
Dynamic Slicing on Java Bytecode Traces

TAO WANG and ABHIK ROYCHOUDHURY

National University of Singapore, Singapore

Dynamic slicing is a well-known technique for program analysis, debugging and understanding.

Given a program P and input I, it finds all program statements which directly/indirectly affect
the values of some variables’ occurrences when P is executed with I. In this paper, we develop a

dynamic slicing method for Java programs. Our technique proceeds by backwards traversal of the

bytecode trace produced by an input I in a given program P. Since such traces can be huge, we use
results from data compression to compactly represent bytecode traces. The major space savings

in our method come from the optimized representation of (a) data addresses used as operands by
memory reference bytecodes, and (b) instruction addresses used as operands by control transfer

bytecodes. We show how dynamic slicing algorithms can directly traverse our compact bytecode

traces without resorting to costly decompression. We also extend our dynamic slicing algorithm
to perform “relevant slicing”. The resultant slices can be used to explain omission errors that

is, why some events did not happen during program execution. Detailed experimental results on

space/time overheads of tracing and slicing are reported in the paper. The slices computed at the
bytecode level are translated back by our tool to the source code level with the help of information

available in Java class files. Our JSlice dynamic slicing tool has been integrated with the Eclipse

platform and is available for usage in research and development.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Debuggers;
D.2.5 [Software Engineering]: Testing and Debugging—Debugging aids; Testing tools; Tracing

General Terms: Algorithms, Experimentation, Measurement

Additional Key Words and Phrases: Program slicing, Tracing, Debugging

1. INTRODUCTION

Program slicing [Weiser 1984] is a well-known technique for program debugging
and understanding. Roughly speaking, program slicing works as follows. Given a
program P , the programmer provides a slicing criterion of the form (l, V), where l
is a control location in the program and V is a set of program variables referenced
at l. The purpose of slicing is to find out the statements in P which can affect the
values of V at l via control and/or data flow. So, if during program execution the
values of V at l were “unexpected”, the corresponding slice can be inspected to
explain the reason for the unexpected values.

Slicing techniques are divided into two categories: static and dynamic. Static
(Dynamic) slicing computes the fragment affecting V at l (some occurrence of l)
when the input program is executed with any (a specific) input. Thus, for the
same slicing criterion, dynamic slice for a given input of a program P is often
smaller than the static slice of P . Static slicing techniques typically operate on a
program dependence graph (PDG); the nodes of the PDG are simple statements /

A preliminary version of this paper appeared in the International Conference on Software Engi-
neering (ICSE) 2004, see [Wang and Roychoudhury 2004]. Authors’ addresses: Tao Wang and

Abhik Roychoudhury, Department of Computer Science, National University of Singapore, Sin-

gapore. E-mail: {wangtao,abhik}@comp.nus.edu.sg

2 · Wang and Roychoudhury

conditions and the edges correspond to data / control dependencies [Horwitz et al.
1990]. Dynamic slicing w.r.t. an input I on the other hand, often proceeds by
collecting the execution trace corresponding to I. The dynamic data and control
dependencies between the statement occurrences in the execution trace can be pre-
computed or computed on demand during slicing [Zhang et al. 2005].

Due to the presence of objects and pointers in programs, static data dependence
computations are often conservative, leading to very large static slices. On the other
hand, dynamic slices capture the closure of dynamic data and control dependencies,
hence they are much more precise, and more helpful for narrowing the attention of
the programmer. Furthermore, since dynamic slices denote the program fragment
affecting the slicing criterion for a particular input, they naturally support the task
of debugging via running of selected test inputs.

Though dynamic slicing was originally proposed for debugging [Korel and Laski
1988; Agrawal and Horgan 1990], it has subsequently also been used for program
comprehension in many other innovative ways. In particular, dynamic slices (or
their variants which also involve computing the closure of dependencies by trace
traversal) have been used for studying causes of program performance degradation
[Zilles and Sohi 2000], identifying isomorphic instructions in terms of their run-time
behaviors [Sazeides 2003] and analyzing spurious counter-example traces produced
by software model checking [Majumdar and Jhala 2005]. Even in the context of
debugging, dynamic slices have been used in unconventional ways e.g. [Akgul et al.
2004] studies reverse execution along a dynamic slice. Thus, dynamic slicing forms
the core of many tasks in program development and it is useful to develop efficient
methods for computing dynamic slices.

In this paper, we present an infrastructure for dynamic slicing of Java programs.
Our method operates on bytecode traces; we work at the bytecode level since slice
computation may involve looking inside library methods and the source code of
libraries may not always be available. First, the bytecode stream corresponding
to an execution trace of a Java program for a given input is collected. The trace
collection is done by modifying a virtual machine; we have used the Kaffe Virtual
Machine in our experiments. We then perform a backward traversal of the bytecode
trace to compute dynamic data and control dependencies on-the-fly. The slice is
updated as these dependencies are encountered during trace traversal. Comput-
ing the dynamic data dependencies on bytecode traces is complicated due to Java’s
stack based architecture. The main problem is that partial results of a computation
are often stored in the Java Virtual Machine’s operand stack. This results in im-
plicit data dependencies between bytecodes involving data transfer via the operand
stack. For this reason, our backwards dynamic slicing performs a “reverse” stack
simulation while traversing the bytecode trace from the end.

