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With the advent of multi-core architectures, worst case execution time (WCET) analysis has become an increasingly difficult

problem. In this paper, we propose a unified WCET analysis framework for multi-core processors featuring both shared

cache and shared bus. Compared to other previous works, our work differs by modeling the interaction of shared cache and

shared bus with other basic micro-architectural components (e.g. pipeline and branch predictor). In addition, our framework

does not assume a timing anomaly freemulti-core architecture for computing theWCET. A detailed experiment methodology

suggests that we can obtain reasonably tight WCET estimates in a wide range of benchmark programs.

1. INTRODUCTION

Hard real-time systems require absolute guarantees on program execution time. Worst case execu-
tion time (WCET) has therefore become an important problem to address. WCET of a program
depends on the underlying hardware platform. Therefore, to obtain a safe upper bound on WCET,
the underlying hardware need to be modeled. However, performance-enhancingmicro-architectural
features of a processor (e.g. cache, pipeline) make WCET analysis a very challenging task.
With the rapid growth of multi-core architectures, it is quite evident that the multi-core proces-

sors are soon going to be adopted for real-time system design. Although multi-core processors are
aimed for improving performance, they introduce additional challenges in WCET analysis. Multi-
core processors employ shared resources. Two meaningful examples of such shared resources are
shared caches and shared buses. The presence of a shared cache requires the modeling of inter-
core cache conflicts. On the other hand, the presence of a shared bus introduces variable bus ac-
cess latency to accesses to shared cache and shared main memory. The delay introduced by shared
cache conflict misses and shared bus accesses is propagated by different pipeline stages and af-
fects the overall execution time of a program. WCET analysis is further complicated by a com-
monly known phenomenon called timing anomalies [Lundqvist and Stenström 1999]. In the pres-
ence of timing anomalies, a local worst case scenario may not lead to the WCET of the overall
program. As an example, a cache hit rather than a cache miss may lead to the WCET of the en-
tire program. Therefore, we cannot always assume a cache miss or maximum bus delay as the
worst case scenario, as the assumptions are not just imprecise, but they may also lead to an un-
soundWCET estimation. A few solutions have been proposed which model the shared cache and/or
the shared bus ([Yan and Zhang 2008; Li et al. 2009; Chattopadhyay et al. 2010; Kelter et al. 2011;
Lv et al. 2010]) in isolation, but all of these previous solutions ignore the interactions of shared
resources with important micro-architectural features such as pipelines and branch predictors.
In this paper, we propose a WCET analysis framework for multi-core platforms featuring both

a shared cache and a shared bus. In contrast to previous work, our analysis can efficiently model
the interaction of the shared cache and bus with different other micro-architectural features (e.g.
pipeline, branch prediction). A few such meaningful interactions include the effect of shared cache
conflict misses and shared bus delays on the pipeline, the effect of speculative execution on the
shared cache etc. Moreover, our analysis framework does not rely on a timing-anomaly free archi-
tecture and gives a sound WCET estimate even in the presence of timing anomalies. In summary,
the central contribution of this paper is to propose a unified analysis framework that features most
of the basic micro-architectural components (pipeline, (shared) cache, branch prediction and shared
bus) in a multi-core processor.
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Our analysis framework deals with timing anomalies by representing the timing of each pipeline
stage as an interval. The interval covers all possible latencies of the corresponding pipeline stage.
The latency of a pipeline stage may depend on cache miss penalties and shared bus delays. On the
other hand, cache and shared bus analysis interact with the pipeline stages to compute the possible
latencies of a pipeline stage. Our analysis is context sensitive — it takes care of different procedure
call contexts and different micro-architectural contexts (i.e. cache and bus) when computing the
WCET of a single basic block. Finally, WCET of the entire program is formulated as an integer
linear program (ILP). The formulated ILP can be solved by any commercial solver (e.g. CPLEX) to
get the whole program’s WCET.
We have implemented our framework in an extended version of Chronos [Li et al. 2007], a freely

available, open-source, single-core WCET analysis tool. To evaluate our approach, we have also
extended a cycle-accurate simulator [Austin et al. 2002] with both shared cache and shared bus
support. Our experiments with moderate to large size benchmarks from [Gustafsson et al. 2010]
show that we can obtain tight WCET estimates for most of the benchmarks in a wide range of
micro-architectural configurations.

2. RELATED WORK

WCET analysis in single core. Research in single-core WCET analysis has started a few decades
ago. Initial works used only integer linear programming (ILP) for both micro-architecturalmodeling
and path analysis [Li et al. 1999]. However, the work proposed in [Li et al. 1999] faces scalability
problems due to the explosion in number of generated ILP constraints. In [Theiling et al. 2000], a
novel approach has been proposed, which employs abstract interpretation for micro-architectural
modeling and ILP for path analysis. Subsequently, an iterative fixed-point analysis has been pro-
posed in [Li et al. 2006] for modeling advanced micro-architectural features such as out-of-order
and superscalar pipelines. The pipeline analysis proposed in [Li et al. 2006] has later been extended
to consider parametric execution context in [Rochange and Sainrat 2009]. An ILP-based modeling
of branch predictors has been proposed, among others, in [Li et al. 2005] and the work has later
been extended by [Maiza and Rochange 2011] to automatically generate models for different dy-
namic branch prediction schemes. Our baseline framework is built upon the techniques proposed in
[Li et al. 2006; Li et al. 2005].

Timing analysis of shared cache. Although there has been a significant progress in single-
core WCET analysis research, little has been done so far in WCET analysis for multi-cores.
Multi-core processors employ shared resources (e.g. shared cache, shared bus), which gives
rise to a new problem for modeling inter-core conflicts. A few solutions have already been
proposed for analyzing a shared cache [Yan and Zhang 2008; Li et al. 2009; Hardy et al. 2009].
All of these approaches extend the abstract interpretation based cache analysis proposed in
[Theiling et al. 2000]. However, in contrast to our proposed framework, these approaches model
the shared cache in isolation, assume a timing-anomaly-free architecture and ignore the interac-
tion of shared cache with different other micro-architectural features (e.g. pipeline and branch pre-
diction). A recent approach [Chattopadhyay and Roychoudhury 2011] has enhanced the abstract
interpretation based shared cache analysis with a gradual and controlled use of model checking.
In [Chattopadhyay and Roychoudhury 2011], abstract interpretation is used as a baseline analysis.
Subsequently, a model checking pass is applied to improve the result generated by abstract in-
terpretation. Since abstract interpretation is inherently path insensitive, it generates some spurious
cache conflicts due to the presence of infeasible program paths. However, due to the path sensi-
tive search process employed by a model checker, it eliminates certain spurious shared cache con-
flicts that can never be realized in any real execution. [Chattopadhyay and Roychoudhury 2011]
does not model the shared bus and any improvement generated by the approach proposed in
[Chattopadhyay and Roychoudhury 2011] will directly improve the precision of WCET prediction
using our framework.
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Timing analysis of shared bus. Shared bus analysis introduces several difficulties in accurately
analyzing the variable bus delay. It has been shown in [Wilhelm et al. 2009] that a time division
multiple access (TDMA) schemewould be useful forWCET analysis due to its statically predictable
nature. Subsequently, the analysis of TDMAbased shared bus was introduced in [Rosen et al. 2007].
In [Rosen et al. 2007], it has been shown that a statement inside a loop may exhibit different
bus delays in different iterations. Therefore, all loop iterations are virtually unrolled for accu-
rately computing the bus delays of a memory reference inside loop. As loop unrolling is some-
times undesirable due to its inherent computational complexity, [Chattopadhyay et al. 2010] pro-
posed a TDMA bus analysis technique which analyzes the loop without unrolling it. However,
[Chattopadhyay et al. 2010] requires some fixed alignment cost for each loop iteration. Such a
loop alignment ensures that a particular memory reference inside the loop suffers exactly the
same bus delay in any iteration. The analysis proposed in [Chattopadhyay et al. 2010] is fast,
as it avoids loop unrolling, however imprecise due to the alignment cost added for each loop
iteration. Finally, [Kelter et al. 2011] proposes an efficient TDMA-based bus analysis technique
which avoids full loop unrolling, but it is almost as precise as [Rosen et al. 2007]. The analy-
sis time in [Kelter et al. 2011] significantly improves compared to [Rosen et al. 2007]. However,
none of the works ([Rosen et al. 2007; Chattopadhyay et al. 2010; Kelter et al. 2011]) model the
interaction of shared bus with pipeline and branch prediction. Additionally, [Rosen et al. 2007]
and [Chattopadhyay et al. 2010] assume a timing-anomaly-free architecture. A recent approach
[Lv et al. 2010] has combined abstract interpretation and model checking for WCET analysis in
multi-cores. The micro-architecture analyzed by [Lv et al. 2010] contains a private cache for each
core and it has a shared bus connecting all the cores to access main memory. The framework uses ab-
stract interpretation ([Theiling et al. 2000]) for analyzing the private cache and it uses model check-
ing to analyze the shared bus. However, [Lv et al. 2010] ignores the interaction of shared bus with
pipeline and branch prediction. It is also unclear whether the proposed framework would remain
scalable in the presence of shared cache and other micro-architectural features (e.g. pipeline).

