〉
consists of a symbolsym and a countern (i.e. run length), representingn contiguous
occurrences ofsym. RLESe can exploit contiguous repeated symbols, and represent the
above trace sequence〈 23, 38, 38, 38, 38〉 of bytecode 24 using the following one rule:

S → 23 : 1, 38 : 4

Dynamic Slicing on Java Bytecode Traces · 9

The RLESe algorithm constructs a context free grammar by reading from the input se-
quence symbol by symbol. On reading a symbolsym, a node〈sym : 1〉 is appended to
the end of the start rule, and grammar rules are re-structured by preserving following three
properties. The first property is unique to RLESe, resulting from its maintenance of con-
tiguous occurrences of grammar nodes. The last two properties are taken (and modified)
from SEQUITUR.

(1) No contiguous repeated symbols property.This property states that each pair of adja-
cent nodes contains different symbols. Continuous repeated symbols will be encoded
within the run-length.

(2) Digram uniqueness property.This property means that nosimilar digrams appear in
resulting grammar rules. Here a digram refers to two consecutive nodes on the right
side of a grammar rule. Two digrams aresimilar if their nodes contain the same pair
of symbolse.g. 〈a : 2, X : 2〉 is similar to〈a : 3, X : 4〉, but 〈a : 3, X : 2〉 is not
similar to〈X : 2, a : 3〉.

(3) Rule utility property.This rule states that every rule (except the start rule S) is refer-
enced more than once. When a rule is referenced by only one node and the run length
n of that node equals 1, the reference will be replaced with the right hand side of this
rule.

To maintain the digram uniqueness property in RLESe, we might need to split nodes dur-
ing grammar construction. This split operation allows the algorithm to obtain duplicated
identicaldigrams, and represent them by one grammar rule for potential space saving. Two
digrams areidentical if they have the same pairs of symbols and counters. For example,
digram〈a : 2, X : 2〉 is identical to〈a : 2, X : 2〉, but digram〈a : 2, X : 2〉 is not identical
to 〈a : 3, X : 4〉.

Given two similar digrams〈sym1 : n1, sym2 : n2〉, and〈sym1 : n′
1, sym2 : n′

2〉, we
can split at most two nodes to obtain identical digrams as〈sym1 : min(n1, n

′
1), sym2 :

min(n2, n
′
2)〉, wheremin(n1, n

′
1) denotes the minimum ofn1 andn′

1. Consider bytecode
24 of Figure 1, which corresponds to the termination conditioni<4 of loop at line 26 of
the source program. Assume that in some execution, such a loop is executed twice, one
time with 6 iterations, and another time with 8 iteration. Recall that bytecode 24 has two
predecessors: bytecode 23 (corresponding toi=0 of the source program in Figure 1) and
bytecode 38 (afteri++ of the source program in Figure 1). The predecessor sequence for
bytecode 24 is:

S → 23 : 1, 38 : 6, 23 : 1, 38 : 8

To ensure digram uniqueness property, we will split the node〈38 : 8〉 to a digram
〈38 : 6, 38 : 2〉. This is to remove duplicate occurrences of similar digrams as:

S → A : 2, 38 : 2 A → 23 : 1, 38 : 6

The split operation introduces more nodes (at most two) into the grammar, but may save
space when the identical digram appears frequently in the sequence being compressed.

In addition to the run-length encoding performed in RLESe, we also need to modify the
terminal symbols fed into RLESe algorithm. In particular, we need to employ difference
representations in memory reference sequences. For example, the sequence〈0, 1, 2, 3〉
in Table I, which represents the indices of the array elements defined by bytecode 56 in

10 · Wang and Roychoudhury

Figure 1, cannot be compressed. By converting it into its difference representation as〈0,
1, 1, 1〉, RLESe can compactly represent the trace sequence with one rule, as

S → 0 : 1, 1 : 3

As with SEQUITUR [Nevill-Manning and Witten 1997], the RLESe compression algo-
rithm is linear in both space and time, assuming that it takes constant time to find similar
digrams.Detailed space/time complexity analysis of the RLESe compression scheme is pre-
sented in Appendix A.Experiments (in Section 5) show that RLESe can often achieve com-
parable compression ratio within less time, compared against SEQUITUR. This is because
RLESe can postpone re-constructing the grammar so the grammar rules are re-constructed
less frequently. That is, on reading a symbolsym from input, instead of appending node
〈sym : 1〉 and re-constructing the grammar immediately, the RLESe algorithm first com-
paressym against the last node〈sym′ : n〉 of the start rule. Ifsym is the same assym′,
the node〈sym′ : n〉 is updated to〈sym′ : n + 1〉 and the grammar is not further re-
constructed. If not, node〈sym : 1〉 is appended to the end of the start rule, and the
grammar is re-structured by preserving the three properties of RLESe.

3. TECHNIQUES FOR DYNAMIC SLICING

In this section, we focus on how to perform dynamic slicing of Java programs. Our dy-
namic slicing algorithm works at the bytecode level, since it operates on compact bytecode
traces described in the last section. Dynamic slicing is performed w.r.t. a slicing criterion
(H,α, V), whereH is an execution trace,α represents some bytecodes the programmer
is interested in, andV is a set of variables referenced at these bytecodes. Dynamic slice
contains all bytecodes which have affected values of variables inV referenced at last oc-
currences ofα in the execution traceH.

Often, the user understands a Java program at the statement level. Thus, the user-defined
criterion is often of the form(I, l, V), whereI is an input, andl is a line number of the
source program; the user is interested in statements (instead of bytecodes) which have af-
fected values of variables inV referenced at last occurrences of statements atl during the
execution with inputI. This form is a little different from our bytecode based slicing cri-
terion(H,α, V) and dynamic slice. In this case, program execution with inputI produces
the traceH, andα represents the bytecodes corresponding to statements atl. The user is
interested in statements corresponding to bytecodes included in the dynamic slice.In order
to map bytecodes to a line number of the source file and vice versa, we use theLineNum-
berTableattribute in a Java’s class file [Lindholm and Yellin 1999] which describes such
a map.

The dynamic slice includes the closure of dynamic control and data dependencies from
the slicing criterion. Formally, a dynamic slice can be defined overDynamic Dependence
Graph (DDG) [Agrawal and Horgan 1990]. The DDG captures dynamic control and data
dependencies between bytecode occurrences during program execution. Each node of the
DDG represents one particular occurrence of a bytecode; edges represent dynamic data
and control dependencies. The dynamic slice is then defined as follows.

Definition 3.0.1. Dynamic slicefor a slicing criterion consists of all bytecodes whose
occurrence nodes can be reached from the node(s) representing the slicing criterion in the
DDG.

Dynamic Slicing on Java Bytecode Traces · 11

We can construct the DDG as well as the dynamic slice during a backwards traversal of
the execution trace.

3.1 Core Algorithm

Figure 2 presents an inter-procedural dynamic slicing algorithm, which returns dynamic
slice defined in Definition 3.0.1. Before slicing, we pre-compute thecontrol flow graphfor
the program (which is used by thegetPrevBytecode method at line 34 of the algorithm
in Figure 2). In addition, we pre-compute thecontrol dependence graph[Ferrante et al.
1987], where each node in the graph represents one bytecode, and an edge from nodeυ
to υ′ represents that bytecode ofυ′ decides whether bytecode ofυ will be executed. This
static control dependence graph is used at lines 20 and 21 of the algorithm in Figure 2 to
detect dynamic control dependencies,

Lines 1-5 of Figure 2 introduce five global variables for the slicing algorithm, including
the slicing criterion. During dynamic slicing, we maintainδ, a list of variables whose
values need to be explained,ϕ, the set of bytecode occurrences which have affected the
slicing criterion,op stack, a operand stack for simulation (see Section 3.3), andfram,
stack of frames for method invocations. The dynamic slice includes all bytecodes whose
occurrences appear inϕ at the end of the algorithm. Initially we setδ, ϕ, op stack and
fram to empty. For every method invocation during trace collection, we create a frameγ
for this invocation during slicing. Theseγ sets include those bytecode occurrencesβ such
thatβ belongs toϕ and the slicing algorithm has not found the bytecode occurrence which
β is dynamically control dependent on.

We now traverse the program’s execution trace backwards, starting from the last exe-
cuted bytecode recorded in the traceH. For each occurrenceβ of bytecodebβ (i.e. β
represents one execution of the bytecodebβ) encountered during the backward traversal
for slicing, a frame is created and pushed tofram wheneverbβ is a return bytecode (at
lines 9-11 of Figure 2); a frame is popped fromfram and stored inγlast wheneverbβ is a
method invocation bytecode (at lines 12-13 of Figure 2).

The dynamic slicing algorithm then checks whether the encountered bytecode occur-
renceβ has affected the slicing criterion during trace collection, at lines 17-29 of Figure
2. In particular, line 17 of Figure 2 checks ifβ is the slicing criterion. Line 20 of Figure 2
checks dynamic control dependencies whenbβ is a control transfer bytecode. In particular,
computeControlDependence (bβ ,γ,γlast) returns true iff.:

—bβ is a conditional branch bytecode, and some bytecode whose occurrence appears inγ
is statically control dependent onbβ (i.e. intra-procedural control dependence check), or

—bβ is method invocation bytecode, and theγlast set is not empty (i.e. inter-procedural
control dependence check).

Bytecode occurrences which are dynamically control dependent onβ are then removed
from γ because their dynamic control dependencies have just been explained. Line 25 of
Figure 2 checks dynamic data dependencies. When the algorithm finds that the bytecode
occurrenceβ has affected the slicing criterion (i.e. any of the three checks in lines 17, 20
and 25 of the algorithm in Figure 2 succeeds),β is included intoγ and used variables are
included intoδ (at lines 30-32 of Figure 2), in order to find bytecode occurrences which
have affectedβ and hence the slicing criterion. The simulation operand stackop stack is
also properly updated at line 33 for further check of data dependencies (this is explained

12 · Wang and Roychoudhury

1 (H, α, V)= the slicing criterion
2 δ= ∅, a set of variables whose values need to be explained
3 ϕ= ∅, the set of bytecode occurrences which have affected the slicing criterion
4 op stack= empty, the operand stack for simulation
5 fram= empty, the frames of the program execution

6 dynamicSlicing()
7 bβ = get last executed bytecode fromH;
8 while (bβ is defined)
9 if (bβ is a return bytecode)
10 new fram= createFrame();
11 push(frame, new fram);
12 if (bβ is a method invocation bytecode)
13 γlast = pop(frame);
14 β = current occurrence of bytecodebβ ;
15 curr fram = the top offram;
16 γ= a set of bytecode occurrences to check control dependencies incurr fram;
17 if (β is the last occurrence ofbβ andbβ ∈ α)
18 v = variables used atβ, andv ⊆ V ;
19 ϕ = ϕ ∪ {β};
20 if (computeControlDependence(bβ , γ, γlast))
21 BC= all bytecode occurrences inγ which are dynamically control dependent onβ;
22 γ = γ −BC ;
23 v = variables used atβ;
24 ϕ = ϕ ∪ {β};
25 if (computeDataDependence(β, bβ))
26 def v′ = variables defined atβ;
27 δ = δ − def v′;
28 v = variables used atβ;
29 ϕ = ϕ ∪ {β};
30 if (β ∈ ϕ)
31 γ = γ ∪ {β};
32 δ = δ ∪ v;
33 updateOpStack(β, bβ);
34 bβ = getPrevBytecode(β, bβ);
35 return bytecodes whose occurrences appear inϕ;

Fig. 2. The dynamic slicing algorithm

in Section 3.3). The dynamic control and data dependencies checks (lines 20 and 25 of
Figure 2) can be reordered, since they are independent of each other.

In the rest of this section, we elaborate on the underlying subtle issues in using the slic-
ing framework of Figure 2. Section 3.2 presents how to traverse the execution backwards
without decompressing the compact bytecode trace. Section 3.3 explains the intricacies
of our dynamic data dependence computation in presence of Java’s stack based execu-
tion. Section 3.4 illustrates the dynamic slicing algorithm with an example and Section 3.5
shows the correctness and cost of our dynamic slicing algorithm.

3.2 Backward Traversal of Trace without decompression

The dynamic slicing algorithm in Figure 2 traverses the program execution backwards,
starting from the last executed bytecode recorded in the traceH (line 7 of Figure 2). The
algorithm proceeds by iteratively invoking thegetPrevBytecode method to obtain the

Dynamic Slicing on Java Bytecode Traces · 13

1 getPrevBytecode(β: bytecode occurrence,bβ : bytecode)

2 if (bβ has exactly one predecessor in the control flow graph)
3 blast= the predecessor bytecoee;
4 else
5 G= compressed control flow operand sequence forbβ in the compact bytecode traceH
6 π= a root-to-leaf path forG;
7 blast= getLast(G, π);
8 if (blast is a method invocation bytecode)
9 meth= the method invoked byβ;
10 if (meth has exactly one return bytecode)
11 return the return bytecode;
12 else
13 G′= compressed operand sequence for exit ofmeth in traceH

14 π′= a root-to-leaf path forG′;
15 return getLast(G′, π′);
16 if (blast represents the start of a method)
17 return the bytecode which invokes current method;
18 return blast;

Fig. 3. Get last executed bytecode for backward traversal of the execution trace.

bytecode executed prior to current occurrenceβ of bytecodebβ during trace collection.
Figure 3 presents thegetPrevBytecode method. The method first retrieves the last
executed bytecode within the same method invocation ofbβ to blast, and returnsblast if
blast does not cross method boundaries (lines 2-7 of Figure 3). Ifblast invokes a method
meth, the last executed return bytecode of methodmeth is returned (lines 8-15 of Figure
3). If blast represents the start of a method, the bytecode which invokes current method is
returned (lines 16-17 of Figure 3).

ThegetPrevBytecode method has to retrieve last executed bytecode from the com-
pact bytecode traceH. For this purpose, it needs to traverse the predecessor sequence of
a bytecode with multiple predecessors. Since such sequences are compactly stored as a
RLESe grammar, we need to efficiently traverse RLESe grammars; this is accomplished
by the methodgetLast . ThegetLast method gets last executed predecessor from a
RLESe grammarG without decompression, using a root-to-leaf pathπ in G. The slicing
algorithm maintains such a pathπ for each compressed RLESe sequenceG to clearly mark
which portion ofG has been already visited. We now explain in details the mechanics of
efficient traversal over RLESe representation.

In our trace compression scheme, all operand sequences are compressed using RLESe.
The dynamic slicing algorithm traverses these sequences from the end to extract preproces-
sors for computation of control flow, and to extract identifies of accessed variables for
computation of data flow. For example, consider the operand sequence of array indices for
bytecode 30 in Table I, which is〈0, 1, 2, 3〉. During dynamic slicing on the program of
Figure 1, we traverse this sequence backwards, that is, from the end. At any point during
the traversal, we mark the last visited operand (say〈0, 1, 2, 3〉) during slicing. Sequence
beginning with the marked operand (i.e. 〈2, 3〉) has been visited. The next time the slicing
algorithm tries to extract a operand from the operand sequence by the slicing algorithm, we
use this mark to find last unvisited element (i.e. value1 in this example). We now describe
how such markers can be maintained and updated in the RLESe grammar representation.

14 · Wang and Roychoudhury

The RLESe grammar of a sequenceσ can simply be represented as a directed acyclic
graph (DAG). Recall each node of a RLESe grammar is of the form〈sym : n〉 wheresym
is a terminal or non-terminal symbol andn denotes a run-length, representingn contiguous
occurrences of symbolsym. Edges of the DAG represent grammar nodes; nodes of the
DAG represent symbolssym of grammar nodes; annotation above edges represent run-
length n of grammar nodes. Let us consider an example where the operand sequence
is 〈abbabbcabb〉. The RLESe compression algorithm will produce the following rules to
represent this operand sequence:

S → A : 2, c : 1, A : 1 A → a : 1, b : 2

Small letters denote terminal symbols in the operand sequence, and capital letters de-
note non-terminal symbols. Figure 5(a) shows corresponding DAG representation, where
dashed circles represent non-terminal symbols, circles represent terminal symbols, and
edges are annotated by run-lengths. For example, the grammar node〈A : 1〉 at the end of

the start rule is captured by the nodeA and the incoming edgeS
1→ A for nodeA. We

then use a root-to-leaf pathπ over the DAG representation to mark the symbol inσ that

was last visited during backward traversal. For example, pathS
1,1→ A

2,1→ b in Figure 5(c)
makes lasted visited symbol as〈abbabbcabb〉. This path is represented by dashed edges in
Figure 5. For every edge of the pathπ, we maintain both the run lengthn of corresponding
grammar nodeX = 〈sym : n〉, and an visitation counterk ≤ n, wherek denotes the

number of times that nodeX has been visited so far. For example, in the edgeA
2,1→ b in

Figure 5(c), 2 represents the run length of grammar node〈b : 2〉, and 1 represents that this
node has been visited once.

The dynamic slicing algorithm maintains one root-to-leaf pathπ for every compressed
operand sequence. The pathπ is initialized from the root to the rightmost leaf node in
the DAG, and the visitation counter annotated for the last edge inπ is set to 0, since no
symbol has been visited. The slicing algorithm then uses the pathπ to find the last unvisited
terminal symbol of the RLESe grammar by invoking thegetLast method of Figure 4. In
thegetLast method,G is the DAG representation of the RLESe grammar for a sequence
σ andπ is the root-to-leaf path for the symbol inσ that was last visited. ThegetLast
method returns the last unvisited symbol and updates the pathπ. Note that the “immediate
left sibling” of an edgee = x → y is the edgee′ = x → z where nodez is the immediate
left sibling of nodey in the graph; this notion is used in lines 10 and 11 of Figure 4.