Dynamic slicing methods typically involve traversal of the execution trace. This
traversal may be used to pre-compute a dynamic dependence graph or the dynamic
dependencies can be computed on demand during trace traversal. Thus, the repre-
sentation of execution traces is important for dynamic slicing. This is particularly
the case for backwards dynamic slicing where the trace is traversed from the end
(and hence needs to be stored). In practice, traces tend to be huge. The work of
[Zhang et al. 2005] reports experiences in dynamic slicing programs like gcc and
perl where the execution trace runs into several hundred million instructions. It

Dynamic Slicing on Java Bytecode Traces · 3

might be inefficient to perform post-mortem analysis over such huge traces. Conse-
quently, it is useful to develop a compact representation for execution traces which
capture both control flow and memory reference information. This compact trace
should be generated on-the-fly during program execution.

Our method proceeds by on-the-fly construction of a compact bytecode trace
during program execution. The compactness of our trace representation is owing
to several factors. First, bytecodes which do not correspond to memory access (i.e.
data transfer to and from the heap) or control transfer are not stored in the trace.
Operands used by these bytecodes are fixed and can be discovered from Java class
files. Secondly, the sequence of addresses used by each memory reference bytecode
or control transfer bytecode is stored separately. Since these sequences typically
have high repetition of patterns, we exploit such repetition to save space. We
modify a well-known lossless data compression algorithm called SEQUITUR [Nevill-
Manning and Witten 1997] for this purpose. This algorithm identifies repeated
patterns in the sequence on-the-fly and stores them hierarchically.

Generating compact bytecode traces during program execution constitutes the
first phase of our dynamic slicer. Furthermore, we want to traverse the compact
execution trace to retrieve control and data dependencies for slicing. This traversal
should be done without decompressing the trace. In other words, the program
trace should be collected, stored and analyzed for slicing – all in its compressed
form. This is achieved in our dynamic slicer which traverses the compact bytecode
trace and computes the data/control dependencies in compression domain. Since
we store the sequence of addresses used by each memory-reference/control-transfer
bytecode in compressed format, this involves marking the “visited” part of such an
address sequence without decompressing its representation.

Finally, we extend our dynamic slicing method to support “relevant slicing”.
Traditional dynamic slicing algorithms explain the values of variables V at some
occurrences of a control location l, by highlighting the executed program statements
which affect the values of V at l. They do not report the statements which affect
the value of V at l, by not being executed. To fill this caveat, the concept of relevant
slicing was introduced in [Agrawal et al. 1993; Gyimóthy et al. 1999]. We design and
implement a relevant slicing algorithm working on our compact bytecode traces.

Summary of Contributions. In summary, the main contribution of this paper is
to report methods for dynamic slicing of Java programs. Our slicer proceeds by
traversing a compact representation of a bytecode trace and constructs the slice as
a set of bytecodes; this slice is then transformed to the source code level with the
help of Java class files. Our slicing method is complicated by Java’s stack based
architecture which requires us to simulate a stack during trace traversal. We have
made our Jslice slicing tool available from http://jslice.sourceforge.net/ To
the best of our knowledge, ours is the first dynamic slicing tool for Java programs.

Since the execution traces are often huge, we develop a space efficient repre-
sentation of the bytecode stream for a Java program execution. This compressed
trace is constructed on-the-fly during program execution. Our dynamic slicer per-
forms backward traversal of this compressed trace directly to retrieve data/control
dependencies, that is, slicing does not involve costly trace decompression. Our
compressed trace representation is interesting in general as a program trace rep-

4 · Wang and Roychoudhury

resentation. The crucial factor leading to compression of program traces is the
separation of address sequences used by conditional jump and memory reference
instructions. For our subject programs (drawn from standard suites such as the
Java Grande benchmark suite or the SPECjvm suite) we obtain compression in
varying amounts ranging from 5−5000 times. We show that the time overheads for
constructing this representation on-the-fly during program execution is tolerable.

We also enhance our dynamic slicing algorithm to capture “omission errors” via
“relevant slicing” [Agrawal et al. 1993; Gyimóthy et al. 1999]. The relevant slicing
algorithm also operates directly on the compressed bytecode traces, as our dynamic
slicing algorithm. Our experimental results indicate that the additional capability
of relevant slices (i.e. capturing omission errors) comes at the cost of modest
additional overheads in terms of computation time or slice sizes.

Section Organization. The rest of this paper is organized as follows. Section 2
describes our compressed representation of Java bytecode traces. Section 3 and
4 discuss our dynamic slicing and relevant slicing algorithms. Section 5 presents
experimental evaluation, while Section 6 describes our JSlice dynamic slicing tool.
Planned extensions of the Jslice tool are described in Section 7. Section 8 summa-
rizes related work. We conclude the paper in section 9.

