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Dynamic slicing is a well-known technique for program analysis, debugging and understanding.
Given a program P and input I, it finds all program statements which directly/indirectly affect
the values of some variables’ occurrences when P is executed with I. In this paper, we develop
a dynamic slicing method for sequential Java programs. Our technique proceeds by backwards
traversal of the bytecode trace produced by an input I in a given program P. Since such traces
can be huge, we use results from data compression to compactly represent bytecode traces. The
major space savings in our method come from the optimized representation of (a) data addresses
used as operand by memory reference bytecodes, and (b) instruction addresses used as operand
by branch bytecodes. We show how dynamic slicing algorithms can directly traverse our compact
bytecode traces without resorting to costly decompression. We also extend our dynamic slicing
algorithm to perform “relevant slicing”; the resultant slices can be used to explain omission errors
that is, why some events did not happen during program execution. Detailed experimental results
on space/time overheads of tracing and slicing are reported in the paper.
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ware Engineering): Testing and Debugging-Bebugging aidsTesting toolsTracing

General Terms: Algorithms, Experimentation, Measurement
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1. INTRODUCTION

Program slicing [Weiser 1984] is a well-known technique for program debugging and un-

derstanding. Roughly speaking, program slicing works as follows. Given a pragram

the programmer provides a slicing criterion of the fdiin”), wherel is a control location

in the program and’” is a set of program variables referenced. athe purpose of slicing

is to find out the statements i which can affect the values &f at! via control and/or

data flow. So, if during program execution the values/oht ! were “unexpected”, the

corresponding slice can be inspected to explain the reason for the unexpected values.
Slicing techniques are divided into two categories: static and dynamic. Static (Dynamic)

slicing computes the fragment affectimgat! (some occurrence @§ when the input pro-

gram is executed with any (a specific) input. Thus, for the same slicing criterion, dynamic

slice for a given input of a prograrR is often smaller than the static slice Bf Static

slicing techniques typically operate on a program dependence graph (PDG); the nodes of
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the PDG are simple statements / conditions and the edges correspond to data / control de-
pendencies [Horwitz et al. 1990]. Dynamic slicing w.r.t. an input | on the other hand, often
proceeds by collecting the execution trace corresponding to I. The data and control depen-
dencies between the statement occurrences in the execution trace can be pre-computed or
computed on demand during slicing [Zhang et al. 2005].

Due to the presence of objects and pointers in programs, static data dependence com-
putations are often conservative, leading to very large static slices. On the other hand,
dynamic slices capture the closuredynamicdata and control dependencies, hence they
are much more precise, and more helpful for narrowing the attention of the programmer.
Furthermore, since dynamic slices denote the program fragment affecting the slicing cri-
terion for aparticular input, they naturally support the task of debugging via running of
selected test inputs.

Though dynamic slicing was originally proposed for debugging [Korel and Laski 1988;
Agrawal and Horgan 1990], they have subsequently also been used for program compre-
hension in many other innovative ways. In particular, the dynamic slices (or its variants
which also involve computing closure of dependencies by trace traversal) have been used
for studying causes of program performance degradation [Zilles and Sohi 2000], iden-
tifying isomorphic instructions in terms of their run-time behavior [Sazeides 2003] and
analyzing spurious counter-example traces produced by software model checking [Ma-
jumdar and Jhala 2005]. Even in the context of debugging, dynamic slices have been used
in unconventional ways e.g. [Akgul et al. 2004] studies reverse execution along a dynamic
slice. Thus, dynamic slicing forms the core of many tasks in program development and it
is useful to develop efficient methods for computing dynamic slices.

In this paper, we present an infrastructure for dynamic slicing of Java programs. Our
method operates on bytecode traces. First, the bytecode stream corresponding to an execu-
tion trace of a Java program for a given input is collected. The trace collection is done by
modifying a virtual machine; we have used the Kaffe Virtual Machine in our experiments.
We then perform a backward traversal of the bytecode trace to compute dynamic data and
control dependencies on-the-fly. The slice is updated as these dependencies are encoun-
tered during trace traversal. Computing the dynamic data dependencies on bytecode traces
is complicated due to Java’s stack based architecture. The main problem is that partial
results of a computation are often stored in the Java Virtual Machine’s operand stack. This
results in implicit data dependencies between bytecodes (involving data transfer via the
operand stack). For this reason, our backwards dynamic slicing performs a “reverse” stack
simulation while traversing the bytecode trace from the end.

Dynamic slicing methods typically involve traversal of the execution trace. This traver-
sal may be used to pre-compute a dynamic dependence graph or the dynamic dependencies
can be computed on demand during trace traversal. Thus, the representation of execution
traces is important for dynamic slicing. This is particularly the case for backwards dy-
namic slicing where the trace is traversed from the end (and hence needs to be stored). In
practice, traces tend to be huge; [Zhang et al. 2005] reports experiences in dynamic slicing
programs likegcc andperl where the execution trace runs irgeveral hundred million
instructions It might be inefficient to perform post-mortem analysis over such huge traces.
Consequently, it is useful to develop a compact representation for execution traces which
capture both control flow and memory reference information. This compact trace should
be generatedn-the-flyduring program execution.

Our method proceeds by on-the-fly construction of a compact bytecode trace during pro-
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gram execution. The compactness of our trace representation is owing to several factors.
First, bytecodes which do not correspond to memory aciessléta transfer to and from

the heap) or control transfer are not stored in the trace. Operands used by these bytecodes
are fixed and can be discovered from Java class files. Secondly, the sequence of addresses
used by each memory reference bytecode or control transfer bytecode is stored separately.
Since these sequences typically have high repetition of patterns, we exploit such repeti-
tion to save space. We modify a well-known lossless data compression algorithm called
SEQUITUR [Nevill-Manning and Witten 1997] for this purpose. This algorithm identifies
repeated patterns in the sequence on-the-fly and stores them hierarchically.

Generating compact bytecode traces during program execution constitutes the first phase
of our dynamic slicer. Furthermore, we want to traverse the compact execution trace to
retrieve control and data dependencies for slicing; this traversal should be done without
decompressing the trace. In other words, the program trace should be collected, stored
and analyzed for slicing — all in its compressed form. This is achieved in our dynamic
slicer which traverses the compact bytecode trace and computes the data/control depen-
dencies in compression domain. Since we store the sequence of addresses used by each
memory-reference/control-transfer bytecode in compressed format, this involves marking
the “visited” part of such an address sequence without decompressing its representation.

Finally, we extend our dynamic slicing method to support "relevant slicing”. Traditional
dynamic slicing algorithms explain the values of variablést some occurrences of a
control location, by highlighting the executed program statements which affect the values
of V atl. They do not report the statements which affect the valué atl, by not being
executed To fill this caveat, the concept of relevant slicing was introduced in [Agrawal
et al. 1993; Gyimthy et al. 1999]. We design and implement a relevant slicing algorithm
working on our compact bytecode traces.

Summary of Contributionsin summary, the main contribution of this paper is to report
methods for dynamic slicing of single threaded Java programs. Our slicer proceeds by
traversing a compact representation of a bytecode trace and constructs the slice as a set of
bytecodes; this slice is then transformed to the source code level with the help of Java class
files. Our slicing method is complicated by Java'’s stack based architecture which requires
us to simulate a stack during trace traversal.

Since the execution traces are often huge, we develop a space efficient representation of
the bytecode stream for a single threaded Java program execution. This compressed trace is
constructed on-the-fly during program execution. Our dynamic slicer performs backward
traversal of this compressed tragdieectly to retrieve data/control dependencies, that is,
slicing does not involve costly trace decompression. Our compressed trace representation
is interesting in general as a program trace representation. For our subject programs (drawn
from standard suites such as the Java Grande benchmark suite or the SPECjvm suite) we
obtain compression in varying amounts ranging from 5000 times. We show that the
time overheads for constructing this representation on-the-fly during program execution is
tolerable.

We also enhance our dynamic slicing algorithm to capture “omission errors”. The
extended dynamic slicing method is called aslévant slicing [Agrawal et al. 1993;
Gyimothy et al. 1999]. The relevant slicing algorithm also operdiesctly on the com-
pressed bytecode traces, as our dynamic slicing algorithm. Our experimental results indi-
cate that the additional capability of relevant slicies. Capturing omission errors) comes
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at the cost of modest additional overheads in terms of computation time or slice sizes.

The main changes w.r.t. the conference version [Wang and Roychoudhury 2004] of this
paper are as follows. We explain in full details the dynamic slicing and relevant slicing
algorithms €.g. issues like (a) computing slices without trace decompression, and (b)
computing data dependencies via stack simulation, are elaborated in this version). In addi-
tion, more extensive experiments have been conducted for understanding the efficiency of
our compact trace representation and the sizes of dynamic/relevant slices.

Section OrganizationThe rest of this paper is organized as follows. Section 2 de-
scribes our compressed representation of Java bytecode traces. Section 3 and 4 discuss
our dynamic slicing and relevant slicing algorithms. Section 5 presents the experimental
evaluation and Section 6 summarizes related work. We conclude the paper in section 7.

2. COMPRESSED BYTECODE TRACE

In this section, we will discuss how to collect compact bytecode traces of Java programs
on the fly This involves a discussion of the compaction scheme as well as the necessary
instrumentation. The compaction scheme used by us is exact, lossless and on-the-fly, and
it can be generalized to other kinds of instructions.

2.1 Overall representation

The simplest way to define a program trace is to treat it as a sequence of “instructions”.
For Java programs, we view the trace as the sequence of executed bytecodes, instead of
program statements. This is because only bytecodes are available for Java libraries, which
are used by Java programs. Furthermore, collecting traces at the level of bytecode has the
flexibility in tracing/not tracing certain bytecodes. For examplegitstatic bytecode
loads the value of a static field. This bytecode does not need tracing, because which static
field to access is decided at compile-time, and can be discovered from class files during
post-mortem analysis.

However, representing a Java program trace as a bytecode sequence has its own share of
problems. In particular, it does not allow us to capture many of the repetitions in the trace.
A linear representation of the program trace as a single string loses out structure in several
ways.

— The individual methods executed are not separated in the trace representation.

— Sequences of addresses accessed by individual memory load/store bytecodes are not
separated out. These sequences capture data flow and exhibit high regelgrityréad
bytecode sweeping through an array).

— Similarly, sequences of target addresses accessed by control transfer bytecodes are
not separated out. Again these sequences show fair amount of repetitjanl¢op branch
repeats the same target many times).

In our representation, the compact trace of the whole program consists of trace tables,
each of which is used for one method. Method invocations are captured by tracing byte-
codes which invoke methods. The last executed bytecode w.r.t. the entire execution is
clearly marked. Within the trace table for a method, each row maintains traces of a specific
bytecode or of the exit of the method. Monitoring and tracing every bytecode may incur
too much time and space overheads. We monitor only the following five kinds of bytecodes
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to collect the trace, where the first two are necessary to capture data flow of the execution,
and the last three are necessary to capture control flow of the execution.

— Memory allocation bytecodeMemory allocation bytecodes record the identities of
created objects.

— Memory access bytecodeEBhe bytecodes to access local variables and static fields
are not traced since the addresses accessed by these bytecodes can be obtained from the
class file. For bytecodes accessing object fields / array elements, we trace the addresses (or
identities since an address may be used by different variables in the lifetime of a program
execution) corresponding to the bytecode operands.

— Method invocation bytecodedava programs use four kinds of bytecodes to invoke
methods. Two of theminvokevirtual andinvokeinterface , may invoke dif-
ferent methods on different execution instances. These invoked methods have the same
method name and parameter descriptor (which can be discovered in class files), but they
belong to different classes. So evényokevirtual andinvokeinterface byte-
code records the classes which the invoked methods belong to.

— Bytecodes with multiple predecessoB8me bytecodes have multiple predecessors
in the control flow graph. Such a bytecode records which bytecodes are executed immedi-
ately before itself.

— Method return bytecode#f a method has multipleeturn  bytecodes, the trace of
the exit of the method records whickturn  bytecodes are executed.

Monitoring the last two kinds of bytecodes (bytecodes with multiple predecessors and
method return bytecodes) and marking the last executed bytecode are required due to back-
ward traversal of the trace during post-mortem analysis. When the analysis performs for-
ward traversal of the trace, it is not necessary to monitor bytecodes with multiple prede-
cessors and method return bytecodes. Instead, each conditional branch bytecode should
record which bytecode is executed immediately after the branch bytecedthé target
address).

As mentioned earlier, our trace representation captures each method’s execution in the
trace as a trace table. Each row of the trace table for a methagpresents the execution
of one of the bytecodes of. (in fact it has to be a bytecode which we trace). A row of a
trace table thus captures all the execution instances of a specific bytecode. The row corre-
sponding to a bytecodein methodm stores the sequence of values taken by each operand
of b during execution; ibh has multiple predecessors, we also maintain a sequence of the
predecessor bytecode &f Thus, in each row of a trace table we store several sequences
in general;each of these sequences are stored in a compressed foBegarating the
sequence of values for each bytecode operand allows a compression algorithm to capture
and exploit regularity and repetition in the values taken by an operand. This can be due
to regularity of control or data flow e.g. a read bytecode sweeping through an array or a
loop iterating many times. Before presenting how to compress trace sequences, let us look
at an example to understand the trace table representation. Note that sequences are not
compressed in this example for ease of understanding.

Example.The left part of Figure 1 presents a simple Java program, and the right part
shows the corresponding bytecode stream. Table | and 1l show the trace tables for methods
main andfoo , respectively. The constructor methbdmohas no trace table, because no
bytecode of this method is traced. Each row in the trace table consists of: (a) the id/address



6 . Wang and Roychoudhury

1: class Demof{ public static void main(String[]); Demo();
2
3: public int foo(int j){ 1. new Class Demo 43: aload_0
4 int ret; 2: dup 44: invokespecial Object()
5 if(j%2==1) 3: invokespecial Demo() 45: return
6: ret=2; 4: astore 5
7 else 5. iconst_4
8 ret=5; 6: newarray int public int foo(int);
9: return ret; 7. astore 6
10: } 8: iconst_2 46: iload_1
1L 9: istore_3 47: iconst_2
12: static public void main (String argvs[]){ 10: iconst_1 48: irem
13: inti, k, a, b; 11: istore 4 49: iconst_1
14: Demo obj= new Demo(); 12: iconst_1 50: if_icmpne 54
15: int arr[]= new int[4]; 13: istore_2 51: iconst_2
16: 14: iload_3 52: istore_2
17: a=2; 15: iconst_1 53: goto 56
18: b=1; 16: if_icmple 22 54 iconst_5
19: k=1, 17: iload 4 55: istore_2
20: if (@>1){ 18: iconst_1 56: iload_2
21: if (b>1){ 19: if_icmple 22 57: ireturn
22: k=2; 20: iconst_2
23: } 21: istore_2
24: } 22: iconst_0
25 23: istore_1
26: for (i=0; i < 4; i++){ 24: iload_1
27: arrfi]=k; 25: iconst_4
28: k= k + obj.foo(i); 26: if_icmpge 39
29: } 27: aload 6
30: 28: iload_1
31: System.out.printin(k); 29: iload_2
32: } 30: iastore
33:} 31: iload_2

32: aload 5

33: iload_1

34: invokevirtual foo:(int)

35: iadd

36: istore_2

37:iinc 1,1

38: goto 24

39: getstatic

40: iload_2

41: invokevirtual println:(int)

42: return

Fig. 1. The left part is a simple Java program, and the right part shows corresponding bytecodes Ddatbd
is generated automatically as the class constructor.

for a bytecode (in théytecode column), and (b) collected traces for that bytecode (in the

Sequences column).

For our example Java program, there are 57 bytecodes altogether, and only 8 of them are
traced, as shown in the Table | and II. Bytecodes 1 arice6t{vo new statements at lines

14 and 15 of the source program) allocate memory for objects, and their traces include
ando-, which represent identities of the objects allocated by these bytecodes. Bytecode
30 defines an element of an arraye( definearr]i] at line 27 of the source program).

Note that for thidastore  bytecode, two sequences are stored. These sequences corre-
spond to the two operands of the bytecode, namely: identities of accessed array objects
(i.e. {02,02,02,02)) and indices of accessed array elemermt. ((0,1,2,3)). Both se-
guences consist of four elements, because bytecode 30 is executed four times and accesses
02[0], 02[1], 02]2], 02[3] respectively; each element in a sequence records one operand for
one execution of bytecode 30. Bytecodes 34 and 41 invoke virtual methods; the operand
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Bytecode Sequences
1 (o1)
6 (02)
22 (19)
24 (23, 38, 38, 38, 38)
30 (02,02, 02,02)
(0,1,2,3)
34 <CDem07 CDcmm CDcmoa CDemo)
41 (Cout)

Table |. Trace table for methadain(String[])

Bytecode Sequences
56 (55,53, 55, 53)

Table Il. Trace table for methddo(int)

sequences record classes which invoked methods belong to, @bggg represents class
DemoandC,,,; represents the standard output stream class. Bytecodes 22, 24 and 56 have
multiple predecessors in the control flow graph. For example, bytecodes56efurn

ret atline 9 of the source program) has two predecessors: bytecode S8térret=2

at line 6 of the source program) and bytecodeish (et=5 at line 8 of the source pro-

gram). The sequence recorded for bytecode 56 (see Table Il) captures bytecodes executed
immediately before bytecode 56, which consists of bytecodes 55 and 53 in this example.
Note that every method in our example program has onlyrehen bytecode, so no

return bytecode is monitored and no trace of the exit of a method is collected.

Clearly, different invocations of a method within a program execution can result in dif-
ferent traces. The difference in two executions of a method results from different operands
of bytecodes within the method. These different traces are all stored implicitly via the
sequence of operands used by the traced bytecodes. As an example, consider the trace
table of methodoo shown in Table Il. The different traces fafo result from the differ-
ent outcomes of its only conditional branch, which is captured by the trace sequence for
predecessors of bytecode 56 in Figure 1, as shown in Table II.