Figure 5(b) shows the initialized root-to-leaf pathπ for the RLESe grammar. Figure 5(c-
g) present the resultant pathπ by calling thegetLast method of Figure 4 each time, and
the symbol of the leaf node pointed by the pathπ is returned as the last unvisited symbol.
For example, Figure 5(c) shows the pathπ after the first calling thegetLast method.

The pathπ includes two edges (i.e. S
1,1→ A andA

2,1→ b), representing both edges have
been visited once. The leaf nodeb is referenced byπ. Thus,b is returned by thegetLast
method, which represents the last symbolb in the original sequence〈abbabbcabb〉.

With the getLast algorithm in Figure 4, we can extract an operand sequence effi-
ciently. Given the grammar for a sequence with lengthN , the getLast method will
be invokedN times to extract the entire sequence. The overall space overhead isO(N),
and the overall time overhead isO(N). The space overhead is caused by maintaining the
root-to-leaf pathπ, which is used by all invocations of thegetLast method to extract a
sequence. Because these is no cycle in the grammar, the size of pathπ is linear with the

Dynamic Slicing on Java Bytecode Traces · 15

1 getLast(G: Grammar,π: path inG)

2 e = the last edge ofπ;
3 while (e is defined)

4 lete = sym1
n1,k1−→ sym′

1;
5 if (k1 < n1)
6 break;
7 else
8 remove edgee from π;
9 change the annotation of edgee from (n1, k1) to (n1);
10 Sibe= immediate left sibling ofe in G;
11 if (such a siblingSibe exists)
12 e = Sibe;
13 break;
14 else
15 e = last edge ofπ;

16 lete = sym2
n2,k2−→ sym′

2;
17 change the annotation of edgee from (n2, k2) to (n2, k2 + 1);
18 GX = DAG rooted at nodesym′

2 within G;
19 for (each edgee′ from nodesym′

2 to rightmost leaf node ofGX)
20 insert edgee′ into π;

21 lete′ = sym3
n3→ sym′

3;
22 change the annotation of edgee′ from (n3) to (n3, 1);
23 return symbol in rightmost leaf node ofGX ;

Fig. 4. One step in the backward traversal of a RLESe sequence (represented as DAG) without decompressing
the sequence.

S

(a) (b) (c)

non-terminal symbol terminal symbol grammar node the root-to-leaf path

A c

a b

2 1 1

1 2

S

A c

a b

2 1 1,1

1 2,1

S

A c

a b

2 1 1,1

1 2,2

S

A c

a b

2 1 1,1

1,1 2

S

A c

a b

2 1,1 1

1 2

S

A c

a b

2,1 1 1

1 2,1

(d) (e) (f)

Sequence: abbabbcabb
RLESe grammar: S -> A:2, c:1, A:1

A -> a:1, b:2

S

A c

a b

2 1 1,1

1 2,0

(g)

Fig. 5. An example shows how to extract operand sequence over RLESe representation without decompression

16 · Wang and Roychoudhury

number of grammar rules. There are fewer grammar rules than grammar nodes, and the
number of grammar nodes is bound by the length of the original sequence. Thus, the space
overhead to extract the entire sequence isO(N).

The time overhead to extract the entire sequence is bound by the number of times to
access edges and nodes in the DAG. Whenever a node with terminal symbol is accessed,
thegetLast method immediately returns the terminal symbol. So, the total number of
times to access node with terminal symbol isO(N) in order to extract a sequence with
length N . For every non-terminal nodesym, let h(sym) be the minimum number of
edges from nodesym to a leaf node. Because every grammar has at least two grammar
nodes, every access to a nodesym, will lead to at least2h(sym) accesses to leaf nodes. So,
the total number of accesses to non-terminal nodes isO(

∑
i

N
2i)= O(N). Consequently,

the time overhead to extract the entire sequence from a RLESe grammar (by repeatedly
invokinggetLast to get the last symbol which has not been visited) isO(N).

3.3 Computing Data Dependencies

The typical way to detect dynamic data dependencies is to compare addresses of variables
defined/used by bytecode occurrences (line 25 of Figure 2). However, this is complicated
by Java’s stack based architecture. During execution, the Java virtual machine uses an
operand stack to hold partial results of execution, besides variables. Dynamic data depen-
dence also exists between bytecode occurrencesβ andβ′, when a value is pushed into
the operand stack byβ and is popped byβ′. Consider the program in Figure 1 as an ex-
ample. Assume that statement 27 of the source program is executed, and corresponding
trace at the level of bytecode is〈271, 282, 293, 304〉 where271 means that the first ele-
ment of the sequence is bytecode 27 and so on. Bytecode occurrence304 (which defines
the array elementarr[i] at line 27 of the source program) is dynamically data depen-
dent on bytecode occurrences271, 282 and293 (which load local variablesk andi , array
object referencearr at line 27 of the source program, respectively). The three bytecode
occurrences push three values into the operand stack, all of which are popped and used by
bytecode occurrence304.

Clearly, dynamic data dependencies w.r.t. local variables and fields can be easily de-
tected by comparing the addresses (or identities) of accessed variables. However, detecting
data dependencies w.r.t. the operand stack requires simulating the operand stack. Figure
6 presents how to maintain the stackop stack for simulation, which is used by the dy-
namic slicing algorithm at line 33 of Figure 2. We pop the simulation stack according to
defined operands, and push the simulation stack according to used operands. The function
def op(bβ) (use op(bβ)) at line 2 (4) of Figure 6 returns the number of operands defined
(used) by bytecodebβ . Note that the stack simulated during slicing does not contain ac-
tual values of computation. Instead, each entry of the stack stores the bytecode occurrence
which pushed the entry into the stack.

Figure 8 shows the method to determine whether a bytecode occurrence has affected
the slicing criterion via dynamic data dependencies. This method is used by the dynamic
slicing algorithm at line 25 of Figure 2. If a bytecode occurrenceβ defines a variable
which needs explanation (lines 2-10 of Figure 8), orβ defines a partial result which needs
explanation (lines 11-13 of Figure 8), the method returnstrue to indicate thatβ has affected
the slicing criterion. A partial result needs explanation if the bytecode occurrence which
pushes corresponding entry into the stack has already been included inϕ. The function
def op(bβ) at line 11 of Figure 8 returns the number of operands defined by bytecodebβ .

Dynamic Slicing on Java Bytecode Traces · 17

1 updateStack(β: bytecode occurrence,bβ : bytecode)

2 for (i = 0; i < def op(bβ); i = i + 1)
3 pop(op stack);
4 for (i = 0; i < use op(bβ); i = i + 1)
5 push(op stack, β);

Fig. 6. Maintain the simulation stackop stack.

505505
505

483
483

483
483

483 Empty

after 505 after 494 after 483 after 472 after 461

op_stack

Fig. 7. An example shows theop stack after each bytecode occurrence encountered during backward traversal

When the algorithm detects data dependencies via reverse stack simulation, it requires
analyzing some bytecode which are not traced. Consider the program in Figure 1 as an
example. The statementif (j%2==1) at line 5 of the source program corresponds to
bytecode sequence〈461, 472, 483, 494, 505〉. Figure 7 shows theop stack after processing
each bytecode occurrence during backward traversal. Note that bytecode 48 (i.e. bytecode
irem) is not traced, which stands for the mathematical computation “%”. When the byte-
code occurrence483 is encountered, thecomputeDataDependence method in Figure
8 can detect that505 is dynamically data dependent on483. In addition, the bytecode 48
will also update theop stack, as shown in Figure 7. As we can see from the example, in
order to detect implicit data dependencies involving data transfer via the operand stack, it
is important to know which bytecode occurrence pushes/pops an entry from theop stack.
The actual values computed by the bytecode execution are not important. This highlights
difference between our method and the work on Abstract Execution [Larus 1990]. In Ab-
stract Execution, a small set of events are recorded and these are used as guide to execute
a modified program. In our work, we record some of the executed bytecodes in our com-
pressed trace representation. However, the untraced bytecodes are not re-executed during
the analysis of the compressed trace. Instead, we resort to a lightweight analysis to uncover
the dynamic control and data dependencies.

In order to detect data dependencies, our dynamic slicing algorithm needs the addresses
of variables accessed by each bytecode occurrence (lines 23, 28 of Figure 2 and lines 3-8
of Figure 8, where lines 3-8 of Figure 8 also explain details how to get accessed variable
at lines 23, 28 of Figure 2). If a local variable or a static field is accessed, the address
can be found from the class files. For example, the class file shows that every execution
of bytecode 29 of Figure 1 uses local variablek . If an object field or an array element is
accessed, the address can be found from operand sequences of corresponding bytecode in
the compact bytecode trace. For example, executions of bytecode 30 of Figure 1 define the
1st, 2nd, 3rd, and 4th element of the arrayo2, which is described by operand sequences of
bytecode 30 in Table I. These operand sequences are compressed by RLESe, and can be
extracted by invoking thegetLast method in Figure 4 as explained in Section 3.2.

18 · Wang and Roychoudhury

1 computeDataDependence(β: bytecode occurrence,bβ : bytecode)

2 if (β defines a variable)
3 if (β defines a static field or local variable)
4 def loc= get address of the defined static field or local variable from class files;
5 if (β defines an object field or an array element)
6 G= compressed operand sequence forbβ in the compact bytecode traceH
7 π= a root-to-leaf path forG;
8 def loc= getLast(G, π);
9 if (def loc ∈ δ)
10 return true;
11 ω= the set of bytecode occurrences in topdef op(bβ) entries ofop stack;
12 if (ω ∩ ϕ 6= ∅)
13 return true;
14 return false;

Fig. 8. Defect dynamic data dependencies for dynamic slicing

3.4 Example

Consider the example program in Figure 1, and corresponding compressed trace in Table
I and II. Assume that the programmer wants to find which bytecodes have affected the
value ofk at line 31 of the source program. Table III shows each stage using the dynamic
slicing algorithm in Figure 2 w.r.t. thek . For simplicity, we do not illustrate slicing over
the entire execution, but over last executed eight statements –〈26, 27, 28, 5, 6, 9, 26, 31〉.
The corresponding bytecode sequence is a sequence of thirty-one bytecodes shown in the
first column of Table III. For each bytecode occurrence, the position number1, . . . , 31 of
the bytecode occurrence in the sequence is marked as superscript for the sake of clarity.

For each bytecode occurrenceβ encountered during backward traversal, one row of
Table III shows resultantδ, fram, op stack and ϕ after analyzingβ by our dynamic
slicing algorithm. The? in the last column indicates that the corresponding bytecode
occurrence has affected the slicing criterion and is included intoϕ.

When bytecode occurrence4030 is encountered, it is found to be the slicing criterion.
The used variablek is inserted toδ to find which bytecode occurrence definesk ; the
bytecode occurrence4030 is inserted toγ for control dependencies check; we pop4131

from the operand stackop stack because4030 loads one value to the operand stack during
trace collection. It should be noted that in this simple example, we refer to a variable with
its name (e.g. k), since both methods are invoked once, and every variable has a distinct
name in this example. This is for simplicity of illustration. In the implementation, we use
identifiers to distinguish between variables from same/different method invocation.

After 4030, bytecode occurrence3929 is encountered during backward traversal and so
on. We omit the details of the entire traversal but highlight some representative occurrences
that take place during the execution trace traversal.

—After analyzing bytecode occurrence5620, the slicing algorithm finds that bytecode 56
has two predecessors, and retrieves last unvisited value from operand sequence of byte-
code 56 in Table II. Therefore, bytecode occurrence5319 is next analyzed.

—When bytecode occurrence307 is encountered,o2 and 3 are retrieved from operand
sequences of bytecode 30 in Table I, representing assignment to array elemento2[3].
However,o2[3] is irrelevant to the slicing criterion, so neitherδ nor γ is updated. The

Dynamic Slicing on Java Bytecode Traces · 19

β δ fram op stack ∈ ϕ
method γ

4131 {} main {} 〈4131, 4131〉
4030 {k} main {4030} 〈4131〉 ?

3929 {k} main {4030} 〈〉
2628 {k} main {4030} 〈2628, 2628〉
2527 {k} main {4030} 〈2628〉
2426 {k} main {4030} 〈〉
3825 {k} main {4030} 〈〉
3724 {k} main {4030} 〈〉
3623 {} main {4030, 3623} 〈3623〉 ?

3522 {} main {4030, 3623} 〈3522, 3522〉 ?

5721 {} foo {5721} 〈3522, 5721〉 ?
main {4030, 3623}

5620 {ret} foo {5721, 5620} 〈3522〉 ?
main {4030, 3623}

5319 {ret} foo {5721, 5620} 〈3522〉
main {4030, 3623}

5218 {} foo {5721, 5620, 5218} 〈3522, 5218〉 ?
main {4030, 3623}

5117 {} foo {5721, 5620, 5218, 5117} 〈3522〉 ?
main {4030, 3623}

5016 {} foo {5721, 5620, 5016} 〈3522, 5016, 5016〉 ?
main {4030, 3623}

4915 {} foo {5721, 5620, 5016, 4915} 〈3522, 5016〉 ?
main {4030, 3623}

4814 {} foo {5721, 5620, 5016, 4915, 4814} 〈3522, 4814, 4814〉 ?
main {4030, 3623}

4713 {} foo {5721, 5620, 5016, 4915, 4814, 4713} 〈3522, 4814〉 ?
main {4030, 3623}

4612 {j} foo {5721, 5620, 5016, 4915, 4814, 4713, 4612} 〈3522〉 ?
main {4030, 3623}

3411 {} main {4030, 3623, 3411} 〈3522, 3411, 3411〉 ?

3310 {i} main {4030, 3623, 3411, 3310} 〈3522, 3411〉 ?

329 {i, obj} main {4030, 3623, 3411, 3310, 329} 〈3522〉 ?

318 {i, obj, k} main {4030, 3623, 3411, 3310, 329, 318} 〈〉 ?

307 {i, obj, k} main {4030, 3623, 3411, 3310, 329, 318} 〈307, 307, 307〉
296 {i, obj, k} main {4030, 3623, 3411, 3310, 329, 318} 〈307, 307〉
285 {i, obj, k} main {4030, 3623, 3411, 3310, 329, 318} 〈307〉
274 {i, obj, k} main {4030, 3623, 3411, 3310, 329, 318} 〈〉
263 {i, obj, k} main {4030, 263} 〈263, 263〉 ?

252 {i, obj, k} main {4030, 263, 252} 〈263〉 ?

241 {i, obj, k} main {4030, 263, 252, 241} 〈〉 ?

Table III. An example to show each stage of the dynamic slicing algorithm in Figure 2. The columnβ shows
bytecode occurrences in the trace being analyzed.

op stack has now three307, because theiastore bytecode uses and pops three value
from the operand stack during trace collection.

3.5 Proof of Correctness and Complexity Analysis

In this section we first prove the correctness of our dynamic slicing algorithm. Complexity
analysis of the algorithm is then presented.

LEMMA 3.5.1. Let ϕi be theϕ set afteri loop iterations of the dynamic slicing algo-
rithm in Figure 2. Then∀i, j, 0 < i < j ⇒ ϕi ⊆ ϕj .

PROOF. Letβ be the bytecode occurrence encountered at theith loop iteration. Accord-
ing to the algorithm,ϕi=ϕi−1 or ϕi=ϕi−1 ∪ {β}. Thus, for alli we haveϕi−1 ⊆ ϕi, and

20 · Wang and Roychoudhury

the lemma holds.

LEMMA 3.5.2. Let ϕi be theϕ set, andframi be thefram set afteri loop itera-
tions of the dynamic slicing algorithm in Figure 2. Then∀β′, β′ ∈ frami iff. β′ ∈ ϕi

and the algorithm has not found the bytecode occurrence whichβ′ is dynamically control
dependent on afteri loop iterations.

PROOF. We prove the lemma by induction on loop iterations of the slicing algorithm.
Base : Initially, ϕ0 andfram0 are both empty, so the lemma holds.
Induction : Assume∀β′′, β′′ ∈ frami−1 iff. β′′ ∈ ϕi−1 and the algorithm has not

found the bytecode occurrence whichβ′′ is dynamically control dependent on afteri − 1
loop iterations. Letβ be the bytecode occurrence encountered at theith loop iteration.
According to the algorithm in Figure 2,frami = (frami−1 − C) ∪ O, where,

— C is the set of bytecode occurrences inframi−1 which are dynamically control
dependent onβ. Note that ifβ is a method invocation bytecode occurrence,C=γlast (line
13 in Figure 2), and ifβ is a branch bytecode occurrence,C= BC (line 21 in Figure 2).

— O = {β} iff. β ∈ ϕi, andO = ∅ iff. β 6∈ ϕi (lines 30 and 31 in Figure 2).

We first prove the only if part of the lemma. For anyβ′ ∈ frami,

(1) if β′ ∈ frami−1 − C ⊆ frami−1, β′ ∈ ϕi−1 and the algorithm has not found the
bytecode occurrence whichβ′ is dynamically control dependent on afteri − 1 loop
iterations according to the assumption. Lemma 3.5.1 showsϕi−1 ⊆ ϕi, soβ′ ∈ ϕi.
Sinceβ′ 6∈ C, β′ is not dynamically control dependent onβ. Thus, the algorithm has
not found the bytecode occurrence whichβ′ is dynamically control dependent on after
i loop iterations.