2. COMPRESSED BYTECODE TRACE

In this section, we will discuss how to collect compact bytecode traces of Java
programs on the fly. This involves a discussion of the compaction scheme as well as
the necessary instrumentation. The compaction scheme used by us is exact, lossless
and on-the-fly.

2.1 Overall representation

The simplest way to define a program trace is to treat it as a sequence of “instruc-
tions”. For Java programs, we view the trace as the sequence of executed bytecodes,
instead of program statements. This is because only bytecodes are available for Java
libraries, which are used by Java programs. Furthermore, collecting traces at the
level of bytecode has the flexibility in tracing/not tracing certain bytecodes. For ex-
ample, the getstatic bytecode loads the value of a static field. This bytecode does
not need tracing, because which static field to access is decided at compile-time,
and can be discovered from class files during post-mortem analysis.

However, representing a Java program trace as a bytecode sequence has its own
share of problems. In particular, it does not allow us to capture many of the
repetitions in the trace. Representation of the program trace as a single string
loses out structure in several ways.

— The individual methods executed are not separated in the trace representa-
tion.

— Sequences of target addresses accessed by individual control transfer byte-
codes are not separated out. These sequences capture control flow and exhibit high
regularity (e.g. a loop branch repeats the same target many times).

— Similarly, sequences of addresses accessed by individual memory load/store
bytecodes are not separated out. Again these sequences show fair amount of repe-
tition (e.g. a read bytecode sweeping through an array).

Dynamic Slicing on Java Bytecode Traces · 5

In our representation, the compact trace of the whole program consists of trace
tables, each of which is used for one method. Method invocations are captured by
tracing bytecodes which invoke methods. The last executed bytecode w.r.t. the
entire execution is clearly marked. Within the trace table for a method, each row
maintains traces of a specific bytecode or of the exit of the method. Monitoring
and tracing every bytecode may incur too much time and space overheads. We
monitor only the following five kinds of bytecodes to collect the trace, where the
first two are necessary to capture data flow of the execution, and the last three are
necessary to capture control flow of the execution.

— Memory allocation bytecodes. Memory allocation bytecodes record the iden-
tities of created objects.

— Memory access bytecodes. The bytecodes to access local variables and static
fields are not traced since the addresses accessed by these bytecodes can be obtained
from the class file. For bytecodes accessing object fields / array elements, we trace
the addresses (or identities since an address may be used by different variables in
the lifetime of a program execution) corresponding to the bytecode operands.

— Method invocation bytecodes. Java programs use four kinds of bytecodes to
invoke methods. Two of them, invokevirtual and invokeinterface, may in-
voke different methods on different execution instances. These invoked methods
have the same method name and parameter descriptor (which can be discovered
in class files), but they belong to different classes. So, for every invokevirtual
and invokeinterface bytecode, we record the classes which the invoked methods
belong to.

— Bytecodes with multiple predecessors. Some bytecodes have multiple prede-
cessors in the control flow graph. For such a bytecode, we record which bytecodes
are executed immediately before itself.

— Method return bytecodes. If a method has multiple return bytecodes, the
trace of the method-exit records which return bytecodes are executed.

Monitoring the last two kinds of bytecodes (bytecodes with multiple predecessors
and method return bytecodes) and marking the last executed bytecode are required
due to backward traversal of the trace during post-mortem analysis. On the other
hand, if slicing proceeds by forward traversal of the trace, it is not necessary to mon-
itor bytecodes with multiple predecessors and method return bytecodes. Instead,
for each conditional branch bytecode we can record which bytecodes are executed
immediately after the branch bytecode (i.e., the target addresses).

As mentioned earlier, our trace representation captures each method’s execution
in the trace as a trace table. Each row of the trace table for a method m represents
the execution of one of the bytecodes of m (in fact it has to be a bytecode which
we trace). A row of a trace table thus captures all execution instances of a specific
bytecode. The row corresponding to a bytecode b in method m stores the sequence
of values taken by each operand of b during execution; if b has multiple predecessors,
we also maintain a sequence of the predecessor bytecode of b. Thus, in each row
of a trace table we store several sequences in general; these sequences are stored in
a compressed format. Separating the sequence of values for each bytecode operand
allows a compression algorithm to capture and exploit regularity and repetition in

6 · Wang and Roychoudhury

1: class Demo{

2:

3: public int foo(int j){

4: int ret;

5: if (j % 2 == 1)

6: ret= 2;

7: else

8: ret= 5;

9: return ret;

10: }

11:

12: static public void main (String argvs[]){

13: int i, k, a, b;

14: Demo obj= new Demo();

15: int arr[]= new int[4];

16:

17: a=2;

18: b=1;

19: k=1;

20: if (a>1){

21: if (b>1){

22: k=2;

23: }

24: }

25

26: for (i=0; i < 4; i++){

27: arr[i]=k;