Time predictable micro-architecture and execution model. To eliminate the problem of pes-
simism in multi-core WCET analysis, researchers have proposed predictable multi-core ar-
chitectures [Paolieri et al. 2009a] and predictable execution models by code transformations
[Pellizzoni et al. 2011]. The work in [Paolieri et al. 2009a] proposes several micro-architectural
modifications (e.g. shared cache partitioning among cores, TDMA round robin bus) so that the
existing WCET analysis methodologies for single cores can be adopted for analyzing the hard real-
time software running on such system. On the other hand, [Pellizzoni et al. 2011] proposes compiler
transformations to partition the original program into several time-predictable intervals. Each such
interval is further partitioned into memory phase (where memory blocks are prefetched into cache)
and execution phase (where the task does not suffer any last level cache miss and it does not gen-
erate any traffic to the shared bus). As a result, any other bus traffic scheduled during the execution
phases of all other tasks does not suffer any additional delay due to the bus contention. We argue
that the above mentioned approaches are orthogonal to the idea of this paper and our idea in this
paper can be used to pinpoint the sources of overestimation in multi-core WCET analysis.
In summary, there has been little progress on multi-coreWCET analysis bymodeling the different

micro-architectural components (e.g. shared cache, shared bus) in isolation. Our work differs from
all previous works by proposing a unified framework, which is able to analyze the most basic micro-
architectural components and their interactions in a multi-core processor.

3. BACKGROUND

In this section, we introduce the basic background behind our WCET analysis framework. Our
WCET analysis framework for multi-core is based on the pipeline modeling of [Li et al. 2006].

Pipeline modeling through execution graphs. The central idea of pipeline modeling revolves
around the concept of the execution graph [Li et al. 2006]. The execution graph is constructed for
each basic block in the program control flow graph (CFG). For each instruction in the basic block,
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the corresponding execution graph contains a node for each of the pipeline stages. We assume a five
stage pipeline — instruction fetch (IF), decode (ID), execution (EX), write back (WB) and commit
(CM). Edges in the execution graph capture the dependencies among pipeline stages; either due
to resource constraints (instruction fetch queue size, reorder buffer size etc.) or due to data depen-
dency (read after write hazard). The timing of each node in the execution graph is represented by
an interval, which covers all possible latencies suffered by the corresponding pipeline stage.

Figure 1 shows a snippet of assembly code
IF

IF

IF

IF

IF

ID

ID

ID

ID

ID

EX

EX

EX

EX

EX

WB

WB

WB

WB

WB

CM

CM

CM

CM

CM

I2

I1

I3

I4

I5

mult r1 r7 r8

mult r1 r2 r3

mult r4 r5 r6

add r2 r1 r2

add r9 r1 r6

I1:

I2:

I3:

I4:

I5:

Fig. 1. Execution graph for the example program in a 2-way
superscalar processor with 2-entry instruction fetch queue and
4-entry reorder buffer. Solid edges show the dependency be-
tween pipeline stages, whereas the dotted edges show the con-
tention relation

and the corresponding execution graph. The
example assumes a 2-way superscalar proces-
sor with 2-entry instruction fetch queue (IFQ)
and 4-entry reorder buffer (ROB). Since the
processor is a 2-way superscalar, instruction
I3 cannot be fetched before the fetch of I1 fin-
ishes. This explains the edge between IF nodes
of I1 and I3. On the other hand, since IFQ size
is 2, IF stage of I3 cannot start before ID stage
of I1 finishes (edge between ID stage of I1 and
IF stage of I3). Note that I3 is data dependent
on I1 and similarly, I5 is data dependent on I4.

Therefore, we have edges from WB stage of I1 to EX stage of I3 and also from WB stage of I4 to
EX stage of I5. Finally, as ROB size is 4, I1 must be removed from ROB (i.e. committed) before I5
can be decoded. This explains the edge from CM stage of I1 to ID stage of I5.
A dotted edge in the execution graph (e.g. the edge between EX stage of I2 and I4) represents

contention relation (i.e. a pair of instructions which may contend for the same functional unit).
Since I2 and I4 may contend for the same functional unit (multiplier), they might delay each other
due to contention. The pipeline analysis is iterative. Analysis starts without any timing information
and assumes that all pairs of instructions which use same functional units and can coexist in the
pipeline, may contend with each other. In the example, therefore, the analysis starts with {(I1,I2),
(I2,I4), (I1,I4), (I3,I5)} in the contention relation. After one iteration, the timing information of each
pipeline stage is obtained and the analysis may rule out some pairs from the contention relation if
their timing intervals do not overlap. With this updated contention relation, the analysis is repeated
and subsequently, a refined timing information is obtained for each pipeline stage. Analysis is ter-
minated when no further elements can be removed from the contention relation. WCET of the code
snippet is then given by the worst case completion time of the CM node for I5.

4. OVERVIEW OF OUR ANALYSIS

Figure 2 gives an overview of our analysis framework. Each processor core is analyzed at a time
by taking care of the inter-core conflicts generated by all other cores. Figure 2 shows the analysis
flow for some program A running on a dedicated processor core. The overall analysis can broadly
be classified into two separate phases: 1) micro-architectural modeling and 2) path analysis. In
micro-architecturalmodeling, the timing behavior of different hardware components is analyzed (as
shown by the big dotted box in Figure 2). We use abstract interpretation (AI) based cache analysis
[Theiling et al. 2000] to categorize memory references as all-hit (AH) or all-miss (AM) in L1 and
L2 cache. A memory reference is categorized AH (AM) if the resulting access is always a cache hit
(miss). If a memory reference cannot be categorized as AH or AM, it is categorized as unclassified
(NC). In the presence of a shared L2 cache, categorization of a memory reference may change from
AH to NC due to the inter-core conflicts [Li et al. 2009].
Moreover, as shown in Figure 2, L1 and L2 cache analysis has to consider the effect of speculative

execution when a branch instruction is mispredicted (refer to Section 7 for details). Similarly, the
timing effects generated by the mispredicted instructions are also taken into account during the
iterative pipeline modeling (refer to [Li et al. 2006] for details). The shared bus analysis computes
the bus context under which an instruction can execute. The outcome of cache analysis and shared
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Fig. 2. Overview of our analysis framework

bus analysis is used to compute the latency of different pipeline stages during the analysis of the
pipeline (refer to Section 5 for details). Pipeline modeling is iterative and it finally computes the
WCET of each basic block. WCET of the entire program is formulated as maximizing the objective
function of a single integer linear program (ILP). WCETs of individual basic blocks are used to
construct the objective function of the formulated ILP. The constraints of the ILP are generated
from the structure of the program’s control flow graph (CFG), micro-architecturalmodeling (branch
predictor and shared bus) and additional user-given constraints (e.g. loop bounds). The modeling of
the branch predictor generates constraints to bound the execution count of mispredicted branches
(for details refer to [Li et al. 2005]). On the other hand, constraints generated for bus contexts bound
the execution count of a basic block under different bus contexts (for details, refer to Section 6).
Path analysis finds the longest feasible program path from the formulated ILP through implicit path
enumeration (IPET). Any ILP solver (e.g. CPLEX) can be used for IPET and for deriving the whole
program’s WCET.

System and application model. We assume a multi-core processor with each core having a private
L1 cache. Additionally, multiple cores share a L2 cache. The extension of our framework for more
than two levels of caches is straightforward. If a memory block is not found in L1 or L2 cache, it
has to be fetched from the main memory. Any memory transaction to L2 cache or main memory
has to go through a shared bus. For shared bus, we assume a TDMA-based round robin arbitration
policy, where a fixed length bus slot is assigned to each core. We also assume fully separated caches
and buses for instruction and data memory. Therefore, the data references do not interfere with
the instruction references. In this work, we only model the effect of instruction caches. However,
the data cache effects can be considered in a similar fashion. Since we consider only instruction
caches, the cache miss penalty (computed from cache analysis) directly affects the instruction fetch
(IF) stage of the pipeline. We do not consider self modifying code and therefore, we do not need
to model the coherence traffic. Finally, we consider the LRU cache replacement policy and non-
inclusive caches only. Later in Section 11 and in Section 12, we shall extend our framework for
FIFO cache replacement policy and we shall also discuss the extension of our framework for other
cache replacement policies (e.g. PLRU), other cache hierarchies (e.g. inclusive) and data caches.

5. INTERACTION OF SHARED RESOURCES WITH PIPELINE

Let us assume each node i in the execution graph is annotated with the following timing parameters,
which are computed iteratively:

— earliest[treadyi ], earliest[tstarti ], earliest[tfinishi ] : Earliest ready, earliest start and earliest finish
time of node i, respectively.

— latest[treadyi ], latest[tstarti ], latest[tfinishi ] : Latest ready, latest start and latest finish time of
node i, respectively.
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For each pipeline stage i, earliest[treadyi ] and earliest[tstarti ] are initialized to zero, whereas,

earliest[tfinishi ] is initialized to the minimum latency suffered by the pipeline stage i. On the other

hand, latest[treadyi ], latest[tstarti ] and latest[tfinishi ] are all initialized to∞ for each pipeline stage

i. The active time span of node i can be captured by the interval [earliest[treadyi ], latest[tfinishi ]].
Therefore, each node of the execution graph is initialized with a timing interval [0,∞].
Pipeline modeling is iterative. The iterative analysis starts with the coarse interval [0,∞] for each

node and subsequently, the interval is tightened in each iteration. The computation of a precise
interval takes into account the analysis result of caches and shared bus. The iterative analysis elim-
inates certain infeasible contention among the pipeline stages in each iteration, thereby leading to
a tighter timing interval after each iteration. The iterative analysis starts with a contention relation.
Such a contention relation contains pairs of instructions which may potentially delay each other due
to contention. Initially, all possible pairs of instructions are included in the contention relation and
after each iteration, pairs of instructions whose timing intervals do not overlap, are removed from
this relation. If the contention relation does not change in some iteration, the iterative analysis ter-
minates. Since the number of instructions in a basic block is finite, the contention relation contains
a finite number of elements and in each iteration, at least one element is removed from the relation.
Therefore, this analysis is guaranteed to terminate. Moreover, if the contention relation does not
change, the timing interval of each node reaches a fixed-point after the analysis terminates. In the
following, we shall discuss how the presence of a shared cache and a shared bus affects the timing
information of different pipeline stages.