(2) if β′ ∈ O andO 6= ∅, thenβ′ = β ∈ ϕi. Clearly, the slicing algorithm has not found
the bytecode occurrenceβ which β is dynamically control dependent on, because
backward traversal has not encounteredβ, which appears earlier thanβ during trace
collection.

Next, we prove the if part of the lemma. Note thatϕi = ϕi−1 or ϕi = ϕi−1 ∪ {β}
according to the slicing algorithm. For anyβ′ ∈ ϕi s.t. the slicing algorithm has not
found the bytecode occurrence whichβ′ is dynamically control dependent on afteri loop
iterations, we need to show thatβ′ ∈ frami. The following are the two possibilities.

(1) if β′ ∈ ϕi−1, thenβ′ ∈ frami−1 according to assumption. Sinceβ′ is not dynami-
cally control dependent onβ, β′ 6∈ C andβ′ ∈ frami.

(2) if β′ = β, thenβ ∈ ϕi andO = {β}. Soβ′ ∈ frami.

This completes the proof.

LEMMA 3.5.3. Let ϕi be theϕ set, andδi be theδ set afteri loop iterations of the
dynamic slicing algorithm in Figure 2. Then∀v, v ∈ δi iff. variable v is used by a
bytecode occurrence inϕi and the slicing algorithm has not found assignment tov after i
loop iterations.

PROOF. We prove the lemma by induction on loop iterations of the slicing algorithm.
Base : Initially, ϕ0 andδ0 are both empty, so the lemma holds.
Induction : Assume that∀v′, v′ ∈ δi−1 iff. variablev′ is used by a bytecode occurrence

in ϕi−1 and the algorithm has not found assignment tov′ afteri−1 loop iterations. Letβ be

Dynamic Slicing on Java Bytecode Traces · 21

the bytecode occurrence encountered at theith loop iteration. According to the algorithm,
δi = (δi−1 − def v′) ∪ V, where

— def v′ is the set of variables assigned byβ (lines 26 and 27 in Figure 2).
— V is the set of variables used byβ iff. β ∈ ϕi, andV=∅ iff. β 6∈ ϕi. (lines 30 and 32

in Figure 2)

We first prove the only if part of the lemma. For anyv ∈ δi,

(1) if v ∈ δi−1 − def v′ ⊆ δi−1, v is used by a bytecode occurrence inϕi−1 and the
algorithm has not found assignment tov after i − 1 loop iterations according to the
assumption. Lemma 3.5.1 showsϕi−1 ⊆ ϕi. So,v is used by a bytecode occurrence
in ϕi. Sincev 6∈ def v′, v is not defined byβ. Thus, the algorithm has not found
assignment tov afteri loop iterations.

(2) if v ∈ V andV 6= ∅, thenv is used by bytecode occurrenceβ andβ ∈ ϕi. Clearly, the
slicing algorithm has not found assignments to the variablev afteri loop iterations, be-
cause backward traversal has not encountered these assignments, which appear earlier
thanβ during trace collection.

Next, we prove the if part of the lemma. Note thatϕi = ϕi−1 or ϕi = ϕi−1 ∪ {β}
according to the slicing algorithm. Consider a variablev which is used by a bytecode
occurrence inϕi, and the slicing algorithm has not found assignment tov after i loop
iterations. For such a variable, we have the following two cases.

(1) if v is used by a bytecode occurrence inϕi−1, thenv ∈ δi−1 according to assumption.
Sincev is not defined byβ, thenv 6∈ def v′ andv ∈ δi.

(2) if v is used by bytecode occurrenceβ andβ ∈ ϕi, thenv ∈ V andV ⊆ δi. Thus,
v ∈ δi.

In both cases, we show thatv ∈ δi. This completes the proof.

LEMMA 3.5.4. During dynamic slicing according to the algorithm in Figure 2, a byte-
code occurrenceβ pops an entry fromop stack, which is pushed toop stack by bytecode
occurrenceβ′, iff. β′ uses an operand in the operand stack defined byβ during trace
collection.

PROOF. Theop stack for slicing is a reverse simulation of the operand stack for com-
putation during trace collection. That is, for every bytecode occurrenceβ′′ encountered
during slicing, the slicing algorithm pops entries from (pushes entries to) theop stack iff.
β′′ pushes operands to (pops operands from) the operand stack during trace collection —
as shown in theupdateOpStack method in Figure 6. Consequently, a bytecode occur-
renceβ pops an entry fromop stack, and this entry is pushed toop stack by bytecode
occurrenceβ′ during slicing, iff. β defines an operand in the operand stack, andβ′ uses
the operand during trace collection.

LEMMA 3.5.5. Let ϕi be theϕ set afteri loop iterations of the dynamic slicing algo-
rithm in Figure 2, andβ be the bytecode occurrence encountered at theith loop iteration.
Thenβ ∈ ϕi − ϕi−1 iff. (1) β belongs to the slicing criterion, or, (2)∃β′ ∈ ϕi−1, β′ is
dynamically control or data dependent onβ.

PROOF. Note thatβ 6∈ ϕi−1. According to the slicing algorithm,β ∈ ϕi − ϕi−1 iff.
any of lines 17, 20 and 25 in Figure 2 is evaluated true so that any of lines 19, 24, and 29 in

22 · Wang and Roychoudhury

Figure 2 is executed. We next prove that any of lines 17, 20 and 25 in Figure 2 is evaluated
true iff. (1)β belongs to the slicing criterion, or, (2)∃β′ ∈ ϕi−1, β′ is dynamically control
or data dependent onβ.

First, line 17 in Figure 2 is evaluated to true iff.β belongs to the slicing criterion.
Next, we prove that line 20 in Figure 2 is evaluated to true iff.∃β′ ∈ ϕi−1, β′

is dynamically control dependent onβ. According to the slicing algorithm, the check
computeControlDependence(bβ , γ, γlast) in line 20 of the dynamic slicing algorithm (see
Figure 2) returns true iff:

— β is a branch bytecode occurrence, and∃β′ ∈ γ ⊆ frami−1, β′ is dynamically
control onβ, or

— β is a method invocation bytecode occurrence, and∃β′ ∈ γlast ⊆ frami−1, β′ is
dynamically control onβ,

According to Lemma 3.5.2,β′ ∈ frami−1 only if β′ ∈ ϕi−1. So, line 20 returns true
only if ∃β′ ∈ ϕi−1, β′ is dynamically control dependent onβ.

On the other hand, if∃β′ ∈ ϕi−1, β′ is dynamically control dependent onβ, then the al-
gorithm has not found the bytecode occurrence whichβ′ is dynamically control dependent
on afteri − 1 loop iterations, because every bytecode occurrence is dynamically control
dependent on exactly one bytecode occurrence. So,β′ ∈ frami−1 according to Lemma
3.5.2. If β is a branch bytecode occurrence, thenβ′ ∈ γ, sinceβ andβ′ should belong
to the same method invocation. Ifβ is a method invocation bytecode occurrence, then
β′ ∈ γlast, sinceβ′ should belong to last method invocation, which is called byβ. So line
20 in Figure 2 returns true if∃β′ ∈ ϕi−1, β′ is dynamically control dependent onβ.

Finally, we prove that line 25 in Figure 2 is evaluated to true iff∃β′ ∈ ϕi−1, β′

is dynamically data dependent onβ. Note that line 25 invokes thecomputeDataDe-
pendencemethod defined in Figure 8 to check dynamic data dependence. The check
computeDataDependence(β, bβ) returns true iff either of following conditions holds:

— if β defines a variable inδi−1 (line 9 of Figure 8), whereδi−1 represents theδ set
afteri− 1 loop iterations.

— if one of topdef op(bβ) entries of theop stack is pushed by a bytecode occurrence
β′ ∈ ϕi−1 (line 12 of Figure 8), wheredef op(bβ) is the number of operands defined by
bytecodebβ of occurrenceβ during trace collection.

When thecomputeDataDependence method returns true: (a) ifβ defines a variable
v ∈ δi−1, then∃β′ ∈ ϕi−1, v is used byβ′ and the algorithm has not found assignment
to v after i − 1 loop iterations according to Lemma 3.5.3. Soβ′ is dynamically data
dependent onβ. (b) if one of topdef op(bβ) entries of theop stack is pushed by a
bytecode occurrenceβ′ ∈ ϕi−1. Because all topdef op(bβ) entries of theop stack
will be popped byβ (lines 2 and 3 of methodupdateStack in Figure 6),β′ uses an
operand in the operand stack defined byβ during trace collection according to Lemma
3.5.4. Consequently,β′ is dynamically data dependent onβ. This proves that line 25 in
Figure 2 is evaluated to true, only if∃β′ ∈ ϕi−1, β′ is dynamically data dependent onβ.

On the other hand, if∃β′ ∈ ϕi−1, β′ is dynamically data dependent onβ, then either (a)
∃v, β′, β′ ∈ ϕi−1, v is used byβ′ andv is defined byβ. According to Lemma 3.5.3,v ∈
δi−1; so thecomputeDataDependence method returns true and line 25 in Figure 2 is
evaluated to true. (b)∃β′, β′ ∈ ϕi−1, β′ uses an operand in the operand stack defined byβ
during trace collection. According to Lemma 3.5.4,β should pop an entry fromop stack,

Dynamic Slicing on Java Bytecode Traces · 23

which is pushed intoop stack by β′. Sinceβ pops topdef op(bβ) entries from the
op stack, line 12 in Figure 8 is evaluated to true, and thecomputeDataDependence
method returns true. This proves that line 25 in Figure 2 is evaluated to true, if∃β′ ∈ ϕi−1,
β′ is dynamically data dependent onβ.

THEOREM 3.5.1. Given a slicing criterion, the dynamic slicing algorithm in Figure 2
returns dynamic slice defined in Definition 3.0.1.

PROOF. Let ϕi be theϕ set afteri loop iterations of the dynamic slicing algorithm in
Figure 2,ϕ∗ be the resultantϕ set when the algorithm finishes, andβ be the bytecode
occurrence encountered at theith loop iteration.

We first prove the soundness of the algorithm by induction on loop iterations of the
slicing algorithm,i.e. for any β′ ∈ ϕ∗ we show thatβ′ is reachable from the slicing
criterion in the dynamic dependence graph (DDG).

Base : Initially, ϕ0 = ∅, so the soundness of the algorithm holds.
Induction : Assume that∀β′′ ∈ ϕi−1, β′′ is reachable from the slicing criterion in the

dynamic dependence graph (DDG). Note thatϕi = ϕi−1, or ϕi = ϕi−1 ∪ {β}. Then,
∀β′ ∈ ϕi, (1) if β′ ∈ ϕi−1, thenβ′ is reachable from the slicing criterion in the DDG
according to the induction hypothesis. (2) ifβ′ = β, thenβ ∈ ϕi − ϕi−1. Soβ belongs to
the slicing criterion, or∃β ∈ ϕi−1, whereβ is dynamically control/data dependent onβ,
according to Lemma 3.5.5. Becauseβ is reachable from the slicing criterion in the DDG
according to the induction hypothesis,β is reachable from the slicing criterion in the DDG.

Next, we prove the completeness of the slicing algorithm,i.e. ∀β′ reachable from slicing
criterion in the DDG⇒ β′ ∈ ϕ∗. Note that there is no cycle in the DDG, so we prove the
completeness by induction on structure of the DDG.

Base : Consider a bytecode occurrenceβ′ whereβ′ belongs to the slicing criterion. Let
β′ be encountered at theith loop iteration of the slicing algorithm. According to Lemma
3.5.5 and 3.5.1,β′ ∈ ϕi ⊆ ϕ∗.

Induction : Assume that a bytecode occurrenceβ′ which is reachable from the slicing
criterion in the DDG is included intoϕ∗. For everyβ′′ where there is an edge fromβ′ to
β′′ in the DDG,β′ is dynamically control/data dependent onβ′′. Let β′ be encountered
at theith loop iteration of the algorithm, soβ′ ∈ ϕi. Let β′′ be encountered at thejth
loop iteration of the algorithm. Becauseβ′′ appears earlier thanβ′ during trace collection,
backward travel of the trace will encounterβ′′ after β′, i.e. i < j. Thus,β ∈ ϕi ⊆
ϕj−1 according to Lemma 3.5.1, and thenβ′′ ∈ ϕj − ϕj−1 according to Lemma 3.5.5.
Consequently,β′′ ∈ ϕ∗, sinceϕj − ϕj−1 ⊆ ϕj ⊆ ϕ∗.

Now we analyze the cost of the dynamic slicing algorithm in Figure 2. Given the com-
pressed trace for an execution which executesN bytecodes, the space overhead of the
slicing algorithm isO(N), and the time overhead isO(N2).

The space overhead of the algorithm is caused by maintainingδ, ϕ, op stack, fram,
compressed operand sequences and root-to-leaf paths for every compressed sequence. The
sizes ofδ, ϕ, op stack andfram are allO(N). For δ, this is because one execution of a
bytecode can use constant number of variables; forop stack, this is because the number
of operands popped from and pushed to the operand stack by one bytecode is bound by a

24 · Wang and Roychoudhury

constant1. Assume that each bytecodebi has executedη(bi) times, so
∑

bi
η(bi)= N . The

size of all compressed operand sequences is
∑

bi
O(η(bi))= O(N), because every bytecode

has fixed number of operand sequences, and the size of the compact representation is linear
to the length of original operand sequence (proof is presented in Appendix A). The size of
each root-to-leaf path is bound by the size of corresponding compressed operand sequence.
Consequently, the overall space cost of the slicing algorithm isO(N).

During dynamic slicing, the algorithm performs the following four actions for each oc-
currenceβ of bytecodebβ encountered during backward traversal of the execution trace.

(1) extract operand sequences of bytecodebβ from the compressed trace for backward
traversal,

(2) perform slicing criterion, dynamic control/data dependencies checks,
(3) updateδ, ϕ, op stack, andfram,
(4) get last executed bytecode.

According to the complexity analysis of thegetLast method which is presented in
Section 3.2, it needsO(η(bi)) time to extract an operand sequence of bytecodebi which
is executedη(bi) times during trace collection. Note that

∑
i η(bi)= N . Consequently, the

overall time overhead to perform action (1) to extract all operand sequences is
∑

i O(η(bi))=
O(N), i.e. linear w.r.t. length of the original execution. After extracting operand se-
quences, the overall time to perform action (2) and (3) isO(N2), since they may up-
date/enquire setsδ, ϕ, op stack andfram whose sizes are bound byN .

— The overall time to update/enquireδ is O(N2), because there areN bytecode occur-
rences, and each bytecode occurrence can define/use constant number of variables.

— The overall time to accessop stack is O(N), because there areN bytecode oc-
currences during execution, and the number of operands popped from and pushed to the
operand stack by one bytecode occurrence is bound by a constant.

— The overall time to accessϕ andfram is bothO(N2) because constant number of
elements are updated/enquired each time.

To get last executed bytecode (action (4) in the preceding), thegetPrevBytecode
method of Figure 3 may perform two actions: (a) get the predecessor bytecode from class
files, or (b) extract last executed bytecode from compressed operand sequences. The over-
all time to perform get predecessor bytecode from class files isO(N), since it needs con-
stant time to get the predecessor bytecode from Java class files every time. The overall
time to perform extract operand sequences isO(N) as discussed in the preceding.

Consequently, the overall time cost of the dynamic slicing algorithm isO(N2).

4. RELEVANT SLICING

In the previous section, we presented dynamic slicing which can be used for focusing the
programmer’s attention to a part of the program. However, there are certain difficulties in
using dynamic slices for program debugging/understanding. In particular, dynamic slic-
ing does not consider that the execution of certain statements is wrongly omitted. Conse-
quently, not all statements which are responsible for the error are included into the dynamic
slice, and the slice may mislead the programmer.

1Although method invocation bytecodes may have various numbers of operands as parameters, these numbers
are usually bound by a constant, methods usually do not have too many (e.g.more than 100) parameters.

Dynamic Slicing on Java Bytecode Traces · 25

1 b = 1;
2 k = 1;
3 if (a > 1) {
4 if (b > 1){
5 k = 2

}
}

6 . . . = k

Fig. 9. A “buggy” program fragment

As an example, consider the program fragment presented in Figure 9, which is a sim-
plified version of the program in Figure 1. Let us assume that the statementb=1 at line 1
should beb=2 in a correct program. With inputa=2 , the variablek at line 6 is 1 unexpect-
edly. The execution trace is〈 11, 22, 33, 44, 65 〉, where11 means statement1 is executed
as thefirst statement and so on. If we use dynamic slicing to correct the bug w.r.t. the
incorrect value ofk at65, the dynamic slice computed by the slicing algorithm of Section
3 contains only lines 2 and 6. Changing line2 may fix the bug, since such a change will
change the value ofk at line 6. Unfortunately, line 1, the actual bug, is excluded from the
dynamic slice. In this example the error arises from the execution of line 5 being wrongly
omitted, which is caused by the incorrect assignment at line 1. In fact, changing line 1 may
cause the predicate at line 4 to be evaluated differently; then line 5 will be executed and
the value ofk at line 6 will be different. In other words, dynamic slicing does not consider
the effect of the unexecuted statement at line 5.