28: k= k + obj.foo(i);

29: }

30:

31: System.out.println(k);

32: }

33: }

public static void main(String[]);

 1: new Class Demo

 2: dup

 3: invokespecial Demo()

 4: astore 5

 5: iconst_4

 6: newarray int

 7: astore 6

 8: iconst_2

 9: istore_3

 10: iconst_1

 11: istore 4

 12: iconst_1

 13: istore_2

 14: iload_3

 15: iconst_1

 16: if_icmple 22

 17: iload 4

 18: iconst_1

 19: if_icmple 22

 20: iconst_2

 21: istore_2

 22: iconst_0

 23: istore_1

 24: iload_1

 25: iconst_4

 26: if_icmpge 39

 27: aload 6

 28: iload_1

 29: iload_2

 30: iastore

 31: iload_2

 32: aload 5

 33: iload_1

 34: invokevirtual foo:(int)

 35: iadd

 36: istore_2

 37: iinc 1, 1

 38: goto 24

 39: getstatic

 40: iload_2

 41: invokevirtual println:(int)

 42: return

Demo();

 43: aload_0

 44: invokespecial Object()

 45: return

public int foo(int);

 46: iload_1

 47: iconst_2

 48: irem

 49: iconst_1

 50: if_icmpne 54

 51: iconst_2

 52: istore_2

 53: goto 56

 54: iconst_5

 55: istore_2

 56: iload_2

 57: ireturn

Fig. 1. The left part is a simple Java program, and the right part shows corresponding bytecodes.

Method Demo() is generated automatically as the class constructor.

the values taken by an operand. This can be due to regularity of control or data flow
(e.g., a read bytecode sweeping through an array or a loop iterating many times).
Before presenting how to compress trace sequences, let us look at an example to
understand the trace table representation. Note that sequences are not compressed
in this example for ease of understanding.

Example. The left part of Figure 1 presents a simple Java program, and the right
part shows the corresponding bytecode stream. Table I shows the trace tables for
methods main and foo, respectively. The constructor method Demo has no trace
table, because no bytecode of this method is traced. Each row in the trace table
consists of: (a) the id/address for a bytecode (in the Bytecode column), and (b)
collected traces for that bytecode (in the Sequences column).

For our example Java program, there are 57 bytecodes altogether, and only 8 of
them are traced, as shown in Table I. Bytecodes 1 and 6 (i.e. two new statements
at lines 14 and 15 of the source program) allocate memory for objects, and their
traces include o1 and o2, which represent identities of the objects allocated by these

Dynamic Slicing on Java Bytecode Traces · 7

Bytecode Sequences

1 〈o1〉
6 〈o2〉
22 〈19〉
24 〈23, 38, 38, 38, 38〉
30 〈o2, o2, o2, o2〉

〈0, 1, 2, 3〉
34 〈CDemo, CDemo, CDemo, CDemo〉
41 〈Cout〉

Bytecode Sequences

56 〈55, 53, 55, 53〉

(a) (b)

Table I. Trace table for (a) method main(String[]) and (b) method foo(int) of Figure 1

bytecodes. Bytecode 30 defines an element of an array (i.e. define arr[i] at line
27 of the source program). Note that for this iastore bytecode, two sequences are
stored. These sequences correspond to the two operands of the bytecode, namely:
identities of accessed array objects (i.e. 〈o2, o2, o2, o2〉) and indices of accessed
array element (i.e. 〈0, 1, 2, 3〉). Both sequences consist of four elements, because
bytecode 30 is executed four times and accesses o2[0], o2[1], o2[2], o2[3] respectively;
each element in a sequence records one operand for one execution of bytecode
30. Bytecodes 34 and 41 invoke virtual methods; the operand sequences record
classes which invoked methods belong to, where CDemo represents class Demo and
Cout represents the standard output stream class. Bytecodes 22, 24 and 56 have
multiple predecessors in the control flow graph. For example, bytecode 56 (i.e.
return ret at line 9 of the source program) has two predecessors: bytecode 53
(i.e. after ret=2 at line 6 of the source program) and bytecode 55 (i.e. ret=5 at
line 8 of the source program). The sequence recorded for bytecode 56 (see Table
I(b)) captures bytecodes executed immediately before bytecode 56, which consists
of bytecodes 55 and 53 in this example. Note that every method in our example
program has only one return bytecode, so no return bytecode is monitored and
no trace of the method-exit is collected.

Clearly, different invocations of a method within a program execution can result
in different traces. The difference in two executions of a method results from
different operands of bytecodes within the method. These different traces are all
stored implicitly via the sequences of operands used by the traced bytecodes. As
an example, consider the trace table of method foo shown in Table I(b). The
different traces of foo result from the different outcomes of its only conditional
branch, which is captured by the trace sequence for predecessors of bytecode 56 in
Figure 1, as shown in Table I(b).