2.2 Overview of SEQUITUR

So far, we have described how the bytecode trace sequences representing control flow,
data flow, or dynamic call graph are separated in an execution trace. We now employ a
lossless compression scheme to exploit the regularity and repetition of these sequences.
Our technique is an extension of the SEQUITUR, a lossless data compression algorithm
[Nevill-Manning and Witten 1997] which has been used to represent control flow informa-
tion in program traces [Larus 1999]. First we briefly describe SEQUITUR.

The SEQUITUR algorithm represents a finite sequesic&s a context free grammar
whose language is the singleton det}. It reads symbols one-by-one from the input
sequence and restructures the rules of the grammar to maintain the following invariants:
(A) no pair of adjacent symbols appear more than once in the grammar, and (B) every rule
(except the rule defining the start symbol) is used more than once. To intuitively understand
the algorithm, we briefly describe how it works on a sequelr®3d 23. As usual, we use
capital letters to denote non-terminal symbols.



8 . Wang and Roychoudhury

After reading the first four symbols of the sequem28123, the grammar consists of the
single production rule

S —1,2,3,1
whereS is the start symbol. On reading the fifth symbol, it becomes
S —1,2,3,1,2

Since the adjacent symbols2 appear twice in this rule (violating the first invariant),
SEQUITUR introduces a non-terminalto get

S A3A A—1,2

Note that here the rule defining non-terminal A is used twice. Finally, on reading the last
symbol of the sequende3123 the above grammar becomes

S A3,4,3 A—1,2

This grammar needs to be restructured since the symhdsppear twice. SEQUITUR
introduces another non-terminal to solve the problem. We get the rules

S—B,B B—A3 A—1,2

However, now the rule defining non-terminal A is used only once. So, this rule is elimi-
nated to produce the final result.

S—B,B B—1,23
Note that the above grammar accepts only the sequiE3des.

2.3 Capturing Contiguous Repeated Symbols in SEQUITUR

One drawback of SEQUITUR is that it cannot efficiently represent contiguous repeated
symbols, including both terminal and non-terminal symbols. However, contiguous re-
peated symbols are not uncommon in program traces. Consider the example in Figure 1.
Bytecode 24i(e. i<4 atline 26 of the source program in Figure 1) has two predecessors:
bytecode 23i(e. i=0 at line 26 of the source program in Figure 1) and bytecode 38 (after
i++ at line 26 of the source program in Figure 1). The loop is iterated four times, so

the predecessor sequence for bytecode 24218, 38, 38, 38, 38 as shown in Table I. To
represent this sequence, SEQUITUR will produce the following rules:

S —23,A,A A— 3838

In general, if thefor loop is iteratedk times, SEQUITUR need®(igk) rules to rep-
resent the predecessor sequence for bytecode 24. Clg&adgntiguously appears in the
predecessor sequence. To exploit such contiguous occurrences in the sequence representa-
tion, we propose the Run-Length Encoded SEQUITUR (RLESe).

RLESe constructs a context free grammar to represent a seqoerbe fly this con-
trasts with the work of [Reiss and Renieris 2001] which modifies the SEQUITUR grammar
post-mortem. The right side of each rule is a sequencaadés. Each node(sym : n)
consists of a symbatym and a counter (i.e. run length), representing contiguous
occurrences ofym. RLESe can exploit contiguous repeated symbols, and represent the
above trace sequen¢@3, 38, 38, 38, 38 of bytecode 24 using the following one rule:

S —23:1,38:4
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The RLESe algorithm constructs a context free grammar by reading from the input se-
guence symbol by symbol. On reading a symiaph, a node(sym : 1) is appended to
the end of the start rule, and grammar rules are re-structured by preserving following three
properties. The first property is unique to RLESe, resulting from its maintenance of con-
tiguous occurrences of grammar nodes. The last two properties are taken (and modified)
from SEQUITUR.

(1) No contiguous repeated symbols propefiiiis property states that each pair of adja-
cent nodes contains different symbols. Continuous repeated symbols will be encoded
within the run-length.

(2) Digram uniqueness propertythis property means that redmilar digrams appear in
resulting grammar rules. Here a digram refers to two consecutive nodes on the right
side of a grammar rule. Two digrams aienilar if their nodes contain the same pair
of symbolse.g. (a : 2, X : 2) is similar to(a : 3, X : 4), but(a : 3, X : 2) is not
similarto(X : 2,a : 3).

(3) Rule utility property.This rule states that every rule (except the start rule S) is refer-
enced more than once. When a rule is referenced by only one node and the run length
n of that node equals 1, the reference will be replaced with the right hand side of this
rule.

To maintain the digram uniqueness property in RLESe, we might need to split nodes dur-
ing grammar construction. This split operation allows the algorithm to obtain duplicated
identicaldigrams, and represent them by one grammar rule for potential space saving. Two
digrams ardadenticalif they have the same pairs of symbols and counters. For example,
digram(a : 2, X : 2) isidentical to(a : 2, X : 2), butdigram{a : 2, X : 2) is not identical
to(a:3,X :4).

Given two similar digramgsym; : ny, symsa : na), and{sym; : ny, syms : njy), we
can split at most two nodes to obtain identical digramgsgsn; : min(ny,n}), syms :
min(ng, nh)), wheremin(ny,n}) denotes the minimum of; andn/. Consider bytecode
24 of Figure 1, which corresponds to the termination condii@h of loop at line 26 of
the source program. Assume that in some execution, such a loop is executed twice, one
time with 6 iterations, and another time with 8 iteration. Recall that bytecode 24 has two
predecessors: bytecode 23 (correspondinig@o of the source program in Figure 1) and
bytecode 38 (afteirr+ of the source program in Figure 1). The predecessor sequence for
bytecode 24 is:

S —23:1,38:6,23:1,38:8

To ensure digram uniqueness property, we will split the n@ke: 8) to a digram
(38 : 6,38 : 2). This is to remove duplicate occurrences of similar digrams as:

S —A:238:2 A—23:1,38:6

The split operation introduces more nodes (at most two) into the grammar, but may save
space when the identical digram appears frequently in the sequence being compressed.
In addition to the run-length encoding performed in RLESe, we also need to modify the
terminal symbols fed into RLESe algorithm. In particular, we need to employ difference
representations in memory reference sequences. For example, the se@yehca, 3
in Table I, which represents the indices of the array elements defined by bytecode 56 in
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Figure 1, cannot be compressed. By converting it into its difference representation as
1, 1, 1), RLESe can compactly represent the trace sequence with one rule, as

S—0:1,1:3

As with SEQUITUR [Nevill-Manning and Witten 1997], the RLESe compression algo-
rithm is linear in both space and time, assuming that it takes constant time to find similar
digrams.Detailed space/time complexity analysis of the RLESe compression scheme is pre-
sented in Appendix Axperiments (in Section 5) show that RLESe can often achieve com-
parable compression ratio within less time, compared against SEQUITUR. This is because
RLESe can postpone re-constructing the grammar so the grammar rules are re-constructed
less frequently. That is, on reading a symbgin from input, instead of appending node
(sym : 1) and re-constructing the grammar immediately, the RLESe algorithm first com-
paressym against the last nodgym’ : n) of the start rule. Ifsym is the same asym/,
the node(sym’ : n) is updated to(sym’ : n + 1) and the grammar is not further re-
constructed. If not, nodésym : 1) is appended to the end of the start rule, and the
grammar is re-structured by preserving the three properties of RLESe.

3. TECHNIQUES FOR DYNAMIC SLICING

In this section, we focus on how to perform dynamic slicing of Java programs. Our dy-
namic slicing algorithm works at the bytecode level, since it operates on compact bytecode
traces described in the last section. Dynamic slicing is performed w.r.t. a slicing criterion
(H,a,V), whereH is an execution tracey represents some bytecodes the programmer

is interested in, and is a set of variables referenced at these bytecodes. Dynamic slice
contains all bytecodes which have affected values of variabl&srieferenced at last oc-
currences ofv in the execution tracél.

Often, the user understands a Java program at the statement level. Thus, the user-defined
criterion is often of the form(I,1, V"), where[ is an input, and is a line number of the
source program; the user is interested in statements (instead of bytecodes) which have af-
fected values of variables ¥ referenced at last occurrences of statementslating the
execution with inputf. This form is a little different from our bytecode based slicing cri-
terion (H, «, V') and dynamic slice. In this case, program execution with idgaroduces
the traceH, anda represents the bytecodes corresponding to statemeht3la¢ user is
interested in statements corresponding to bytecodes included in the dynamimsbicker
to map bytecodes to a line number of the source file and vice versa, we usedhieim-
berTableattribute in a Java’s class file [Lindholm and Yellin 1999] which describes such
a map.

The dynamic slice includes the closure of dynamic control and data dependencies from
the slicing criterion. Formally, a dynamic slice can be defined &ygramic Dependence
Graph (DDG) [Agrawal and Horgan 1990]. The DDG captures dynamic control and data
dependencies between bytecode occurrences during program execution. Each node of the
DDG represents one particular occurrence of a bytecode; edges represent dynamic data
and control dependencies. The dynamic slice is then defined as follows.

Definition 3.0.1. Dynamic slicefor a slicing criterion consists of all bytecodes whose
occurrence nodes can be reached from the node(s) representing the slicing criterion in the
DDG.
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We can construct the DDG as well as the dynamic slice during a backwards traversal of
the execution trace.

3.1 Core Algorithm

Figure 2 presents an inter-procedural dynamic slicing algorithm, which returns dynamic
slice defined in Definition 3.0.1. Before slicing, we pre-computectirgrol flow graphfor

the program (which is used by thetPrevBytecode = method at line 34 of the algorithm

in Figure 2). In addition, we pre-compute thentrol dependence grafdferrante et al.
1987], where each node in the graph represents one bytecode, and an edge fram node
to v’ represents that bytecode d@f decides whether bytecode ofwill be executed. This
static control dependence graph is used at lines 20 and 21 of the algorithm in Figure 2 to
detect dynamic control dependencies,

Lines 1-5 of Figure 2 introduce five global variables for the slicing algorithm, including
the slicing criterion. During dynamic slicing, we maintaina list of variables whose
values need to be explained, the set of bytecode occurrences which have affected the
slicing criterion,op_stack, a operand stack for simulation (see Section 3.3), Andn,
stack of frames for method invocations. The dynamic slice includes all bytecodes whose
occurrences appear in at the end of the algorithm. Initially we sét ¢, op_stack and
fram to empty. For every method invocation during trace collection, we create a frame
for this invocation during slicing. Thesgsets include those bytecode occurrengessich
that/3 belongs tap and the slicing algorithm has not found the bytecode occurrence which
(3 is dynamically control dependent on.

We now traverse the program’s execution trace backwards, starting from the last exe-
cuted bytecode recorded in the trable For each occurrence of bytecodebs (i.e.
represents one execution of the bytecédeencountered during the backward traversal
for slicing, a frame is created and pushedftaim wheneverbg is a return bytecode (at
lines 9-11 of Figure 2); a frame is popped frginam and stored iny;,s: wheneveibg is a
method invocation bytecode (at lines 12-13 of Figure 2).

The dynamic slicing algorithm then checks whether the encountered bytecode occur-
rencef has affected the slicing criterion during trace collection, at lines 17-29 of Figure
2. In particular, line 17 of Figure 2 checksfis the slicing criterion. Line 20 of Figure 2
checks dynamic control dependencies whgis a control transfer bytecode. In particular,
computeControlDependence  (bg,y,Viast) Feturns true iff..

—bg is a conditional branch bytecode, and some bytecode whose occurrence apgears in
is statically control dependent &g (i.e. intra-procedural control dependence check), or

—bg is method invocation bytecode, and thg,; set is not emptyi(e. inter-procedural
control dependence check).

Bytecode occurrences which are dynamically control dependet are then removed

from v because their dynamic control dependencies have just been explained. Line 25 of
Figure 2 checks dynamic data dependencies. When the algorithm finds that the bytecode
occurrences has affected the slicing criteriond. any of the three checks in lines 17, 20

and 25 of the algorithm in Figure 2 succeeds)s included intoy and used variables are
included intos (at lines 30-32 of Figure 2), in order to find bytecode occurrences which
have affected? and hence the slicing criterion. The simulation operand stackiack is

also properly updated at line 33 for further check of data dependencies (this is explained
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1 (H,a,V)=the slicing criterion

2 =0, a set of variables whose values need to be explained

3 =10, the set of bytecode occurrences which have affected the slicing criterion
4 op_stack= empty, the operand stack for simulation

5  fram=empty, the frames of the program execution
6

7

8

dynamicSilicing()
bg = get last executed bytecode frafiy
while (bg is defined)

9 if (bg is a return bytecode)

10 new_fram= create Frame();

11 push(frame, new_fram);

12 if (bs is a method invocation bytecode)

13 Viast = pop(frame);

14 B = current occurrence of bytecodg;

15 curr_fram = the top offram,;

16 ~= a set of bytecode occurrences to check control dependenciesinfram;
17 if (3 is the last occurrence of; andbg € «)

18 v = variables used &, andv C V;

19 v =pU{p}

20 if (computeControl Dependence(bg,~,Viast) )
21 BC=all bytecode occurrences inwhich are dynamically control dependent 6n
22 y=~—BC;

23 v = variables used at;

24 p=pU{B}h

25 if (computeDataDependence(3,bg))

26 def o' = variables defined a#;

27 6 =06 —def;

28 v = variables used a;

29 v =¢U{B}h

30 if (B € o)

31 v=~vU{B}

32 d=0Uw;

33 updateOpStack(B, bg);

34 bg = getPrevBytecode(8,bg);

35 return bytecodes whose occurrences appeas;in

Fig. 2. The dynamic slicing algorithm

in Section 3.3). The dynamic control and data dependencies checks (lines 20 and 25 of
Figure 2) can be reordered, since they are independent of each other.

In the rest of this section, we elaborate on the underlying subtle issues in using the slic-
ing framework of Figure 2. Section 3.2 presents how to traverse the execution backwards
without decompressing the compact bytecode trace. Section 3.3 explains the intricacies
of our dynamic data dependence computation in presence of Java's stack based execu-
tion. Section 3.4 illustrates the dynamic slicing algorithm with an example and Section 3.5
shows the correctness and cost of our dynamic slicing algorithm.

3.2 Backward Traversal of Trace without decompression

The dynamic slicing algorithm in Figure 2 traverses the program execution backwards,
starting from the last executed bytecode recorded in the filafee 7 of Figure 2). The
algorithm proceeds by iteratively invoking tgetPrevBytecode = method to obtain the
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1 getPrevBytecodg3: bytecode occurrencég: bytecode)

2 if (bg has exactly one predecessor in the control flow graph)

3 biast= the predecessor bytecoee;

4 else

5 G= compressed control flow operand sequence foin the compact bytecode tra¢é
6 7= a root-to-leaf path fo6z,

7 biast= getLast(G,m);

8 if (biast IS @ method invocation bytecode)

9 meth=the method invoked by;

10 if (meth has exactly one return bytecode)

11 return the return bytecode;

12 else

13 G'= compressed operand sequence for exitweth in trace H
14 «’= a root-to-leaf path fo&’;

15 return getLast(G',7');

16 if (bjost represents the start of a method)

17 return the bytecode which invokes current method;

18 return byqs¢;

Fig. 3. Get last executed bytecode for backward traversal of the execution trace.

bytecode executed prior to current occurrepicef bytecodebg during trace collection.
Figure 3 presents thgetPrevBytecode = method. The method first retrieves the last
executed bytecode within the same method invocatiobpdb b4, and returns;,q; if

bias¢ does not cross method boundaries (lines 2-7 of Figure 3),4f invokes a method
meth, the last executed return bytecode of methedh is returned (lines 8-15 of Figure

3). If b, represents the start of a method, the bytecode which invokes current method is
returned (lines 16-17 of Figure 3).

ThegetPrevBytecode  method has to retrieve last executed bytecode from the com-
pact bytecode trac#. For this purpose, it needs to traverse the predecessor sequence of
a bytecode with multiple predecessors. Since such sequences are compactly stored as a
RLESe grammar, we need to efficiently traverse RLESe grammars; this is accomplished
by the methodjetLast . ThegetLast method gets last executed predecessor from a
RLESe grammaé; without decompression, using a root-to-leaf patim G. The slicing
algorithm maintains such a pattfor each compressed RLESe sequefide clearly mark
which portion ofG has been already visited. We now explain in details the mechanics of
efficient traversal over RLESe representation.