The notion ofrelevant slicing, an extension of dynamic slicing, fills this caveat. Rel-
evant slicing was introduced in [Agrawal et al. 1993; Gyimóthy et al. 1999]. Besides
dynamic control and data dependencies, relevant slicing considerspotential dependencies
which capture the potential effects of unexecuted paths of branch and method invocation
statements. The relevant slice include more statements which, if changed, may change the
wrong behaviors w.r.t. the slicing criterion. In the example of Figure 9 with inputa=2 , 65

is potentially dependenton execution of the branch at line 4 (44), because if the predicate
at44 is evaluated differently, the variablek is re-defined and then used by65. Considering
that44 is dynamically data dependent on11, 11 has potential effects over65. Thus, line 1
is included into the resultant relevant slice.

In general,Dynamic Slice⊆ Relevant Slice⊆ Static Slice. In our experiments (refer
Section 5), we show that the sizes of the relevant slices are close to the sizes of the corre-
sponding dynamic slices. Like dynamic slicing, relevant slicing is also computed w.r.t. a
particular program execution (i.e. it only includes executed statements).

The rest of this section is organized as follows. In Section 4.1, we recallpast work
on potential dependencies, a notion which is crucial for computing the relevant slice. In
Section 4.2 we present our definition of relevant slice and show how it differs from existing
works on relevant slicing. Since the existing works on relevant slicing present a slice
as a set of program statements, we also define a relevant slice as a set of statements in
Section 4.2 for ease of comparison with existing works. However, like our dynamic slicing
algorithm, our relevant slicing algorithm (refer Figure 15 in Section 4.3) operates at the
level of bytecodes; this algorithm is discussed in Section 4.3.

26 · Wang and Roychoudhury

4.1 Background

In this subsection, we recapitulate the definition of potential dependence. This portion is
not newwhich was mostly studied in [Agrawal et al. 1993; Gyimóthy et al. 1999].

Relevant slicing extends dynamic slicing by considering statements which may affect
the slicing criterion. These statements were executed and did not affect the criterion. How-
ever, if these statements are changed, branches may be evaluated differently, or alternative
methods may be invoked. We consider the following two situations for execution of alter-
native code fragment due to program changes.

(1) Branch: If the value of a variable used by the predicate of a branch statement is
changed, the predicate may be evaluated differently.

(2) Method invocation: If the programmer changes the assignment w.r.t. the object which
invokes a method, or the declaration of parameters, an alternative method may be
called.

In relevant slicing, we use the notion ofpotential dependenceto capture the effects of
these branch and method invocation statements. If these statements are evaluated differ-
ently, variables may be re-defined and affect the slicing criterion. We define potential
dependence as follows; for any statement occurrenceβ, the corresponding statement is
written asSβ .

Definition 4.1.1. Potential DependenceGiven an execution traceH of a programP ,
for any statement instancesβ andβ′ appearing inH, β is potentially dependenton an
earlier branch or method invocation statement instanceβ′ if and only if all of the following
conditions hold.

(1) β is not (transitively) dynamically control/data dependent onβ′ in H.
(2) there exists a variablev used inβ s.t. v is not defined betweenβ′ andβ in H andv

may be defined along an outgoing edgel of statementSβ′ whereSβ′ is the statement at
statement occurrenceβ′. That is, there exists a statementX satisfying the following.
—(a)X is (transitively) control dependent onSβ′ along the edgel, and
—(b) X is an assignment statement which assigns to variablev or a variableu which

may be aliased tov.
(3) the edgel is not taken atβ′ in H.

The purpose of potential dependence is to find those statements which will be missed
by dynamic slicing. If a branch or method invocation statement has affected the slicing
criterion, we do not consider that it has potential influence, since the dynamic slice will
always include such a statement. We use condition (1) to exclude dynamic control and
data dependencies from potential dependencies. Conditions (2) and (3) ensure thatβ′ has
potential influence onβ. The statementX in condition 2(b) appears in programP , but its
execution is prohibited by the evaluation of branch/method invocation inβ′. However, if
it is executed (possibly due a change in the statementSβ′), the value of variablev used
at β will be affected. We cannot guarantee thatv must be re-defined ifβ′ is evaluated to
take edgel. This is because even ifβ′ is evaluated differently, execution of assignment to
v may be guarded by other (nested) conditional control transfer statements. Furthermore,
condition (2) requires computation of static data dependence. In the presence of arrays and
dynamic memory allocations, we can only obtain conservative static data dependencies in
general.

Dynamic Slicing on Java Bytecode Traces · 27

4.2 Salient Features of our Relevant Slices

Using the notion of potential dependence, past works have computed relevant slices by
considering dynamic control, data and potential dependencies w.r.t. the slicing criterion.
In this subsection, we present our notion of relevant slices and discuss how it compares with
similar notions studied in the past. Our relevant slicing algorithm operating on compact
Java bytecode traces is discussed in the next subsection (Section 4.3).

Extended Dynamic Dependence Graph.To define relevant slices, first we define the no-
tion of anExtended Dynamic Dependence Graph(EDDG). The EDDG captures dynamic
control dependencies, dynamic data dependencies and potential dependencies w.r.t. a pro-
gram execution. It is an extension of theDynamic Dependence Graph(DDG) described
in [Agrawal and Horgan 1990]. Each node of the DDG represents one particular occur-
rence of a statement in the program execution; edges represent dynamic data and control
dependencies. The EDDG extends the DDG with potential dependencies, by introducing
a dummy node for each branch statement occurrence or a method invocation statement
occurrence. For each statement occurrenceβ in the execution trace, a non-dummy node
nn(β) appears in the EDDG to represent this occurrence. In addition, ifβ is a branch state-
ment or a method invocation statement, a dummy nodedn(β) also appears in the EDDG.
As far as the edges are concerned, following are the incoming edges of any arbitrary node
nn(β) or dn(β) appearing in the EDDG.

—dynamic control dependence edges from non-dummy nodenn(β′) to nn(β), iff. β′ is
dynamically control dependent onβ.

—dynamic data dependence edges from both non-dummy nodenn(β′) and dummy node
dn(β′) (if there is a dummy node for occurrenceβ′) to nn(β), iff. β′ is dynamically
data dependent onβ.

—potential dependence edges from non-dummy nodenn(β′) and dummy nodedn(β′) (if
there is a dummy node forβ′) to dn(β), iff. β′ is potentially dependent onβ.

These dependencies can be detected during backwards traversal of the execution trace.

What is a Relevant Slice.The relevant sliceis then defined based on the extended dy-
namic dependence graph (EDDG) as follows.

Definition 4.2.1. Relevant slicefor a slicing criterion consists of all statements whose
occurrence nodes can be reached from the node(s) for the slicing criterion in the Extended
Dynamic Dependence Graph (EDDG).

In order to accurately capture the effects w.r.t. potential dependencies, we have intro-
duced a dummy node into the EDDG for each occurrence of a branch or method invocation
statement. The EDDG can then represent dynamic control dependence edges and potential
dependence edges separately. This representation allows the reachability analysis for rele-
vant slicing not to consider dynamic control dependence edges which are immediately after
potential dependence edges, because such dynamic control dependencies cannot affect be-
haviors w.r.t. the slicing criterion. Figure 10 shows the EDDG for the example program in
Figure 9 for inputa = 2 . The execution trace is〈11, 22, 33, 44, 65〉. The resultant relevant
slice w.r.t. variablek at line 6 consists of lines{1, 2, 4, 6}, because nodes11, 22, 44 and
65 can be reached from the criterion65. Note that statement occurrence65 is potentially
dependent on44, and44 is dynamically control dependent on statement occurrence33.

28 · Wang and Roychoudhury

Fig. 10. The EDDG for the program in Figure 9 with input a=2.

However, changes related to line 3 will not affect the value ofk at 65, nor will it decide
whether line 6 will be executed. Therefore, line 3 should not be included into the slice and
reported. By using the dummy node to separate dynamic control dependence and potential
dependence w.r.t. statement occurrence44, we can easily exclude line 3 of Figure 9 from
our relevant slice.

Comparison with previously proposed notions of relevant slices.The notion of relevant
slicing presented above isnot completely new. Relevant slicing techniques (or other vari-
ants of it which try to extend dynamic slicing) have been studied [Agrawal et al. 1993;
Gyimóthy et al. 1999]. We now compare our notion of relevant slices against existing
works, thereby pinpointing some salient features of our relevant slices.

Agrawal et al. first introduced relevant slicing, and applied it for regression testing
[Agrawal et al. 1993]. Their relevant slice includes all nodes reachable from the slicing
criterion in aSimplified Extended Dynamic Dependence Graph(SEDDG). The SEDDG
is constructed from the EDDG by removing dynamic control dependence edge w.r.t. a
nodeβ, if every path from the slicing criterion toβ contains potential dependence edges.
Because of the removed control dependence edges, some important statements may be
excluded from the slice. Let us take the program in Figure 11 as an example. Figure 12
shows the corresponding EDDG and SEDDG. The relevant slice of [Agrawal et al. 1993]
w.r.t. the criterion involving the value ofz at line 7, will ignore line 1. However, if line 1
is changed tox = 1, the value ofz at line 7 is affected.

Gyimóthy et al. [Gyiḿothy et al. 1999] proposed a forward relevant slicing method for
program debugging. Their relevant slice includes all nodes reachable from the slicing crite-
rion in aAccumulated Extended Dynamic Dependence Graph(AEDDG). The AEDDG is
constructed from the EDDG by adding an accumulated potential dependence edge between
two dummy nodesβ andβ′ if and only if β andβ′ represent two contiguous execution in-
stances of the same statement. The accumulated dependence edges in AEDDG may cause
superfluous statements to be included into the relevant slice. Consider the example in Fig-
ure 13; figure 14 shows the corresponding EDDG and AEDDG. Line 1 will never affect
z at line 6 of the program in Figure 13. However, this statement will be included into
Gyimóthy’s relevant slice.

Dynamic Slicing on Java Bytecode Traces · 29

1 x = 2;
2 y = 2;
3 if (x > 1)

4 y = 1;
endif

5 if (y! = 1)

6 z = 3;
endif

7 . . . =z;

Fig. 11. An example to compare our relevant slicing algorithm with Agrawal’s algorithm.

EDDG

Data Dependence
Potential Dependence

Control Dependence

Dummy Node

3

5

7

2 1 3

5

 Entry

4

3

5

7

2 1 3

5

 Entry

4

SEDDG

Fig. 12. The EDDG and SEDDG for the program in Figure 11.

1 x = 1;
2 for (i = 0; i < 3; i + +)

3 if (x % 2 == 0)
4 z = 4;

endif
5 x = i;

endfor
6 . . . =z;

Fig. 13. An example to compare our relevant slicing algorithm with Gyimóthy’s algorithm.

4.3 Relevant Slicing algorithm

We now discuss how our dynamic slicing algorithm described in Section 3 (operating on
compact Java bytecode traces) can be augmented to compute relevant slices. Thus, like
the dynamic slicing algorithm, our relevant slicing algorithm also operates on the compact
bytecode traces described in Section 2.

As in dynamic slicing, relevant slicing is performed w.r.t. a slicing criterion(H,α, V),
whereH is the execution history for a certain program input,α represents some bytecodes
the programmer is interested in, andV is a set of variables referenced at these bytecodes.
Again, the user-defined criterion is often of the form(I, l, V) whereI is the input, andl
is a line number of the source program. In this case,H represents execution history of the

30 · Wang and Roychoudhury

2

2

3

1

33

2

3

1 1

4

1

3

3

1

3

1

2

2

1

2

1

3

1

4

11

1

44

1

2 2

3

3

2 2

1

1

1

2

2

2

3

3

 Entry

2331

5

3 2

5

23

2

5

6

2

2

2

2

3

3

4

1

EDDG AEDDG

Data Dependence
Potential Dependence

Control Dependence

Accumulated Potential Dependence

Dummy Node

 Entry

233

5

3 2

54

23

2

5

6

2

Fig. 14. The EDDG and AEDDG for the program in Figure 13.

programP with input I, andα represents the bytecodes correspond to statements atl.
Figure 15 presents a relevant slicing algorithm, which returns the relevant slice as de-

fined in Definition 4.2.1. This algorithm is based on backward traversal of the compressed
execution traceH (described in Section 2). The traceH contains execution flow and iden-
tities of accessed variables, so that we can detect various dependencies during the traversal.
Although the slice can also be computed after constructing the whole EDDG, this approach
is impractical because the entire EDDG may be too huge in practice. Before slicing, we
compute thecontrol flow graph, which is used to detect potential dependencies and to
get last executed bytecode. We also pre-compute thecontrol dependence graph[Ferrante
et al. 1987] which will be used at lines 21, 22 and 49 of Figure 15, and at line 9 of the
computePotentialDependence method in Figure 16. Also, prior to running our
relevant slicing algorithm we run static points-to analysis [Andersen 1994; Steensgaard
1996]; the results of this analysis are used for determining potential dependencies.

In the relevant slicing algorithm, we introduce a global variableθ, to keep track of
variables used by bytecode occurrencesβ, iff. β is included into the slice because of
potential dependencies. In particular, each element inθ is of the form〈β′, prop′〉, where
β′ is an bytecode occurrence, andprop′ is a set of variables. Every variable inprop′ is
used by a bytecode occurrenceβ′′, where

— β′′ is included intoϕ (the relevant slice) because of potential dependencies, and

— β′′ = β′, or β′′ is (transitively) dynamically control dependent onβ′.

The purpose of theδ set (set of unexplained variables) is the same as in the dynamic
slicing algorithm. That is, theδ set includes variables used by bytecode occurrenceβ for
explanation, whereβ is included into the sliceϕ becauseβ belongs to the slicing criterion,
or there is any bytecode occurrence inϕ which is dynamically control/data dependent on
β.

Dynamic Slicing on Java Bytecode Traces · 31

For each bytecode occurrenceβ of bytecodebβ encountered during the backward tra-
verse for slicing, we first check ifβ has affected the slicing criterion via dynamic con-
trol/data dependencies as in dynamic slicing algorithm of Figure 2. In particular, line 18
checks whetherβ belongs to the slicing criterion. Line 21 checks dynamic control de-
pendencies ifbβ is a conditional control transfer bytecode. Line 26 checks dynamic data
dependencies. With the introduction ofθ, variables in bothδ and θ need explanation.
Consequently, thecomputeDataDependence method has been slightly changed, as
re-defined in Figure 17. If all the three checks fail, the algorithm proceeds to check the
potential dependencies at line 37, by invoking thecomputePotentialDependence
method in Figure 16.

For the computation of potential dependencies, we need to pre-compute the effects of
various outcomes of a control transfer bytecode. Each such outcome triggers a different
code fragment whose effect can be summarized by all possible assignment bytecodes ex-
ecuted. This summarization is used by thecomputePotentialDependence method
in Figure 16. Note thatδ is used to check dynamic data dependencies (line 26 of Figure
15) as well as potential dependencies (line 6 in Figure 16).

Theintersect(MDS, δ) method used by thecomputePotentialDependence
method in Figure 16 checks whether the execution of the alternative path of a bytecode
bβ may define some variables which are used by bytecode occurrences in the slice. Here
MDS includes variables which may be defined ifbβ is evaluated differently andδ includes
variables which have affected the slicing criterion and need explanation. This check is non-
trivial becauseMDS contains static information, whileδ contains dynamic information.
Let meth be the method that the bytecodebβ belongs to, andcurr invo be current method
invocation. Note that bothMDS andδ include local variables and fields. Every local vari-
able inMDS is also a local variable of methodmeth, and is represented by its identity
〈var〉. Every local variable inδ for explanation is represented as〈invo, var〉, whereinvo
refers to the method invocation which uses the local variablevar. Many points-to analy-
sis algorithms [Andersen 1994; Steensgaard 1996] represent abstract memory locations of
objects using their possible allocation sites. Thus, we represent an object field inMDS as
〈site, name〉, wheresite refers to a possible allocation site of the object, andname refers
to the name of the field; we also represent an object field inδ as〈site, timestamp, name〉,
wheresite refers to a possible allocation site of the object,timestamp distinguishes be-
tween objects created at the same allocation site, andname refers to the name of the field.
Note thattimestamp is only important for detecting dynamic data dependencies. The
intersect(MDS, δ) method returns true iff:

—there is a local variable where〈var〉 ∈ MDS and〈curr invo, var〉 ∈ δ, or

—there is a field where〈site, name〉 ∈ MDS and〈site, timestamp, name〉 ∈ δ.

We do not consider partial results (i.e. operands in the operand stack) for potential
dependencies because partial results will not be transferred between bytecodes of different
statements w.r.t. class files compiled for debugging.

The proof of correctness of the relevant slicing algorithm in Figure 15 is similar to that
of the dynamic slicing algorithm in Figure 2, which is described in Section 3.5.Details of
the proof of correctness can be found in Appendix B.

Now we analyze the cost of the relevant slicing algorithm in Figure 15. The space
overheads of the slicing algorithm areO(N2+m3), and the time overheads areO(m2·N3),
whereN is the length of the execution, andm is the number of bytecodes of the program.