2.2 Overview of SEQUITUR

So far, we have described how the bytecode operand sequences representing control
flow, data flow, or dynamic call graph are separated in an execution trace. We now
employ a lossless compression scheme to exploit the regularity and repetition of
these sequences. Our technique is an extension of the SEQUITUR, a lossless data
compression algorithm [Nevill-Manning and Witten 1997] which has been used to
represent control flow information in program traces [Larus 1999]. First we briefly
describe SEQUITUR.

8 · Wang and Roychoudhury

The SEQUITUR algorithm represents a finite sequence σ as a context free gram-
mar whose language is the singleton set {σ}. It reads symbols one-by-one from the
input sequence and restructures the rules of the grammar to maintain the following
invariants: (A) no pair of adjacent symbols appear more than once in the grammar,
and (B) every rule (except the rule defining the start symbol) is used more than
once. To intuitively understand the algorithm, we briefly describe how it works on
a sequence 123123. As usual, we use capital letters to denote non-terminal symbols.

After reading the first four symbols of the sequence 123123, the grammar consists
of the single production rule

S → 1, 2, 3, 1

where S is the start symbol. On reading the fifth symbol, it becomes

S → 1, 2, 3, 1, 2

Since the adjacent symbols 1, 2 appear twice in this rule (violating the first invari-
ant), SEQUITUR introduces a non-terminal A to get

S → A, 3, A A → 1, 2

Note that here the rule defining non-terminal A is used twice. Finally, on reading
the last symbol of the sequence 123123 the above grammar becomes

S → A, 3, A, 3 A → 1, 2

This grammar needs to be restructured since the symbols A, 3 appear twice. SE-
QUITUR introduces another non-terminal to solve the problem. We get the rules

S → B,B B → A, 3 A → 1, 2

However, now the rule defining non-terminal A is used only once. So, this rule is
eliminated to produce the final result.

S → B,B B → 1, 2, 3

Note that the above grammar accepts only the sequence 123123.

2.3 Capturing Contiguous Repeated Symbols in SEQUITUR

One drawback of SEQUITUR is that it cannot efficiently represent contiguous
repeated symbols, including both terminal and non-terminal symbols. However,
contiguous repeated symbols are not uncommon in program traces. Consider the
example in Figure 1. Bytecode 24 (i.e. i<4 at line 26 of the source program in Fig-
ure 1) has two predecessors: bytecode 23 (i.e. i=0 at line 26 of the source program
in Figure 1) and bytecode 38 (after i++ at line 26 of the source program in Figure
1). The for loop is iterated four times, so the predecessor sequence for bytecode
24 is: 〈 23, 38, 38, 38, 38 〉 as shown in Table I(a). To represent this sequence,
SEQUITUR will produce the following rules:

S → 23, A, A A → 38, 38

In general, if the for loop is iterated k times, SEQUITUR needs O(lgk) rules in
this fashion. To exploit such contiguous occurrences in the sequence representation,
we propose the Run-Length Encoded SEQUITUR (RLESe).

Dynamic Slicing on Java Bytecode Traces · 9

RLESe constructs a context free grammar to represent a sequence on the fly; this
contrasts with the work of [Reiss and Renieris 2001] which modifies the SEQUITUR
grammar post-mortem. The right side of each rule is a sequence of “nodes”. Each
node 〈sym : n〉 consists of a symbol sym and a counter n (i.e. run length), repre-
senting n contiguous occurrences of sym. RLESe can exploit contiguous repeated
symbols, and represent the above trace sequence 〈 23, 38, 38, 38, 38 〉 of bytecode
24 using the following one rule:

S → 23 : 1, 38 : 4

The RLESe algorithm constructs a context free grammar by reading from the
input sequence symbol by symbol. On reading a symbol sym, a node 〈sym : 1〉
is appended to the end of the start rule, and grammar rules are re-structured
by preserving following three properties. The first property is unique to RLESe,
resulting from its maintenance of contiguous occurrences of grammar nodes. The
second and third properties are taken (and modified) from SEQUITUR.

(1) No contiguous repeated symbols property. This property states that each pair of
adjacent nodes contains different symbols. Continuous repeated symbols will
be encoded within the run-length.

(2) Digram uniqueness property. This property means that no similar digrams
appear in resulting grammar rules. Here a digram refers to two consecutive
nodes on the right side of a grammar rule. Two digrams are similar if their
nodes contain the same pair of symbols e.g. 〈a : 2, X : 2〉 is similar to 〈a : 3, X :
4〉, but 〈a : 3, X : 2〉 is not similar to 〈X : 2, a : 3〉.

(3) Rule utility property. This rule states that every rule (except the start rule S)
is referenced more than once. When a rule is referenced by only one node and
the run length n of that node equals 1, the reference will be replaced with the
right hand side of this rule.

To maintain the digram uniqueness property in RLESe, we might need to split
nodes during grammar construction. This split operation allows the algorithm to
obtain duplicated identical digrams, and represent them by one grammar rule for
potential space saving. Two digrams are identical if they have the same pairs of
symbols and counters. For example, digram 〈a : 2, X : 2〉 is identical to 〈a : 2, X :
2〉, but digram 〈a : 2, X : 2〉 is not identical to 〈a : 3, X : 4〉.