In our trace compression scheme, all operand sequences are compressed using RLESe.
The dynamic slicing algorithm traverses these sequences from the end to extract preproces-
sors for computation of control flow, and to extract identifies of accessed variables for
computation of data flow. For example, consider the operand sequence of array indices for
bytecode 30 in Table I, which i€, 1, 2,3). During dynamic slicing on the program of
Figure 1, we traverse this sequence backwards, that is, from the end. At any point during
the traversal, we mark the last visited operand (&ay, 2, 3)) during slicing. Sequence
beginning with the marked operanide( (2, 3)) has been visited. The next time the slicing
algorithm tries to extract a operand from the operand sequence by the slicing algorithm, we
use this mark to find last unvisited elemein¢ (valuel in this example). We now describe
how such markers can be maintained and updated in the RLESe grammar representation.
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The RLESe grammar of a sequencean simply be represented as a directed acyclic
graph (DAG). Recall each node of a RLESe grammar is of the fegm : n) wheresym
is aterminal or non-terminal symbol andlenotes a run-length, representingontiguous
occurrences of symbalym. Edges of the DAG represent grammar nodes; nodes of the
DAG represent symbolsym of grammar nodes; annotation above edges represent run-
lengthn of grammar nodes. Let us consider an example where the operand sequence
is (abbabbcabb). The RLESe compression algorithm will produce the following rules to
represent this operand sequence:

S—A:2c:1,A:1 A—a:1,b:2

Small letters denote terminal symbols in the operand sequence, and capital letters de-
note non-terminal symbols. Figure 5(a) shows corresponding DAG representation, where
dashed circles represent non-terminal symbols, circles represent terminal symbols, and
edges are annotated by run-lengths. For example, the grammatsode at the end of

the start rule is captured by the nodeand the incoming edg# L A for nodeA. We
then use a root-to-leaf path over the DAG representation to mark the symbotbithat

was last visited during backward traversal. For example, Séﬁ A2 bin Figure 5(c)
makes lasted visited symbol &shbabbcabb). This path is represented by dashed edges in
Figure 5. For every edge of the pathwe maintain both the run lengthof corresponding
grammar nodeX = (sym : n), and an visitation countét < n, wherek denotes the

number of times that nod& has been visited so far. For example, in the eAgQé} bin
Figure 5(c), 2 represents the run length of grammar féde), and 1 represents that this
node has been visited once.

The dynamic slicing algorithm maintains one root-to-leaf patior every compressed
operand sequence. The paths initialized from the root to the rightmost leaf node in
the DAG, and the visitation counter annotated for the last edgeifset to 0, since no
symbol has been visited. The slicing algorithm then uses therpatfind the last unvisited
terminal symbol of the RLESe grammar by invoking gegLast method of Figure 4. In
thegetLast methodG is the DAG representation of the RLESe grammar for a sequence
o andr is the root-to-leaf path for the symbol inthat was last visited. ThgetLast
method returns the last unvisited symbol and updates therpdibte that the “immediate
left sibling” of an edge: = x — y is the edge’ = x — z where node: is the immediate
left sibling of nodey in the graph; this notion is used in lines 10 and 11 of Figure 4.

Figure 5(b) shows the initialized root-to-leaf patlfior the RLESe grammar. Figure 5(c-
g) present the resultant pattby calling thegetLast method of Figure 4 each time, and
the symbol of the leaf node pointed by the patls returned as the last unvisited symbol.
For example, Figure 5(c) shows the pattafter the first calling theggetLast method.

The pathr includes two edges.é. S M AdandA 2 b ), representing both edges have
been visited once. The leaf notlés referenced byt. Thus,b is returned by thgetLast
method, which represents the last symbil the original sequenc@bbabbcabd).

With the getLast algorithm in Figure 4, we can extract an operand sequence effi-
ciently. Given the grammar for a sequence with lendththe getLast method will
be invokedN times to extract the entire sequence. The overall space overh€HdVis
and the overall time overhead( V). The space overhead is caused by maintaining the
root-to-leaf pathr, which is used by all invocations of tlgetLast method to extract a
sequence. Because these is no cycle in the grammar, the size of jgdihear with the
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1 getlLast(G: Grammar: path inG)

2 e = the last edge of;

3 while (e is defined)

4 lete = symq "Lk sym/;

5 if ( k1 < n1)

6 break;

7 else

8 remove edge from r;

9 change the annotation of edgé&om (n1, k1) to (n1);
10 Sibe= immediate left sibling ot in G;
11 if (such a siblingSib. exists)

12 e = Sibe;

13 break;

14 else

15 e = last edge ofr;

16 lete = symo nz:kz syml;

17 change the annotation of edgé&om (nz, k2) to (n2, k2 + 1);
18 Gx = DAG rooted at nodeym/, within G;
19 for (each edge’ from nodesym, to rightmost leaf node off )

20 insert edge’ into ;

21 lete! = syms 3 symy;

22 change the annotation of edgefrom (n3) to (n3, 1);
23 return symbol in rightmost leaf node @ x;

Fig. 4. One step in the backward traversal of a RLESe sequence (represented as DAG) without decompressing
the sequence.

Sequence: abbabbcabb
RLESe grammar: S->A2,cl Al
A->al, b2
‘:é‘\l '\S ) ':S:l (SI\;
lz/l 1 2 ',;E i/ \ : 2/ 1\ 11 \71,
; . o - (
(AS (aS (AS A © G ©
g : g 2’0 é 2’1 F 2'2 1’1.__-" 2 1
(@) (b) (c) (d) (e) (U]
'\’:/ non-terminal symbol terminal symbol —— grammar node =~ «eee P the root-to-leaf path

Fig. 5. An example shows how to extract operand sequence over RLESe representation without decompression



16 . Wang and Roychoudhury

number of grammar rules. There are fewer grammar rules than grammar nodes, and the
number of grammar nodes is bound by the length of the original sequence. Thus, the space
overhead to extract the entire sequena@(#).

The time overhead to extract the entire sequence is bound by the number of times to
access edges and nodes in the DAG. Whenever a hode with terminal symbol is accessed,
thegetLast method immediately returns the terminal symbol. So, the total number of
times to access node with terminal symbolJ§N) in order to extract a sequence with
length N. For every non-terminal nodeym, let h(sym) be the minimum number of
edges from nodeym to a leaf node. Because every grammar has at least two grammar
nodes, every access to a neden, will lead to at leasp”(*¥™) accesses to leaf nodes. So,
the total number of accesses to non-terminal nodé3(Js; 2t)= O(N). Consequently,
the time overhead to extract the entire sequence from a RLESe grammar (by repeatedly
invokinggetLast to get the last symbol which has not been visited){gV).

3.3 Computing Data Dependencies

The typical way to detect dynamic data dependencies is to compare addresses of variables
defined/used by bytecode occurrences (line 25 of Figure 2). However, this is complicated
by Java’s stack based architecture. During execution, the Java virtual machine uses an
operand stack to hold partial results of execution, besides variables. Dynamic data depen-
dence also exists between bytecode occurreficasd 3/, when a value is pushed into

the operand stack b§ and is popped by’. Consider the program in Figure 1 as an ex-
ample. Assume that statement 27 of the source program is executed, and corresponding
trace at the level of bytecode {87, 282, 293, 30%) where27! means that the first ele-

ment of the sequence is bytecode 27 and so on. Bytecode occud@ngehich defines

the array elemerdrrfi] at line 27 of the source program) is dynamically data depen-
dent on bytecode occurrencgg', 282 and293 (which load local variablek andi , array

object referencarr at line 27 of the source program, respectively). The three bytecode
occurrences push three values into the operand stack, all of which are popped and used by
bytecode occurrenc3d?.

Clearly, dynamic data dependencies w.r.t. local variables and fields can be easily de-
tected by comparing the addresses (or identities) of accessed variables. However, detecting
data dependencies w.r.t. the operand stack requires simulating the operand stack. Figure
6 presents how to maintain the stagk stack for simulation, which is used by the dy-
namic slicing algorithm at line 33 of Figure 2. We pop the simulation stack according to
defined operands, and push the simulation stack according to used operands. The function
def_op(bg) (use_op(bg)) at line 2 (4) of Figure 6 returns the number of operands defined
(used) by bytecodés. Note that the stack simulated during slicing does not contain ac-
tual values of computation. Instead, each entry of the stack stores the bytecode occurrence
which pushed the entry into the stack.

Figure 8 shows the method to determine whether a bytecode occurrence has affected
the slicing criterion via dynamic data dependencies. This method is used by the dynamic
slicing algorithm at line 25 of Figure 2. If a bytecode occurrepicdefines a variable
which needs explanation (lines 2-10 of Figure 8)jatefines a partial result which needs
explanation (lines 11-13 of Figure 8), the method retwmasto indicate thaf? has affected
the slicing criterion. A partial result needs explanation if the bytecode occurrence which
pushes corresponding entry into the stack has already been inclugedTihe function
def_op(bg) at line 11 of Figure 8 returns the number of operands defined by bytégode



Dynamic Slicing on Java Bytecode Traces . 17

1 updateStack(3: bytecode occurrencég: bytecode)
2 for i =0;i < def-op(bg);i =1+ 1)
3 pop(op-stack);
4 for (i = 0;4 < use-op(bg);i =i+ 1)
5 push(op-stack, 3);
Fig. 6. Maintain the simulation staek_stack.
op_stack
50° 483

50°| [50°| [48%| |48%| Empy

after 50° after 494 after 483 after 472 after 46*

Fig. 7. An example shows the_stack after each bytecode occurrence encountered during backward traversal

When the algorithm detects data dependencies via reverse stack simulation, it requires
analyzing some bytecode which are not traced. Consider the program in Figure 1 as an
example. The statemeiit (j%02==1) at line 5 of the source program corresponds to
bytecode sequencd6?, 472, 483, 49%, 50°). Figure 7 shows thep_stack after processing
each bytecode occurrence during backward traversal. Note that bytecade Bgtécode
irem ) is not traced, which stands for the mathematical computation “%”. When the byte-
code occurrencés? is encountered, theomputeDataDependence  method in Figure
8 can detect thai0® is dynamically data dependent d&?. In addition, the bytecode 48
will also update thep_stack, as shown in Figure 7. As we can see from the example, in
order to detect implicit data dependencies involving data transfer via the operand stack, it
is important to know which bytecode occurrence pushes/pops an entry framp_tiieck.

The actual values computed by the bytecode execution are not important. This highlights
difference between our method and the work on Abstract Execution [Larus 1990]. In Ab-
stract Execution, a small set of events are recorded and these are used as guide to execute
a modified program. In our work, we record some of the executed bytecodes in our com-
pressed trace representation. However, the untraced bytecodes are not re-executed during
the analysis of the compressed trace. Instead, we resort to a lightweight analysis to uncover
the dynamic control and data dependencies.

In order to detect data dependencies, our dynamic slicing algorithm needs the addresses
of variables accessed by each bytecode occurrence (lines 23, 28 of Figure 2 and lines 3-8
of Figure 8, where lines 3-8 of Figure 8 also explain details how to get accessed variable
at lines 23, 28 of Figure 2). If a local variable or a static field is accessed, the address
can be found from the class files. For example, the class file shows that every execution
of bytecode 29 of Figure 1 uses local variaklelf an object field or an array element is
accessed, the address can be found from operand sequences of corresponding bytecode in
the compact bytecode trace. For example, executions of bytecode 30 of Figure 1 define the
1st, 2nd, 3rd, and 4th element of the artaywhich is described by operand sequences of
bytecode 30 in Table I. These operand sequences are compressed by RLESe, and can be
extracted by invoking thgetLast method in Figure 4 as explained in Section 3.2.
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computeDataDependencés: bytecode occurrencég: bytecode)

if (8 defines a variable)
if (8 defines a static field or local variable)
def_loc= get address of the defined static field or local variable from class files;
if (8 defines an object field or an array element)
G= compressed operand sequencebfpin the compact bytecode traéé
= a root-to-leaf path fo€7;
def_loc= getLast(G, m);
if (def-loc€§)
return true;
w= the set of bytecode occurrences in thff _op(bg) entries ofop_stack;
12 if (wNe#0)
13 return true;
14 return false;

O~NO OB~ WN B

=2 ©
= O

Fig. 8. Defect dynamic data dependencies for dynamic slicing

3.4 Example

Consider the example program in Figure 1, and corresponding compressed trace in Table
I and Il. Assume that the programmer wants to find which bytecodes have affected the
value ofk at line 31 of the source program. Table Ill shows each stage using the dynamic
slicing algorithm in Figure 2 w.r.t. thk. For simplicity, we do not illustrate slicing over
the entire execution, but over last executed eight stateme26 27, 28, 5, 6, 9, 26, 31).
The corresponding bytecode sequence is a sequence of thirty-one bytecodes shown in the
first column of Table Ill. For each bytecode occurrence, the position nuimber, 31 of
the bytecode occurrence in the sequence is marked as superscript for the sake of clarity.

For each bytecode occurren@eencountered during backward traversal, one row of
Table Il shows resultand, fram, op_stack and ¢ after analyzings by our dynamic
slicing algorithm. Thex in the last column indicates that the corresponding bytecode
occurrence has affected the slicing criterion and is includedgnto

When bytecode occurrend®?’ is encountered, it is found to be the slicing criterion.
The used variablé is inserted tod to find which bytecode occurrence definesthe
bytecode occurrencg0? is inserted toy for control dependencies check; we pop*
from the operand staak_stack because03® loads one value to the operand stack during
trace collection. It should be noted that in this simple example, we refer to a variable with
its name €.g. k), since both methods are invoked once, and every variable has a distinct
name in this example. This is for simplicity of illustration. In the implementation, we use
identifiers to distinguish between variables from same/different method invocation.

After 403, bytecode occurrendd®?® is encountered during backward traversal and so
on. We omit the details of the entire traversal but highlight some representative occurrences
that take place during the execution trace traversal.

—After analyzing bytecode occurrensé?’, the slicing algorithm finds that bytecode 56
has two predecessors, and retrieves last unvisited value from operand sequence of byte-
code 56 in Table Il. Therefore, bytecode occurresit¥ is next analyzed.

—When bytecode occurren@” is encounteredyg, and3 are retrieved from operand

sequences of bytecode 30 in Table |, representing assignment to array etefent
However,o,[3] is irrelevant to the slicing criterion, so neith&nor v is updated. The
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Ié] ) fram op_stack €

method Y

4151 {3 main {} (4131 '413T)

4030 {k} main {4030} (4131> *

3929 {k} main {4037} ()

26> {k} main {40°%} (267, 26°%)

2527 {k} main {403°} (267%)

2426 {k} main {40%°} 9

38%° {k} main {403°} O

3727 {k} main {40%°} )

3623 {} main {4030, 3623} (36723) *

3527 { main {40%°, 36”7} (3572, 35°%) *

5771 {3 foo {577} (35%%,57°1) *
main {40%7,36%%}

5620 {ret} foo {5721 ,5620} (35%2) *
main {40°7,36%°}

5319 {ret} foo {57%1,5620} (3527)
main {40°Y36%°}

5218 {3 foo {57%1,5620 5218} (3522 521%) *
main {40°Y,36%7}

5117 {1 foo {5721 ,56%0,52™% 5117} (35%2) *
main {40°7,36%°}

5016 {3 foo {5721, 5620,501°} (3522,501%,501%) | «
main {40%Y '36%°}

4975 {} foo {5721 ,5620, 501 497"} (3522, 501%) *
main {40°7,36%°}

48T% {} foo {5771, 5620, 501% 49> 481} (3527, 48T% 48T%) | «
main {40°Y,36%°}

47™® { foo {57°",56°°,50'°,49™° 48" 477°} (3577, 4877) *
main {40°Y,36%°}

46 {5} foo | {57°7,56°7,50™°, 49", 487F 475 46T} (357%) *
main {40°7,36%°}

34™ { main {407, 367%, 34"} (357%,34™",34™) | «

3310 {i} main {40%°,36%%, 34", 330} (357%,34™) *

327 {i,obj} | main {407, 367%, 34", 3317, 32%} (357%) *

31 {i,0bj, k} | main {40%°,36°%, 34", 330,327, 315} *

307 | {i,0bj,k} | main {40°7,36°%, 34", 331,327, 31%} (307,307,307)

29% | {i,obj,k} | main {40%7, 3673, 3411 3310 329 318} (307,307)

28° | {i,obj,k} | main {4030, 3622 3411 3310 329 318} (307)

27% | {i,o0bj, k} | main {4037, 3673, 3411 3310 329 318}

26% | {i,obj,k} | main {40%Y, 267} (262, 26%) *

257 | {i,obj,k} | main {4037 263,257} (26%) *

247 {i,0bj, k} | main {40%Y, 263,252,247} () *

Table Ill. An example to show each stage of the dynamic slicing algorithm in Figure 2. The cglighows
bytecode occurrences in the trace being analyzed.

op_stack has now thre@07, because th@store
from the operand stack during trace collection.

bytecode uses and pops three value

3.5 Proof of Correctness and Complexity Analysis

In this section we first prove the correctness of our dynamic slicing algorithm. Complexity
analysis of the algorithm is then presented.

LEMMA 3.5.1. Letp; be thep set afteri loop iterations of the dynamic slicing algo-
rithm in Figure 2. Thervi, 5,0 < i < j = ¢; C ;.

PROOF Let 3 be the bytecode occurrence encountered attkhieop iteration. Accord-
ing to the algorithmyp;=¢, 1 or p;=¢,_1 U {B}. Thus, for alli we havep; _; C ¢;, and
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the lemma holds. O

LEMMA 3.5.2. Let ; be they set, andfram; be the fram set afteri loop itera-
tions of the dynamic slicing algorithm in Figure 2. Théd’, 8’ € fram; iff. 8 € ¢;
and the algorithm has not found the bytecode occurrence whHfichdynamically control
dependent on afterloop iterations.

PROOFE We prove the lemma by induction on loop iterations of the slicing algorithm.

Base : Initially, g and framg are both empty, so the lemma holds.

Induction : AssumeV3”’, 8" € fram;_, iff. 3" € p;_; and the algorithm has not
found the bytecode occurrence whigh is dynamically control dependent on after 1
loop iterations. Let3 be the bytecode occurrence encountered attthéoop iteration.
According to the algorithm in Figure Zram; = (fram;_; — C) U O, where,

— C is the set of bytecode occurrences finam;_; which are dynamically control
dependent or. Note that if3 is a method invocation bytecode occurrer@ey;,,; (line
13in Figure 2), and ifs is a branch bytecode occurren€e; BC (line 21 in Figure 2).

— O ={pg}iff. B € y;,andO = (iff. 5 ¢ ¢, (lines 30 and 31 in Figure 2).
We first prove the only if part of the lemma. For aéye fram,,

1) if 8 € fram;_1 —C C fram;_1, 5’ € ¢;—1 and the algorithm has not found the
bytecode occurrence whighl is dynamically control dependent on after 1 loop
iterations according to the assumption. Lemma 3.5.1 shgws C ¢;, S03’ € ;.
Sincef’ ¢ C, 3’ is not dynamically control dependent ¢n Thus, the algorithm has
not found the bytecode occurrence whig‘his dynamically control dependent on after
i loop iterations.