32 · Wang and Roychoudhury

1 (H, α, V)= the slicing criterion
2 δ= ∅, a set of variables whose values need to be explained
3 ϕ= ∅, the set of bytecode occurrences which have affected the slicing criterion
4 op stack= empty, the operand stack for simulation
5 fram= empty, the frames of the program execution
6 θ= empty, bytecode occurrences and their used variables included into slice because of potential dependencies

7 relevantSlicing()
8 bβ = get last executed bytecode fromH;
9 while (bβ is defined)
10 if (bβ is a return bytecode)
11 new fram= createFrame();
12 push(frame, new fram);
13 if (bβ is a method invocation bytecode)
14 γlast=pop(frame);
15 β = current occurrence of bytecodebβ ;
16 curr fram = the top offram;
17 γ= a set of bytecodes occurrence to check control dependencies incurr fram;
18 if (β is the last occurrence ofbβ andbβ ∈ α)
19 v = variables used atβ, andv ⊆ V ;
20 ϕ = ϕ ∪ {β};
21 if (computeControlDependence(bβ , γ, γlast))
22 BC= all bytecodes occurrences inγ which are statically control dependent onbβ ;
23 γ = γ −BC ;
24 v = variables used atβ;
25 ϕ = ϕ ∪ {β};
26 if (computeDataDependence(β, bβ))
27 def v′ = variables defined atβ;
28 δ = δ − def v′;
29 v = variables used atβ;
30 ϕ = ϕ ∪ {β};
31 for (each〈β′, prop′〉 in θ)
32 prop′ = prop′ − def v′;
33 if (β ∈ ϕ)
34 γ = γ ∪ {bβ};
35 δ = δ ∪ v;
36 else
37 if (computePotentialDependence(β, bβ))
38 ϕ = ϕ ∪ {β};
39 if (bβ is a branch bytecode)
40 UV β = variables used atβ;
41 θ = θ ∪ {〈β, UV β〉};
42 if (bβ is a method invocation bytecode)
43 o = the variable to invoke a method;
44 θ = θ ∪ {〈β, {o}〉};
45 break;
46 if (bβ is a branch bytecode or method invocation bytecode)
47 prop=∅;
48 for (each〈β′, prop′〉 in θ)
49 if (β′ = β or β′ is control dependent onβ)
50 prop = prop ∪ prop′;
51 θ = θ − {〈β′, prop′〉};
52 θ = θ ∪ {〈β, prop〉};
53 updateOpStack(β, bβ , op stack);
54 β = getPrevBytecode(β, H);
55 return bytecodes whose occurrences appear inϕ;

Fig. 15. Our relevant slicing algorithm.

Dynamic Slicing on Java Bytecode Traces · 33

1 computePotentialDependence(β: bytecode occurrence,bβ : bytecode)

2 if (bβ is a branch or method invocation bytecode)
3 for (each possible outcomex of bβ)
4 if (outcomex of bβ did not occur atβ)
5 MDS = the set of variables which may be defined

when outcomex occurs;
6 if (intersect(MDS, δ))

7 return true;
8 for (each〈β′, prop′〉 in θ)
9 if (β′ is not control dependent onβ and intersect(MDS, prop′))
10 return true;
11 return false;

Fig. 16. Detect potential dependencies for relevant slicing

1 computeDataDependence(β: bytecode occurrence,bβ : bytecode)

2 if (β defines a variable)
3 if (β defines a static field or local variable)
4 def loc= get address of the defined static field or local variable from class files;
5 if (β defines an object field or an array element)
6 G= compressed operand sequence forbβ in the compact bytecode traceH
7 π= a root-to-leaf path forG;
8 def loc= getLast(G, π);
9 if (def loc ∈ δ)
10 return true;
11 for (each〈β′, prop′〉 in θ)
12 if (def loc ∈ prop′)
13 return true;
14 ω= the set of bytecode occurrences in topdef op(bβ) entries ofop stack;
15 if (ω ∩ ϕ 6= ∅)
16 return true;
17 return false;

Fig. 17. Detect dynamic data dependencies for relevant slicing

Since the relevant slicing algorithm is similar with the dynamic slicing algorithm in Figure
2), the cost analysis is also similar except costs w.r.t. theθ andMDS.

The θ set contains at mostN elements of the form〈β, prop〉, because every bytecode
occurrenceβ has at most one element〈β, prop〉 in θ. The size of eachprop is O(N),
because at mostN bytecode occurrences are (transitively) dynamically control dependent
onβ and every bytecode occurrence uses constant number of variables. Consequently, the
space overheads ofθ areO(N2).

EachMDS includes the set of variables which may be defined when a specific outcome
of a branch bytecode occurs. Ifm is the number of bytecodes in the program, clearly
there are at mostm MDSs. How do we bound the size of each MDS ? Each MDS may
have at mostm assignments and each of these assignments may affect at mostm locations
(provided we distinguish locations based on allocation sites as is common in points-to
analysis methods). Thus, the size of each MDS isO(m2). Since there are at mostm
MDSs, the space overheads of maintaining the MDSs areO(m3). The other portions of

34 · Wang and Roychoudhury

the relevant slicing algorithm are taken from dynamic slicing; the space overheads of these
portions of the relevant slicing algorithm areO(N), as explained in Section 3. So, the
overall space overheads of our relevant slicing algorithm areO(N2 + m3).

We now calculate the time overheads of relevant slicing. First we bound the time over-
heads for maintaining theθ set in relevant slicing algorithm. Note that theθ set contains
O(N) elements of the form〈β, prop〉. The set difference operation at line 32 of Figure 15
is executedO(N2) times. Since eachprop set containsO(N) variables, the overall time
overheads to perform the set difference operation at line 32 of Figure 15 areO(N3). The
total time overheads to perform the set union operation at lines 41, 44 and 52 of Figure
15 areO(N2), because lines 41, 44 and 52 are executedO(N) times and the size of the
θ set isO(N). Given a bytecode occurrenceβ and theθ set, there are constant number of
elements〈β′, prop′〉 ∈ θ, whereβ′ is (directly) dynamically control dependent onβ. This
is because there is no explicitgoto statement in Java programs. Different occurrence of
the same bytecode are dynamically control dependent on different bytecode occurrences.
Note that there are constant number of bytecode which are statically control dependent on
the bytecodebβ of occurrenceβ. Thus, there are constant number of bytecode occurrences
which aredirectly dynamically control dependent onβ. In addition, every bytecode oc-
currenceβ′ has at most one〈β′, prop′〉 in θ. Consequently, lines 50 and 51 are executed
O(N) times, and the overall time overheads to execute lines 50 and 51 areO(N3). The
total time overheads to perform check at line 12 of Figure 17 areO(N3), which is similar
to perform set difference operation at line 32 of Figure 15.

Now, we analyze the overall time overheads to perform theintersect operation by
thecomputePotentialDependence method in Figure 16. Theintersect opera-
tion at line 6 of Figure 16 can be executed at mostN times. In each execution of the inter-
sect operation we compare the contents of MDS andδ. Since the size of MDS isO(m2)
and the size of the setδ is O(N), therefore the time overheads of a singleintersect
operation areO(N · m2). Thus, the total time overheads to execute all theintersect
operations at line 6 of Figure 16 areO(N ·N ·m2). Similarly, the total time overheads to
execute all theintersect operations at line 9 of Figure 16 areO(N3 · m2), since this
intersect operation is executedO(N2) times.

The other portions of the relevant slicing algorithm are taken from dynamic slicing; the
time complexity of these portions of the relevant slicing algorithm isO(N2), as discussed
in Section 3. This leads to a time complexity ofO(N3 · m2) for our relevant slicing
algorithm.

5. EXPERIMENTAL EVALUATION

We have implemented a prototype slicing tool and applied it to several subject programs.
The experiments report time and space efficiency of our trace collection technique. We
compress traces using both SEQUITUR and RLESe, and compare the time overheads and
effectiveness of the improved compression algorithm against the previous one, in order to
investigate the cost effectiveness of the proposed compression algorithm. In addition, the
experiments report time overheads to compute relevant and dynamic slices, and sizes of
these slices. This allows us to investigate the efficiency of computing relevant slices and
potential use of relevant slices.

Dynamic Slicing on Java Bytecode Traces · 35

5.1 Implementation

To collect execution traces, we have modified the Kaffe virtual machine [Kaffe] to mon-
itor interpreted bytecodes. In our traces, we use object identities instead of addresses to
represent objects. This is because the same address may be used by different objects dur-
ing a program execution. Creation of structures such as multi-dimensional arrays, constant
strings etc. may implicitly create objects. We trace and allocate identities to these objects
as well. The virtual machine may invoke some methods automatically when “special”
events occur (e.g. it may invoke the static initializer of a class automatically when a static
field of the class is first accessed). These event are also stored, and used for backward
traversal of the execution trace. Our current implementation does not support exception
handling, and finalization during garbage collection.

In order to improve performance, we do not perform stack simulation during slicing
in our implementation. Instead, we perform stack simulation inside each basic block of
the program’s control flow graph prior to slicing, to statically detect data dependencies
introduced by using the operand stack. During slicing, we use such information to detect
dynamic data dependencies. This is because we assume that all source files are compiled
into class files without optimization before tracing and slicing. According to these class
files, the operand stack is only used to transfer partial results between bytecodes of the
same statement. If a bytecodeb uses an operand in the operand stack, we can statically de-
termine the exact bytecodeb′ which defines and pushes the operand into the operand stack.
Furthermore, these bytecodes are executed together. Consequently, every occurrenceβ of
bytecodeb is dynamically data dependent on last occurrence of bytecodeb′ beforeβ. For
example, the statementarr[i]=k at line 27 of the source program in Figure 1 is compiled
into bytecode sequence〈27: aload , 28:iload , 29:iload , 30:iastore 〉. Bytecode 30
use three operands which are pushed and only pushed into the operand stack by bytecodes
27, 28 and 29 respectively. Thus, every occurrenceβ of bytecode 30 is dynamically data
dependent on occurrences of 27, 28 and 29 which are immediately beforeβ.

5.2 Subject programs

The subjects used in our experiments include six subjects from the Java Grande Forum
benchmark suite [JGF], three subjects from the SPECjvm suite [SPECjvm98], and one
medium sized Java utility program [Berk and Ananian]. Descriptions and inputs of these
subjects are shown in Table IV. We ran and collected execution traces of each program
once, with inputs shown in the third column in IV. Corresponding execution characteris-
tics are shown in Table V. The second column in Table V shows the number of bytecodes
of these subjects. The columnExecuted bytecodesin Table V presents the number of dis-
tinct bytecodes executed during one execution, and the fourth column in Table V shows
corresponding total number of bytecodes executed. The last two columns present the num-
ber of branch bytecode occurrences and method invocations, respectively. Bytecodes from
Java libraries are not considered in the table. However, bytecodes of user methods called
from library methods are included in the counts shown in Table V.

5.3 Time and Space Efficiency of Trace Collection

We first study the efficiency of our compact trace representation. Table VI shows the com-
pression efficiency of our compact trace representation. The columnOrig. Tracerepre-
sents the space overheads of storing uncompressed execution traces on disk. To accurately
measure the compression achieved by our RLESe grammars, we leave out the untraced

36 · Wang and Roychoudhury

Subject Description Input
Crypt IDEA encryption and decryption 200,000 bytes
SOR Successive over-relaxation on a grid 100× 100 grid
FFT 1-D fast Fourier transform 215 complex numbers

HeapSort Integer sorting 10000 integers
LUFact LU factorisation 200× 200 matrix
Series Fourier coefficient analysis 200 Fourier coefficients

201 compress Modified Lempel-Ziv method (LZW) 228.tar in the SPECjvm suite
202 jess Java Expert Shell System fullmab.clp in the SPECjvm suite
209 db Performs multiple database functions db2 & scr2 in the SPECjvm suite
JLex A Lexical Analyzer Generator for Java sample.lex from the tool’s web site

Table IV. Descriptions and input sizes of subject programs.

Subject Total # of Executed # Bytecode # Branch # Method
Bytecodes Bytecodes Instances Instances invocations

Crypt 2,939 1,828 103,708,780 1,700,544 48
SOR 1,656 740 59,283,663 1,990,324 26
FFT 2,327 1,216 72,602,818 2,097,204 37

HeapSort 1,682 679 11,627,522 743,677 15,025
LUFact 2,885 1,520 98,273,627 6,146,024 41,236
Series 1,800 795 16,367,637 1,196,656 399,425

201 compress 8,797 5,764 166,537,472 7,474,589 1,999,317
202 jess 34,019 14,845 5,162,548 375,128 171,251
209 db 8,794 4,948 38,122,955 3,624,673 19,432
Jlex 22,077 14,737 13,083,864 1,343,372 180,317

Table V. Execution characteristics of subject programs.

Subject Orig. Trace RLESe All All/Orig.
Trace Table Sequences (%)

Crypt 64.0M 8.9k 8.8k 17.8k 0.03
SOR 73.4M 7.6k 10.8k 18.5k 0.02
FFT 75.2M 8.2k 87.3k 95.5k 0.12

HeapSort 23.6M 7.7k 1.7M 1.7M 7.20
LUFact 113.1M 9.1k 179.7k 188.9k 0.16
Series 24.4M 7.7k 444.4k 452.2k 1.81

201 compress 288.6M 23.7k 8.8M 8.8M 3.05
202 jess 25.7M 79.2k 3.4M 3.4M 13.23
209 db 194.5M 29.0k 39.2M 39.2M 20.15
Jlex 49.9M 62.6k 1.5M 1.5M 3.01

Table VI. Compression efficiency of our bytecode traces. All sizes are in bytes.

bytecodes from theOrig. Traceas well as the compressed trace. Next two columnsTrace
TableandRLESe Sequencesshow the space overheads to maintain the trace tables and to
store the compressed operand sequences of bytecodes on disk. The columnAll represents
the overall space costs of our compact bytecode traces,i.e. sum of space overheads of
Trace TableandRLESe Sequences. The % column indicatesAll as a percentage ofOrig.
For all our subject programs, we can achieve at least 5 times compression. Indeed for some

Dynamic Slicing on Java Bytecode Traces · 37

0

10

20

30

40

50

60

70

80

90

Crypt SOR FFT HeapSort LUFact Series _201_compress _202_jess _209_db Jlex

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
) Original

RLESe

SEQUITUR

Fig. 18. Time overheads of RLESe and SEQUITUR. The time unit issecond.

programs we get more than two orders of magnitude (i.e 100 times) compression.
Figure 18 presents the absolute running time of the subject programs without instrumen-

tation, tracing with RLESe and tracing with SEQUITUR. All experiments were performed
on a Pentium 4 3.0 GHz machine with 1 GB of memory. From this figure we can see
that the slowdown for collecting traces using RLESe compared to the original program
execution is2 − 10 times for most subject programs, and the slowdown is near 20 times
for 209 db which randomly accesses a database. The shows that our method is suitable
for program executions with many repetitions, but the time overhead may be not scalable
to program executions with too many random accesses. Note that these additional time
overheads are caused by compression using RLESe/SEQUITUR. The results reflect one
limitation of RLESe (as well SEQUITUR): the time efficiency of the compression algo-
rithm heavily dependents on the efficiency of checking digram uniqueness property. To
speed up this check, a sophisticated index of digrams should be used. However, the choice
of the index has to trade-off between time and space efficiency, since the index will intro-
duce additional space overheads during trace collection. In our implementation, we use
the B+ tree (instead of sparse hash) to index digrams during compressing, and the index is
no longer needed after compression is completed. However, the index may sacrifice time
overheads in some situations.

We now compare the time and space efficiency of RLESe against SEQUITUR. Both
algorithms were performed on operand sequences of bytecodes. For a fair comparison, we
use the same index to search for similar digrams in the implementation of both algorithms.
Table VII compares the space costs of both algorithms by presenting their compression ra-
tio (in percentage). From the tables, we can see that the space consumption of compressed
traces produced by both algorithms are somewhat comparable. RLESe outperforms SE-
QUITUR for eight subject programs, and SEQUITUR outperforms for one (where the
209 db program randomly accesses a database and does not have many contiguous re-

peated symbols in operand traces). Since RLESe employs run-length encoding of terminal
and non-terminal symbols over and above the SEQUITUR algorithm, nodes in grammars
produced by RLESe are usually less than those produced by SEQUITUR.

Figure 18 compares the time overheads of RLESe and SEQUITUR. Clearly RLESe out-
performs SEQUITUR in time on studied programs. The time overheads of both algorithms

38 · Wang and Roychoudhury

Subject RLESe % SEQUITUR %
Crypt 0.03 0.07
SOR 0.02 0.04
FFT 0.12 0.34

HeapSort 7.20 7.20
LUFact 0.16 0.40
Series 1.81 2.50

201 compress 3.05 3.12
202 jess 13.23 13.62
209 db 20.15 18.35
Jlex 3.01 4.01

Table VII. Comparing compression ratio of RLESe and SEQUITUR.

Subject RLESe SEQUITUR
Crypt 800,605 20,499,488
SOR 393,202 25,563,918
FFT 2,020,976 25,722,054

HeapSort 2,262,916 7,066,784
LUFact 561,233 42,586,136
Series 2,501,001 9,507,982

201 compress 10,240,652 80,923,387
202 jess 2,090,153 6,666,460
209 db 24,386,746 54,033,314
Jlex 4,555,338 15,497,211

Table VIII. The number of times to check digram uniqueness property by RLESe and SEQUITUR.

are mainly caused by checking digram uniqueness property. RLESe usually produces less
nodes in grammars, so that similar digrams can be found more efficiently. In addition,
RLESe checks this property after contiguous repeated symbols have finished, whereas
SEQUITUR does this on reading every symbol. In other words, RLESe checks digram
uniqueness property less frequently than SEQUITUR. Table VIII shows this by represent-
ing the frequency of checking digram uniqueness property, where RLESe checked digram
uniqueness property less number of times than SEQUITUR. When there were many con-
tiguous repeated symbols in the execution traces (e.g. the LUFact, SOR subjects), RLESe
checked the property significantly less number of times than SEQUITUR, and the tracing
time overheads of RLESe were also much less than those of SEQUITUR.