Given two similar digrams 〈sym1 : n1, sym2 : n2〉, and 〈sym1 : n′
1, sym2 : n′

2〉, we
can split at most two nodes to obtain two occurrences of 〈sym1 : min(n1, n

′
1), sym2 :

min(n2, n
′
2)〉, where min(n1, n

′
1) denotes the minimum of n1 and n′

1. Consider
bytecode 24 of Figure 1, which corresponds to the termination condition i<4 of
loop at line 26 of the source program. Assume that in some execution, such a loop
is executed twice, one time with 6 iterations, and another time with 8 iteration.
Recall that bytecode 24 has two predecessors: bytecode 23 (corresponding to i=0 of
the source program in Figure 1) and bytecode 38 (after i++ of the source program
in Figure 1). The predecessor sequence for bytecode 24 is:

S → 23 : 1, 38 : 6, 23 : 1, 38 : 8

To ensure digram uniqueness property, we will split the node 〈38 : 8〉 to a digram
〈38 : 6, 38 : 2〉. This is to remove duplicate occurrences of similar digrams as:

10 · Wang and Roychoudhury

S → A : 2, 38 : 2 A → 23 : 1, 38 : 6

The split operation introduces more nodes (at most two) into the grammar, but
may save space when the identical digram appears frequently in the sequence being
compressed.

In addition to the run-length encoding performed in RLESe, we also need to
modify the terminal symbols fed into RLESe algorithm. In particular, we need
to employ difference representations in memory reference sequences. For example,
the sequence 〈0, 1, 2, 3〉 in Table I(a), which represents the indices of the array
elements defined by bytecode 30 in Figure 1, cannot be compressed. By converting
it into its difference representation as 〈0, 1, 1, 1〉, RLESe can compactly represent
the trace sequence with one rule, as

S → 0 : 1, 1 : 3

As with SEQUITUR [Nevill-Manning and Witten 1997], the RLESe compression
algorithm is linear in both space and time, assuming that it takes constant time
to find similar digrams. Detailed time/space complexity analysis of the RLESe
compression scheme is presented in our technical report [Wang and Roychoudhury
2007]. Experiments comparing RLESe with SEQUITUR (refer Section 5) show
that RLESe can often achieve competitive compression ratio in less time. This is
because RLESe can postpone re-constructing the grammar so the grammar rules
are re-constructed less frequently. That is, on reading a symbol sym from input,
instead of appending node 〈sym : 1〉 and re-constructing the grammar immediately,
the RLESe algorithm first compares sym against the last node 〈sym′ : n〉 of the start
rule. If sym is the same as sym′, the node 〈sym′ : n〉 is updated to 〈sym′ : n + 1〉
and the grammar is not further re-constructed. If not, node 〈sym : 1〉 is appended
to the end of the start rule, and the grammar is re-structured so as to preserve the
three properties of RLESe.

3. DYNAMIC SLICING

In this section, we focus on how to perform dynamic slicing of Java programs. Our
dynamic slicing algorithm operates on the compact bytecode traces described in the
last section. Dynamic slicing is performed w.r.t. a slicing criterion (H,α, V), where
H is an execution trace, α represents some bytecodes the programmer is interested
in, and V is a set of variables referenced at these bytecodes. The dynamic slice
contains all bytecodes which have affected values of variables in V referenced at
last occurrences of α in the execution trace H.

Often, the user understands a Java program at the statement level. Thus, the
user-defined criterion is often of the form (I, l, V), where I is an input, and l is a
line number of the source program; the user is interested in statements (instead of
bytecodes) which have affected values of variables in V referenced at last occurrences
of statements at l during the execution with input I. This form is a little different
from our bytecode based slicing criterion (H,α, V). In this case, program execution
with input I produces the trace H, and α represents the bytecodes corresponding
to statements at l. The user is interested in statements corresponding to bytecodes
included in the dynamic slice. In order to map bytecodes to a line number of the

Dynamic Slicing on Java Bytecode Traces · 11

source file and vice versa, we use the LineNumberTable attribute in a Java’s class
file [Lindholm and Yellin 1999] which describes such a map.

The dynamic slice includes the closure of dynamic control and data dependencies
from the slicing criterion. Formally, a dynamic slice can be defined over Dynamic
Dependence Graph (DDG) [Agrawal and Horgan 1990]. The DDG captures dynamic
control and data dependencies between bytecode occurrences during program exe-
cution. Each node of the DDG represents one particular occurrence of a bytecode;
edges represent dynamic data and control dependencies. The dynamic slice is then
defined as follows.

Definition 3.0.1. Dynamic slice for a slicing criterion consists of all bytecodes
whose occurrence nodes can be reached from the node(s) representing the slicing
criterion in the DDG.

We can construct the DDG as well as the dynamic slice during a backwards
traversal of the execution trace.