(2) if 8/ € ©andO # 0, thend’ = 3 € ;. Clearly, the slicing algorithm has not found
the bytecode occurrenge which 3 is dynamically control dependent on, because
backward traversal has not encountefedvhich appears earlier thahduring trace
collection.

Next, we prove the if part of the lemma. Note that= ¢, or p; = p;—1 U {8}
according to the slicing algorithm. For am}) € ¢; s.t. the slicing algorithm has not
found the bytecode occurrence whighis dynamically control dependent on afidoop
iterations, we need to show thét € fram;. The following are the two possibilities.

(1) if 8’ € p;_1, thens’ € fram;_; according to assumption. Singéis not dynami-
cally control dependent ofi, 5’ ¢ C and3’ € fram,.
(2) if B/ =g, theng € ¢, andO = {3}. Sop’ € fram,.

This completes the proof.C]

LEMMA 3.5.3. Lety; be they set, andd; be thes set afteri loop iterations of the
dynamic slicing algorithm in Figure 2. Theww, v € §; iff. variable v is used by a
bytecode occurrence ip; and the slicing algorithm has not found assignment adter 4
loop iterations.

PROOFE We prove the lemma by induction on loop iterations of the slicing algorithm.

Base : Initially, ¢ anddy are both empty, so the lemma holds.

Induction : Assume thatv’, v’ € §;_1 iff. variablev’ is used by a bytecode occurrence
in p;_1 and the algorithm has not found assignment tafteri; —1 loop iterations. Let; be
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the bytecode occurrence encountered attiinéoop iteration. According to the algorithm,
0; = ((52',1 — def,v’) UV, where

— def_v' is the set of variables assigned Bylines 26 and 27 in Figure 2).

— Vs the set of variables used Byiff. 5 € ¢;, andV=0iff. 3 ¢ ¢,. (lines 30 and 32
in Figure 2)

We first prove the only if part of the lemma. For any 4;,

(1) ifv e §;_1 —def C §;_1, vis used by a bytecode occurrencegdn ; and the
algorithm has not found assignmentuta@fteri — 1 loop iterations according to the
assumption. Lemma 3.5.1 shows ; C ¢;. So,v is used by a bytecode occurrence
in ;. Sincev ¢ def_v', v is not defined by3. Thus, the algorithm has not found
assignment t@ afteri loop iterations.

(2) if v € VandV # 0, thenv is used by bytecode occurrengands € ;. Clearly, the
slicing algorithm has not found assignments to the variaaiéer: loop iterations, be-
cause backward traversal has not encountered these assignments, which appear earlier
thang during trace collection.

Next, we prove the if part of the lemma. Note thgt = ¢; 1 or p; = ;1 U {3}
according to the slicing algorithm. Consider a variablevhich is used by a bytecode
occurrence inp;, and the slicing algorithm has not found assignment tafter i loop
iterations. For such a variable, we have the following two cases.

(1) if vis used by a bytecode occurrencesin 1, thenv € §;_; according to assumption.
Sincev is not defined by3, thenv ¢ def ' andv € 6;.

(2) if v is used by bytecode occurrengeandg € ¢;, thenv € V andV C §;. Thus,
v € 0.

In both cases, we show thate ¢;. This completes the proof.[]

LEMMA 3.5.4. During dynamic slicing according to the algorithm in Figure 2, a byte-
code occurrencg pops an entry fronap_stack, which is pushed top_stack by bytecode
occurrenced’, iff. 3 uses an operand in the operand stack defined3turing trace
collection.

PROOFE Theop_stack for slicing is a reverse simulation of the operand stack for com-
putation during trace collection. That is, for every bytecode occurrgficencountered
during slicing, the slicing algorithm pops entries from (pushes entries teptheéack iff.

3" pushes operands to (pops operands from) the operand stack during trace collection —
as shown in theipdateOpStack method in Figure 6. Consequently, a bytecode occur-
rences pops an entry fromp_stack, and this entry is pushed tg_stack by bytecode
occurrenced’ during slicing, iff. 3 defines an operand in the operand stack, @ndses

the operand during trace collectior]

LEMMA 3.5.5. Letp; be thep set afteri loop iterations of the dynamic slicing algo-
rithm in Figure 2, and3 be the bytecode occurrence encountered attihéoop iteration.
Thengs € p; — ¢;_1 iff. (1) 8 belongs to the slicing criterion, or, (35’ € p;_1, 3 is
dynamically control or data dependent 6n

PrRoOOF Note thatg ¢ ¢;_1. According to the slicing algorithm3 € ¢; — ;1 iff.
any of lines 17, 20 and 25 in Figure 2 is evaluated true so that any of lines 19, 24, and 29 in
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Figure 2 is executed. We next prove that any of lines 17, 20 and 25 in Figure 2 is evaluated
true iff. (1) 8 belongs to the slicing criterion, or, (2P’ € ¢;_1, 8’ is dynamically control
or data dependent gh

First, line 17 in Figure 2 is evaluated to true iff.belongs to the slicing criterion.

Next, we prove that line 20 in Figure 2 is evaluated to true i#3' € ; 1, 5
is dynamically control dependent gh According to the slicing algorithm, the check
computeControlDependen®g, v, v14st) in line 20 of the dynamic slicing algorithm (see
Figure 2) returns true iff:

— [ is a branch bytecode occurrence, aiti € v C fram;_1, 3 is dynamically
control ong, or

— B is a method invocation bytecode occurrence, 86t € v;.5¢ C fram;_1, 8’ is
dynamically control org,

According to Lemma 3.5.23' € fram;_1 only if 3’ € ¢;_1. So, line 20 returns true
only if 38" € ¢;_1, 8’ is dynamically control dependent gh

On the other hand, &5’ € p;_1, 8’ is dynamically control dependent ghthen the al-
gorithm has not found the bytecode occurrence wiifcis dynamically control dependent
on afteri — 1 loop iterations, because every bytecode occurrence is dynamically control
dependent on exactly one bytecode occurrence 3Se, fram;_, according to Lemma
3.5.2. If 8 is a branch bytecode occurrence, th#ne -, since and 3’ should belong
to the same method invocation. f#fis a method invocation bytecode occurrence, then
B € viust, Sinces’ should belong to last method invocation, which is callegsbygo line
20 in Figure 2 returns true #3’ € p;_1, 3’ is dynamically control dependent gh

Finally, we prove that line 25 in Figure 2 is evaluated to truediff € ¢; 1, 3
is dynamically data dependent gh Note that line 25 invokes theomputeDataDe-
pendencanethod defined in Figure 8 to check dynamic data dependence. The check
computeDataDepender{gk bg) returns true iff either of following conditions holds:

— if ¢ defines a variable i4;_; (line 9 of Figure 8), wher@;_; represents thé set
afteri — 1 loop iterations.

— if one of topde f _op(bg) entries of thexp_stack is pushed by a bytecode occurrence
B € ¢i—1 (line 12 of Figure 8), wherde f_op(bg) is the number of operands defined by
bytecodebg of occurrence? during trace collection.

When thecomputeDataDependence method returns true: (a) if defines a variable
v € §;_1, thend3’ € ¢;_1, v is used by3’ and the algorithm has not found assignment
to v afteri — 1 loop iterations according to Lemma 3.5.3. 80is dynamically data
dependent org. (b) if one of topdef_op(bg) entries of theop_stack is pushed by a
bytecode occurrencg’ € ¢,_;. Because all toplef_op(bg) entries of theop_stack
will be popped byg (lines 2 and 3 of methodpdateStack in Figure 6),5’ uses an
operand in the operand stack defined/yuring trace collection according to Lemma
3.5.4. Consequentlyj’ is dynamically data dependent gh This proves that line 25 in
Figure 2 is evaluated to true, onlydf3’ € ¢, _1, 3’ is dynamically data dependent gn

On the other hand, B3’ € p;_1, #" is dynamically data dependent Gnthen either (a)
Ju, 03, 8" € p;_1, vis used bys’ andv is defined by3. According to Lemma 3.5.3; €
d;—1; so thecomputeDataDependence method returns true and line 25 in Figure 2 is
evaluated to true. (B3, 3’ € p;_1, 3 uses an operand in the operand stack define@ by
during trace collection. According to Lemma 3.53#should pop an entry frormp_stack,
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which is pushed intwp_stack by 3. Since 3 pops topdef_op(bs) entries from the
op_stack, line 12 in Figure 8 is evaluated to true, and tmenputeDataDependence
method returns true. This proves that line 25 in Figure 2 is evaluated to te®, & ¢;_1,
3’ is dynamically data dependent 6n O

THEOREM 3.5.1. Given a slicing criterion, the dynamic slicing algorithm in Figure 2
returns dynamic slice defined in Definition 3.0.1.

PROOFE Let p; be they set afteri loop iterations of the dynamic slicing algorithm in
Figure 2,p, be the resultanp set when the algorithm finishes, agidbe the bytecode
occurrence encountered at tle loop iteration.

We first prove the soundness of the algorithm by induction on loop iterations of the
slicing algorithm,i.e. for any 3’ € ¢. we show thats’ is reachable from the slicing
criterion in the dynamic dependence graph (DDG).

Base : Initially, ¢¢ = ), so the soundness of the algorithm holds.

Induction : Assume that/3” € p;_1, 5" is reachable from the slicing criterion in the
dynamic dependence graph (DDG). Note that= ¢;_1, or ¢; = ¢;—1 U {B8}. Then,
vB € ¢;, (1) if 8 € p;_1, thenp’ is reachable from the slicing criterion in the DDG
according to the induction hypothesis. (2pif= 3, theng € ¢; — p;_1. S0 belongs to
the slicing criterion, 083 € ¢;_1, wherej is dynamically control/data dependent 6n
according to Lemma 3.5.5. Becausés reachable from the slicing criterion in the DDG
according to the induction hypothesisis reachable from the slicing criterion in the DDG.

Next, we prove the completeness of the slicing algoritheny 3’ reachable from slicing
criterion in the DDG=- 3’ € ¢.. Note that there is no cycle in the DDG, so we prove the
completeness by induction on structure of the DDG.

Base : Consider a bytecode occurrengewhere’ belongs to the slicing criterion. Let
3’ be encountered at théh loop iteration of the slicing algorithm. According to Lemma
3.5.5and 3.5.1% € p; C p..

Induction : Assume that a bytecode occurreravhich is reachable from the slicing
criterion in the DDG is included intg,. For everys” where there is an edge frofti to
#" in the DDG, 3" is dynamically control/data dependent 6fi. Let 5’ be encountered
at theith loop iteration of the algorithm, s@’ € ¢;. Let 3" be encountered at thgh
loop iteration of the algorithm. Becaugé appears earlier thasf during trace collection,
backward travel of the trace will encountgt after 3, i.e. i < j. Thus,5 € ¢; C
@1 according to Lemma 3.5.1, and théfi € ¢; — ¢;_; according to Lemma 3.5.5.
Consequentlys” € ¢,, sincep; —¢;_1 C p; C @,.

O

Now we analyze the cost of the dynamic slicing algorithm in Figure 2. Given the com-
pressed trace for an execution which executesytecodes, the space overhead of the
slicing algorithm isO(NN), and the time overhead (3(N?).

The space overhead of the algorithm is caused by maintaining op_stack, fram,
compressed operand sequences and root-to-leaf paths for every compressed sequence. The
sizes ofd, ¢, op_stack and fram are allO(N). Ford, this is because one execution of a
bytecode can use constant number of variablespgostack, this is because the number
of operands popped from and pushed to the operand stack by one bytecode is bound by a
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constant. Assume that each bytecotiehas executed(b;) times, soy_;,, n(bi)=N. The
size of all compressed operand sequencgs,isO(n(b:))= O(N ), because every bytecode
has fixed number of operand sequences, and the size of the compact representation is linear
to the length of original operand sequence (proof is presented in Appendix A). The size of
each root-to-leaf path is bound by the size of corresponding compressed operand sequence.
Consequently, the overall space cost of the slicing algorithn(i¥).

During dynamic slicing, the algorithm performs the following four actions for each oc-
currences of bytecode)s encountered during backward traversal of the execution trace.

(1) extract operand sequences of bytecbgldrom the compressed trace for backward
traversal,

(2) perform slicing criterion, dynamic control/data dependencies checks,
(3) updatel, ¢, op_stack, and fram,
(4) get last executed bytecode.

According to the complexity analysis of tlgetLast method which is presented in
Section 3.2, it need®(n(b;)) time to extract an operand sequence of bytedgdehich
is executed)(b;) times during trace collection. Note that, n(b;)= N. Consequently, the
overall time overhead to perform action (1) to extract all operand sequerycegi$n(b;))=
O(N), i.e. linear w.r.t. length of the original execution. After extracting operand se-
quences, the overall time to perform action (2) and (3D{sV?), since they may up-
date/enquire set§ ¢, op_stack and fram whose sizes are bound bBy.

— The overall time to update/enquifés O(N?), because there aré bytecode occur-
rences, and each bytecode occurrence can define/use constant number of variables.

— The overall time to accessp_stack is O(N), because there a¥ bytecode oc-
currences during execution, and the number of operands popped from and pushed to the
operand stack by one bytecode occurrence is bound by a constant.

— The overall time to accessand fram is bothO(N?) because constant number of
elements are updated/enquired each time.

To get last executed bytecode (action (4) in the preceding)gétierevBytecode
method of Figure 3 may perform two actions: (a) get the predecessor bytecode from class
files, or (b) extract last executed bytecode from compressed operand sequences. The over-
all time to perform get predecessor bytecode from class fil€§ 1€), since it needs con-
stant time to get the predecessor bytecode from Java class files every time. The overall
time to perform extract operand sequencea3(%V) as discussed in the preceding.
Consequently, the overall time cost of the dynamic slicing algorith@(i¥2).

4. RELEVANT SLICING

In the previous section, we presented dynamic slicing which can be used for focusing the
programmer’s attention to a part of the program. However, there are certain difficulties in
using dynamic slices for program debugging/understanding. In particular, dynamic slic-
ing does not consider that the execution of certain statements is wrongly omitted. Conse-
guently, not all statements which are responsible for the error are included into the dynamic
slice, and the slice may mislead the programmer.

1 Although method invocation bytecodes may have various numbers of operands as parameters, these numbers
are usually bound by a constant, methods usually do not have too mansn6re than 100) parameters.



Dynamic Slicing on Java Bytecode Traces . 25

1 b=1;
2 k=1,
3 if(a>1){
4 if (b>1){
5 k=2
}

}

6 .=k

Fig. 9. A‘“buggy” program fragment

As an example, consider the program fragment presented in Figure 9, which is a sim-
plified version of the program in Figure 1. Let us assume that the statdmérdt line 1
should beb=2 in a correct program. With inpat=2, the variablek at line 6 is 1 unexpect-
edly. The execution trace isl?, 22, 33, 44, 6° ), wherel! means statemertis executed
as thefirst statement and so on. If we use dynamic slicing to correct the bug w.r.t. the
incorrect value ok at6°, the dynamic slice computed by the slicing algorithm of Section
3 contains only lines 2 and 6. Changing lidenay fix the bug, since such a change will
change the value & at line 6. Unfortunately, line 1, the actual bug, is excluded from the
dynamic slice. In this example the error arises from the execution of line 5 being wrongly
omitted, which is caused by the incorrect assignment at line 1. In fact, changing line 1 may
cause the predicate at line 4 to be evaluated differently; then line 5 will be executed and
the value ok at line 6 will be different. In other words, dynamic slicing does not consider
the effect of the unexecuted statement at line 5.

The notion ofrelevant slicing an extension of dynamic slicing, fills this caveat. Rel-
evant slicing was introduced in [Agrawal et al. 1993; Ggiity et al. 1999]. Besides
dynamic control and data dependencies, relevant slicing congid@stial dependencies
which capture the potential effects of unexecuted paths of branch and method invocation
statements. The relevant slice include more statements which, if changed, may change the
wrong behaviors w.r.t. the slicing criterion. In the example of Figure 9 with inpat, 6°
is potentially dependerdn execution of the branch at line 4], because if the predicate
at4* is evaluated differently, the varialkeis re-defined and then used 63. Considering
that4* is dynamically data dependent dh, 1! has potential effects ovéP. Thus, line 1
is included into the resultant relevant slice.

In general,Dynamic SliceC Relevant SliceC Static Slice In our experiments (refer
Section 5), we show that the sizes of the relevant slices are close to the sizes of the corre-
sponding dynamic slices. Like dynamic slicing, relevant slicing is also computed w.r.t. a
particular program executiong. it only includes executed statements).

The rest of this section is organized as follows. In Section 4.1, we rpaatl work
on potential dependencies, a notion which is crucial for computing the relevant slice. In
Section 4.2 we present our definition of relevant slice and show how it differs from existing
works on relevant slicing. Since the existing works on relevant slicing present a slice
as a set of program statements, we also define a relevant slice as a set of statements in
Section 4.2 for ease of comparison with existing works. However, like our dynamic slicing
algorithm, our relevant slicing algorithm (refer Figure 15 in Section 4.3) operates at the
level of bytecodes; this algorithm is discussed in Section 4.3.
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4.1 Background

In this subsection, we recapitulate the definition of potential dependence. This portion is
not newwhich was mostly studied in [Agrawal et al. 1993; Gyithy et al. 1999].

Relevant slicing extends dynamic slicing by considering statements which may affect
the slicing criterion. These statements were executed and did not affect the criterion. How-
ever, if these statements are changed, branches may be evaluated differently, or alternative
methods may be invoked. We consider the following two situations for execution of alter-
native code fragment due to program changes.