5.4 Overheads for Computing Dynamic Slice and Relevant Slice

We now measure the sizes of relevant and dynamic slices and the time overheads to com-
pute these slices. Thus, apart from studying the absolute time/space overheads of dynamic
slicing, these experiments also serve as comparison between relevant and dynamic slicing.
For each subject from the Java Grande Forum benchmark suite, we randomly chose 5 dis-
tinct slice criterions because of their relatively simple program structures; for other bigger
subjects, we randomly chose 15 distinct slice criterions for better understanding dynamic
slicing and relevant slicing.

Dynamic Slicing on Java Bytecode Traces · 39

0

200

400

600

800

1,000

1,200

1,400

1 2 3 4 5

Slicing Criterion

S
l
i
c
e

S
i
z
e

(
n
u
m
b
e
r

o
f

b
y
t
e
c
o
d
e
s
)

DS

RS

0

50

100

150

200

250

300

1 2 3 4 5

Slicing Criterion

S
l
i
c
e

S
i
z
e

(
n
u
m
b
e
r

o
f

b
y
t
e
c
o
d
e
s
)

DS

RS

0

100

200

300

400

500

600

700

1 2 3 4 5

Slicing Criterion

S
l
i
c
e

S
i
z
e

(
n
u
m
b
e
r

o
f

b
y
t
e
c
o
d
e
s
)

DS

RS

Pgm. DS RS %
2,939 862 868 0.70

Pgm. DS RS %
1,656 130 131 0.77

Pgm. DS RS %
2,327 199 199 0.00

Crypt SOR FFT

0

50

100

150

200

250

300

1 2 3 4 5

Slicing Criterion

S
l
i
c
e

S
i
z
e

(
n
u
m
b
e
r

o
f

b
y
t
e
c
o
d
e
s
)

DS

RS

0

200

400

600

800

1,000

1,200

1 2 3 4 5

Slicing Criterion

S
l
i
c
e

S
i
z
e

(
n
u
m
b
e
r

o
f

b
y
t
e
c
o
d
e
s
)

DS

RS

0

50

100

150

200

250

300

1 2 3 4 5

Slicing Criterion

S
l
i
c
e

S
i
z
e

(
n
u
m
b
e
r

o
f

b
y
t
e
c
o
d
e
s
)

DS

RS

Pgm. DS RS %
1,682 195 195 0.00

Pgm. DS RS %
2,885 420 420 0.00

Pgm. DS RS %
1,800 149 149 0.00

HeapSort LUFact Series

Fig. 19.Compare sizes of relevant slices with dynamic slices.Pgm.represents size of the program.DSandRS
represent average sizes of dynamic slices and relevant slices, respectively. All sizes are reported as the number of
bytecodes. The last% column represents the increased sizes of relevant slices (i.e. RS−DS

DS
) in percentage.

Dynamic slice and relevant slice.Figure 19 and 20 present the sizes of every slices.
As we can see, most dynamic slices and relevant slices were relatively small, which were
less than 30% of corresponding source programs on average in our experiments. This is
because programs usually consists of several parts which work (almost) independently.
The irrelevant portions are excluded from both dynamic slices and relevant slices; this
may be helpful for further analysis to focus on useful parts. Furthermore, class hierarchies
of these programs are simple, with only limited use of inheritance.The relevant slices are
almost the same as corresponding dynamic slices for these programs, as shown in Figure
19.

On the other hand, other subject programs (i.e. 201 compress,202 jess, 209 db, and
JLex) are more complex. These programs have more sophisticated control structures. In
addition, these programs use inheritance and method overloading and overriding, so that
different methods may be called by method invocation bytecodes. For example, there are
11 classes which inherit the same class in202 jess. Thus, at some object allocation sites,
different objects might be created. Both of the factors lead to potential dependencies be-
tween bytecode occurrences. More importantly, these subject programs involve substantial
use of Java libraries, such as collection classes and I/O classes. These library classes con-
tribute a lot to relevant slices, because of their complex control structures and usage of
object-oriented features like method overloading (which lead to potential dependencies).

40 · Wang and Roychoudhury

0
200
400
600
800
1000
1200
1400
1600
1800
2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Slicing Criterion

Sl
ic

e
Si
ze

(n
um
be

r
of
 b

yt
ec

od
es
)

DS

RS

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Slicing Criterion

Sl
ic

e
Si
ze

(n
um
be

r
of
 b

yt
ec

od
es
)

DS

RS

Pgm. DS RS %
8,797 1,054 1,082 2.66

Pgm. DS RS %
34,019 7,023 9,440 34.42

201 compress 202 jess

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Slicing Criterion

Sl
ic
e

Si
ze

(n
um
be

r
of
 b

yt
ec
od

es
)

DS

RS

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Slicing Criterion
Sl

ic
e

Si
ze

(n
um
be

r
of
 b

yt
ec
od

es
)

DS

RS

Pgm. DS RS %
8,794 2,448 2,988 22.06

Pgm. DS RS %
22,077 3,283 3,784 15.26

209 db JLex

Fig. 20.Compare sizes of relevant slices with dynamic slices.Pgm.represents size of the program.DSandRS
represent average sizes of dynamic slices and relevant slices, respectively. All sizes are reported as the number of
bytecodes. The last% column represents the increased sizes of relevant slices (i.e. RS−DS

DS
) in percentage.

In fact, if we do not consider potential dependencies inside such library classes, the average
sizes of relevant slices for201 compress,202 jess, 209 db, and JLex were 1072, 8393,
2523, and 3728, which were 1.71%, 19.51%, 3.06%, 13.55% bigger than corresponding
dynamic slices, respectively.

Time overheads.Figure 21 and 22 show the time overheads to compute dynamic slices
and relevant slices. Clearly, the time overheads to compute dynamic slices and relevant
slices are sensitive to choice of programs and slicing criterion. According to our slicing
algorithms in Figure 2 and 15, the time overheads are mainly caused by two tasks: (1) ex-
tract operand sequences of bytecodes and backwards traverse, and (2) update and compare
various sets to detect dependencies. For a particular execution, the first part is common
for slicing w.r.t. every slicing criterion, and the second part is sensitive to the sizes of the
slices. For bigger slices, their sets to detect dependencies are also bigger during slicing,
resulting in longer time to maintain and compare. From Figure 21 and 22 we can observe
the following.

—First, the increased time of relevant slicing is affected by how many branch bytecode
instances and method invocation bytecode instances are not included in the dynamic
slices. For example, the time overheads increased about 33% for202 jess, and about
43% for JLex, on average. Although JLex had a shorter execution than202 jess, JLex

Dynamic Slicing on Java Bytecode Traces · 41

22.5

23.0

23.5

24.0

24.5

25.0

25.5

1 2 3 4 5

Slicing Criterion

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
)

DS

RS

0.0

5.0

10.0

15.0

20.0

25.0

1 2 3 4 5

Slicing Criterion

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
)

DS

RS

0.0

5.0

10.0

15.0

20.0

25.0

1 2 3 4 5

Slicing Criterion

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
)

DS

RS

DS RS %
23.8 24.7 3.78

DS RS %
17.1 17.6 2.92

DS RS %
20.5 20.9 1.95

Crypt SOR FFT

0.0

1.0

2.0

3.0

4.0

5.0

6.0

1 2 3 4 5

Slicing Criterion

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
)

DS

RS

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

1 2 3 4 5

Slicing Criterion

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
)

DS

RS

0.0
1.0
2.0
3.0
4.0
5.0

6.0
7.0
8.0
9.0

10.0

1 2 3 4 5

Slicing Criterion

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
)

DS

RS

DS RS %
4.9 5.1 4.08

DS RS %
33.4 35.0 4.79

DS RS %
6.6 8.8 33.33

HeapSort LUFact Series

Fig. 21. Compare time overheads of relevant slicing with dynamic slicing.DSandRSrepresent average time
to perform dynamic slicing and relevant slicing, respectively. All time are reported in second. The last% column
represents the increased time for relevant slicing (i.e. RS−DS

DS
) in percentage.

had a relatively smaller dynamic slice. Recall that our relevant slicing algorithm in
Figure 15 detects potential dependencies w.r.t a bytecode occurrenceβ iff. β is not
dynamically control/data dependent on the slicing criterion. Thus, JLex had to detect
potential dependencies more frequently than202 jess, leading to relatively higher time
overheads to compute relevant slices.

—Secondly, the additional time for relevant slicing (over and above dynamic slicing) is
also affected by choice of slicing criterion and program’s data flow structure. Recall
that our relevant slicing algorithm in Figure 15 compares the set of variables which
may be defined against the set of variables which need explanation to detect potential
dependencies. As expected, we found that the sizes of these sets are important for time
efficiency of relevant slicing.

5.5 Summary and Threats to Validity

In summary, the RLESe compaction scheme achieves comparable or better compression
ration than SEQUITUR. The time overheads for the online compaction in RLESe is found
to be less than the compaction time in SEQUITUR.

42 · Wang and Roychoudhury

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Slicing Criterion

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
)

DS

RS

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Slicing Criterion

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
)

DS

RS

DS RS %
56.9 65.1 14.41

DS RS %
5.7 7.6 33.33

201 compress 202 jess

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Slicing Criterion

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
)

Ds

Rs

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Slicing Criterion

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
)

Ds

Rs

DS RS %
37.7 48.3 28.12

DS RS %
9.5 13.6 43.16

209 db JLex

Fig. 22. Compare time overheads of relevant slicing with dynamic slicing.DSandRSrepresent average time
to perform dynamic slicing and relevant slicing, respectively. All time are reported in second. The last% column
represents the increased time for relevant slicing (i.e. RS−DS

DS
) in percentage.

Our compact trace representation can be used to perform dynamic slicing and relevant
slicing efficiently, both in time and space. The resultant dynamic slices are relatively small,
compared against the entire program. They can guide further analysis (e.g.program debug-
ging) working on a small but important portion of the program. Relevant slices are often
bigger than dynamic slices (since they considerpotential dependencies), but relevant slices
are still relatively small compared against the entire program. Of course, relevant slicing
for a given criterion takes more time than dynamic slicing for the same criterion. However,
the increased time overheads, which depend on the choice of slicing criterion, the control
structures and data flow structures of the program, were tolerable in our experiments.

We note that there are various threats to validity of the conclusion from our experiments.
Our conclusions on lesser time overheads of RLESe (as compared to SEQUITUR) can be
invalidated if the execution trace has very few contiguous repeated symbols. In this case,
RLESe checks the diagram uniqueness property almost as frequently as SEQUITUR. This
can happen in a program with random data accesses (e.g., the 209 db subject program
used in our experiments). Our conclusions on the size of dynamic and relevant slices
can be invalidated for programs with little inherent parallelism resulting in long chains of

Dynamic Slicing on Java Bytecode Traces · 43

control/data dependencies. For such programs, the dynamic and the relevant slices may
not be substantially less than the program size. Furthermore, as the slice sizes increase so
do the time to compute these slices, since additional statements in the slice will result in
more unexplained variables in theδ set. It is also possible to encounter a situation where
the dynamic slice is quite small compared to program size, but the relevant size is much
bigger than the dynamic slice. Since relevant slice computation involves detecting potential
dependencies and potential dependencies involve computing static data dependencies, a lot
depends on the accuracy of the points-to analysis used to detect static data dependencies.
If the points-to analysis is very conservative, it may lead to a large relevant slice.

6. RELATED WORK

In this section, we survey related literature on compressed program trace representations,
dynamic slicing and extensions of dynamic slicing for detecting omission errors.

6.1 Work on Compact Trace Representations

Various compact trace representation schemes have been developed in [Goel et al. 2003;
Larus 1999; Pleszkun 1994; Zhang and Gupta 2001; 2004] to reduce the high space over-
heads of storing and analyzing traces. Pleszkun presented a two-pass trace scheme, which
recorded basic block’s successors and data reference patterns [Pleszkun 1994]. The orga-
nization of his trace is similar to our trace table. However, Pleszkun’s technique does not
allow traces to be collected on the fly, and the trace is still large because the techniques
for exploiting repetitions in the trace are limited. Recently, Larus proposed a compact
and analyzable representation of a program’s dynamic control flow via the on-line com-
pression algorithm SEQUITUR [Larus 1999]. The entire trace is treated as a single string
during compression, but it becomes costly to access the trace of a specific method. Zhang
and Gupta suggested breaking the traces into per-method traces [Zhang and Gupta 2001].
However, it is not clear how to efficiently represent data flow in their traces. In a later work
[Zhang and Gupta 2004], Zhang and Gupta presented a unified representation of different
types of program traces, including control flow, value, address, and dependence.

The idea of separating out the data accesses of load/store instructions into a separate
sequence (which is then compressed) is explored in [Goel et al. 2003] in the context of
parallel program executions. However, this work uses the SEQUITUR algorithm which
is not suitable for representing contiguous repeated patterns. In our work, we have devel-
oped RLESe to improve SEQUITUR’s space and time efficiency, by capturing contiguous
repeated symbols and encoding them with their run-length. RLESe is different from the
algorithm proposed by Reiss and Renieris [Reiss and Renieris 2001], since it is an on-
line compression algorithm, whereas Reiss and Renieris suggested modifying SEQUITUR
grammar rules in a post processing step.

Another approach for efficient tracing is not to trace all bytecodes/instructions during
trace collection. This approach is explored by theabstract executiontechnique [Larus
1990], which differs from ours in how to handle untraced instructions. In particular, ab-
stract execution executes a programP to record a small number of significant events,
thereby deriving a modified programP ′. The modified program then executes with the
significant events as the guide; this amounts to re-executing parts ofP for discovering in-
formation about instructions inP which were not traced. On the other hand, our method
records certain bytecodes in an execution as a compressed representation. Post-mortem
analysis of this compressed representation does not involve re-execution of the untraced

44 · Wang and Roychoudhury

bytecodes. To retrieve information about untraced bytecodes we (a) detect dynamic depen-
dencies via lightweight flow analysis, and (b) use information which is decided at compile
time.

6.2 Work on Dynamic Slicing

Weiser originally introduced the concept of program slicing [Weiser 1984]. In the last two
decades, program slicing, in particular dynamic slicing, has been widely used in many
software engineering activities, such as program understanding, debugging and testing
[Agrawal et al. 1993; Korel and Rilling 1997; Lucia 2001; Tip 1995]. The first dynamic
slicing algorithm is introduced by Korel and Laski [Korel and Laski 1988]. In particular,
they exploiteddynamic flow conceptsto capture the dependencies between occurrences of
statements in the execution trace, and generated executable dynamic slices. Later, Agrawal
and Horgan used thedynamic dependence graphto compute non-executable but precise
dynamic slices, by representing each occurrence of a statement as a distinct node in the
graph Agrawal and Horgan 1990; Agrawal 1991]. A survey of program slicing techniques
developed in the eighties and early nineties appears in [Tip 1995].

Static and dynamic slicing of object-oriented programs based on dependence graphs
have been studied in [Larsen and Harrold 2001] and [Xu et al. 2002] respectively. Com-
putation of control and data dependencies between Java bytecodes has been discussed in
[Zhao 2000]. The work of [Ohata et al. 2001] combined dynamic and static slicing to avoid
the space overheads of processing traces, at the cost of precision of computed slices. Re-
cently, Zhang et al. [Zhang et al. 2005] studied the performance issues in computing the
control/data dependencies from the execution traces for slicing purposes.

In [Dhamdhere et al. 2003], Dhamdhere et al. present an approach for dynamic slicing
on compact execution traces. However, their compaction mechanism is very different from
ours and they do employ any data compression algorithm on the execution trace. In fact,
they classify execution instances of statements as critical or non-critical, and store only
the latest execution instances for non-critical statements. However, the classification of
statements as critical/non-critical is sensitive to the slicing criterion.

Our compression scheme is not related to the slicing criterion and exploits regular-
ity/repetition of control/data flow in the trace. Our slicing algorithm operates directly on
this compressed trace achieving substantial space savings at tolerable time overheads.

Extensions of Dynamic Slicing for Detecting Omission Errors.In the past,relevant slic-
ing has been studied as an extension of dynamic slicing for the purpose of detecting omis-
sion errors in a program [Agrawal et al. 1993; Gyimóthy et al. 1999]. The approach in
[Agrawal et al. 1993] relies on the huge dynamic dependence graph. Furthermore, ifb is a
branch statement with which statements in the slice have potential dependencies, [Agrawal
et al. 1993] only computes the closure of data and potential dependencies ofb. In other
words, control dependencies are ignored w.r.t. statements on whichb is data dependent.
Gyimóthy proposed an forward relevant slicing algorithm in [Gyimóthy et al. 1999], and it
avoided using the huge dynamic dependence graph. However, such an algorithm will com-
pute many redundant dependencies since it is not goal directed. In addition, while comput-
ing the dependencies of a later occurrence of certain branch statements (those which appear
in the slice due to potential dependencies), the algorithm also includes statements which
affect an early occurrence of the same branch statement. In this paper, we defines a relevant
slice over theExtended Dynamic Dependence Graph(EDDG), and it is more accurate than

Dynamic Slicing on Java Bytecode Traces · 45

previous ones. We have also presented a space-efficient relevant slicing algorithm which
operatesdirectlyon the compressed bytecode traces.