3.1 Core Algorithm

Figure 2 presents an inter-procedural dynamic slicing algorithm, which returns
the dynamic slice defined in Definition 3.0.1. Before slicing, we pre-compute the
static control flow graph for the program. In addition, we pre-compute the control
dependence graph [Ferrante et al. 1987], where each node in the graph represents
one bytecode, and an edge from node υ to υ′ represents that bytecode of υ′ decides
whether bytecode of υ will be executed. This static control dependence graph is
used at lines 22 and 23 of the algorithm in Figure 2 to detect dynamic control
dependencies.

Lines 1-5 of Figure 2 introduce five global variables for the slicing algorithm,
including the slicing criterion. During dynamic slicing, we maintain δ, a list of
variables whose values need to be explained, ϕ, the set of bytecode occurrences
which have affected the slicing criterion, op stack, a operand stack for simulation
(see Section 3.3), and fram, a stack of frames for method invocations. The dy-
namic slice includes all bytecodes whose occurrences appear in ϕ at the end of the
algorithm. For every method invocation during trace collection, we create a frame
for this invocation during slicing. Each frame contains the method name and a γ
set; the γ set includes bytecode occurrences β, where (a) β belongs to this method
invocation, and (2) the dynamic control dependencies w.r.t. β need to be explained.

Initially we will set δ, ϕ, op stack, and fram to empty. However, if the program
had been aborted in the middle of an execution, the call stack fram is initialized
differently. In this case, our tracing will record the call stack at the point of abort,
call it stkabort. Our dynamic slicing algorithm then initializes fram to stkabort and
proceeds by backward traversal of the execution trace.

Our slicing algorithm traverses the program’s execution trace backwards, start-
ing from the last executed bytecode recorded in the trace H. For each occurrence
β of bytecode bβ (i.e. β represents one execution of the bytecode bβ) encountered
during the backward traversal for slicing, a frame is created and pushed to fram
whenever bβ is a return bytecode (lines 9-12 of Figure 2). The γ set of the new
frame is initialized to empty (line 11 of Figure 2), since no bytecode occurrence
for this method invocation has been traversed. If bβ is a method invocation byte-

12 · Wang and Roychoudhury

code, a frame is popped from fram (lines 13-16 of Figure 2). The dynamic slicing
algorithm checks whether the encountered bytecode occurrence β has affected the
slicing criterion during trace collection, at lines 19-31 of Figure 2. In particular,
line 19 of Figure 2 checks if β is the slicing criterion. Line 22 of Figure 2 checks
dynamic control dependencies when bβ is a control transfer bytecode. The method
computeControlDependence(bβ , curr fram, last fram) returns true iff. any byte-
code occurrence included in the dynamic slice is dynamically control dependent on
β, where curr fram is the top of the stack fram, and last fram captures the
frame popped from fram (whenever bβ is a method invocation bytecode). More
specifically, the computeControlDependence method returns true iff.

—bβ is a conditional branch bytecode, and some bytecode whose occurrence appears
in curr fram.γ is statically control dependent on bβ (intra-procedural control
dependence check), or

—bβ is method invocation bytecode, and the last fram.γ set is not empty, that is
some of the bytecode occurrences in the method body are included in the slice
(inter-procedural control dependence check).

Bytecode occurrences which are dynamically control dependent on β are then
removed from curr fram.γ at line 24 of Figure 2, because their dynamic control
dependencies have just been explained. Line 27 of Figure 2 checks dynamic data
dependencies. When the algorithm finds that the bytecode occurrence β has af-
fected the slicing criterion (i.e. any of the three checks in lines 19, 22 and 27 of the
algorithm in Figure 2 succeeds), β is included into curr fram.γ and used variables
are included into δ (at lines 32-34 of Figure 2), in order to find bytecode occurrences
which have affected β and hence the slicing criterion. The simulation operand stack
op stack is also properly updated at line 35 for further check of data dependencies
(this is explained in Section 3.3). The dynamic control and data dependencies
checks (lines 22 and 27 of Figure 2) can be reordered, since they are independent
of each other.

In the rest of this section, we elaborate on the underlying subtle issues in using
the slicing framework of Figure 2. Section 3.2 presents how to traverse the execution
backwards without decompressing the compact bytecode trace. Section 3.3 explains
the intricacies of our dynamic data dependence computation in presence of Java’s
stack based execution. Section 3.4 illustrates the dynamic slicing algorithm with
an example and Section 3.5 shows the correctness and cost of our dynamic slicing
algorithm.