(1) Branch If the value of a variable used by the predicate of a branch statement is
changed, the predicate may be evaluated differently.

(2) Method invocationlf the programmer changes the assignment w.r.t. the object which
invokes a method, or the declaration of parameters, an alternative method may be
called.

In relevant slicing, we use the notion pbtential dependende capture the effects of
these branch and method invocation statements. If these statements are evaluated differ-
ently, variables may be re-defined and affect the slicing criterion. We define potential
dependence as follows; for any statement occurréhdie corresponding statement is
written asSj.

Definition 4.1.1. Potential Dependenceésiven an execution tracH of a programP,
for any statement instancgsand 3’ appearing inH, (3 is potentially dependentn an
earlier branch or method invocation statement instadeand only if all of the following
conditions hold.

(1) B is not (transitively) dynamically control/data dependent3oim H.

(2) there exists a variableused ing s.t. v is not defined betweefi’ and3 in H andv
may be defined along an outgoing edgé statements: whereSg is the statement at
statement occurreng#. That is, there exists a statemefitsatisfying the following.
—(a) X is (transitively) control dependent ¢y along the edgé, and
—(b) X is an assignment statement which assigns to variablea variableu which

may be aliased to.

(3) the edgé is not taken af’ in H.

The purpose of potential dependence is to find those statements which will be missed
by dynamic slicing. If a branch or method invocation statement has affected the slicing
criterion, we do not consider that it has potential influence, since the dynamic slice will
always include such a statement. We use condition (1) to exclude dynamic control and
data dependencies from potential dependencies. Conditions (2) and (3) ensyifehtisat
potential influence o. The statemenk in condition 2(b) appears in prograf but its
execution is prohibited by the evaluation of branch/method invocatigh.itHowever, if
it is executed (possibly due a change in the statenSgni the value of variable used
at 5 will be affected. We cannot guarantee thahust be re-defined i’ is evaluated to
take edgé. This is because even(f is evaluated differently, execution of assignment to
v may be guarded by other (nested) conditional control transfer statements. Furthermore,
condition (2) requires computation of static data dependence. In the presence of arrays and
dynamic memory allocations, we can only obtain conservative static data dependencies in
general.
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4.2 Salient Features of our Relevant Slices

Using the notion of potential dependence, past works have computed relevant slices by
considering dynamic control, data and potential dependencies w.r.t. the slicing criterion.

In this subsection, we present our notion of relevant slices and discuss how it compares with
similar notions studied in the past. Our relevant slicing algorithm operating on compact

Java bytecode traces is discussed in the next subsection (Section 4.3).

Extended Dynamic Dependence Grafto. define relevant slices, first we define the no-
tion of anExtended Dynamic Dependence GrgbDG). The EDDG captures dynamic
control dependencies, dynamic data dependencies and potential dependencies w.r.t. a pro-
gram execution. It is an extension of tbynamic Dependence GragPDG) described
in [Agrawal and Horgan 1990]. Each node of the DDG represents one particular occur-
rence of a statement in the program execution; edges represent dynamic data and control
dependencies. The EDDG extends the DDG with potential dependencies, by introducing
a dummy node for each branch statement occurrence or a method invocation statement
occurrence. For each statement occurrefiée the execution trace, a non-dummy node
nn(B) appears in the EDDG to represent this occurrence. In additiorisia branch state-
ment or a method invocation statement, a dummy nbde) also appears in the EDDG.
As far as the edges are concerned, following are the incoming edges of any arbitrary node
nn(B) or dn(3) appearing in the EDDG.

—dynamic control dependence edges from non-dummy med@’) to nn(f), iff. 5’ is
dynamically control dependent ¢gh

—dynamic data dependence edges from both non-dummyme@#) and dummy node
dn(8') (if there is a dummy node for occurrengé to nn(g), iff. 5’ is dynamically
data dependent g

—potential dependence edges from non-dummy nodg’) and dummy nodén(3’) (if
there is a dummy node fgt') to dn (), iff. 3’ is potentially dependent g

These dependencies can be detected during backwards traversal of the execution trace.

What is a Relevant Slicelherelevant sliceis then defined based on the extended dy-
namic dependence graph (EDDG) as follows.

Definition 4.2.1. Relevant slicefor a slicing criterion consists of all statements whose
occurrence nodes can be reached from the node(s) for the slicing criterion in the Extended
Dynamic Dependence Graph (EDDG).

In order to accurately capture the effects w.r.t. potential dependencies, we have intro-
duced a dummy node into the EDDG for each occurrence of a branch or method invocation
statement. The EDDG can then represent dynamic control dependence edges and potential
dependence edges separately. This representation allows the reachability analysis for rele-
vant slicing not to consider dynamic control dependence edges which are immediately after
potential dependence edges, because such dynamic control dependencies cannot affect be-
haviors w.r.t. the slicing criterion. Figure 10 shows the EDDG for the example program in
Figure 9 forinpua = 2. The execution trace id*, 22,33, 4% 65). The resultant relevant
slice w.r.t. variablek at line 6 consists of line§l,2, 4,6}, because nodes , 22, 4* and
6° can be reached from the criteriéh. Note that statement occurrengeis potentially
dependent or?, and4* is dynamically control dependent on statement occurréice
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| Entry, with input a=2

\ —— = Control Dependence
- —— - Data Dependence
——-  Potential Dependence

Dummy Node
Fig. 10. The EDDG for the program in Figure 9 with input a=2.

However, changes related to line 3 will not affect the valud @it 6°, nor will it decide
whether line 6 will be executed. Therefore, line 3 should not be included into the slice and
reported. By using the dummy node to separate dynamic control dependence and potential
dependence w.r.t. statement occurretibenve can easily exclude line 3 of Figure 9 from

our relevant slice.

Comparison with previously proposed notions of relevant slidéee notion of relevant
slicing presented above it completely new. Relevant slicing techniques (or other vari-
ants of it which try to extend dynamic slicing) have been studied [Agrawal et al. 1993;
Gyimbthy et al. 1999]. We now compare our notion of relevant slices against existing
works, thereby pinpointing some salient features of our relevant slices.

Agrawal et al. first introduced relevant slicing, and applied it for regression testing
[Agrawal et al. 1993]. Their relevant slice includes all nodes reachable from the slicing
criterion in aSimplified Extended Dynamic Dependence Gré®BEDDG). The SEDDG
is constructed from the EDDG by removing dynamic control dependence edge w.r.t. a
nodeg, if every path from the slicing criterion t8 contains potential dependence edges.
Because of the removed control dependence edges, some important statements may be
excluded from the slice. Let us take the program in Figure 11 as an example. Figure 12
shows the corresponding EDDG and SEDDG. The relevant slice of [Agrawal et al. 1993]
w.r.t. the criterion involving the value of at line 7, will ignore line 1. However, if line 1
is changed ta: = 1, the value of: at line 7 is affected.

Gyimbthy et al. [Gyindthy et al. 1999] proposed a forward relevant slicing method for
program debugging. Their relevant slice includes all nodes reachable from the slicing crite-
rion in aAccumulated Extended Dynamic Dependence G(ARDDG). The AEDDG is
constructed from the EDDG by adding an accumulated potential dependence edge between
two dummy node$ andg’ if and only if 3 and3’ represent two contiguous execution in-
stances of the same statement. The accumulated dependence edges in AEDDG may cause
superfluous statements to be included into the relevant slice. Consider the example in Fig-
ure 13; figure 14 shows the corresponding EDDG and AEDDG. Line 1 will never affect
z at line 6 of the program in Figure 13. However, this statement will be included into
Gyimbthy’s relevant slice.
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1 z=2
2 y=2;

3 if(z>1)
4 y=1
endif
5 if (yl=1)
6 z =3
endif
7 L= 2

Fig. 11. An example to compare our relevant slicing algorithm with Agrawal’s algorithm.

Control Dependence
Data Dependence
Potential Dependence

EDDG Dummy Node SEDDG

Fig. 12. The EDDG and SEDDG for the program in Figure 11.

1 z=1;
2 for (i=0;4<3;i++)
3 if x%2==0)
4 z=4;

endif
5 xr =1,

endfor

6 ... =2;

Fig. 13. An example to compare our relevant slicing algorithm with Gghp's algorithm.

4.3 Relevant Slicing algorithm

We now discuss how our dynamic slicing algorithm described in Section 3 (operating on
compact Java bytecode traces) can be augmented to compute relevant slices. Thus, like
the dynamic slicing algorithm, our relevant slicing algorithm also operates on the compact
bytecode traces described in Section 2.

As in dynamic slicing, relevant slicing is performed w.r.t. a slicing critefigh o, V),
whereH is the execution history for a certain program inputgpresents some bytecodes
the programmer is interested in, aldis a set of variables referenced at these bytecodes.
Again, the user-defined criterion is often of the fo(f){, V') where[ is the input, and
is a line number of the source program. In this cd$egpresents execution history of the
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Fig. 14. The EDDG and AEDDG for the program in Figure 13.

programpP with input I, anda represents the bytecodes correspond to statemehts at

Figure 15 presents a relevant slicing algorithm, which returns the relevant slice as de-
fined in Definition 4.2.1. This algorithm is based on backward traversal of the compressed
execution tracé{ (described in Section 2). The traéecontains execution flow and iden-
tities of accessed variables, so that we can detect various dependencies during the traversal.
Although the slice can also be computed after constructing the whole EDDG, this approach
is impractical because the entire EDDG may be too huge in practice. Before slicing, we
compute thecontrol flow graph which is used to detect potential dependencies and to
get last executed bytecode. We also pre-computedhéol dependence grafgRerrante
et al. 1987] which will be used at lines 21, 22 and 49 of Figure 15, and at line 9 of the
computePotentialDependence method in Figure 16. Also, prior to running our
relevant slicing algorithm we run static points-to analysis [Andersen 1994; Steensgaard
1996]; the results of this analysis are used for determining potential dependencies.

In the relevant slicing algorithm, we introduce a global variabléo keep track of
variables used by bytecode occurrengesff. g is included into the slice because of
potential dependencies. In particular, each eleme#tigof the form(s’, prop’), where
3’ is an bytecode occurrence, apcbp’ is a set of variables. Every variable jmop’ is
used by a bytecode occurrengé, where

— (" isincluded intop (the relevant slice) because of potential dependencies, and
— 3" =, or " is (transitively) dynamically control dependent 6h

The purpose of thé set (set of unexplained variables) is the same as in the dynamic
slicing algorithm. That is, thé set includes variables used by bytecode occurréhioe
explanation, wherg is included into the slicep because? belongs to the slicing criterion,
or there is any bytecode occurrencedmwhich is dynamically control/data dependent on

B.
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For each bytecode occurrengeof bytecodebs encountered during the backward tra-
verse for slicing, we first check if has affected the slicing criterion via dynamic con-
trol/data dependencies as in dynamic slicing algorithm of Figure 2. In particular, line 18
checks whethep belongs to the slicing criterion. Line 21 checks dynamic control de-
pendencies ibg is a conditional control transfer bytecode. Line 26 checks dynamic data
dependencies. With the introduction &f variables in bothd and 6 need explanation.
Consequently, theomputeDataDependence method has been slightly changed, as
re-defined in Figure 17. If all the three checks fail, the algorithm proceeds to check the
potential dependencies at line 37, by invoking toenputePotentialDependence
method in Figure 16.

For the computation of potential dependencies, we need to pre-compute the effects of
various outcomes of a control transfer bytecode. Each such outcome triggers a different
code fragment whose effect can be summarized by all possible assignment bytecodes ex-
ecuted. This summarization is used by teenputePotentialDependence method
in Figure 16. Note thaf is used to check dynamic data dependencies (line 26 of Figure
15) as well as potential dependencies (line 6 in Figure 16).

Theintersect(MDS, 6) method used by theomputePotentialDependence
method in Figure 16 checks whether the execution of the alternative path of a bytecode
bg may define some variables which are used by bytecode occurrences in the slice. Here
M DS includes variables which may be defined jfis evaluated differently andincludes
variables which have affected the slicing criterion and need explanation. This check is non-
trivial because@V/ DS contains static information, whil& contains dynamic information.
Letmeth be the method that the bytecolebelongs to, andurr_invo be current method
invocation. Note that boti/ D.S andd include local variables and fields. Every local vari-
able inM DS is also a local variable of methodeth, and is represented by its identity
(var). Every local variable i for explanation is represented @svo, var), whereinvo
refers to the method invocation which uses the local variable Many points-to analy-
sis algorithms [Andersen 1994; Steensgaard 1996] represent abstract memory locations of
objects using their possible allocation sites. Thus, we represent an object fidlth s1as
(site, name), wheresite refers to a possible allocation site of the object, anthe refers
to the name of the field; we also represent an object fieddhisy site, timestamp, name),
wheresite refers to a possible allocation site of the objeéétrestamyp distinguishes be-
tween objects created at the same allocation sitepande refers to the name of the field.

Note thattimestamp is only important for detecting dynamic data dependencies. The
intersect(MDS, 4) method returns true iff:

—there is a local variable whefear) € M DS and(curr_invo,var) € ¢, or
—there is a field wherésite, name) € M DS and(site, timestamp, name) € 6.

We do not consider partial resultsef operands in the operand stack) for potential
dependencies because partial results will not be transferred between bytecodes of different
statements w.r.t. class files compiled for debugging.

The proof of correctness of the relevant slicing algorithm in Figure 15 is similar to that
of the dynamic slicing algorithm in Figure 2, which is described in Section3e5ails of
the proof of correctness can be found in Appendix B.

Now we analyze the cost of the relevant slicing algorithm in Figure 15. The space
overheads of the slicing algorithm a& N2+m?), and the time overheads aém?- N?3),
whereN is the length of the execution, amdis the number of bytecodes of the program.
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1 (H,a,V)=the slicing criterion

2 §=0, a set of variables whose values need to be explained
3 =0, the set of bytecode occurrences which have affected the slicing criterion
4 op_stack= empty, the operand stack for simulation

5  fram=empty, the frames of the program execution

6 6= empty, bytecode occurrences and their used variables included into slice because of potential dependencies
7  relevantSlicing()

8 bg = get last executed bytecode fraffy

9 while (bg is defined)

10 if (bg is a return bytecode)

11 new_fram= createFrame();

12 push(frame, new_fram);

13 if (bg is a method invocation bytecode)

14 Viast=pop(frame);

15 B = current occurrence of bytecodg;

16 curr_fram = the top offram,;

17 ~= a set of bytecodes occurrence to check control dependenciesinfram;
18 if (3 is the last occurrence éf; andbg € a)

19 v = variables used &, andv C V;

20 p=pU{B}h

21 if (computeControl Dependence(bg,~, Viast) )

22 BC= all bytecodes occurrences+rwhich are statically control dependent by,
23 y=~—BC;

24 v = variables used at;

25 v =¢pU{B}h

26 if (computeDataDependence(f3,bg))

27 def_v' = variables defined a8;

28 § =06 —def;

29 v = variables used &;

30 v =pU{B}h

31 for (each(s’, prop’) in 0)

32 prop’ = prop’ — defv’;

33 if (B€ o)

34 v=~U{bs};

35 d=06Uuv;

36 else

37 if (computePotential Dependence(f3,bg))

38 v =9pU{B}

39 if (b is a branch bytecode)

40 UV _3 = variables used &;

41 0=0U{(B,UV_5)},

42 if (bg is a method invocation bytecode)

43 o = the variable to invoke a method;

a4 6=0U{(B{oh}:

45 break;

46 if (bg is a branch bytecode or method invocation bytecode)
47 prop=0;

48 for (each(3’, prop’) in 0)

49 if (8’ = B or 3 is control dependent ofi)

50 prop = prop U prop’;

51 0=0—{(8,prop)};

52 0 =0U{(B,prop)};

53 updateOpStack(8,bg, op_stack),

54 B = get PrevBytecode(3, H);

55 return bytecodes whose occurrences appeas;in

Fig. 15. Our relevant slicing algorithm.
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computePotentialDependencés: bytecode occurrencég: bytecode)

1

2 if (bg is a branch or method invocation bytecode )

3 for (each possible outcomeof b3)

4 if (outcomex of bz did not occur a3 )

5 M DS =the set of variables which may be defined
when outcomer occurs;

6 if (intersect(M DS, J))

7 return true;

8 for (each(s’, prop’) in )

9 if (3’ is not control dependent ghand intersect(M DS, prop’) )

1 return true;

1

= O

return false;

Fig. 16. Detect potential dependencies for relevant slicing

computeDataDependencés3: bytecode occurrencég: bytecode)

1
2 if (6 defines a variable)

3 if (8 defines a static field or local variable)

4 def_loc= get address of the defined static field or local variable from class files;
5 if (3 defines an object field or an array element)

6 G= compressed operand sequencebfpin the compact bytecode traéé

7 = a root-to-leaf path fo€7;
8 def_loc= getLast(G,);

9 if (def_-loc€d)

10 return true;

11 for (each(s’, prop’) in 6)
12 if (def-loc € prop’)
13 return true;

14 w= the set of bytecode occurrences in thfy _op(bg) entries ofop_stack;
15 if (wNe #0)

16 return true;

17 return false;

Fig. 17. Detect dynamic data dependencies for relevant slicing

Since the relevant slicing algorithm is similar with the dynamic slicing algorithm in Figure
2), the cost analysis is also similar except costs w.r.tgtaed M D.S.

The # set contains at mosY elements of the formis, prop), because every bytecode
occurrenced has at most one elemef), prop) in 8. The size of eachrop is O(N),
because at mosY bytecode occurrences are (transitively) dynamically control dependent
on 3 and every bytecode occurrence uses constant number of variables. Consequently, the
space overheads 6fareO(N?).