5.1. Interaction of shared cache with pipeline

Let us assume CHMCL1
i (CHMCL2

i ) denotes the AH/AM/NC cache hit-miss classification of an
IF node i in L1 (shared L2) cache. Further assume that Ei denotes the possible latencies of an IF
node i without considering any shared bus delay. Ei can be defined as follows:

Ei =



































1, if CHMCL1

i = AH ;

LATL1 + 1, if CHMCL1

i = AM ∧ CHMCL2

i = AH ;

LATL1 + LATL2 + 1, if CHMCL1

i = AM ∧ CHMCL2

i = AM ;

[LATL1 + 1, LATL1 + LATL2 + 1], if CHMCL1

i = AM ∧ CHMCL2

i = NC;

[1, LATL1 + 1], if CHMCL1

i = NC ∧ CHMCL2

i = AH ;

[1, LATL1 + LATL2 + 1], otherwise.

(1)

where LATL1 and LATL2 represent the fixed L1 and L2 cache miss latencies respectively. Note
that the interval-based representation captures the possibilities of both a cache hit and a cache miss
in case of an NC categorized cache access. Therefore, the computation of Ei can also deal with the
architectures that exhibit timing anomalies.

5.2. Interaction of shared bus with pipeline

Let us assume that we have a total of C cores and the TDMA-based round robin scheme assigns a
slot length Sl to each core. Therefore, the length of one complete round is SlC. We begin with the
following definitions which are used throughout the paper:

Definition 5.1. (TDMA offset) A TDMA offset at a particular time T is defined as the relative
distance of T from the beginning of the last scheduled round. Therefore, at time T , the TDMA
offset can be precisely defined as T mod SlC.

Definition 5.2. (Bus context) A Bus context for a particular execution graph node i is defined as
the set of TDMA offsets reaching/leaving the corresponding node. For each execution graph node
i, we track the incoming bus context (denotedOin

i ) and the outgoing bus context (denoted Oout
i ).
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Fig. 3. Computation of outgoing and incoming bus contexts. (a) Computation of outgoing bus context for IF/ID/WB/CM
pipeline stages; (b) computation of outgoing bus context for an EX pipeline stage, the outgoing bus context must take into
account the resource contention; (c) computation of incoming bus context to pipeline stage i, since pipeline stage 2 always
finishes after pipeline stage 1, the outgoing bus context from pipeline stage 1 (i.e. Oout

1
= S1) cannot be propagated to

pipeline stage i

.
For a task executing in core p (where 0 ≤ p < C), latest[tfinishi ] and earliest[tfinishi ] are

computed for an IF execution graph node i as follows:

latest[tfinishi ] = latest[tstarti ] +max latp(O
in
i , Ei) (2)

earliest[tfinishi ] = earliest[tstarti ] +min latp(O
in
i , Ei) (3)

Note that max latp, min latp are not constants and depend on the incoming bus context (Oin
i )

and the set of possible latencies of IF node i (Ei) in the absence of a shared bus. max latp and
min latp are defined as follows:

max latp(O
in
i , Ei) =

{

1, if CHMCL1
i = AH ;

max
o∈Oin

i
,t∈Ei

∆p(o, t), otherwise. (4)

min latp(O
in
i , Ei) =

{

1, if CHMCL1
i 6= AM ;

min
o∈Oin

i
,t∈Ei

∆p(o, t), otherwise. (5)

In the above,Ei represents the set of possible latencies of an IF node i in the absence of shared bus
delay (refer to Equation 1). Given a TDMA offset o and latency t in the absence of shared bus delay,
∆p(o, t) computes the total delay (including shared bus delay) faced by the IF stage of the pipeline.
∆p(o, t) can be defined as follows (similar to [Chattopadhyay et al. 2010] or [Kelter et al. 2011]):

∆p(o, t) =







t, if pSl ≤ o+ t ≤ (p+ 1)Sl;

t+ pSl − o, if o < pSl;

t+ (C + p)Sl − o, otherwise.

(6)

In the following, we shall now show the computation of incoming and outgoing bus contexts (i.e.
Oin

i and Oout
i respectively) for an execution graph node i.

Computation of Oout
i from Oin

i . The computation of Oout
i depends on Oin

i , on the possible la-
tencies of execution graph node i (including shared bus delay) and on the contention suffered by
the corresponding pipeline stage. In the modeled pipeline, inorder stages (i.e. IF, ID, WB and CM)
do not suffer from contention. But the out-of-order stage (i.e. EX stage) may experience contention
when it is ready to execute (i.e. operands are available) but cannot start execution due to the un-
availability of a functional unit. Worst case contention period of an execution graph node i can be
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denoted by the term latest[tstarti ] − latest[treadyi ]. For best case computation, we conservatively
assume the absence of contention. Therefore, for a particular core p (0 ≤ p < C), we computeOout

i

from the value of Oin
i as follows:

Oout
i =











u(Oin
i , Ei + [0, latest[tstarti ]− latest[treadyi ]]), if i = EX ;

u(Oin
i ,

⋃

o∈Oin

i
,t∈Ei

∆p(o, t)), if i = IF ;

u(Oin
i , Ei), otherwise.

(7)

Here, u denotes the update function on TDMA offset set with a set of possible latencies of node i
and is defined as follows:

u(O,X) =
⋃

o∈O,t∈X

{(o+ t) mod SlC} (8)

Figure 3(a) and Figure 3(b) capture the computation of outgoing bus context from a non-
EX pipeline stage and an EX pipeline stage, respectively. Note that Ei + [0, latest[tstarti ] −

latest[treadyi ]] captures all possible latencies suffered by the execution graph node i, taking care
of contentions as well. Therefore, Oout

i captures all possible TDMA offsets exiting node i, when
the same node is entered with bus context Oin

i . More precisely, assuming that Oin
i represents an

over-approximation of the incoming bus context at node i, the computation by Equation 7 ensures
that Oout

i represents an over-approximation of the outgoing bus context from node i.

Computation of Oin
i . The value of Oin

i depends on the value of Oout
j , where j is a predeces-

sor of node i in the execution graph. If pred(i) denotes all the predecessors of node i, clearly,
∪j∈pred(i)O

out
j gives a sound approximation ofOin

i . However, it is important to observe that not all
predecessors in the execution graph can propagate TDMA offsets to node i. Recall that the edges
in the execution graph represent dependency (either due to resource constraints or due to true data
dependences). Therefore, node i in the execution graph can only start when all the nodes in pred(i)
have finished. Consequently, the TDMA offsets are propagated to node i only from the predecessor
j, which finishes immediately before i is ready. Nevertheless, our static analyzer may not be able to
compute a single predecessor that propagates TDMA offsets to node i. However, for two arbitrary

execution graph nodes j1 and j2, if we can guarantee that earliest[tfinishj2 ] > latest[tfinishj1 ], we

can also guarantee that j2 finishes later than j1. Figure 3(c) demonstrates the computation of Oin
i

from the outgoing bus contexts of three predecessors. Formally, the computation of Oin
i captures

the following property:

Oin
i =

⋃

{Oout
j | j ∈ pred(i) ∧ earliest[tfinishpmax ] ≤ latest[tfinishj ]} (9)

where pmax is a predecessor of i such that latest[tfinishpmax ] = maxj∈pred(i) latest[t
finish
j ]. There-

fore,Oin
i captures all possible outgoing TDMA offsets from the predecessor nodes that are possibly

finished latest. Given that the value of Oout
j is an over-approximation of the outgoing bus context

for each predecessor j of i, Equation 9 gives an over-approximation of the incoming bus context at
node i. Finally, Equation 7 and Equation 9 together ensure a sound computation of the bus contexts
at the entry and exit of each execution graph node.

6. WCET COMPUTATION UNDER MULTIPLE BUS CONTEXTS

6.1. Execution context of a basic block

Computing bus context without loops. In the previous section, we have discussed the pipeline
modeling of a basic block B in isolation. However, to correctly compute the execution time of B,
we need to consider 1) contentions (for functional units) and data dependencies among instructions
prior toB and instructions inB; 2) contentions among instructions afterB and instructions inB. Set
of instructions before (after) B which directly affect the execution time of B is called the prologue
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(epilogue) of B [Li et al. 2006]. B may have multiple prologues and epilogues due to the presence
of multiple program paths. However, the size of any prologue or epilogue is bounded by the total size
of IFQ and ROB. To distinguish the execution contexts of a basic blockB, execution graphs are con-
structed for each possible combination of prologues and epilogues of B. Each execution graph ofB
contains the instructions fromB itself (called body) and the instructions from one possible prologue
and epilogue. Assume we compute the incoming (outgoing) bus context Oin

i (p, e) (Oout
i (p, e)) at

body node i for prologue p and epilogue e (using the technique described in Section 5). After
we finish the analysis of B for all possible combinations of prologues and epilogues, we compute
an over-approximation of Oin

i (Oout
i ) by merge operation as follows: Oin

i =
⋃

p,eO
in
i (p, e) and

Oout
i =

⋃

p,eO
out
i (p, e). Clearly, Oin

i (Oout
i ) captures an over-approximation of the bus context at

the entry (exit) of node i, irrespective of any prologue or epilogue of B.

Computing bus context in the presence of loops. In the presence of loops, a basic block can be ex-
ecuted with different bus contexts at different loop iterations. The bus contexts at different iterations
depend on the set of instructions which can propagate TDMA offsets across loop iterations.
For each loop l, we compute two sets

instructions

inside the 

Body 

loop

Instructions

outside of 

loop

Prologue 

instructions

from previous

iterations of
loop

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

IF ID EX WB CM

π
out

l

π
in

l
nodes

nodes

Fig. 4. πin

l
and πout

l
nodes shown with the example of a sample

execution graph. πin

l
nodes propagate bus contexts across iterations,

whereas, πout

l
nodes propagate bus contexts outside of loop.

of nodes — πin
l and πout

l . πin
l are the

set of pipeline stages which can prop-
agate TDMA offsets across iterations,
whereas, πout

l are the set of pipeline
stages which could propagate TDMA
offsets outside of the loop. Therefore,
πin
l corresponds to the pipeline stages

of instructions inside l which resolve
loop carried dependency (due to re-
source constraints, pipeline structural
constraints or true data dependency).
On the other hand, πout

l corresponds to
the pipeline stages of instructions in-
side l which resolve the dependency
of instructions outside of l. Figure 4
demonstrates the πout

l and πin
l nodes

for a sample execution graph.
The bus context at the entry of all

non-first loop iterations can be captured as (Oin
x1, O

in
x2, . . . , O

in
xn) where πin

l = {x1, x2, . . . , xn}.
The bus context at the first iteration is computed from the bus contexts of instructions prior to l
(using the technique described in Section 5). Finally, Oout

xi for any xi ∈ πout
l can be responsible for

affecting the execution time of any basic block outside of l.