7. DISCUSSION

In this paper, we have developed a space efficient scheme for compactly representing byte-
code traces of sequential Java programs. The time overheads and compression efficiency
of our representation are studied empirically. We use our compact traces for efficient dy-
namic slicing. We also extend our dynamic slicing algorithm to explain omission errors
(errors arising from omission of a statement’s execution due to incorrect evaluation of
branches/method invocations). Our method has been implemented on top of the open
source Kaffe Virtual Machine. The traces were collected by monitoring Java bytecodes,
they were compressed online and then slicing was performed post-mortem by traversing
the compressed trace without decompression.

Besides dynamic slicing, our compact bytecode traces are also useful for many other
applications in code optimization and program visualization. First, the trace contains the
sequence of target addresses for each conditional branch bytecode. We can obtain the most
likely taken target addresses from these sequences to merge basic blocks into a superblock
[Hwu et al. 1993]. Secondly, the operand sequences of bytecodes to invoke virtual/interface
methods describe which methods are most likely to be invoked; this information is helpful
in inlining methods for optimization [Cierniak et al. 2000]. Finally, note that by record-
ing addresses of objects that each bytecode creates, our trace provides information about
memory allocations. This can be used to understand the program’s memory behavior via
visualization, as discussed in [Reiss and Renieris 2000].

APPENDIX

A. COMPLEXITY ANALYSIS OF THE RLESE ALGORITHM

In this appendix, we prove that the RLESe compression algorithm described in Section 2.3
is linear in both space and time.

A.1 Properties preserved by RLESe algorithm

Recall that RLESe constructs a context free grammar to represent a sequence, by preserv-
ing three properties w.r.t. the grammar: (1) no contiguous repeated symbols property, (2)
digram uniqueness property, and (3) rule utility property (details can be found in Section
2.3). Figure 23 presents the algorithm. The RLESe algorithm proceeds by iteratively read-
ing a symbol from the input sequence (line 2 of Figure 23), appending a node〈sym : 1〉 to
the end of start rule (line 3 of Figure 23), and re-structuring the grammar by preserving the
above three properties (line 4-18 of Figure 23). When the algorithm checks whether any
property is violated (lines 5, 7, and 15 of Figure 23), it is sufficient to examine changed
nodes or digrams, instead of going through the entire grammar. For example, when the al-
gorithm looks for continuous repeated nodes (line 5 of Figure 23), only nodes which have
just been inserted into the grammar are necessary to check. This is particularly important
for the efficiency of the algorithm. We explain how to re-construct the grammar when any
one of the three properties of RLESe are violated.

The first property (i.e. no contiguous repeated symbols property) is preserved by line 5
and 6 of Figure 23. If two nodes〈sym : n〉 and〈sym : n′〉 is adjacent in the grammar, line

46 · Wang and Roychoudhury

6 merges the two nodes. That is we delete node〈sym : n′〉, and change node〈sym : n〉 to
〈sym : n + n′〉. Clearly, this merge operation can save one node in the grammar size.

Lines 7-14 of Figure 23 preserve the second property of RLESe (i.e. digram uniqueness
property). Recall that two digrams aresimilar if their nodes contain the same pair of
symbols. Two digrams areidentical if they have the same pairs of symbols and counters.
Line 7 checks whether there are similar digrams in the grammar. If so, the algorithm can
obtain two identical digrams, and replace both identical digrams with a non-terminal node
for a rule (possibly already in existence) that has the identical digram as its right side. Note
that, when there are two similar digrams〈sym1 : n1, sym2 : n2〉, and〈sym1 : n′

1, sym2 :
n′

2〉, it may require splitting nodes (line 9 of Figure 23) to obtain identical digrams as
〈sym1 : min(n1, n

′
1), sym2 : min(n2, n

′
2)〉, wheremin(n1, n

′
1) is the minimum ofn1

andn′
1. Splitting one node will introduce one more node into the grammar. Line 9 of

Figure 23 checks whether one of the two identical digrams is exactly the right side of an
existing rule. If so, the algorithm replaces another identical digram with a non-terminal
node for the rule (line 11 of Figure 23). We change the grammar rules

A → · · · sym1 : n1, sym2 : n2, · · · B → sym1 : n1, sym2 : n2

to

A → · · ·B : 1, · · · B → sym1 : n1, sym2 : n2

This can save one node in the resultant grammar. If not, a new rule is introduced, and the
algorithm replaces both identical digrams with a non-terminal node for the new rule (line
13-14 of Figure 23). That is, we change the grammar rule

A → · · · sym1 : n1, sym2 : n2, · · · sym1 : n1, sym2 : n2, · · ·

to

A → · · ·B : 1, · · ·B : 1, · · · B → sym1 : n1, sym2 : n2

This operation does not introduce more nodes nor save any node, but introduces one more
rule in the resultant grammar.

Lines 15-17 of Figure 23 preserve the third property,i.e. rule utility property. RLESe
eliminates a rule referenced only once by replacing the reference with the right side of the
rule. That is, we change the grammar rules

A → · · ·B : 1, · · · B → sym1 : n1, sym2 : n2

to

A → · · · sym1 : n1, sym2 : n2, · · ·

This operation can save one node in the resultant grammar.

A.2 Operations in the RLESe algorithm

We proceed to prove that the complexity of the RLESe algorithm in Figure 23 is linear in
both space and time w.r.t. the length of input sequence. The proof is similar to the proof for
SEQUITUR in [Nevill-Manning and Witten 1997], where we do not put a bound on each
operation to re-construct the grammar. Instead we calculate the amortized costs, that is, we
obtain a bound on thetotalamount of work done re-constructing the grammar. Our analysis
of RLESe also uses an assumption made in SEQUITUR’s analysis in [Nevill-Manning and

Dynamic Slicing on Java Bytecode Traces · 47

1 while (input sequence is not empty)
2 sym= read next symbol from input;
3 append node〈sym : 1〉 to the end of start rules
4 do
5 if (there are continuous repeated nodes)
6 merge the two nodes;
7 if (there are two similar digrams)
8 if (the two digrams are not identical)
9 split nodes to get two identical digrams;
10 if (one of the identical digrams is a complete rule)
11 replace another digram with a non-terminal node for the rule
12 else
13 create a new rule, where the right side of the rule is the identical digram;
14 replace both digrams with a non-terminal node for the new rule;
15 if (rule R is referenced only once)
16 replace the use of R with the right side of R;
17 remove the rule R;
18 while (any of the three properties is violated)

Fig. 23. The RLESe compression algorithm

Witten 1997] — given a digram, the average time to look for its similar digram is bounded
by a constant. This can be achieved by indexing digrams with a hash table [Knuth 1973].

Table IX shows variables which will be used later for complexity analysis, as well as de-
scriptions of these variables. The third column shows line number of the RLESe algorithm
in Figure 23 in which each variable is used; the last column shows corresponding oper-
ations for each line. Clearly, the time to perform each operation in Table IX is constant.
For example, it needs constant time to check whether a specific node has the same symbol
with its neighboring nodes (line 5 of Figure 23). Thus, the total time cost to execute line
5 is proportional tom2, the number of times to check the first property. Some lines of the
compression algorithm are always executed together (e.g. lines 13 and 14 of Figure 23).
They are considered as one operation during complexity analysis, so they are put in the
same entry in this table. The size of the RLESe grammar (i.e. m) denotes the nodes in the
right-hand side of grammar rules, because nodes in the left-hand side of grammar rules can
be recreated according to the order in which these rules appear.

A.3 Space Complexity

We derive an equation describing the size of the final grammar. Operations 3,7,10 in Table
IX refer to merging nodes, using an existing rule and removing a rule; these operations
save the number of nodes in the grammar. On the other hand, operation 6 (splitting a
grammar node), increases the grammar size. Thus, we get the following equation relating
the grammar size (m) and the length of the input sequence (n).

n−m = m3 + m7 + m10 −m6 (1)

In addition, we can only split nodes which have been merged. Note that if a node was
not produced by any merging, its run-length must be 1, so the question of splitting does

48 · Wang and Roychoudhury

Var. Description Line in Fig. 23 Operation
n the size of the input sequence
m the number of nodes in the final grammar
r the number of rules in the final grammar

m1 the number of times to read a symbol from input 2, 3 1: read
m2 the number of times to check the first property 5 2: check the 1st property
m3 the number of times to merge two nodes 6 3: merge
m4 the number of times to check the second property 7 4: check the 2nd property
m5 the number of times two similar digrams are found 8, 10 5: check digrams
m6 the number of split nodes 9 6: split
m7 the number of times an existing rule is used 11 7: use an existing rule
m8 the number of times a new rule is introduced 13, 14 8: introduce a new rule
m9 the number of times to check the third property 15 9: check the 3rd property
m10 the number of times a rule is removed 16, 17 10: remove a rule

Table IX. Operations in the RLESe algorithm

not arise. We get:

m6 ≤ m3 (2)

From the two formulas, we can conclude that

n−m ≥ m7 + m10 > 0 (3)

This shows that the size of the final grammar (i.e. the variablem) is bound by the length
of the input sequence (i.e. the variablen), and the algorithm is linear in space.

A.4 Time Complexity

Next, we study the time complexity of the RLESe algorithm. When the algorithm checks
the ”no contiguous repeated symbols property”, the first property of RLESe (operation 2),
it is sufficient to look at the nodes inserted by operations 1, 7, 8, and 10 (refer Table IX).
That is,

m2 = m1 + m7 + 2m8 + 2m10 (4)

The coefficient 2 is used because both operations 8 and 10 insert two nodes.
Operations 1, 7, 8, and 10 introduce new digrams which necessitate check of the digram

uniqueness property, the second property of RLESe. We have

m4 = m1 + 2m7 + 4m8 + 2m10 (5)

When a new rule is introduced and two identical diagrams are removed (operation 8), the
number of references to a rule may be reduced, and the third property of RLESe (the rule
utility property) is checked. Therefore,

m9 = m8 (6)

In addition, the following formulas hold according to the structure of the algorithm,

m3 ≤ m2 m5 ≤ m4

Now, let us look at the total time overhead for the compression algorithm in Figure 23,
which is sum of time cost for each operation. The expression for the total time overhead

Dynamic Slicing on Java Bytecode Traces · 49

can be simplified as:

m1 + m2 + m3 + m4 + m5 + m6 + m7 + m8 + m9 + m10 (7)

≤ m1 + 3m2 + 2m4 + m7 + 2m8 + m10

≤ m1 + 3(m1 + m7 + 2m8 + 2m10) + 2(m1 + 2m7 + 4m8 + 2m10) +
m7 + 2m8 + m10

= 6n + 8m7 + 16m8 + 11m10

For the number of rulesr in the grammar, we haver = m8 − m10 since operation 8
introduces new rules, and operation 10 removes rules. Also, note the right side of each rule
has at least two nodes. Thusr < m.

The expression for the total time overhead in Formula 7 can then be simplified as

m1 + m2 + m3 + m4 + m5 + m6 + m7 + m8 + m9 + m10 (8)

= 6n + 8m7 + 16(r + m10) + 11m10

< 6n + 16m + 27(m7 + m10)

Recall from Formula 3

0 < m7 + m10 ≤ n−m < n (9)

So the time complexity for the RLESe algorithm in Figure 23 isO(n).

B. ANALYSIS OF THE RELEVANT SLICING ALGORITHM

In this appendix, we prove the correctness of the relevant slicing algorithm in Figure 15.

LEMMA B.0.1. Let ϕi be theϕ set afteri loop iterations of the relevant slicing algo-
rithm in Figure 15. Then∀i, j, 0 < i < j ⇒ ϕi ⊆ ϕj .

PROOF. Proof of this lemma is the same as the proof of Lemma 3.5.1 for the dynamic
slicing algorithm in Section 3.

LEMMA B.0.2. Letϕi be theϕ set, andframi be thefram set afteri loop iterations
of the relevant slicing algorithm in Figure 15. Then∀β, β ∈ frami iff. (1) β ∈ ϕi, and
(2) β belongs to slicing criterion or∃β′ ∈ ϕi s.t.β′ is dynamically control/data dependent
onβ, and (3) the algorithm has not found the bytecode occurrence whichβ is dynamically
control dependent on afteri loop iterations.

PROOF. Proof of this lemma is the similar to the proof of Lemma 3.5.2 for the dynamic
slicing algorithm in Section 3.

LEMMA B.0.3. Let ϕi be theϕ set, andδi be theδ set afteri loop iterations of the
relevant slicing algorithm in Figure 15. Then∀v, v ∈ δi iff. (1) variablev is used by a
bytecode occurrenceβ ∈ ϕi s.t. (a)β belongs to slicing criterion, or (b)∃β′ ∈ ϕi s.t.β′ is
dynamically control/data dependent onβ, and (2) the algorithm has not found assignment
to v after i loop iterations.

PROOF. Proof of this lemma is the similar to the proof of Lemma 3.5.3 for the dynamic
slicing algorithm in Section 3.

LEMMA B.0.4. Let ϕi be theϕ set, andθi be theθ set afteri loop iterations of the
relevant slicing algorithm in Figure 15. Then∀v, ∃prop, v ∈ prop, and〈 β′, prop〉 ∈ θi

50 · Wang and Roychoudhury

iff. (1) variablev is used by a bytecode occurrenceβ ∈ ϕi, where (a)β does not belong to
slicing criterion, and (b) there is noβ′ ∈ ϕi s.t. β′ is dynamically control/data dependent
onβ, and (2) the algorithm has not found assignment tov after i loop iterations.

PROOF. The proof of this lemma is similar to the proof of Lemma B.0.3.

Indeed, theδ set (in Lemma B.0.3) includes variables used by bytecode occurrences
β s.t. β is added intoϕ when (1)β belongs to the slicing criterion, or (2) there is any
bytecode occurrence inϕ which isdynamically control/data dependentonβ. On the other
hand, theprop sets ofθ (in Lemma B.0.4) includes variables used by bytecode occurrences
β s.t.β is added intoϕ when (1) there is any bytecode occurrence inϕ which ispotentially
dependentonβ, and (2)β does not belong to slicing criterion, and no bytecode occurrence
in ϕ is dynamically control/data dependent onβ.

LEMMA B.0.5. During relevant slicing according to the algorithm in Figure 15, a
bytecode occurrenceβ pops an entry fromop stack, which is pushed toop stack by byte-
code occurrenceβ, iff. β uses an operand in the operand stack defined byβ during trace
collection.

PROOF. Proof of this lemma is the same as the proof of Lemma 3.5.4 for the dynamic
slicing algorithm in Section 3.

LEMMA B.0.6. Let ϕi be theϕ set afteri loop iterations of the relevant slicing algo-
rithm in Figure 15, andβ be the bytecode occurrence encountered at theith loop iteration.
Thenβ ∈ ϕi − ϕi−1 iff.

(1) β belongs to the slicing criterion, or,

(2) ∃β′ ∈ ϕi−1, β′ is dynamically control dependent onβ, andβ′ was not introduced into
the relevant sliceϕ because of potential dependencies.2

(3) ∃β′ ∈ ϕi−1, β′ is dynamically data dependent onβ, or

(4) none of above three conditions is satisfied, and∃β′ ∈ ϕi−1, β′ is potentially dependent
onβ.

PROOF. Note thatβ 6∈ ϕi−1. According to the slicing algorithm,β ∈ ϕi − ϕi−1 iff.
any of lines 20, 25, 30 and 38 in Figure 15 is executed. Further,

I. line 20 in Figure 15 is executed iff. condition (1) in this lemma holds, which checks
slicing criterion.

II. line 25 in Figure 15 is executed iff. condition (2) in this lemma holds, which checks
dynamic control dependencies.

III. line 30 in Figure 15 is executed iff. condition (3) in this lemma is satisfied, which
checks dynamic data dependencies.

IV. line 38 in Figure 15 is executed iff. condition (4) in this lemma is satisfied, which
checks potential dependencies.

Proofs of I, II and III are similar to proof of Lemma 3.5.5 for the dynamic slicing algo-
rithm in Section 3.

2In other words, either there exists a bytecodeβ” ∈ ϕi−1 which is dynamically data/control dependent onβ′,
or β′ belongs to the slicing criterion.

Dynamic Slicing on Java Bytecode Traces · 51

Next, we prove IV., that is line 38 in Figure 15 is executed iff. condition (4) in this
lemma is satisfied. According to the slicing algorithm, line 38 in Figure 15 is executed iff.
line 33 in Figure 15 is evaluated to false and line 37 in Figure 15 is evaluated to true. Note
that line 33 in Figure 15 is evaluated to false iff. lines 18, 21, and 26 are all evaluated to
false, which are equivalent to that none of conditions (1) (2) and (3) of this lemma holds.
Note that line 37 invokes thecomputePotentialDependencemethod defined in Figure 16 to
check potential dependencies. The checkcomputePotentialDependence(β, bβ) returns true
iff. either of following conditions holds:

(1) line 6 in Figure 16 is evaluated to true, or

(2) line 9 in Figure 16 is evaluated to true.

We first prove that thecomputePotentialDependencemethod returns true only if∃β′ ∈
ϕi−1, β′ is potentially dependent onβ, assuming that line 33 in Figure 15 is evaluated to
false. We have the following two cases:

(1) there existsv ∈ δi−1 which may be defined by evaluating the branch bytecode occur-
renceβ differently. Theβ refers to the bytecode occurrence encountered at theith loop
iteration of the relevant slicing algorithm. According to Lemma B.0.3,∃β′ ∈ ϕi−1, v
is used byβ′. So,β′ is potentially dependent onβ.