EachM DS includes the set of variables which may be defined when a specific outcome
of a branch bytecode occurs. 1 is the number of bytecodes in the program, clearly
there are at most: MDSs. How do we bound the size of each MDS ? Each MDS may
have at mostrn assignments and each of these assignments may affect atnhosations
(provided we distinguish locations based on allocation sites as is common in points-to
analysis methods). Thus, the size of each MD®){sn?). Since there are at most
MDSs, the space overheads of maintaining the MDS<Hre?*). The other portions of
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the relevant slicing algorithm are taken from dynamic slicing; the space overheads of these
portions of the relevant slicing algorithm aé& V), as explained in Section 3. So, the
overall space overheads of our relevant slicing algorithmCH&? + m3).

We now calculate the time overheads of relevant slicing. First we bound the time over-
heads for maintaining thé set in relevant slicing algorithm. Note that theset contains
O(N) elements of the forns, prop). The set difference operation at line 32 of Figure 15
is executed)(N?) times. Since eachrop set containg) (V) variables, the overall time
overheads to perform the set difference operation at line 32 of Figure 13(&é). The
total time overheads to perform the set union operation at lines 41, 44 and 52 of Figure
15 areO(N?), because lines 41, 44 and 52 are execud¢d) times and the size of the
6 setisO(N). Given a bytecode occurrengeand thef set, there are constant number of
elementg5’, prop’) € 6, where' is (directly) dynamically control dependent gn This
is because there is no expligibto statement in Java programs. Different occurrence of
the same bytecode are dynamically control dependent on different bytecode occurrences.
Note that there are constant number of bytecode which are statically control dependent on
the bytecodés of occurrences. Thus, there are constant number of bytecode occurrences
which aredirectly dynamically control dependent gh In addition, every bytecode oc-
currenced’ has at most onéd’, prop’) in 6. Consequently, lines 50 and 51 are executed
O(N) times, and the overall time overheads to execute lines 50 and 52(a/é). The
total time overheads to perform check at line 12 of Figure 170H®&?), which is similar
to perform set difference operation at line 32 of Figure 15.

Now, we analyze the overall time overheads to performirttersect operation by
thecomputePotentialDependence method in Figure 16. Thimtersect opera-
tion at line 6 of Figure 16 can be executed at mggimes. In each execution of the inter-
sect operation we compare the contents of MDS @&n8lince the size of MDS i©(m?)
and the size of the sétis O(NV), therefore the time overheads of a singltersect
operation areé) (N - m?). Thus, the total time overheads to execute allititersect
operations at line 6 of Figure 16 at§ NV - N - m?). Similarly, the total time overheads to
execute all thentersect ~ operations at line 9 of Figure 16 at¥ N3 - m?), since this
intersect  operation is execute@(N?) times.

The other portions of the relevant slicing algorithm are taken from dynamic slicing; the
time complexity of these portions of the relevant slicing algorith®?$v?), as discussed
in Section 3. This leads to a time complexity O N* - m?) for our relevant slicing
algorithm.

5. EXPERIMENTAL EVALUATION

We have implemented a prototype slicing tool and applied it to several subject programs.
The experiments report time and space efficiency of our trace collection technique. We
compress traces using both SEQUITUR and RLESe, and compare the time overheads and
effectiveness of the improved compression algorithm against the previous one, in order to
investigate the cost effectiveness of the proposed compression algorithm. In addition, the
experiments report time overheads to compute relevant and dynamic slices, and sizes of
these slices. This allows us to investigate the efficiency of computing relevant slices and
potential use of relevant slices.
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5.1 Implementation

To collect execution traces, we have modified the Kaffe virtual machine [Kaffe ] to mon-
itor interpreted bytecodes. In our traces, we use object identities instead of addresses to
represent objects. This is because the same address may be used by different objects dur-
ing a program execution. Creation of structures such as multi-dimensional arrays, constant
strings etc. may implicitly create objects. We trace and allocate identities to these objects
as well. The virtual machine may invoke some methods automatically when “special’
events occurd.g. it may invoke the static initializer of a class automatically when a static
field of the class is first accessed). These event are also stored, and used for backward
traversal of the execution trace. Our current implementation does not support exception
handling, and finalization during garbage collection.

In order to improve performance, we do not perform stack simulation during slicing
in our implementation. Instead, we perform stack simulation inside each basic block of
the program’s control flow graph prior to slicing, to statically detect data dependencies
introduced by using the operand stack. During slicing, we use such information to detect
dynamic data dependencies. This is because we assume that all source files are compiled
into class files without optimization before tracing and slicing. According to these class
files, the operand stack is only used to transfer partial results between bytecodes of the
same statement. If a bytecoblases an operand in the operand stack, we can statically de-
termine the exact bytecodéwhich defines and pushes the operand into the operand stack.
Furthermore, these bytecodes are executed together. Consequently, every ocg¢uofence
bytecode is dynamically data dependent on last occurrence of bytet/doefore3. For
example, the statemeatr[i]=k atline 27 of the source program in Figure 1 is compiled
into bytecode sequend@7: aload , 28iload , 29iload , 30iastore ). Bytecode 30
use three operands which are pushed and only pushed into the operand stack by bytecodes
27, 28 and 29 respectively. Thus, every occurreficé bytecode 30 is dynamically data
dependent on occurrences of 27, 28 and 29 which are immediately iefore

5.2 Subject programs

The subjects used in our experiments include six subjects from the Java Grande Forum
benchmark suite [JGF ], three subjects from the SPECjvm suite [SPECjvm98 ], and one
medium sized Java utility program [Berk and Ananian ]. Descriptions and inputs of these
subjects are shown in Table IV. We ran and collected execution traces of each program
once, with inputs shown in the third column in IV. Corresponding execution characteris-
tics are shown in Table V. The second column in Table V shows the number of bytecodes
of these subjects. The coluniixecuted bytecodes Table V presents the number of dis-

tinct bytecodes executed during one execution, and the fourth column in Table V shows
corresponding total number of bytecodes executed. The last two columns present the num-
ber of branch bytecode occurrences and method invocations, respectively. Bytecodes from
Java libraries are not considered in the table. However, bytecodes of user methods called
from library methods are included in the counts shown in Table V.

5.3 Time and Space Efficiency of Trace Collection

We first study the efficiency of our compact trace representation. Table VI shows the com-
pression efficiency of our compact trace representation. The colga Tracerepre-

sents the space overheads of storing uncompressed execution traces on disk. To accurately
measure the compression achieved by our RLESe grammars, we leave out the untraced
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D

Subject Description Input
Crypt IDEA encryption and decryption 200,000 bytes
SOR Successive over-relaxation on a grid | 100 x 100 grid
FFT 1-D fast Fourier transform 215 complex numbers
HeapSort Integer sorting 10000 integers
LUFact LU factorisation 200 x 200 matrix
Series Fourier coefficient analysis 200 Fourier coefficients
_201.compress| Modified Lempel-Ziv method (LZW) | 228.tar in the SPECjvm suite
_202jess Java Expert Shell System fullmab.clp in the SPECjvm suite
_209.db Performs multiple database functiong db2 & scr2 in the SPECjvm suite
JLex A Lexical Analyzer Generator for Java sample.lex from the tool's web sit
Table IV. Descriptions and input sizes of subject programs.
Subject Total # of | Executed| # Bytecode| # Branch # Method
Bytecodes| Bytecodes Instances| Instances| invocations
Crypt 2,939 1,828 | 103,708,780| 1,700,544 48
SOR 1,656 740 | 59,283,663| 1,990,324 26
FFT 2,327 1,216 | 72,602,818| 2,097,204 37
HeapSort 1,682 679 | 11,627,522 743,677 15,025
LUFact 2,885 1,520 | 98,273,627| 6,146,024 41,236
Series 1,800 795 | 16,367,637| 1,196,656 399,425
_201.compress 8,797 5,764 | 166,537,472| 7,474,589 | 1,999,317
_202jess 34,019 14,845 5,162,548 375,128 171,251
_209.db 8,794 4,948 | 38,122,955| 3,624,673 19,432
Jlex 22,077 14,737 | 13,083,864| 1,343,372 180,317
Table V. Execution characteristics of subject programs.
Subject Orig. Trace | RLESe All All/Orig.
Trace Table | Sequences (%)
Crypt 64.0M 8.9k | 8.8k 17.8k | 0.03
SOR 73.4M 7.6k | 10.8k 18.5k | 0.02
FFT 75.2M 8.2k | 87.3k 95.5k | 0.12
HeapSort 23.6M 7.7k | 1.7M 1.7M 7.20
LUFact 113.1M | 9.1k | 179.7k 188.9k | 0.16
Series 24.4M 7.7k | 444.4k 4522k | 1.81
_201 compress| 288.6M | 23.7k | 8.8M 8.8M 3.05
202 jess 25.7M 79.2k | 3.4M 3.4M 13.23
_209.db 194.5M | 29.0k | 39.2M 39.2M | 20.15
Jlex 49.9M 62.6k | 1.5M 1.5M 3.01
Table VI. Compression efficiency of our bytecode traces. All sizes are in bytes.

bytecodes from th®rig. Traceas well as the compressed trace. Next two coluiirase
TableandRLESe Sequencshow the space overheads to maintain the trace tables and to
store the compressed operand sequences of bytecodes on disk. The Abdluepresents

the overall space costs of our compact bytecode tramessum of space overheads of
Trace TableandRLESe Sequence¥he % column indicate8ll as a percentage @rig.

For all our subject programs, we can achieve at least 5 times compression. Indeed for some
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Doriginal
B RLESe
0 SEQUITUR
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Execution Time (second)

Crypt SOR FET HeapSort LUFact Series  _201_compress _202_jess 209 db Jlex

Fig. 18. Time overheads of RLESe and SEQUITUR. The time usiéeond

programs we get more than two orders of magnitu@elQO0 times) compression.

Figure 18 presents the absolute running time of the subject programs without instrumen-
tation, tracing with RLESe and tracing with SEQUITUR. All experiments were performed
on a Pentium 4 3.0 GHz machine with 1 GB of memory. From this figure we can see
that the slowdown for collecting traces using RLESe compared to the original program
execution i2 — 10 times for most subject programs, and the slowdown is near 20 times
for _209_db which randomly accesses a database. The shows that our method is suitable
for program executions with many repetitions, but the time overhead may be not scalable
to program executions with too many random accesses. Note that these additional time
overheads are caused by compression using RLESe/SEQUITUR. The results reflect one
limitation of RLESe (as well SEQUITUR): the time efficiency of the compression algo-
rithm heavily dependents on the efficiency of checking digram uniqueness property. To
speed up this check, a sophisticated index of digrams should be used. However, the choice
of the index has to trade-off between time and space efficiency, since the index will intro-
duce additional space overheads during trace collection. In our implementation, we use
the B+ tree (instead of sparse hash) to index digrams during compressing, and the index is
no longer needed after compression is completed. However, the index may sacrifice time
overheads in some situations.

We now compare the time and space efficiency of RLESe against SEQUITUR. Both
algorithms were performed on operand sequences of bytecodes. For a fair comparison, we
use the same index to search for similar digrams in the implementation of both algorithms.
Table VII compares the space costs of both algorithms by presenting their compression ra-
tio (in percentage). From the tables, we can see that the space consumption of compressed
traces produced by both algorithms are somewhat comparable. RLESe outperforms SE-
QUITUR for eight subject programs, and SEQUITUR outperforms for one (where the
_209.db program randomly accesses a database and does not have many contiguous re-
peated symbols in operand traces). Since RLESe employs run-length encoding of terminal
and non-terminal symbols over and above the SEQUITUR algorithm, nodes in grammars
produced by RLESe are usually less than those produced by SEQUITUR.

Figure 18 compares the time overheads of RLESe and SEQUITUR. Clearly RLESe out-
performs SEQUITUR in time on studied programs. The time overheads of both algorithms
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Subject RLESe % | SEQUITUR %
Crypt 0.03 0.07
SOR 0.02 0.04

FFT 0.12 0.34
HeapSort 7.20 7.20

LUFact 0.16 0.40

Series 1.81 2.50
_201.compress 3.05 3.12
_202jess 13.23 13.62
_209.db 20.15 18.35
Jlex 3.01 4.01

Table VII. Comparing compression ratio of RLESe and SEQUITUR.

Subject RLESe | SEQUITUR
Crypt 800,605 | 20,499,488
SOR 393,202 | 25,563,918
FFT 2,020,976 | 25,722,054

HeapSort 2,262,916 7,066,784

LUFact 561,233 | 42,586,136

Series 2,501,001 9,507,982
_201compress| 10,240,652| 80,923,387
_202jess 2,090,153 6,666,460

_209.db 24,386,746| 54,033,314

Jlex 4,555,338 | 15,497,211

Table VIII.  The number of times to check digram uniqueness property by RLESe and SEQUITUR.

are mainly caused by checking digram uniqueness property. RLESe usually produces less
nodes in grammars, so that similar digrams can be found more efficiently. In addition,
RLESe checks this property after contiguous repeated symbols have finished, whereas
SEQUITUR does this on reading every symbol. In other words, RLESe checks digram
uniqueness property less frequently than SEQUITUR. Table VIII shows this by represent-
ing the frequency of checking digram uniqueness property, where RLESe checked digram
uniqueness property less number of times than SEQUITUR. When there were many con-
tiguous repeated symbols in the execution traeas the LUFact, SOR subjects), RLESe
checked the property significantly less number of times than SEQUITUR, and the tracing
time overheads of RLESe were also much less than those of SEQUITUR.

5.4 Overheads for Computing Dynamic Slice and Relevant Slice

We now measure the sizes of relevant and dynamic slices and the time overheads to com-
pute these slices. Thus, apart from studying the absolute time/space overheads of dynamic
slicing, these experiments also serve as comparison between relevant and dynamic slicing.
For each subject from the Java Grande Forum benchmark suite, we randomly chose 5 dis-
tinct slice criterions because of their relatively simple program structures; for other bigger
subjects, we randomly chose 15 distinct slice criterions for better understanding dynamic
slicing and relevant slicing.
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2 3 1 5 2 3 4 5 2 3 4 5
Slicing Criterion Slicing Criterion Slicing Criterion
Pgm. | DS | RS % Pgm. | DS | RS % Pgm. | DS | RS %
2,939 | 862 | 868 | 0.70 1,656 | 130 | 131 | 0.77 2,327 | 199 | 199 | 0.00
Crypt SOR FFT
: 0 ‘U
3 4 5 4 5 4 5
Slicing Criterion Slicing Criterion Slicing Criterion
Pgm. | DS | RS % Pgm. | DS | RS % Pgm. | DS | RS %
1,682 | 195 | 195 | 0.00 2,885 | 420 | 420 | 0.00 1,800 | 149 | 149 | 0.00
HeapSort LUFact Series

Fig. 19. Compare sizes of relevant slices with dynamic slié&m.represents size of the prograBSandRS

represent average sizes of dynamic slices and relevant slices, respectively. All sizes are reported as the number of

bytecodes. The la$6 column represents the increased sizes of relevant slieed¥€5-25) in percentage.

Dynamic slice and relevant slicdzigure 19 and 20 present the sizes of every slices.
As we can see, most dynamic slices and relevant slices were relatively small, which were
less than 30% of corresponding source programs on average in our experiments. This is
because programs usually consists of several parts which work (almost) independently.
The irrelevant portions are excluded from both dynamic slices and relevant slices; this
may be helpful for further analysis to focus on useful parts. Furthermore, class hierarchies
of these programs are simple, with only limited use of inheritance.The relevant slices are
almost the same as corresponding dynamic slices for these programs, as shown in Figure
19.

On the other hand, other subject programe (201 compress,202 jess, 209.db, and
JLex) are more complex. These programs have more sophisticated control structures. In
addition, these programs use inheritance and method overloading and overriding, so that
different methods may be called by method invocation bytecodes. For example, there are
11 classes which inherit the same class2@2 jess. Thus, at some object allocation sites,
different objects might be created. Both of the factors lead to potential dependencies be-
tween bytecode occurrences. More importantly, these subject programs involve substantial
use of Java libraries, such as collection classes and 1/O classes. These library classes con-
tribute a lot to relevant slices, because of their complex control structures and usage of
object-oriented features like method overloading (which lead to potential dependencies).
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Fig. 20. Compare sizes of relevant slices with dynamic slié&gm.represents size of the prograBSandRS
represent average sizes of dynamic slices and relevant slices, respectively. All sizes are reported as the number of
bytecodes. The la$6 column represents the increased sizes of relevant slieeS€5-25) in percentage.

In fact, if we do not consider potential dependencies inside such library classes, the average
sizes of relevant slices foP01 compress,202 jess, 209.db, and JLex were 1072, 8393,
2523, and 3728, which were 1.71%, 19.51%, 3.06%, 13.55% bigger than corresponding
dynamic slices, respectively.

Time overheadsFigure 21 and 22 show the time overheads to compute dynamic slices
and relevant slices. Clearly, the time overheads to compute dynamic slices and relevant
slices are sensitive to choice of programs and slicing criterion. According to our slicing
algorithms in Figure 2 and 15, the time overheads are mainly caused by two tasks: (1) ex-
tract operand sequences of bytecodes and backwards traverse, and (2) update and compare
various sets to detect dependencies. For a particular execution, the first part is common
for slicing w.r.t. every slicing criterion, and the second part is sensitive to the sizes of the
slices. For bigger slices, their sets to detect dependencies are also bigger during slicing,
resulting in longer time to maintain and compare. From Figure 21 and 22 we can observe
the following.