6.2. Bounding the execution count of a bus context

Foundation. As discussed in the preceding, a basic block inside some loop may execute un-
der different bus contexts. For all non-first iterations, a loop l is entered with bus context
(Oin

x1, O
in
x2, . . . , O

in
xn) where {x1, x2, . . . , xn} are the set of πin

l nodes as described in Figure 4.
These bus contexts are computed during an iterative analysis of the loop l (described below). On
the other hand, the bus context at the first iteration of l is a tuple of TDMA offsets propagated from
outside of l to some pipeline stage inside l. Note that the bus context at the first iteration of l is
computed by following the general procedure as described in Section 5.
In this section, we shall show how the execution count of different bus contexts can be bounded

by generating additional ILP constraints. These additional constraints are added to a global ILP
formulation to find the WCET of the entire program. We begin with the following notations:

Ωl. The set of all bus contexts that may reach loop l in any iteration.
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Ωs
l . The set of all bus contexts that may reach loop l at first iteration. Clearly,Ωs

l ⊆ Ωl. Moreover,
if l is contained inside some outer loop, l would be invoked more than once. As a result, Ωs

l may
contain more than one element. Note that Ωs

l can be computed as a tuple of TDMA offsets propa-
gated from outside of l to some pipeline stage inside l. Therefore, Ωs

l can be computed during the
procedure described in Section 5. If l is an inner loop, an element of Ωs

l is computed (as described
in Section 5) for each analysis invocation of the loop immediately enclosing l.

Gs
l . For each s0 ∈ Ωs

l , we build a flow graph Gs
l = (V s

l , F
s
l ) where V

s
l ⊆ Ωl. The graph Gs

l

captures the transitions among different bus contexts across loop iterations. An edge fw1→w2
=

(w1, w2) ∈ F s
l exists (where w1, w2 ∈ Ωl) if and only if l can be entered with bus context w1 at

some iteration n and with bus context w2 at iteration n+ 1. Note that Gs
l cannot be infinite, as we

have only finitely few bus contexts that are the nodes of Gs
l .

Mw
l . Number of times the body of loop l is entered with bus context w ∈ Ωl in any iteration.

Mw1→w2

l . Number of times l can be entered with bus context w1 at some iteration n and with
bus context w2 at iteration n+ 1 (where w1, w2 ∈ Ωl). Clearly, if fw1→w2

/∈ F s
l for any flow graph

Gs
l ,M

w1→w2

l = 0.

Construction ofGs
l . For each loop l and for each s0 ∈ Ωs

l , we construct a flow graphGs
l . Initially,

Gs
l contains a single node representing bus context s0 ∈ Ωs

l . After analyzing all the basic blocks
inside l (using the technique described in Section 5), we may get a new bus context at some node
i ∈ πin

l (recall that πin
l are the set of execution graph nodes that may propagate bus context across

loop iterations). As a byproduct of this process, we also get the WCET of all basic blocks inside l
when the body of l is entered with bus context s0. Let us assume that for any s ∈ Ωl\Ω

s
l and i ∈ πin

l ,

s(i) represents the bus context Oin
i . Suppose we get a new bus context s1 ∈ Ωl after analyzing the

body of l once. Therefore, we add an edge from s0 to s1 in Gs
l . We continue expanding Gs

l until

sn(i) ⊆ sk(i) for all i ∈ πin
l and for some 1 ≤ k ≤ n − 1 (where sn ∈ Ωl represents the bus

context at the entry of l after it is analyzed n times). In this case, we finish the construction of Gs
l

by adding a backedge from sn−1 to sk. We also stop expanding Gs
l if we have expanded as many

times as the relative loop bound of l. Note that Gs
l contains at least two nodes, as the bus context at

first loop iteration is always distinguished from the bus contexts in any other loop iteration.
It is worth mentioning that the construction of Gs

l is much less computationally intensive than a
full unrolling of l. The bus context at the entry of l quickly reaches a fixed-point and we can stop
expandingGs

l . In our experiments, we found that the number of nodes inGs
l never exceeds ten. For

very small loop bounds (typically less than 5), the construction of Gs
l continues till the loop bound.

For larger loop bounds, most of the time, the construction of Gs
l reaches the diverged bus context

[0, . . . , SlC − 1] quickly (in less than ten iterations). As a result, through a small node count in Gs
l ,

we are able to avoid the computationally intensive unrolling of every loop.

Generating separate ILP constraints. Using each flow graph Gs
l for loop l, we generate ILP

constraints to distinguish different bus contexts under which a basic block can be executed. In an
abuse of notation, we shall use w.i to denote that the basic block i is reached with bus context
w.i when the immediately enclosing loop of i is reached with bus context w in any iteration. The
following ILP constraints are generated to bound the value ofMw

l :

∀w ∈ Ωl :
∑

x∈Ωl

Mx→w
l = Mw

l ; Mw
l − 1 ≤

∑

x∈Ωl

Mw→x
l ≤ Mw

l (10)

∑

w∈Ωl

Mw
l = Nl.h (11)

where Nl.h denotes the number of times the header of loop l is executed. Equation 10 generates
standard flow constraints from each graphGs

l , constructed for loop l. Special constraints need to be
added for the bus contexts with which the loop is entered at the first iteration and at the last iteration.
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Ifw is a bus context with which loop l is entered at the last iteration,Mw
l is more than the execution

count of outgoing flows (i.e. Mw→x
l ). Equation 10 takes this special case into consideration. On

the other hand, Equation 11 bounds the aggregate execution count of all possible contexts w ∈ Ωl

with the total execution count of the loop header. Note thatNl.h will further be involved in defining
the CFG structural constraints, which relate the execution count of a basic block with the execution
count of its incoming and outgoing edges [Theiling et al. 2000]. Equations 10-11 do not ensure that
whenever loop l is invoked, the loop must be executed at least once with some bus context in Ωs

l .
We add the following ILP constraints to ensure this:

∀w ∈ Ωs
l : Mw

l ≥ Nw.h
l.h (12)

Here Nw.h
l.h denotes the number of times the header of loop l is executed with bus context w. The

value of Nw.h
l.h is further bounded by the CFG structural constraints.

The constraints generated by Equations 10-12 are sufficient to derive the WCET of a basic block
in the presence of non-nested loops. In the presence of nested loops, however, we need additional
ILP constraints to relate the bus contexts at different loop nests. Assume that the loop l is enclosed
by an outer loop l′. For each w′ ∈ Ωl′ , we may get a different element s0 ∈ Ωs

l and consequently, a
differentGs

l = (V s
l , E

s
l ) for loop l. Therefore, we have the following ILP constraints for each flow

graphGs
l :

∀Gs
l = (V s

l , E
s
l ) :

∑

w∈V s

l

Mw
l ≤ boundl ∗ (

∑

w′∈parent(Gs

l
)

Mw′

l′ ) (13)

where boundl represents the relative loop bound of l and parent(G
s
l ) denotes the set of bus contexts

in Ωl′ for which the flow graph Gs
l is constructed at loop l. The left-hand side of Equation 13

accumulates the execution count of all bus contexts in the flow graphGs
l . The total execution count

of all bus contexts in V s
l is bounded by boundl, for each construction ofG

s
l (as boundl is the relative

loop bound of l). Since Gs
l is constructed

∑

w′∈parent(Gs

l
) M

w′

l′ times, the total execution count of

all bus contexts in V s
l is bounded by the right hand side of Equation 13.

Finally, we need to bound the execution count of any basic block i (immediately enclosed by loop
l), with different bus contexts. We generate the following two constraints to bound this value:

∑

w∈Ωl

Nw.i
i = Ni (14)

∀w ∈ Ωl : Nw.i
i ≤ Mw

l (15)

where Ni represents the total execution count of basic block i and Nw.i
i represents the execution

count of basic block i with bus context w.i. Equation 15 tells the fact that basic block i can execute
with bus contextw.i at some iteration of l only if l is reached with bus contextw at the same iteration
(by definition). Ni will be further constrained through the structure of program’s CFG, which we
exclude in our discussion.

Computing bus contexts at loop exit. To derive the WCET of the whole program, we need to
estimate the bus context exiting a loop l (sayOexit

l ). A recently proposed work ([Kelter et al. 2011])

has shown the computation of Oexit
l without a full loop unrolling. In this paper, we use a similar

technique as in [Kelter et al. 2011] with one important difference: In [Kelter et al. 2011], a single
offset graph Goff is maintained, which tracks the outgoing bus context from each loop iteration.

Once Goff got stabilized, a separate ILP formulation on Goff derives the value of Oexit
l . In the

presence of pipelined architectures,Oout
i for any i ∈ πout

l could be responsible for propagating bus
context outside of l (refer to Figure 4). Therefore, a separate offset graph is maintained for each
i ∈ πout

l (say Gi
off ) and an ILP formulation for each Gi

off can derive an estimation of the bus

context exiting the loop (say Oexit
i ). In [Kelter et al. 2011], it has been proved that the computation

of Oexit
l is always an over-approximation (i.e. sound). Given that the value of each Oout

i is sound,
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it is now straightforward to see that the computation of each Oexit
i is also sound. For details of this

analysis, readers are further referred to [Kelter et al. 2011].