(2) there existsv, prop′′, v ∈ prop′′, ∃〈 β′′, prop′′〉 ∈ θi−1, andv may be defined by
evaluating the branch bytecode occurrenceβ differently. According to Lemma B.0.4,
∃β′ ∈ ϕi−1, v is used byβ′.So,β′ is potentially dependent onβ.

In both cases, there exists one bytecode occurrence inϕi−1 which is potentially depen-
dent onβ.

Now we prove that thecomputePotentialDependencemethod returns true if∃β′ ∈ ϕi−1,
β′ is potentially dependent onβ, assuming that line 33 in Figure 15 is evaluated to false.
The following are two possibilities:

(1) there existsv used by a bytecode occurrenceβ′ ∈ ϕi−1, whereβ′ was not introduced
into the relevant sliceϕ because of potential dependencies. According to Lemma
B.0.3,v ∈ δi−1. So line 7 of Figure 16 is executed and thecomputePotentialDepen-
dencemethod returns true.

(2) there existsv used by a bytecode occurrenceβ′ ∈ ϕi−1, whereβ′ was introduced into
the relevant sliceϕ because of potential dependencies. According to Lemma B.0.4,
∃prop′′, v ∈ prop′′, and∃〈β′′, prop′′〉 ∈ θi−1. According to the algorithm,β′ is
(transitively) dynamically control dependent onβ′′, soβ′′ is not dynamically control
dependent onβ. Thus, line 10 of Figure 16 is executed and thecomputePotentialDe-
pendencemethod returns true.

The completes our proof that thecomputePotentialDependencemethod returns true if
∃β′ ∈ ϕi−1, β′ is potentially dependent onβ, assuming that line 33 in Figure 15 is evalu-
ated to false. Consequently, line 38 in Figure 15 is executed iff. condition (4) in this lemma
is satisfied.

In all cases, we have shown that any of lines 20, 25, 30 and 38 in Figure 15 is executed
iff. any of the four conditions in the lemma is satisfied. Consequently, the lemma holds.

Finally, we prove the correctness of the relevant slicing in Figure 15. Note that the rele-
vant slice defined in Definition 4.2.1 is based on theExtended Dynamic Dependence Graph

52 · Wang and Roychoudhury

(EDDG). In the EDDG, two nodes in the graph may refer to the same bytecode occurrence.
In the following, we usenn(β) to represent thenon-dummy nodefor bytecode occurrence
β in the EDDG, anddn(β) to represent correspondingdummy nodefor bytecode occur-
renceβ. Two nodes of the same bytecode occurrence do not contribute to relevant slice
together. This is because in the EDDG, non-dummy nodes only have incoming edges
representing dynamic control/data dependencies, and dummy nodes only have incoming
edges representing potential dependencies. Further, the relevant slicing algorithm includes
a bytecode occurrenceβ into the sliceϕ when∃β′ ∈ ϕ s.t. β′ is dependent onβ for any
of dynamic control, dynamic data and potential dependencies.

THEOREM B.0.1. Given a slicing criterion, the relevant slicing algorithm in Figure 15
returns relevant slice defined in Definition 4.2.1.

PROOF. Let ϕi be theϕ set afteri loop iterations of the relevant slicing algorithm in
Figure 15,ϕ∗ be the resultantϕ set when the algorithm finishes, andβ be the bytecode
occurrence encountered at theith loop iteration. As mentioned in the above, there may be
two nodesnn(β′) anddn(β′) for a bytecode occurrenceβ′ in the EDDG. So, we will prove
this lemma by showing:ϕ∗={β′|nn(β′) or dn(β′) is reachable from the slicing criterion
in the EDDG}.

We first prove the soundness of the algorithm,i.e. for any β′, β′ ∈ ϕ∗, only if either
nn(β′) or dn(β′) is reachable from the slicing criterion in the EDDG. In particular, we
prove that:∀β′ ∈ ϕ∗, (a) if β′ is added intoϕ∗ because of slicing criterion or dynamic con-
trol/data dependencies, thennn(β′) is reachable from the slicing criterion in the EDDG,
and (b) ifβ′ is added intoϕ∗ because of potential dependencies, thendn(β′) is reachable
from the slicing criterion in the EDDG. We prove this by induction on loop iterations of
the slicing algorithm.

Base : Initially, ϕ0 = ∅, so the soundness of the algorithm holds.
Induction : Assume that for anyβ′′ ∈ ϕi−1, (a) if β′′ is added intoϕi−1 because

of slicing criterion or dynamic control/data dependencies, thennn(β′′) is reachable from
the slicing criterion in the EDDG, and (b) ifβ′′ is added intoϕi−1 because of potential
dependencies, thendn(β′′) is reachable from the slicing criterion in the EDDG.

Note thatϕi = ϕi−1, or ϕi = ϕi−1 ∪ {β}. Then,∀β′ ∈ ϕi, we have two cases:

(1) if β′ ∈ ϕi−1, the induction hypothesis still hosts, sinceϕi−1 ⊆ ϕi according to
Lemma B.0.1.

(2) if β′ = β, whereβ is the bytecode occurrence encountered at theith loop iteration
of the slicing algorithm, thenβ ∈ ϕi − ϕi−1. According to Lemma B.0.6, we have
following four possibilities to addβ into ϕi:
I. if β belongs to the slicing criterion,then clearlynn(β) belongs to slicing criterion,
II. if ∃β′′ ∈ ϕi−1, β′′ is dynamically control dependent onβ, andβ′′ was not added

into the relevant slice because of potential dependencies, thennn(β′′) is reachable
from the slicing criterion in the EDDG according to the induction hypothesis. In
addition, there is an dynamic control dependence edge fromnn(β′′) to nn(β) in
the EDDG. Thus,nn(β) can be reached from the slicing criterion.

III. ∃β′′ ∈ ϕi−1, β′′ is dynamically data dependent onβ, then eithernn(β′′) or
dn(β′′) is reachable from the slicing criterion according to the induction hypoth-
esis. In the EDDG, there are dynamic data dependence edges fromnn(β′′) to
nn(β), and fromdn(β′′) to nn(β). Thus,nn(β) can be reached from the slicing
criterion.

Dynamic Slicing on Java Bytecode Traces · 53

IV. ∃β′′ ∈ ϕi−1, β′′ is potentially dependent onβ, then eithernn(β′′) or dn(β′′) can
be reached from the slicing criterion according to the induction hypothesis. In the
EDDG, there are potential dependence edges fromnn(β′′) to dn(β), and from
dn(β′′) to dn(β). Thus,dn(β) can be reached from the slicing criterion.

In all four cases, we show that (a) ifβ is added intoϕi because of slicing criterion or
dynamic control/data dependencies, thennn(β) is reachable from the slicing criterion
in the EDDG, and (b) ifβ is added intoϕi because of potential dependencies, then
dn(β) is reachable from the slicing criterion in the EDDG.

This completes the soundness proof.
Next, we prove the completeness of the slicing algorithm,i.e. for anyβ′, β′ ∈ ϕ∗, if

eithernn(β′) or dn(β′) is reachable from the slicing criterion in the EDDG. Note that
there is no cycle in the EDDG, so we prove the completeness by induction on structure of
the EDDG.

Base : Consider a bytecode occurrenceβ′ whereβ′ belongs to the slicing criterion.
Clearly,nn(β′) is reachable from the slicing criterion in the EDDG. Letβ′ be encountered
at theith loop iteration of the slicing algorithm. According to Lemma B.0.6 and B.0.1,
β′ ∈ ϕi ⊆ ϕ∗.

Induction : Assume that a set of bytecode occurrencesβ′′ ∈ ϕ∗, which satisfy (1)
if nn(β′′) is reachable from the slicing criterion in the EDDG,β′′ is added into the rel-
evant sliceϕ∗ because of slicing criterion or dynamic control/data dependencies, and (2)
if nn(β′′) is not reachable anddn(β′′) is reachable from the slicing criterion, thenβ′′ is
added into the relevant sliceϕ∗ because of potential dependencies.

Consider a bytecode occurrenceβ, which can be reached from the slicing criterion by
traversing only nodes of bytecode occurrences inϕ∗. Clearly,∃β′ ∈ ϕ∗, β is dynamically
control, or dynamically data, or potentially dependent onβ′. Let β be encountered at the
ith loop iteration of the algorithm, andβ′ be encountered at thejth loop iteration of the
algorithm. Becauseβ appears earlier thanβ′ during trace collection, backward traversal
of the trace will encounterβ after β′, i.e. j < i. Thus,β′ ∈ ϕj ⊆ ϕi−1 according to
Lemma B.0.1. We now show thatβ ∈ ϕi according to the relevant slicing algorithm. In
particular, (1) ifnn(β) is reachable from the slicing criterion in the EDDG, thenβ is added
into the slice because of slicing criterion, or dynamic control/data dependencies, and (2) if
nn(β) is not reachable anddn(β) is reachable from the slicing criterion, thenβ is added
into the slice because of potential dependencies. Note that the relevant slicing algorithm
check dynamic control/data, and potential dependencies in order. The following are three
possibilities:

I. if (1) there is a dynamic control dependence edge fromnn(β′) to nn(β), and (b)
nn(β′) is reachable from the slicing criterion, thenβ′ is added into the relevant slice
ϕ∗ because of slicing criterion or dynamic control/data dependencies, according to the
induction hypothesis. Thus,β ∈ ϕi andβ is added into the relevant sliceϕ∗ because
of dynamic control dependencies, since condition (2) of Lemma B.0.6 is satisfied.

II. if (a) condition of case I does not hold, and (b) there is a dynamic data dependence
edge from eithernn(β′) (dn(β′)) to nn(β), and (c)nn(β′) (dn(β′)) is reachable from
the slicing criterion. Note thatβ′ is in the slice. Soβ ∈ ϕi andβ is added into the
relevant sliceϕ∗ because of dynamic data dependencies, since condition (3) of Lemma
B.0.6 is satisfied.

54 · Wang and Roychoudhury

III. if (a) conditions of cases I-II do not hold, and (2) there is a potential dependence edge
from nn(β′) (dn(β′)) to dn(β), and (c)nn(β′) (dn(β′)) is reachable from the slicing
criterion. Note thatβ′ is in the slice, so:
—nn(β) is not reachable (due to the conditions for cases I-II not being true) anddn(β)

is reachable from slicing criterion
—β is added into the relevant sliceϕ∗ because of potential dependencies, andβ ∈ ϕi

since condition (4) of Lemma B.0.6 is satisfied.

In all possible cases, (1) ifnn(β) is reachable from the slicing criterion in the EDDG,
then β is added into the slice because of slicing criterion, or dynamic control/data de-
pendencies, and (2) ifnn(β) is not reachable anddn(β) is reachable from the slicing
criterion, thenβ is added into the slice because of potential dependencies. Consequently,
β ∈ ϕi ⊆ ϕ∗. This completes the proof.

ACKNOWLEDGMENTS

This work was partially supported by a Public Sector research grant from the Agency of
Science, Technology and Research (A*STAR) Singapore.

REFERENCES

AGRAWAL , H. 1991. Towards automatic debugging of computer programs. Ph.D. thesis, Purdue University.
AGRAWAL , H. AND HORGAN, J. 1990. Dynamic program slicing. InACM SIGPLAN Conference on Program-

ming Language Design and Implementation (PLDI).
AGRAWAL , H., HORGAN, J., KRAUSER, E., AND LONDON, S. 1993. Incremental regression testing. InInter-

national Conference on Software Maintenance (ICSM). 348–357.
AKGUL , T., MOONEY, V., AND PANDE, S. 2004. A fast assembly level reverse execution method via dynamic

slicing. In International Conference on Software Engineering (ICSE).
ANDERSEN, L. O. 1994. Program analysis and specialization for the c progranzming language. Ph.D. thesis,

University of Copenhagen.
BERK, E. J. AND ANANIAN , C. S. A lexical analyzer generator for Java. website:http://www.cs.

princeton.edu/ ∼appel/modern/java/JLex/ .
CIERNIAK , M., LUEH, G.-Y., AND STICHNOTH, J. M. 2000. Practicing JUDO: Java under dynamic optimiza-

tions. InACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). 13–26.
DHAMDHERE, D., GURURAJA, K., AND GANU , P. 2003. A compact execution history for dynamic slicing.

Information Processing Letters 85, 145–152.
FERRANTE, J., OTTENSTEIN, K., AND WARREN, J. 1987. The program dependence graph and its use in opti-

mization.ACM Transactions on Programming Languages and Systems 9,3, 319–349.
GOEL, A., ROYCHOUDHURY, A., AND M ITRA , T. 2003. Compactly representing parallel program executions.

In ACM Symposium on Principles and Practice of Parallel Programming (PPoPP). 191–202.
GYIM ÓTHY, T., BESZÉDES, A., AND FORGÁCS, I. 1999. An efficient relevant slicing method for debugging. In

7th ACM SIGSOFT International Symposium on Foundations of Software Engineering. 303–321.
HORWITZ, S., REPS, T., AND BINKLEY, D. 1990. Interprocedural slicing using dependence graphs.ACM

Transactions on Programming Languages and Systems (TOPLAS) 12,1, 26–60.
HWU, W. W. ET AL . 1993. The superblock: An effective structure for VLIW and superscalar compilation.The

Journal of Supercomputing 7,1.
JGF. The Java Grande Forum Benchmark Suite. website:http://www.epcc.ed.ac.uk/javagrande/

seq/contents.html .
KAFFE. The kaffe virtual machine. website:http://www.kaffe.org .
KNUTH, D. E. 1973.The Art of Comuter Programming 4: searching and sorting. Addison-Wesley Pub Co.
KOREL, B. AND LASKI , J. W. 1988. Dynamic program slicing.Information Processing Letters 29,3, 155–163.
KOREL, B. AND RILLING , J. 1997. Application of dynamic slicing in program debugging. InInternational

Workshop on Automatic Debugging.

Dynamic Slicing on Java Bytecode Traces · 55

LARSEN, L. AND HARROLD, M. 2001. Slicing object-oriented software. InProceedings of ACM/IEEE Interna-
tional Conference on Software Engineering (ICSE). 495–505.

LARUS, J. 1990. Abstract execution: A technique for efficiently tracing programs.Software - Practice and
Experience (SPE) 20, 1241–1258.

LARUS, J. R. 1999. Whole program paths. InACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). 259–269.

L INDHOLM , T. AND YELLIN , F. 1999. The Java(TM) Virtual Machine Specification (2nd Edition). Addison-
Wesley Pub Co.

LUCIA , A. D. 2001. Program slicing: Methods and applications. InIEEE International Workshop on Source
Code Analysis and Manipulation. 142–149.

MAJUMDAR, R. AND JHALA , R. 2005. Path slicing. InIntl. Conf. on Programming Language Design and
Implementation (PLDI).

NEVILL -MANNING , C. G. AND WITTEN, I. H. 1997. Linear-time, incremental hierarchy inference for com-
pression. InData Commpression Conference (DCC). 3–11.

OHATA , F., HIROSE, K., FUJII, M., AND INOUE, K. 2001. A slicing method for object-oriented programs using
lightweight dynamic information. InAsia-Pacific Software Engineering Conference.

PLESZKUN, A. R. 1994. Techniques for compressing programm address traces. InIEEE/ACM International
Symposium on Microarchitecture (MICRO). 32–39.

REISS, S. P.AND RENIERIS, M. 2000. Generating Java trace data. InACM Java Grande Conference.
REISS, S. P.AND RENIERIS, M. 2001. Encoding program executions. InACM/IEEE International Conference

on Software Engineering (ICSE). 221–230.
SAZEIDES, Y. 2003. Instruction isomorphism in program execution.Journal of Instruction-Level Parallelism 5.
SPECJVM98. Spec JVM98 benchmarks. website:http://www.specbench.org/osg/jvm98/ .
STEENSGAARD, B. 1996. Points-to analysis in almost linear time. InACM SIGPLAN-SIGACT symposium on

Principles of programming languages. 32–41.
TIP, F. 1995. A survey of program slicing techniques.Journal of Programming Languages 3,3, 121–189.
WANG, T. AND ROYCHOUDHURY, A. 2004. Using compressed bytecode traces for slicing Java programs. In

ACM/IEEE International Conference on Software Engineering (ICSE). 512–521. Available fromhttp:
//www.comp.nus.edu.sg/ ∼abhik/pdf/icse04.pdf .

WEISER, M. 1984. Program slicing.IEEE Transactions on Software Engineering 10,4, 352–357.
XU, B., CHEN, Z., AND YANG, H. 2002. Dynamic slicing object-oriented programs for debugging. InIEEE

International Workshop on Source Code Analysis and Manipulation.
ZHANG, X. AND GUPTA, R. 2004. Whole execution traces. InIEEE/ACM International Symposium on Mi-

croarchitecture (Micro). 105–116.
ZHANG, X., GUPTA, R.,AND ZHANG, Y. 2005. Cost and precision tradeoffs of dynamic data slicing algorithms.

ACM Transactions on Programming Languages and Systems (TOPLAS).
ZHANG, Y. AND GUPTA, R. 2001. Timestamped whole program path representation and its applications. In

ACM SIGPLAN Conference on Programming Language Design and Implementation. 180–190.
ZHAO, J. 2000. Dependence analysis of Java bytecode. InIEEE Annual International Computer Software and

Applications Conference. 486–491.
ZILLES, C. B. AND SOHI, G. 2000. Understanding the backward slices of performance degrading instructions.

In International Symposium on Computer Architecture (ISCA).