—First, the increased time of relevant slicing is affected by how many branch bytecode
instances and method invocation bytecode instances are not included in the dynamic
slices. For example, the time overheads increased about 33%02jess, and about
43% for JLex, on average. Although JLex had a shorter execution ghess, JLex



Dynamic Slicing on Java Bytecode Traces 41
LB 50
M
92,0 S0
S < <
I s g s g1 ns
“ ;zla oRs " 100 oRs ; 100 oRs
Y Z 50 Z 50
Eps £ 0.0 £ 0.0
12 3 4 5 23 s o3 s
Slicing Criterion Slicing Criterion Slicing Criterion
DS RS % DS RS % DS RS %
23.8 | 24.7 | 3.78 171 | 176 | 292 205 | 209 | 1.95
Crypt SOR FFT
_ 60 _ 5.0 100
%) 0.0 £ 00
g %.0 § 80
240 500 ° h’g
ns 5.0 ns g L3
f“] oS S0 ogs - jg ogs
£20 £150 L)
H 2100 220
;Y £ ‘o
T 00 00 T 00
1 P T B 12 3 4 5 12 3 4 5
Slicing Criterion Slicing Criterion Slicing Criterion
DS | RS % DS RS % DS | RS %
49| 5.1 | 4.08 33.4| 35.0 | 4.79 6.6 | 8.8 | 33.33
HeapSort LUFact Series
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had a relatively smaller dynamic slice. Recall that our relevant slicing algorithm in
Figure 15 detects potential dependencies w.r.t a bytecode occurpeiffice 5 is not
dynamically control/data dependent on the slicing criterion. Thus, JLex had to detect
potential dependencies more frequently th202 jess, leading to relatively higher time
overheads to compute relevant slices.

—Secondly, the additional time for relevant slicing (over and above dynamic slicing) is
also affected by choice of slicing criterion and program’s data flow structure. Recall
that our relevant slicing algorithm in Figure 15 compares the set of variables which
may be defined against the set of variables which need explanation to detect potential
dependencies. As expected, we found that the sizes of these sets are important for time

efficiency of relevant slicing.

5.5 Summary and Threats to Validity

In summary, the RLESe compaction scheme achieves comparable or better compression
ration than SEQUITUR. The time overheads for the online compaction in RLESe is found
to be less than the compaction time in SEQUITUR.
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Fig. 22. Compare time overheads of relevant slicing with dynamic slicb§andRSrepresent average time
to perform dynamic slicing and relevant slicing, respectively. All time are reported in second. T¥edaktmn
represents the increased time for relevant slicireg €5522) in percentage.

Our compact trace representation can be used to perform dynamic slicing and relevant
slicing efficiently, both in time and space. The resultant dynamic slices are relatively small,
compared against the entire program. They can guide further anaygigrogram debug-
ging) working on a small but important portion of the program. Relevant slices are often
bigger than dynamic slices (since they consjlatential dependencigdut relevant slices
are still relatively small compared against the entire program. Of course, relevant slicing
for a given criterion takes more time than dynamic slicing for the same criterion. However,
the increased time overheads, which depend on the choice of slicing criterion, the control
structures and data flow structures of the program, were tolerable in our experiments.

We note that there are various threats to validity of the conclusion from our experiments.
Our conclusions on lesser time overheads of RLESe (as compared to SEQUITUR) can be
invalidated if the execution trace has very few contiguous repeated symbols. In this case,
RLESe checks the diagram uniqueness property almost as frequently as SEQUITUR. This
can happen in a program with random data accessgs the -209.db subject program
used in our experiments). Our conclusions on the size of dynamic and relevant slices
can be invalidated for programs with little inherent parallelism resulting in long chains of
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control/data dependencies. For such programs, the dynamic and the relevant slices may
not be substantially less than the program size. Furthermore, as the slice sizes increase so
do the time to compute these slices, since additional statements in the slice will result in
more unexplained variables in tiieset. It is also possible to encounter a situation where

the dynamic slice is quite small compared to program size, but the relevant size is much
bigger than the dynamic slice. Since relevant slice computation involves detecting potential
dependencies and potential dependencies involve computing static data dependencies, a lot
depends on the accuracy of the points-to analysis used to detect static data dependencies.
If the points-to analysis is very conservative, it may lead to a large relevant slice.

6. RELATED WORK

In this section, we survey related literature on compressed program trace representations,
dynamic slicing and extensions of dynamic slicing for detecting omission errors.

6.1 Work on Compact Trace Representations

Various compact trace representation schemes have been developed in [Goel et al. 2003;
Larus 1999; Pleszkun 1994; Zhang and Gupta 2001; 2004] to reduce the high space over-
heads of storing and analyzing traces. Pleszkun presented a two-pass trace scheme, which
recorded basic block’s successors and data reference patterns [Pleszkun 1994]. The orga-
nization of his trace is similar to our trace table. However, Pleszkun’s technique does not
allow traces to be collected on the fly, and the trace is still large because the techniques
for exploiting repetitions in the trace are limited. Recently, Larus proposed a compact
and analyzable representation of a program’s dynamic control flow via the on-line com-
pression algorithm SEQUITUR [Larus 1999]. The entire trace is treated as a single string
during compression, but it becomes costly to access the trace of a specific method. Zhang
and Gupta suggested breaking the traces into per-method traces [Zhang and Gupta 2001].
However, it is not clear how to efficiently represent data flow in their traces. In a later work
[Zhang and Gupta 2004], Zhang and Gupta presented a unified representation of different
types of program traces, including control flow, value, address, and dependence.

The idea of separating out the data accesses of load/store instructions into a separate
sequence (which is then compressed) is explored in [Goel et al. 2003] in the context of
parallel program executions. However, this work uses the SEQUITUR algorithm which
is not suitable for representing contiguous repeated patterns. In our work, we have devel-
oped RLESe to improve SEQUITUR'’s space and time efficiency, by capturing contiguous
repeated symbols and encoding them with their run-length. RLESe is different from the
algorithm proposed by Reiss and Renieris [Reiss and Renieris 2001], since it is an on-
line compression algorithm, whereas Reiss and Renieris suggested modifying SEQUITUR
grammar rules in a post processing step.

Another approach for efficient tracing is not to trace all bytecodes/instructions during
trace collection. This approach is explored by Himstract executionechnique [Larus
1990], which differs from ours in how to handle untraced instructions. In particular, ab-
stract execution executes a progrdMmto record a small number of significant events,
thereby deriving a modified prograi®’. The modified program then executes with the
significant events as the guide; this amounts to re-executing paRd@fdiscovering in-
formation about instructions i which were not traced. On the other hand, our method
records certain bytecodes in an execution as a compressed representation. Post-mortem
analysis of this compressed representation does not involve re-execution of the untraced
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bytecodes. To retrieve information about untraced bytecodes we (a) detect dynamic depen-
dencies via lightweight flow analysis, and (b) use information which is decided at compile
time.

6.2 Work on Dynamic Slicing

Weiser originally introduced the concept of program slicing [Weiser 1984]. In the last two
decades, program slicing, in particular dynamic slicing, has been widely used in many
software engineering activities, such as program understanding, debugging and testing
[Agrawal et al. 1993; Korel and Rilling 1997; Lucia 2001; Tip 1995]. The first dynamic
slicing algorithm is introduced by Korel and Laski [Korel and Laski 1988]. In particular,
they exploiteddynamic flow concepts capture the dependencies between occurrences of
statements in the execution trace, and generated executable dynamic slices. Later, Agrawal
and Horgan used théynamic dependence graph compute non-executable but precise
dynamic slices, by representing each occurrence of a statement as a distinct node in the
graph Agrawal and Horgan 1990; Agrawal 1991]. A survey of program slicing technigues
developed in the eighties and early nineties appears in [Tip 1995].

Static and dynamic slicing of object-oriented programs based on dependence graphs
have been studied in [Larsen and Harrold 2001] and [Xu et al. 2002] respectively. Com-
putation of control and data dependencies between Java bytecodes has been discussed in
[Zhao 2000]. The work of [Ohata et al. 2001] combined dynamic and static slicing to avoid
the space overheads of processing traces, at the cost of precision of computed slices. Re-
cently, Zhang et al. [Zhang et al. 2005] studied the performance issues in computing the
control/data dependencies from the execution traces for slicing purposes.

In [Dhamdhere et al. 2003], Dhamdhere et al. present an approach for dynamic slicing
on compact execution traces. However, their compaction mechanism is very different from
ours and they do employ any data compression algorithm on the execution trace. In fact,
they classify execution instances of statements as critical or non-critical, and store only
the latest execution instances for non-critical statements. However, the classification of
statements as critical/non-critical is sensitive to the slicing criterion.

Our compression scheme is not related to the slicing criterion and exploits regular-
ity/repetition of control/data flow in the trace. Our slicing algorithm operates directly on
this compressed trace achieving substantial space savings at tolerable time overheads.

Extensions of Dynamic Slicing for Detecting Omission Errdrsthe pastrelevant slic-
ing has been studied as an extension of dynamic slicing for the purpose of detecting omis-
sion errors in a program [Agrawal et al. 1993; Gyitny et al. 1999]. The approach in
[Agrawal et al. 1993] relies on the huge dynamic dependence graph. Furthernideeaif
branch statement with which statements in the slice have potential dependencies, [Agrawal
et al. 1993] only computes the closure of data and potential dependendiesrobther
words, control dependencies are ignored w.r.t. statements on Wligctiata dependent.
Gyimbthy proposed an forward relevant slicing algorithm in [Gthy et al. 1999], and it
avoided using the huge dynamic dependence graph. However, such an algorithm will com-
pute many redundant dependencies since it is not goal directed. In addition, while comput-
ing the dependencies of a later occurrence of certain branch statements (those which appear
in the slice due to potential dependencies), the algorithm also includes statements which
affect an early occurrence of the same branch statement. In this paper, we defines a relevant
slice over theextended Dynamic Dependence GrdpIDDG), and it is more accurate than
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previous ones. We have also presented a space-efficient relevant slicing algorithm which
operatedlirectly on the compressed bytecode traces.

7. DISCUSSION

In this paper, we have developed a space efficient scheme for compactly representing byte-
code traces of sequential Java programs. The time overheads and compression efficiency
of our representation are studied empirically. We use our compact traces for efficient dy-
namic slicing. We also extend our dynamic slicing algorithm to explain omission errors
(errors arising from omission of a statement’s execution due to incorrect evaluation of
branches/method invocations). Our method has been implemented on top of the open
source Kaffe Virtual Machine. The traces were collected by monitoring Java bytecodes,
they were compressed online and then slicing was performed post-mortem by traversing
the compressed trace without decompression.

Besides dynamic slicing, our compact bytecode traces are also useful for many other
applications in code optimization and program visualization. First, the trace contains the
sequence of target addresses for each conditional branch bytecode. We can obtain the most
likely taken target addresses from these sequences to merge basic blocks into a superblock
[Hwu et al. 1993]. Secondly, the operand sequences of bytecodes to invoke virtual/interface
methods describe which methods are most likely to be invoked; this information is helpful
in inlining methods for optimization [Cierniak et al. 2000]. Finally, note that by record-
ing addresses of objects that each bytecode creates, our trace provides information about
memory allocations. This can be used to understand the program’s memory behavior via
visualization, as discussed in [Reiss and Renieris 2000].

APPENDIX
A. COMPLEXITY ANALYSIS OF THE RLESE ALGORITHM

In this appendix, we prove that the RLESe compression algorithm described in Section 2.3
is linear in both space and time.

A.1 Properties preserved by RLESe algorithm

Recall that RLESe constructs a context free grammar to represent a sequence, by preserv-
ing three properties w.r.t. the grammar: (1) no contiguous repeated symbols property, (2)
digram uniqueness property, and (3) rule utility property (details can be found in Section
2.3). Figure 23 presents the algorithm. The RLESe algorithm proceeds by iteratively read-
ing a symbol from the input sequence (line 2 of Figure 23), appending a{rgde: 1) to
the end of start rule (line 3 of Figure 23), and re-structuring the grammar by preserving the
above three properties (line 4-18 of Figure 23). When the algorithm checks whether any
property is violated (lines 5, 7, and 15 of Figure 23), it is sufficient to examine changed
nodes or digrams, instead of going through the entire grammar. For example, when the al-
gorithm looks for continuous repeated nodes (line 5 of Figure 23), only nodes which have
just been inserted into the grammar are necessary to check. This is particularly important
for the efficiency of the algorithm. We explain how to re-construct the grammar when any
one of the three properties of RLESe are violated.

The first propertyi(e. no contiguous repeated symbols property) is preserved by line 5
and 6 of Figure 23. If two nodesym : n) and(sym : n’) is adjacent in the grammar, line
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6 merges the two nodes. That is we delete nage: : n’), and change nodgym : n) to
(sym : n 4+ n'). Clearly, this merge operation can save one node in the grammar size.
Lines 7-14 of Figure 23 preserve the second property of RLESal{gram uniqueness
property). Recall that two digrams asémilar if their nodes contain the same pair of
symbols. Two digrams arieenticalif they have the same pairs of symbols and counters.
Line 7 checks whether there are similar digrams in the grammar. If so, the algorithm can
obtain two identical digrams, and replace both identical digrams with a non-terminal node
for arule (possibly already in existence) that has the identical digram as its right side. Note
that, when there are two similar digrafygm : ny, syms : na), and(sym; : nj, syms :
nb), it may require splitting nodes (line 9 of Figure 23) to obtain identical digrams as
(symy : min(ny,n}), symsa : min(ng,nb)), wheremin(ny,n}) is the minimum ofn;
andn). Splitting one node will introduce one more node into the grammar. Line 9 of
Figure 23 checks whether one of the two identical digrams is exactly the right side of an
existing rule. If so, the algorithm replaces another identical digram with a non-terminal
node for the rule (line 11 of Figure 23). We change the grammar rules

A — --symy ing, syms i ng, -+ B — symy i ng, syms : ng
to
A—.--B:1,--- B — symy:ni,syms : No

This can save one node in the resultant grammar. If not, a new rule is introduced, and the
algorithm replaces both identical digrams with a non-terminal node for the new rule (line
13-14 of Figure 23). That is, we change the grammar rule

A—>sym1 Ny, 8Ymsa g, -+ SYMq 1 Ny, SYmMso : Na, - -
to
A—..-B:1,---B:1,--- B — symq : nq, syme : no

This operation does not introduce more nodes nor save any node, but introduces one more
rule in the resultant grammar.

Lines 15-17 of Figure 23 preserve the third propeirsy, rule utility property. RLESe
eliminates a rule referenced only once by replacing the reference with the right side of the
rule. That is, we change the grammar rules

A—.--B:1,--- B —symy:ni,syms : no
to
A— - symy i ng, SYyme i Mg, -
This operation can save one node in the resultant grammar.

A.2 Operations in the RLESe algorithm

We proceed to prove that the complexity of the RLESe algorithm in Figure 23 is linear in
both space and time w.r.t. the length of input sequence. The proof is similar to the proof for
SEQUITUR in [Nevill-Manning and Witten 1997], where we do not put a bound on each
operation to re-construct the grammar. Instead we calculate the amortized costs, that is, we
obtain a bound on thetal amount of work done re-constructing the grammar. Our analysis

of RLESe also uses an assumption made in SEQUITUR'’s analysis in [Nevill-Manning and



Dynamic Slicing on Java Bytecode Traces . a7

1  while (input sequence is not empty)

2 sym=read next symbol from input;

3 append nodésym : 1) to the end of start rule

4 do

5 if (there are continuous repeated nodes)

6 merge the two nodes;

7 if (there are two similar digrams)

8 if (the two digrams are not identical)

9 split nodes to get two identical digrams;

10 if (one of the identical digrams is a complete rule)

11 replace another digram with a non-terminal node for the rule

12 else

13 create a new rule, where the right side of the rule is the identical digram;
14 replace both digrams with a non-terminal node for the new rule;
15 if (rule R is referenced only once)

16 replace the use of R with the right side of R;

17 remove the rule R;

18 while (any of the three properties is violated)

Fig. 23. The RLESe compression algorithm

Witten 1997] — given a digram, the average time to look for its similar digram is bounded
by a constant. This can be achieved by indexing digrams with a hash table [Knuth 1973].
Table IX shows variables which will be used later for complexity analysis, as well as de-
scriptions of these variables. The third column shows line number of the RLESe algorithm
in Figure 23 in which each variable is used; the last column shows corresponding oper-
ations for each line. Clearly, the time to perform each operation in Table IX is constant.
For example, it needs constant time to check whether a specific node has the same symbol
with its neighboring nodes (line 5 of Figure 23). Thus, the total time cost to execute line
5 is proportional tanq, the number of times to check the first property. Some lines of the
compression algorithm are always executed together ines 13 and 14 of Figure 23).
They are considered as one operation during complexity analysis, so they are put in the
same entry in this table. The size of the RLESe gramiimar) denotes the nodes in the
right-hand side of grammar rules, because nodes in the left-hand side of grammar rules can
be recreated according to the order in which these rules appear.