7. EFFECT OF BRANCH PREDICTION

Presence of branch prediction introduces additional complexity in WCET computation. If a con-
ditional branch is mispredicted, the timing of the mispredicted instructions need to be computed.
Mispredicted instructions introduce additional conflicts in L1 and L2 cache which need to be mod-
eled for a sound WCET computation. Similarly, branch misprediction will also affect the bus delay
suffered by the subsequent instructions. In the following, we shall describe how our framework
models the interaction of branch predictor with caches and bus. It is important to note that the
speculation also impacts the timing of different pipeline stages. Our proposed multi-core WCET
analysis framework is based on the work proposed in [Li et al. 2006], which considers the timing
effects into pipeline due to speculation by augmenting the execution graph along wrong path exe-
cution (i.e. along the mispredicted branch path). As the central theme of this paper is to discuss the
WCET analysis in multi-core, we shall only discuss the impact of speculation on (shared) caches
and bus. For timing interactions that are not specific to multi-core (e.g. timing interactions between
speculation and pipeline), we refer to our previous work [Li et al. 2006].

Effect on cache for speculative execution. We assume that there could be at most one unresolved
branch at a time. Therefore, the number of mispredicted instructions is bounded by the number of
instructions till the next branch as well as the total size of instruction fetch queue and reorder buffer.

Abstract-interpretation-based cache

acsout
j

= Join(acsout
j , acsout

spec)

acsout
j

acsout
spec

acsout
spec

acsin
i

acsin
i = acsout

spec

(a) (b) (c)

j j j

i i i

acsin
i = acsout

j

Speculated
instructions

Fig. 5. Computation of acsin
i

when the edge (a) j → i is correctly
predicted, and (b) when the edge j → i is mispredicted, (c) A safe

approximation of acsin
i

by considering both correct and incorrect pre-
diction of edge j → i.

analysis produces a fixed point on ab-
stract cache content at the entry (de-
noted as ACSin

i ) and at the exit (de-
noted as ACSout

i ) of each basic block
i. If a basic block i has multiple prede-
cessors, output cache states of the pre-
decessors are joined to produce the in-
put cache state of basic block i. Con-
sider an edge j → i in the program’s
CFG. If j → i is an unconditional edge,
computation of ACSin

i does not re-
quire any change. However, if j → i is
a conditional edge, the condition could

be correctly or incorrectly predicted during the execution. For a correct prediction, the cache state
ACSin

i is still sound. On the other hand, for incorrect prediction, ACSin
i must be updated with

the memory blocks accessed at the mispredicted path. We assume that there could be at most one
unresolved branch at a time. Therefore, the number of mispredicted instructions is bounded by the
number of instructions till the next branch as well as the total size of instruction fetch queue and
reorder buffer. To maintain a safe cache state at the entry of each basic block i, we join the two
cache states arising due to the correct and incorrect predictions of conditional edge j → i. We
demonstrate the entire scenario through an example in Figure 5. In Figure 5, we demonstrate the
procedure for computing the abstract cache state at the entry of a basic block i. Basic block i is con-
ditionally reached from basic block j. To compute a safe cache content at the entry of basic block
i, we combine two different possibilities —- one when the respective branch is correctly predicted
(Figure 5(a)) and the other when the respective branch is incorrectly predicted (Figure 5(b)). The
combination is performed through an abstract join operation, which depends on the type of analysis
(must or may) being computed. A stabilization on the abstract cache contents at the entry and exit
of each basic block is achieved through conventional fixed point analysis.
It is worthwhile to mention that our analysis conservatively estimates the impact of speculation

on the cache content. The cache hit/miss categorization of a memory reference is determined via the
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over-approximation (during the may analysis) and the under-approximation (during the must anal-
ysis) of cache contents at each program point. The join operation, as shown in Figure 5(c), ensures
that the over-approximation (under-approximation) of cache contents is preserved during the may
(must) analysis in the presence of zero or more branch mispredictions. It is important to note that
such an over-approximation and under-approximation consider all possible branch misprediction
scenarios (including zero branch mispredictions). Therefore, our analysis preserves the soundness
in the presence of timing anomaly. However, our modeling is also conservative in the sense that we
do not take into account the exact number of branch mispredictions into account for cache analysis.

Effect on bus for speculative execution. Due to branchmisprediction, some additional instructions
might be fetched from the mispredicted path. As described in Section 6, an execution graph for
each basic block B contains a prologue (instructions before B which directly affect the execution
time of B). If the last instruction of the prologue is a conditional branch, the respective execution
graph is augmented with the instructions along the mispredicted path ([Li et al. 2006]). Since the
propagation of bus context is entirely performed on the execution graph (as shown in Section 5),
our shared bus analysis remains unchanged, except the fact that it works on an augmented execution
graph (which contains instructions from the mispredicted path) in the presence of speculation.

Computing the number of mispredicted branches. In the presence of a branch predictor, each
conditional edge j → i in the programCFG can be correctly or incorrectly predicted. Let us assume
Ej→i denotes the total number of times control flow edge j → i is executed and Ec

j→i (E
m
j→i)

denotes the number of times the control flow edge j → i is executed due to correct (incorrect)
branch prediction. Clearly, Ej→i = Ec

j→i + Em
j→i. Value of Ej→i is further bounded by CFG

structural constraints. On the other hand, values of Ec
j→i and Em

j→i depend on the type of branch
predictor. We use our prior work ([Li et al. 2005]), where we have shown how to bound the values
of Ec

j→i and Em
j→i for history based branch predictors. The constraints generated on Ec

j→i and
Em

j→i are as well captured in the global ILP formulation to compute the whole programWCET. We
exclude the details of branch predictor modeling in this paper — interested readers are referred to
[Li et al. 2005].

8. WCET COMPUTATION OF AN ENTIRE PROGRAM

We compute the WCET of the entire program withN basic blocks by using the following objective
function:

Maximize T =

N
∑

i=1

∑

j→i

∑

w∈Ωi

tc,wj→i ∗ E
c,w
j→i + tm,w

j→i ∗ E
m,w
j→i (16)

Ωi denotes the set of all bus contexts under which basic block i can execute. Basic block i can
be executed with different bus contexts. However, the number of elements in Ωi is always bounded
by the number of bus contexts entering the loop immediately enclosing i (refer to Section 6). tc,wj→i

denotes the WCET of basic block i when the basic block i is reached from basic block j, the control
flow edge j → i is correctly predicted and i is reached with bus context w ∈ Ωi. Similarly, tm,w

j→i

denotes the WCET of basic block i under the same bus context but when the control flow edge
j → i was mispredicted. Note that both tc,wj→i and tm,w

j→i are computed during the iterative pipeline

modeling (with the modifications proposed in Section 5).Ec,w
j→i (E

m,w
j→i ) denotes the number of times

basic block i is reached from basic block j with bus contextw and when the control flow edge j → i
is correctly (incorrectly) predicted. Therefore, we have the following two constraints:

Ec
j→i =

∑

w∈Ωi

Ec,w
j→i, Em

j→i =
∑

w∈Ωi

Em,w
j→i (17)

Constraints on Ec
j→i and Em

j→i are proposed by the ILP-based formulation in [Li et al. 2005].

On the other hand, Ec,w
j→i and Em,w

j→i are bounded by the CFG structural constraints
([Theiling et al. 2000]) and the constraints proposed by Equations 10-15 in Section 6. Note that
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in Equations 10-15, we only discuss the ILP constraints related to the bus contexts. Other ILP con-
straints, such as CFG structural constraints and user constraints, are used in our framework for an
IPET implementation.
Finally, the WCET of the program maximizes the objective function in Equation 16. Any ILP

solver (e.g. CPLEX) can be used for the same purpose.

9. SOUNDNESS OF ANALYSIS

In this section, we shall provide the basic ideas for the proof of the soundness of our analysis
framework. Due to space constraints, details of the proofs are included in the technical report
[Chattopadhyay et al. 2011].
The heart of soundness guarantee follows from the fact that we represent the timing of each

pipeline stage as an interval. Recall that the active timing interval of each pipeline stage is cap-

tured by INTVi = [earliest[treadyi ], latest[tfinishi ]]. Therefore, as long as we can guarantee that
INTVi always over-approximates the actual timing interval of the corresponding pipeline stage in
any concrete execution, we can also guarantee the soundness of our analysis. To ensure that the in-
terval INTVi is always an over-approximation, we have to consider all possible latencies suffered
by any pipeline stage. The latency of a pipeline stage, on the other hand, may be influenced by the
following factors:

Cache miss penalty. Only NC categorized memory references may have variable latencies. Our
analysis represents this variable latency as an interval [lo, hi] (Equation 1) where lo (hi) represents
the latency of a cache hit (miss).

Functional unit latency. Some functional units may have variable latencies depending on the
operands (e.g.multiplier unit). For such functional units, we consider the EX pipeline stage latency
as an interval [lo, hi] where lo (hi) represents the minimum (maximum) possible latency of the
corresponding functional unit.

Contention to access functional units. A pair of instructions may delay each other by contending
for the same functional unit. Since only EX stage may suffer from contention, two different instruc-
tions may contend for the same functional unit only if the timing intervals of the respective EX
stages overlap. For any pipeline stage i, an upper bound on contention (say CONTmax

i ) is com-
puted by accounting the cumulative effect of contentions created by all the overlapping pipeline
stages (which access the same functional unit as i). We do not compute a lower bound on con-
tention and conservatively assume a safe lower bound of 0. Finally, we add [0, CONTmax

i ] with
the timing interval of pipeline stage i. Clearly, [0, CONTmax

i ] covers all possible latencies suffered
by pipeline stage i due to contention.

Bus access delay. Bus access delay of a pipeline stage depends on the incoming bus contexts
(Oin

i ). Computation of Oin
i is always an over-approximation as evidenced by Equation 7 and Equa-

tion 9. Therefore, we can always compute the interval spanning from minimum to maximum bus
delay using Oin

i (Equation 4 and Equation 5).
To conclude, we argue that the longest acyclic path search in the execution graph always results

in a sound estimation of basic block WCET. Finally, the IPET approach searches for the longest
feasible program path to ensure a sound estimation of whole program’s WCET.

10. EXPERIMENTAL EVALUATION

Experimental setup

We have chosen moderate to large size benchmarks from [Gustafsson et al. 2010], which are gener-
ally used for timing analysis. Individual benchmarks are compiled into simplescalar PISA (Portable
Instruction Set Architecture) [Austin et al. 2002] — a MIPS like instruction set architecture. We
use the simplescalar gcc cross compiler with optimization level -O2 to generate the PISA com-
pliant binary of each benchmark. The control flow graph (CFG) of each benchmark is extracted
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Table I. Default micro-architectural setting for experiments

Component Default settings Perfect settings

Number of cores 2 NA

1-way, inorder

pipeline 4-entry IFQ, 8-entry ROB NA

L1 instruction 2-way associative, 1 KB All accesses

cache miss penalty = 6 cycles are L1 hit

L2 instruction 4-way associative, 4 KB NA

cache miss penalty = 30 cycles

Shared bus slot length = 50 cycles Zero bus delay

Branch predictor 2 level predictor, L1 size=1 Branch prediction

L2 size=4, history size=2 is always correct

from its PISA compliant binary and is used as an input to our analysis framework. In our current
implementation, the analysis frontend (CFG extractor) and the modeling of pipeline do not appro-
priately handle recursions, switch cases and unstructured goto, break statements inside
loops. Such programs from [Gustafsson et al. 2010] are therefore not included in our evaluation.
To validate our analysis framework, the simplescalar toolset [Austin et al. 2002] was extended to

support the simulation of shared cache and shared bus. The simulation infrastructure is used to com-
pare the estimated WCET with the observed WCET. Observed WCET is measured by simulating
the program for a few program inputs. Nevertheless, we would like to point out that the presence
of a shared cache and a shared bus makes the realization of the worst-case scenario extremely chal-
lenging. In the presence of a shared cache and a shared bus, the worst-case scenario depends on the
interleavings of threads, which are running on different cores. Consequently, the observed WCET
result in our experiments may sometimes highly under-approximate the actual WCET.
For all of our experiments, we present the WCET overestimation ratio, which is measured

as Estimated WCET
Observed WCET

. For each reported overestimation ratio, the system configuration during
the analysis (which computes Estimated WCET ) and the measurement (which computes
ObservedWCET ) are kept identical. Unless otherwise stated, our analysis uses the default system
configuration in Table I (as shown by the column “Default settings“). Since the data cache modeling
is not yet included in our current implementation, all data accesses are assumed to be L1 cache hits
(for analysis and measurement both).
To check the dependency of WCET overestimation on the type of conflicting task (being run

in parallel on a different core), we use two different tasks to generate the inter-core conflicts — 1)
jfdctint, which is a single path program and 2) statemate, which has a huge number of paths.
In our experiments (Figures 6-8), we use jfdctint to generate inter-core conflicts to the first
half of the tasks (i.e. matmult to lcdnum). On the other hand, we use statemate to generate
inter-core conflicts to the second half of the tasks (i.e. minver to st). Due to the absence of any
infeasible program path, inter-core conflicts generated by a single path program (e.g. jfdctint)
can be more accurately modeled compared to a multi-path program (e.g. statemate). Therefore,
in the presence of a shared cache, we expect a better WCET overestimation ratio for the first half of
the benchmarks (i.e. matmult to lcdnum) compared to the second half (i.e. minver to st).
To measure the WCET overestimation due to cache sharing, we compare the WCET result with

two different design choices, where the level 2 cache is partitioned. For a two-core system, two
different partitioning choices are explored: first, each partition has the same number of cache sets
but has half the number of ways compared to the original shared cache (called vertical partition-
ing). Secondly, each partition has half the number of cache sets but has the same number of ways
compared to the original shared cache (called horizontal partitioning). In our default configuration,
therefore, each core is assigned a 2-way associative, 2 KB L2 cache in the vertical partitioning,
whereas each core is assigned a 4-way associative, 2 KB L2 cache in the horizontal partitioning.
Finally, to pinpoint the source ofWCET overestimation,we can selectively turn off the analysis of

different micro-architectural components. We say that a micro-architectural component has perfect
setting if the analysis of the same is turned off (refer to the column “Perfect settings” in Table I).
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Fig. 6. Effect of shared and partitioned L2 cache on WCET overestimation

Basic analysis result

Effect of caches. Figure 6 shows the WCET overestimation ratio with respect to different L1 and
L2 cache settings in the presence of a perfect branch predictor and a perfect shared bus. Results show
that we can reasonably bound the WCET overestimation ratio except for a few benchmarks (e.g.
qurt, nsichneu, lcdnum, select). The major source of this overestimation is the presence
of many infeasible paths in such programs, which may lead to infeasible micro-architectural states
and WCET overestimations. These infeasible paths can be eliminated by providing additional user
constraints into our framework and hence improving the ILP-based WCET calculation. We also
observe that the partitioned L2 caches may lead to a better WCET overestimation compared to the
shared L2 caches, with the vertical L2 cache partitioning almost always working as the best choice.
The positive effect of the vertical cache partitioning is visible in programs such as adpcm, ndes
and edn, where the overestimations in the presence of shared L2 caches are higher than the same
using partitioned L2 caches. This is due to the difficulty in modeling the inter-core cache conflicts
from programs being run in parallel (i.e. jfdctint and statemate).

Effect of speculative execution. As we explained in Section 7, the presence of a branch predictor
and speculative execution may introduce additional computation cycles for executing a mispredicted
path. Moreover, speculative execution may introduce additional cache conflicts from a mispredicted
path. The results in Figure 7(a) and Figure 7(b) show the effect of speculation in L1 and L2 cache,
respectively. qurt and ndes show reasonable increases in the WCET overestimations in the pres-
ence of speculation (Figure 7(a) and Figure 7(b)). A similar increase in the WCET overestimation is
also observed with bs and sqrt in the presence of L1 caches and speculation (Figure 7(a)). Such
an increase in the overestimation ratio can be explained from the overestimation arising in the mod-
eling of the effect of speculation on caches (refer to Section 7). Due to the abstract join operation to
combine the cache states in correct and mispredicted path, we may introduce some spurious cache
conflicts. Nevertheless, our approach for modeling the speculation effect in cache is scalable and
produces tight WCET estimates for most of the benchmarks.

Effect of shared bus. Figure 8 shows the WCET overestimation in the presence of a shared cache
and a shared bus. We observe that our shared bus analysis can reasonably control the overestimation
due to the shared bus. Except for a few benchmarks (e.g. edn, nsichneu, ndes, qurt), the over-
estimation in the presence of a shared cache and a shared bus is mostly equal to the overestimation
when the shared bus analysis is turned off (i.e. using a perfect shared bus). Recall that each over-
estimation ratio is computed by performing the analysis and the measurement on identical system
configuration. Therefore, the analysis and the measurement both includes the shared bus delay only
when the shared bus is enabled. For a perfect shared bus setting, both the analysis and the measure-
ment consider a zero latency for all the bus accesses. As a result, we also observe that our shared
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Fig. 7. (a) Effect of speculation on L1 cache, (b) effect of speculation on partitioned and shared L2 caches
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Fig. 8. Effect of shared bus on WCET overestimation

bus analysis might be more accurate than the analysis of other micro-architectural components (e.g.
in case of nsichneu, expint and fir, where the WCET overestimation ratio in the presence
of a shared bus might be less than the same with a perfect shared bus). In particular, nsichneu
shows a drastic fall in the WCET overestimation ratio when the shared bus analysis is enabled. For
nsichneu, we found that the execution time is dominated by shared bus delay, which is most ac-
curately computed by our analysis for this benchmark. On the other hand, we observed in Figure 6
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that the main source of WCET overestimation in nsichneu is path analysis, due to the presence
of many infeasible paths. Consequently, when shared bus analysis is turned off, the overestimation
arising from path analysis dominates and we obtain a high WCET overestimation ratio. Average
WCET overestimation in the presence of both a shared cache and a shared bus is around 50%.
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Fig. 9. WCET overestimation sensitivity w.r.t. (a) L1 cache sizes and configurations; (b) L2 cache sizes and configurations;
(c) pipeline configurations

WCET analysis sensitivity w.r.t. micro-architectural parameters

In this section, we report the WCET overestimation sensitivity with respect to different micro-
architectural parameters. For all the experiments (Figures 9-10), the reportedWCET overestimation
denotes the geometric mean of the term Estimated WCET

Observed WCET
over all the different benchmarks.

We evaluate our framework for different L1 and L2 cache sizes and configurations (Figure 9(a)
and Figure 9(b), respectively). We observe that the average WCET overestimation is around 40%
(50%) with respect to different L1 (L2) cache configurations. Figure 9(c) presents the WCET over-
estimation for different pipeline configurations. Superscalar pipelines increase the instruction level
parallelism and so as the performance of entire program.However, it also becomes difficult to model
the inherent instruction level parallelism in the presence of superscalar pipelines. Therefore, Figure
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Fig. 10. WCET overestimation sensitivity w.r.t. number of cores and different bus slot lengths

9(c) shows an increase in the WCET overestimation with superscalar pipelines. Finally, Figure 10
shows the WCET overestimation sensitivity with respect to the number of cores and different bus
slot lengths. For four core experiments, we take a group of four programs (from left to right as
shown in Figure 6) to run in four different cores. Figure 10 reports the geometric mean of WCET
overestimation over all the benchmarks. With very high length of TDMA round (i.e. number of
cores multiplied by TDMA bus slot length), WCET overestimation normally increases (as shown
in Figure 10). This is due to the fact that with higher TDMA round lengths, the search space for
possible bus contexts (or set of TDMA offsets) increases. As a result, it is less probable to expose
the worst-case scenario in simulation with higher bus slot lengths.