A.3 Space Complexity

We derive an equation describing the size of the final grammar. Operations 3,7,10 in Table
IX refer to merging nodes, using an existing rule and removing a rule; these operations
save the number of nodes in the grammar. On the other hand, operation 6 (splitting a
grammar node), increases the grammar size. Thus, we get the following equation relating
the grammar sizenf) and the length of the input sequene?.(

n—m = mg+ my + mio — Mg 1)

In addition, we can only split nodes which have been merged. Note that if a node was
not produced by any merging, its run-length must be 1, so the question of splitting does
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Var. | Description Line in Fig. 23 | Operation
n the size of the input sequence

m the number of nodes in the final grammar
r the number of rules in the final grammar

mi the number of times to read a symbol from input 2,3 1: read

mz | the number of times to check the first property 5 2: check the 1st property
ms3 | the number of times to merge two nodes 6 3: merge

my | the number of times to check the second property 7 4: check the 2nd property
ms | the number of times two similar digrams are found 8,10 5: check digrams

meg | the number of split nodes 9 6: split

my | the number of times an existing rule is used 11 7: use an existing rule
ms the number of times a new rule is introduced 13,14 8: introduce a new rule
mg | the number of times to check the third property 15 9: check the 3rd property|
mio | the number of times a rule is removed 16, 17 10: remove a rule

Table IX. Operations in the RLESe algorithm

not arise. We get:
me < ms (2
From the two formulas, we can conclude that
n—m2>my7;+mip >0 3)

This shows that the size of the final grammiag.(the variablen) is bound by the length
of the input sequencé g. the variabler), and the algorithm is linear in space.
A.4  Time Complexity

Next, we study the time complexity of the RLESe algorithm. When the algorithm checks
the "no contiguous repeated symbols property”, the first property of RLESe (operation 2),
it is sufficient to look at the nodes inserted by operations 1, 7, 8, and 10 (refer Table 1X).
That is,

mo = My —+ my + 277’2,8 —+ 2m10 (4)

The coefficient 2 is used because both operations 8 and 10 insert two nodes.
Operations 1, 7, 8, and 10 introduce new digrams which necessitate check of the digram
uniqueness property, the second property of RLESe. We have

my = MM + 2m7 + 4m8 + me (5)

When a new rule is introduced and two identical diagrams are removed (operation 8), the
number of references to a rule may be reduced, and the third property of RLESe (the rule
utility property) is checked. Therefore,

mg = msg (6)
In addition, the following formulas hold according to the structure of the algorithm,
mz <mg ms < My

Now, let us look at the total time overhead for the compression algorithm in Figure 23,
which is sum of time cost for each operation. The expression for the total time overhead
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can be simplified as:

my + my + ms + myg + ms + me + my + mg + mg + Mo (7)
m1 + 3ms + 2my + m7 + 2mg + myg

my + 3(m1 +mr + 2mg + 2mag) + 2(my + 2my7 + dmg + 2myo) +

my7 4+ 2mg + mio

6n + 8my + 16mg + 11mqg

INIA

For the number of rules in the grammar, we have = mg — my Since operation 8
introduces new rules, and operation 10 removes rules. Also, note the right side of each rule
has at least two nodes. Thus< m.

The expression for the total time overhead in Formula 7 can then be simplified as

my + mg + mg + myg + ms + mg + my + mg + mg + Mo (8)
= Gn + 8m7 + 16(7’ + mlo) + 11m10
< 6n+ 16m + 27(m7 + mao)

Recall from Formula 3
O<mry+mpop<n—m<n (9)

So the time complexity for the RLESe algorithm in Figure 28ig:).

B. ANALYSIS OF THE RELEVANT SLICING ALGORITHM
In this appendix, we prove the correctness of the relevant slicing algorithm in Figure 15.

LEMMA B.0.1. Lety; be thep set afteri loop iterations of the relevant slicing algo-
rithm in Figure 15. Thewi, 5,0 < i < j = ¢; C ¢;.

PrROOF Proof of this lemma is the same as the proof of Lemma 3.5.1 for the dynamic
slicing algorithm in Section 3.1

LEMMA B.0.2. Lety; be they set, andfram; be thefram set after; loop iterations
of the relevant slicing algorithm in Figure 15. Thei®, 6 € fram, iff. (1) 8 € ¢;, and
(2) 3 belongs to slicing criterion o83’ € ¢; s.t. 4" is dynamically control/data dependent
on 3, and (3) the algorithm has not found the bytecode occurrence whistdynamically
control dependent on aftérdoop iterations.

PROOFE Proof of this lemma is the similar to the proof of Lemma 3.5.2 for the dynamic
slicing algorithm in Section 3.0

LEMMA B.0.3. Letp; be they set, andd; be thed set after:i loop iterations of the
relevant slicing algorithm in Figure 15. Thevw, v € §; iff. (1) variablewv is used by a
bytecode occurrence € ¢; s.t. ()3 belongs to slicing criterion, or (b3’ € p; s.t.§'is
dynamically control/data dependent gnand (2) the algorithm has not found assignment
to v after loop iterations.

PrROOF Proof of this lemma is the similar to the proof of Lemma 3.5.3 for the dynamic
slicing algorithm in Section 3.1

LEMMA B.0.4. Let p; be thep set, andd; be thed set afteri loop iterations of the
relevant slicing algorithm in Figure 15. Theéfv, Iprop,v € prop, and (_3', prop) € 0;
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iff. (1) variablewv is used by a bytecode occurrenge ;, where (a)3 does not belong to
slicing criterion, and (b) there is ng’ € ¢; s.t. 3’ is dynamically control/data dependent
on 3, and (2) the algorithm has not found assignment tfter ; loop iterations.

PROOF The proof of this lemma is similar to the proof of Lemma B.0.8]

Indeed, thed set (in Lemma B.0.3) includes variables used by bytecode occurrences
8 s.t. B is added intop when (1)3 belongs to the slicing criterion, or (2) there is any
bytecode occurrence inwhich isdynamically control/data dependemn 5. On the other
hand, theprop sets ofd (in Lemma B.0.4) includes variables used by bytecode occurrences
[ s.t. g is added intap when (1) there is any bytecode occurrence wwhich ispotentially
dependentn 3, and (2)5 does not belong to slicing criterion, and no bytecode occurrence
in ¢ is dynamically control/data dependent n

LEmmMA B.0.5. During relevant slicing according to the algorithm in Figure 15, a
bytecode occurrencé pops an entry fromap_stack, which is pushed top_stack by byte-
code occurrencé, iff. § uses an operand in the operand stack defined llring trace
collection.

PrRoOOF Proof of this lemma is the same as the proof of Lemma 3.5.4 for the dynamic
slicing algorithm in Section 3.0

LEMMA B.0.6. Lety; be thep set afteri loop iterations of the relevant slicing algo-
rithm in Figure 15, and3 be the bytecode occurrence encountered atttihéoop iteration.
Theng € ¢; — ;1 iff.

(1) S belongs to the slicing criterion, or,

(2) 38’ € p;_1, F" is dynamically control dependent gh and 3’ was not introduced into
the relevant sliceo because of potential dependencies.

(3) 38’ € p;_1, # is dynamically data dependent ghnor
(4) none of above three conditions is satisfied, dntle ¢, 1, 3 is potentially dependent

ong.

PrRoOOF Note thats ¢ ¢;_1. According to the slicing algorithm3 € ¢; — ;1 iff.
any of lines 20, 25, 30 and 38 in Figure 15 is executed. Further,

I. line 20 in Figure 15 is executed iff. condition (1) in this lemma holds, which checks
slicing criterion.

II. line 25 in Figure 15 is executed iff. condition (2) in this lemma holds, which checks
dynamic control dependencies.

lll. line 30 in Figure 15 is executed iff. condition (3) in this lemma is satisfied, which
checks dynamic data dependencies.

IV. line 38 in Figure 15 is executed iff. condition (4) in this lemma is satisfied, which
checks potential dependencies.

Proofs of I, Il and Il are similar to proof of Lemma 3.5.5 for the dynamic slicing algo-
rithm in Section 3.

2In other words, either there exists a bytecgfec ;1 which is dynamically data/control dependent/@h
or 3’ belongs to the slicing criterion.
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Next, we prove V., that is line 38 in Figure 15 is executed iff. condition (4) in this
lemma is satisfied. According to the slicing algorithm, line 38 in Figure 15 is executed iff.
line 33 in Figure 15 is evaluated to false and line 37 in Figure 15 is evaluated to true. Note
that line 33 in Figure 15 is evaluated to false iff. lines 18, 21, and 26 are all evaluated to
false, which are equivalent to that none of conditions (1) (2) and (3) of this lemma holds.
Note that line 37 invokes theomputePotentialDependencethod defined in Figure 16 to
check potential dependencies. The chemfputePotentialDepender{Gebs) returns true
iff. either of following conditions holds:

(1) line 6in Figure 16 is evaluated to true, or
(2) line 9in Figure 16 is evaluated to true.

We first prove that theomputePotentialDependenoethod returns true only #5’ €
vpi—1, 3" is potentially dependent ofl, assuming that line 33 in Figure 15 is evaluated to
false. We have the following two cases:

(1) there exist® € §,_1 which may be defined by evaluating the branch bytecode occur-
rences differently. Theg refers to the bytecode occurrence encountered athiiheop
iteration of the relevant slicing algorithm. According to Lemma B.@3, € ¢;_1,v
is used by3’. So,3 is potentially dependent gf.

(2) there exista,prop”, v € prop”, 3(_8",prop”) € 0;_1, andv may be defined by
evaluating the branch bytecode occurrefddifferently. According to Lemma B.0.4,
36" € p;_1, vis used by3’'.So,3 is potentially dependent o

In both cases, there exists one bytecode occurrenge inwhich is potentially depen-
dent ong.

Now we prove that theomputePotentialDependeneethod returns true #5’ € p; 1,
3’ is potentially dependent off, assuming that line 33 in Figure 15 is evaluated to false.
The following are two possibilities:

(1) there exist® used by a bytecode occurrengec ;_1, where3’ was not introduced
into the relevant sliceo because of potential dependencies. According to Lemma
B.0.3,v € §,_1. So line 7 of Figure 16 is executed and twmputePotentialDepen-
dencemethod returns true.

(2) there exist® used by a bytecode occurrengec ¢; 1, where3’ was introduced into
the relevant slicer because of potential dependencies. According to Lemma B.0.4,
Iprop”, v € prop”, and3I(G",prop’) € 6;_1. According to the algorithmp’ is
(transitively) dynamically control dependent 6fi, so3” is not dynamically control
dependent or. Thus, line 10 of Figure 16 is executed and toenputePotentialDe-
pendencenethod returns true.

The completes our proof that ttieemputePotentialDependenogethod returns true if
36’ € p;_1, B is potentially dependent ofy, assuming that line 33 in Figure 15 is evalu-
ated to false. Consequently, line 38 in Figure 15 is executed iff. condition (4) in this lemma
is satisfied.

In all cases, we have shown that any of lines 20, 25, 30 and 38 in Figure 15 is executed
iff. any of the four conditions in the lemma is satisfied. Consequently, the lemma halts.

Finally, we prove the correctness of the relevant slicing in Figure 15. Note that the rele-
vant slice defined in Definition 4.2.1 is based onEx¢ended Dynamic Dependence Graph
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(EDDG). Inthe EDDG, two nodes in the graph may refer to the same bytecode occurrence.
In the following, we usewn(3) to represent theon-dummy nodor bytecode occurrence

£ in the EDDG, andin(3) to represent correspondimyimmy nodédor bytecode occur-
rencel. Two nodes of the same bytecode occurrence do not contribute to relevant slice
together. This is because in the EDDG, non-dummy nodes only have incoming edges
representing dynamic control/data dependencies, and dummy nodes only have incoming
edges representing potential dependencies. Further, the relevant slicing algorithm includes
a bytecode occurrengginto the slicep when3s’ € ¢ s.t. 3 is dependent og for any

of dynamic control, dynamic data and potential dependencies.

THEOREM B.0.1. Given a slicing criterion, the relevant slicing algorithm in Figure 15
returns relevant slice defined in Definition 4.2.1.

PROOFE Let ¢; be thep set afteri loop iterations of the relevant slicing algorithm in
Figure 15,0, be the resultanp set when the algorithm finishes, apdbe the bytecode
occurrence encountered at thle loop iteration. As mentioned in the above, there may be
two nodesun (') anddn(3’) for a bytecode occurreng® in the EDDG. So, we will prove
this lemma by showingy.={3'|nn(8’) or dn(5’) is reachable from the slicing criterion
in the EDDG.

We first prove the soundness of the algorithra, for any 8, 5’ € ., only if either
nn(B’) or dn(g') is reachable from the slicing criterion in the EDDG. In particular, we
prove thatVs’ € ., (a) if 3’ is added intap, because of slicing criterion or dynamic con-
trol/data dependencies, them(5’) is reachable from the slicing criterion in the EDDG,
and (b) if 3’ is added intap,. because of potential dependencies, tlie()3’) is reachable
from the slicing criterion in the EDDG. We prove this by induction on loop iterations of
the slicing algorithm.

Base : Initially, oo = (), so the soundness of the algorithm holds.

Induction : Assume that for anyd” € ¢, 1, (a) if 3" is added intop;_; because
of slicing criterion or dynamic control/data dependencies, thef5"”) is reachable from
the slicing criterion in the EDDG, and (b) i’ is added intap; _; because of potential
dependencies, theim(5") is reachable from the slicing criterion in the EDDG.

Note thaty; = p;—1, Orv; = p,—1 U {8}. ThenV3' € ¢;, we have two cases:

(1) if @ € p;—1, the induction hypothesis still hosts, singg_; C ¢; according to

Lemma B.0.1.

(2) if B/ = B, whereg is the bytecode occurrence encountered attinéoop iteration

of the slicing algorithm, the € ¢, — ¢;_1. According to Lemma B.0.6, we have

following four possibilities to add into ¢;:

I. if 8 belongs to the slicing criterion,then clearly () belongs to slicing criterion,

Il. if 38" € ¢;_1, 8" is dynamically control dependent gh and3” was not added
into the relevant slice because of potential dependenciespthgl! ) is reachable
from the slicing criterion in the EDDG according to the induction hypothesis. In
addition, there is an dynamic control dependence edge frof¥”’) to nn(3) in
the EDDG. Thuspn(3) can be reached from the slicing criterion.

M. 38" € p;—1, B" is dynamically data dependent gh then eithermnn(5”) or
dn((") is reachable from the slicing criterion according to the induction hypoth-
esis. In the EDDG, there are dynamic data dependence edgesfr(fff) to
nn(B), and fromdn(8") to nn(B). Thus,nn(3) can be reached from the slicing
criterion.
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IV. 38" € ¢;,_1, 8" is potentially dependent af, then eithenn(5") or dn(8") can
be reached from the slicing criterion according to the induction hypothesis. In the
EDDG, there are potential dependence edges frait3”) to dn(3), and from
dn(8") to dn(8). Thus,dn(3) can be reached from the slicing criterion.

In all four cases, we show that (a)dfis added intop; because of slicing criterion or
dynamic control/data dependencies, thert3) is reachable from the slicing criterion
in the EDDG, and (b) if3 is added intap; because of potential dependencies, then
dn(p) is reachable from the slicing criterion in the EDDG.

This completes the soundness proof.

Next, we prove the completeness of the slicing algorithen, for any 3, 5’ € ., if
eithernn(g’) or dn(3’) is reachable from the slicing criterion in the EDDG. Note that
there is no cycle in the EDDG, so we prove the completeness by induction on structure of
the EDDG.

Base : Consider a bytecode occurrengewhere 3’ belongs to the slicing criterion.
Clearly,nn(3) is reachable from the slicing criterion in the EDDG. |2te encountered
at theith loop iteration of the slicing algorithm. According to Lemma B.0.6 and B.0.1,
B € i C s

Induction : Assume that a set of bytecode occurrengése ., which satisfy (1)
if nn(B") is reachable from the slicing criterion in the EDD@] is added into the rel-
evant slicep, because of slicing criterion or dynamic control/data dependencies, and (2)
if nn(5"”) is not reachable andn(5") is reachable from the slicing criterion, theH is
added into the relevant slige. because of potential dependencies.

Consider a bytecode occurrengewhich can be reached from the slicing criterion by
traversing only nodes of bytecode occurrenceg,inClearly,35’ € .., 8 is dynamically
control, or dynamically data, or potentially dependentdnLet 5 be encountered at the
ith loop iteration of the algorithm, an@ be encountered at thih loop iteration of the
algorithm. Becaus@ appears earlier thafi' during trace collection, backward traversal
of the trace will encountef after 5, i.e. j < i. Thus,3’ € ¢; C ¢;_1 according to
Lemma B.0.1. We now show that € ¢; according to the relevant slicing algorithm. In
particular, (1) ifnn(3) is reachable from the slicing criterion in the EDDG, thieis added
into the slice because of slicing criterion, or dynamic control/data dependencies, and (2) if
nn((3) is not reachable andin(3) is reachable from the slicing criterion, thgns added
into the slice because of potential dependencies. Note that the relevant slicing algorithm
check dynamic control/data, and potential dependencies in order. The following are three
possibilities:

I. if (1) there is a dynamic control dependence edge fromi3’) to nn(3), and (b)
nn(3’) is reachable from the slicing criterion, thghis added into the relevant slice
x because of slicing criterion or dynamic control/data dependencies, according to the
induction hypothesis. Thug, € ¢; and is added into the relevant slice. because
of dynamic control dependencies, since condition (2) of Lemma B.0.6 is satisfied.

II. if (a) condition of case | does not hold, and (b) there is a dynamic data dependence
edge from eithenn(8’) (dn(8’)) tonn(8), and (c)nn(5’) (dn(5")) is reachable from
the slicing criterion. Note that’ is in the slice. Sg? € ; andg is added into the
relevant slicep, because of dynamic data dependencies, since condition (3) of Lemma
B.0.6 is satisfied.
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lll. if (@) conditions of cases I-1l do not hold, and (2) there is a potential dependence edge
fromnn(8') (dn(5")) to dn(3), and (c)nn(5’) (dn(B")) is reachable from the slicing
criterion. Note that?’ is in the slice, so:

—nn(() is not reachable (due to the conditions for cases I-1l not being truejafit)
is reachable from slicing criterion

—( is added into the relevant slice. because of potential dependencies, are ¢;
since condition (4) of Lemma B.0.6 is satisfied.

In all possible cases, (1) ifn(3) is reachable from the slicing criterion in the EDDG,
then 3 is added into the slice because of slicing criterion, or dynamic control/data de-
pendencies, and (2) ifin(3) is not reachable andn(3) is reachable from the slicing
criterion, thens is added into the slice because of potential dependencies. Consequently,
0 € @i C .. This completes the proof.[]
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