Analysis time

We have performed all the experiments on an 8 core, 2.83 GHz Intel Xeon machine having 4 GB
of RAM and running Fedora Core 4 operating system. Table II reports the maximum analysis time
when the shared bus analysis is disabled and Table III reports the maximum analysis time when
all the analyses are enabled (i.e. cache, shared bus and pipeline). Recall from Section 4 that our
WCET analysis framework is broadly composed of two different parts, namely, micro-architectural
modeling and implicit path enumeration (IPET) through integer linear programming (ILP). The
column labeled “µ arch” captures the time required for micro-architectural modeling. On the other
hand, the column labeled “ILP” captures the time required for path analysis through IPET.
In the presence of speculative execution, number of mispredicted branches is modeled by inte-

ger linear programming [Li et al. 2005]. Such an ILP-based branch predictor modeling, therefore,
increases the number of constraints which need to be considered by the ILP solver. As a result, the
ILP solving time increases in the presence of speculative execution (as evidenced by the second
rows of both Table II and Table III).
Shared bus analysis increases the micro-architectural modeling time (as evidenced by Table III)

and the analysis time usually increases with the bus slot length. The time for the shared bus analysis
generally appears from tracking the bus context at different pipeline stages. A higher bus slot length
usually leads to a higher number of bus contexts to analyze, thereby increasing the analysis time.
In Table II and Table III, we have only presented the analysis time for the longest running bench-

mark (nsichneu) from our test-suite. For any other program used in our experiments, the entire
analysis (micro-architectural modeling and ILP solving time) takes around 20-30 seconds on aver-
age to finish.
The results reported in Table II show that the ILP-based modeling of branch predictor usually

increases the analysis time. Therefore, for a more efficient but less precise analysis of branch pre-
dictors, one can explore different techniques to model branch predictors, such as abstract interpreta-
tion. Shared bus analysis time can be reduced by using different offset abstractions, such as interval
instead of an offset set. Nevertheless, the appropriate choice of analysis method and abstraction
depends on the precision-scalability tradeoff required by the user.
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Table II. Analysis time [of nsichneu] in seconds. The first row represents the analysis time when specula-
tive execution was disabled. The second row represents the analysis time when speculation was enabled

Shared L2 cache Pipeline

1-way 1-way 2-way

4 KB 8 KB 16 KB 32 KB 64 KB inorder out-of-order superscalar

µ µ µ µ µ µ µ µ
arch ILP arch ILP arch ILP arch ILP arch ILP arch ILP arch ILP arch ILP

1.2 1.3 1.4 1.3 1.7 1.3 2.3 1.3 4.8 1.2 1.3 1.3 1.2 1.3 1.3 1.4

2.6 240 2.9 240 3.5 238 4.6 238 7 239 2.6 238 2.4 239 2.8 254

Table III. Analysis time [of nsichneu] in seconds. The first row shows the analysis time when specu-
lation was disabled. The second row shows the analysis time when speculation was enabled

Number of cores, TDMA bus slot length

2 core, 60 cycles 2 core, 70 cycles 2 core, 80 cycles 4 core, 40 cycles 4 core, 50 cycles 4 core, 60 cycles

µ µ µ µ µ µ

arch ILP arch ILP arch ILP arch ILP arch ILP arch ILP

128 4 160 4.2 198 5.1 199 7.1 228 9.3 257 12.5

205 158 261 181 363 148 373 148 441 165 521 154

11. EXTENSION OF SHARED CACHE ANALYSIS

Our discussion on cache analysis has so far concentrated on the least-recently-used (LRU) cache
replacement policies. However, a widely used cache replacement policy is first-in-first-out (FIFO).
FIFO cache replacement policy has been used in embedded processors such as ARM9 and ARM11
[Reineke et al. 2007]. Recently, abstract interpretation based analysis of FIFO replacement policy
has been proposed in [Grund and Reineke 2009; Grund and Reineke 2010a] for single level caches
and for multi-level caches in [Hardy and Puaut 2011]. In this section, we shall discuss the extension
of our shared cache analysis for FIFO cache replacement policy. We shall also show that such an
extension will not change the modeling of timing interactions among shared cache and other basic
micro-architectural components (e.g. pipeline and branch predictor).

11.1. Review of cache analysis for FIFO replacement

We use the must cache analysis for FIFO replacement as proposed in [Grund and Reineke 2009].
In FIFO replacement, when a cache set is full and still the processor requests fresh memory blocks
(which map to the same cache set), the first cache line entering the respective cache set (i.e. first-in)
is replaced. Therefore, the set of tags in a k-way FIFO abstract cache set (say As) can be arranged
from last-in to first-out order (leftmost capturing the last-in position) as follows:

As = [T1, T2, . . . , Tk] (18)

where each Ti ⊆ T and T is the set of all cache tags. Unlike LRU, cache state never changes
upon a cache hit with FIFO replacement policy. Therefore, the cache state update on a memory
reference depends on the hit-miss categorization of the same memory reference. Assume that a
memory reference belongs to cache tag tagi. The FIFO abstract cache set As = [T1, T2, . . . , Tk] is
updated on the access of tagi as follows:

τ([T1, T2, . . . , Tk], tagi) =







[T1, T2, . . . , Tk], if tagi ∈
⋃

i Ti;

[{tagi}, T1, . . . , Tk−1], if tagi /∈
⋃

i Ti ∧ |
⋃

i Ti| = k;

[φ, T1, . . . , Tk−1 ∪ {tagi}], otherwise.

(19)

The first scenario captures a cache hit and the second scenario captures a cache miss. Third sce-
nario appears when the static analysis cannot accurately determine the hit-miss categorization of the
memory reference.
The abstract join function for the FIFO must cache analysis is exactly same as the LRU must

cache analysis. The join function between two abstract FIFO cache sets computes the intersection
of the abstract cache sets. If a cache tag is available in both the abstract cache sets, the right most
relative position of the cache tag is captured after the join operation.
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11.2. Analysis of shared cache with FIFO replacement

We implement the must cache analysis for FIFO replacement as described in the preceding. To
distinguish the cold cache misses at the first iterations of loops and different procedure calling
contexts, our cache analysis employs the virtual-inline-virtual-unrolling (VIVU) approach (as de-
scribed in [Theiling et al. 2000]). After analyzing the L1 cache memory references are categorized
as all-hit (AH), all-miss (AM) or unclassified (NC). AM and NC categorized memory references
may access the L2 cache and therefore, the L2 cache state is updated for the memory references
which are categorized AM or NC in the L1 cache (as in [Hardy and Puaut 2011]).
To analyze the shared cache, we used our previous work on shared cache [Li et al. 2009] for LRU

cache replacement policy. [Li et al. 2009] employs a separate shared cache conflict analysis phase.
For FIFO replacement policy too, we can use the exactly same idea to analyze the set of inter-core
cache conflicts. Shared cache conflict analysis may change the categorization of a memory reference
from all-hit (AH) to unclassified (NC). For the sake of illustration, assume a memory reference
which accesses the memory block m. This analysis phase first computes the number of unique
conflicting shared cache accesses from different cores. Then it is checked whether the number of
conflicts from different cores can potentially replace m from shared cache. More precisely, for an
N -way set associative cache, hit/miss categorization (CHMC) of corresponding memory reference
is changed from all-hit (AH) to unclassified (NC) if and only if the following condition holds:

N −AGEfifo(m) < |Mc(m)| (20)

where |Mc(m)| represents the number of conflicting memory blocks from different cores which
may potentially access the same L2 cache set as m. AGEfifo(m) represents the relative position
of memory blockm in the FIFO abstract cache set and in the absence of inter-core cache conflicts.
Recall that the memory blocks (or the tags) are arranged according to the last-in to first-out order in
the FIFO abstract cache set. Therefore, the term N −AGEfifo(m) captures the maximum number
of fresh memory blocks which can enter the FIFO cache beforem being evicted out.

11.3. Interaction of FIFO cache with pipeline and branch predictor

As described in the preceding, after the FIFO shared cache analysis, memory references are cat-
egorized as all-hit (AH), all-miss (AM) or unclassified (NC). In the presence of pipeline, such a
categorization of instruction memory references add computation cycle with the instruction fetch
(IF) stage. Therefore, we use Equation 1 to compute the latency suffered by cache hit/miss and
propagate the latency through different pipeline stages.
Recall from Section 7 that speculative execution may introduce additional cache conflicts. In

Section 7, we proposed to modify the abstract interpretation based cache analysis to handle the ef-
fect of speculative execution on cache. From Figure 5, we observe that our solution is independent
of the cache replacement policies concerned. Our proposed modification performs an abstract join
operation on the cache states along the correct and mispredicted path (as shown in Figure 5). There-
fore, for FIFO replacement polices, the abstract join operation is performed according to the FIFO
replacement analysis (instead of LRU join operation we performed in case of LRU caches).

11.4. Experimental result

Figure 11 demonstrates our WCET analysis experience with FIFO replacement policy. We have
used the exactly same experimental setup as mentioned in Section 10. On average, our analysis
framework can reasonably bound the WCET overestimation for FIFO cache replacement, except
for fdct, lcdnum, select and qurt. However, such an overestimation is largely due to the
presence of a FIFO cache and not due to the presence of cache sharing, as clearly evidenced by
Figure 11(a). However, as mentioned in [Berg 2006], the observed worst-case for FIFO replacement
may highly under-approximate the true worst case due to the domino effect.
Figure 11(b) shows that our modeling of the interaction between FIFO cache and the branch

predictor (which is configured as in Table I) does not much affect the WCET overestimation (except

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:22 S. Chattopadhyay et al.

 0

 1

 2

 3

 4

 5

 6

 7

 8

m
atm

ult

cnt
fir fdct

expint

qurt
nsichneu

bs crc
fibcall

janne_com
plex

lcdnum

m
inver

prim
e

select

sqrt
fft edn

ludcm
p

ns ndes
bsort100

adpcm

st FIFO
/LR

U

W
C

E
T

 o
v
e

re
s
ti
m

a
ti
o

n

perfect L1 cache
only L1 cache

L1 cache + shared L2 cache

L1 cache + vertically partitioned L2 cache
L1 cache + horizontally partitioned L2 cache

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

m
atm

ult

cnt
fir fdct

expint

qurt
nsichneu

bs crc
fibcall

janne_com
plex

lcdnum

m
inver

prim
e

select

sqrt
fft edn

ludcm
p

ns ndes
bsort100

adpcm

st FIFO
/LR

U

W
C

E
T

 o
v
e

re
s
ti
m

a
ti
o

n

perfect predictor + L1 cache + shared L2 cache
2 level predictor + L1 cache + shared L2 cache

perfect predictor + L1 cache + vertically partitioned L2 cache
2 level predictor + L1 cache + vertically partitioned L2 cache

perfect predictor + L1 cache + horizontally partitioned L2 cache
2 level predictor + L1 cache + horizontally partitioned L2 cache

(b)

Fig. 11. Analysis of cache in the presence of FIFO replacement policy. In both the figures, the last bars labelled
“FIFO/LRU“ capture the geometric mean of WCET overestimation over all the benchmarks in the presence of FIFO replace-
ment, considering LRU replacement as a baseline. The WCET overestimation of individual benchmarks use the simulation
as a baseline. (a) WCET overestimation w.r.t. different L2 cache architectures, (b) WCET overestimation in the presence of
FIFO cache and speculation

for select in the presence of vertically partitioned L2 caches). As evidenced by Figure 11(b), the
average increase in the WCET overestimation is minimal due to the speculation.
We also report the average WCET overestimation of FIFO replacement compared to LRU re-

placement policy. In Figure 11, the results labelled “FIFO/LRU” capture the geometric mean of
WCET overestimation in the presence of FIFO replacement, considering WCET overestimation
with LRU replacement as a baseline. Our results show that FIFO replacement does not lead to more
than 25% worse WCET estimate on average, when compared to the WCET estimate with LRU re-
placement. Therefore, we believe that FIFO is a reasonably good alternative of LRU replacement
even in the context of shared caches.

11.5. Other cache organizations

In the preceding, we have discussed the extension of our WCET analysis framework with FIFO
replacement policy. We have shown that as long as the cache tags in an abstract cache set can
be arranged according to the order of their replacement, our shared cache conflict analysis can
be integrated. Moreover, our modeling for the timing interaction among (shared) cache, pipeline
and branch predictor is independent of the underlying cache replacement policy. Nevertheless, for
some cache replacement policies, arranging the cache tags according to the order of their replace-
ment poses a challenge (e.g. PLRU [Grund and Reineke 2010b]). Cache analysis based on relative
competitiveness [Reineke et al. 2007] tries to analyze a cache replacement policy with respect to
an equivalent LRU cache, but with different parameters (e.g. associativity). Any cache replacement
analysis based on relative competitiveness can directly be integratedwith ourWCET analysis frame-
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work. Nevertheless, more precise analysis than the ones based on relative competitiveness can be
designed, as shown in [Grund and Reineke 2010b] for PLRU policy. However, we believe that de-
signing more precise cache analysis is outside the scope of this paper. The purpose of our work is to
propose a unified WCET analysis framework and any precision gain in the existing cache analysis
technique will directly benefit our framework by improving the precision of WCET prediction.
In this paper, we have focused on the non-inclusive cache hierarchy. In multi-core architectures,

inclusive cache hierarchy may limit performance when the size of the largest cache is not signifi-
cantly larger than the sum of the smaller caches. Therefore, processor architects sometimes resort to
non-inclusive cache hierarchies [Zahran et al. 2007]. On the other hand, inclusive cache hierarchies
greatly simplify the cache coherence protocol. The analysis of inclusive cache hierarchy requires
to take account of the invalidations of certain cache lines to maintain the inclusion property (as
shown in [Hardy and Puaut 2011] for multi-level private cache hierarchies). Such invalidations may
change an all-hit (AH) categorized memory reference to unclassified (NC) [Hardy and Puaut 2011].
Our shared cache conflict analysis phase can be applied on this reduced set of AH categorized
memory references for inclusive caches, keeping the rest of our WCET analysis framework entirely
unchanged. Therefore, we believe that the inclusive cache hierarchies do not pose any additional
challenge in the context of shared caches and the analysis of such cache hierarchies can easily be
integrated, keeping the rest of our WCET analysis framework unchanged.

12. DISCUSSION AND FUTURE WORK

In this paper, we have proposed a unified WCET analysis framework which considers the timing
effects of shared caches and shared buses with several micro-architectural components (e.g. pipeline
and branch predictor). The key contribution of our work is to build a coherent strategy to evaluate
the impact of different micro-architectural components on WCET, both in single-core and multi-
core architectures. We have evaluated our framework which models pipeline, (shared) instruction
caches, dynamic branch predictions, shared buses and the non-trivial timing interactions among the
different components. We model a five-stage pipeline, which is similar to the five-stage pipeline
in ARM-9 embedded processors. Dynamic branch predictors are also used now in modern embed-
ded processors, such as ARM-CortexA8, ARM-11 and PowerPC-750 [Maiza and Rochange 2011].
Shared caches are widely used in the embedded multi-core processors, such as in ARM-CortexA8.
For shared buses, we have currently modeled TDMA arbitration schemes. Existing literatures
[Wilhelm et al. 2009; Paolieri et al. 2009b] have discussed that TDMA arbitration is acceptable
when guaranteed performance is required (e.g. for hard real-time systems), instead of average high
performance. Real implementation of such TDMA arbitration includes AEthereal network-on-chip
(NOC) [Goossens and Hansson 2010]. In ourmodeling, the concept of bus context and its ILP-based
formulation is generic with respect to different bus arbitration policies. However, for TDMA arbi-
tration policy, a bus context can easily be defined from TDMA offset set (cf. Definition 5.2) which
in turn leads to a compositional and tractable shared bus analysis technique. For other dynamic ar-
bitration policies (e.g. priority based), the number of bus contexts may easily have an exponential
complexity (since the interleaving of different threads on different cores need to be considered),
making the whole WCET analysis process either intractable or highly imprecise in practice.
However, it is worthwhile to point that our current implementation does not include the modeling

of a few micro-architectural components. For an accurate WCET estimation, the modeling of such
micro-architectural components is essential and is a subject of our future implementation. Examples
of such micro-architectural components include data caches and branch target buffers (BTB).
The modeling of data caches is usually more complicated than instruction caches. The key to

such difficulties arises due to the fact that different instances of the same instruction may ac-
cess different data memory blocks (e.g. array accesses inside a loop, pointer aliasing). There-
fore, the modeling of data caches usually involves an address analysis phase (e.g. similar to the
analysis proposed in [Balakrishnan and Reps 2004]). The output of address analysis is an over-
approximation of the set of addresses accessed by each load/store instruction. Using the results
of address analysis, the modeling of data caches has been proposed in [Sen and Srikant 2007].
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The data cache modeling proposed in [Sen and Srikant 2007] is a must analysis. Therefore, each
load/store instruction is classified as all-hit (AH) or unclassified (NC). The extension of the basic
data cache modeling for multi-level data caches (as well as for unified caches) has been discussed
in [Chattopadhyay and Roychoudhury 2009]. Since the basic technique applied for such data cache
modeling is abstract interpretation, the modeling of data caches can easily be integrated into our
framework (e.g. refer to Equation 1 for integration with pipeline and Figure 5 for integration with
branch prediction). Therefore, the integration of such data cache modeling into our framework does
not pose any additional challenge. However, a recent approach ([Huynh et al. 2011]) has shown
that a data cache modeling based on address analysis (e.g. using [Balakrishnan and Reps 2004])
may highly overestimate the WCET. To overcome the imprecision caused due to address analysis,
[Huynh et al. 2011] computes the set of loop iterations in which a particular data memory block
could be accessed. Such a computation strategy is useful for data accesses, as the data memory
blocks accessed in disjoint loop iterations can never conflict with each other in the data cache. In
future, we plan to extend our framework with such precise data cache modeling, such as handling
shared data caches and cache coherence in the presence of shared data accesses.
Modern embedded processors also employ a branch target buffer (BTB) to cache the target ad-

dress of a branch. Our current implementation does not include the modeling of BTBs. As shown
in [Grund et al. 2011], the modeling of BTBs can be accomplished via abstract interpretation. The
BTB analysis proposed in [Grund et al. 2011] is a combined must and may analysis. Given any
branch instruction address, the analysis proposed in [Grund et al. 2011] classifies a branch instruc-
tion as t (i.e. the branch instruction must be in the BTB), f (i.e. the branch instruction must not
be in the BTB) or ⊤ (i.e. static analysis cannot determine the inclusion of the branch instruction in
the BTB). Such a classification is analogous to the classification in the instruction cache analysis.
Therefore, given an upper bound on BTB miss penalty (say BTBmiss ), such a classification can be
integrated into our framework using the technique similar to Equation 1. Moreover, the static analy-
sis of BTB content (as proposed in [Grund et al. 2011]) can be used in our framework to determine
the speculative instructions and their effects on caches (cf. Figure 5).
We believe that our framework can be useful to evaluate the precision and scalability of different

analysis methodologies. In our current framework, ILP-based branch prediction modeling and the
shared bus modeling fill up most of the analysis time. Therefore, exploring different techniques for
the modeling of branch predictors and shared buses, along with a notion of scalability will be an
interesting direction in future.
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