3.2 Backward Traversal of Trace without decompression

The dynamic slicing algorithm in Figure 2 traverses the program execution back-
wards, starting from the last executed bytecode recorded in the trace H (line 7 of
Figure 2). The algorithm proceeds by iteratively invoking the getPrevBytecode
method to obtain the bytecode executed prior to current occurrence β of bytecode
bβ during trace collection. Figure 3 presents the getPrevBytecode method. The
algorithm first retrieves the last executed bytecode within the same method invoca-
tion of bβ into blast. It returns blast if blast does not cross method boundaries (lines
2-7 of Figure 3). If blast invokes a method meth, the last executed return bytecode
of method meth is returned (lines 8-15 of Figure 3). If blast represents the start of

Dynamic Slicing on Java Bytecode Traces · 13

1 (H, α, V)= the slicing criterion

2 δ= ∅, a set of variables whose values need to be explained
3 ϕ= ∅, the set of bytecode occurrences which have affected the slicing criterion

4 op stack= empty, the operand stack for simulation

5 fram= empty, the frames of the program execution

6 dynamicSlicing()
7 bβ = get last executed bytecode from H;

8 while (bβ is defined)

9 if (bβ is a return bytecode)
10 new fram= createFrame();

11 new fram.γ= ∅;
12 push(fram, new fram);
13 if (bβ is a method invocation bytecode)

14 last fram = pop(fram);
15 else

16 last fram = null;

17 β = current occurrence of bytecode bβ ;
18 curr fram = the top of fram;

19 if (β is the last occurrence of bβ in H, and bβ ∈ α)

20 use vars = V ∩ variables used at β;
21 ϕ = ϕ ∪ {β};
22 if (computeControlDependence(bβ , curr fram, last fram))

23 BC= {β′ | β′ ∈ curr fram.γ and β′ is dynamically control dependent on β};
24 curr fram.γ = curr fram.γ −BC ;

25 use vars = variables used at β;

26 ϕ = ϕ ∪ {β};
27 if (computeDataDependence(β, bβ))

28 def vars = variables defined at β;
29 δ = δ − def vars;

30 use vars = variables used at β;

31 ϕ = ϕ ∪ {β};
32 if (β ∈ ϕ)

33 curr fram.γ = curr fram.γ ∪ {β};
34 δ = δ ∪ use vars;
35 updateOpStack(β, bβ);

36 bβ = getPrevBytecode(β, bβ);

37 return bytecodes whose occurrences appear in ϕ;

Fig. 2. The dynamic slicing algorithm

a method, the bytecode which invokes current method is returned (lines 16-17 of
Figure 3).

The getPrevBytecode method has to retrieve last executed bytecode from the
compact bytecode trace H. For this purpose, it needs to traverse the predecessor
sequence of a bytecode with multiple predecessors. Since such sequences are com-
pactly stored as RLESe grammars, we need to efficiently traverse RLESe grammars;
this is accomplished by the method getLast. The getLast method gets the last
executed predecessor from a RLESe grammar G without decompression, using a
root-to-leaf path π in G. The slicing algorithm maintains such a path π for each
compressed RLESe sequence G to clearly mark which portion of G has been already
visited. We now explain our efficient traversal over the RLESe representation.

14 · Wang and Roychoudhury

1 getPrevBytecode (β: bytecode occurrence, bβ : bytecode)

2 if (bβ has exactly one predecessor in the control flow graph)

3 blast= the predecessor bytecode;
4 else

5 G= compressed control flow operand sequence for bβ in the bytecode trace H;

6 π= a root-to-leaf path for G;
7 blast= getLast(G, π);

8 if (blast is a method invocation bytecode)

9 meth= the method invoked by β;
10 if (meth has exactly one return bytecode)

11 return the return bytecode;
12 else

13 G′= compressed operand sequence for exit of meth in trace H;

14 π′= a root-to-leaf path for G′;
15 return getLast(G′, π′);
16 if (blast represents the start of a method)

17 return the bytecode which invokes current method;
18 return blast;

Fig. 3. Get the previous executed bytecode during backward traversal of the execution trace.

In our trace compression scheme, all operand sequences are compressed using
RLESe. The dynamic slicing algorithm traverses these sequences from the end to
extract predecessors for computation of control flow, and to extract identifies of
accessed variables for computation of data flow. For example, consider the operand
sequence of array indices for bytecode 56 in Table I(b), which is 〈55, 53, 55, 53〉.
During dynamic slicing on the program of Figure 1, we traverse this sequence
backwards, that is, from the end. At any point during the traversal, we mark the
last visited operand (say 〈55, 53, 55, 53〉) during slicing. The sequence beginning
with the marked operand (i.e. 〈53〉) has been visited. When the slicing algorithm
tries to extract next operand from the operand sequence, we use this mark to find
last unvisited element (i.e. value 55 in this example). We now describe how such
markers can be maintained and updated in the RLESe grammar representation.

The RLESe grammar of a sequence σ can simply be represented as a directed
acyclic graph (DAG). The RLESe grammar consists of run-length annotated sym-
bols of the form 〈sym : n〉 where sym is a terminal or non-terminal symbol and n
denotes a run-length, representing n contiguous occurrences of symbol sym. Let
us consider an example where the operand sequence is 〈abbabbcabb〉. The RLESe
compression algorithm will produce the following rules to represent this operand
sequence:

S → A : 2, c : 1, A : 1 A → a : 1, b : 2

Small letters denote terminal symbols in the operand sequence, and capital letters
denote non-terminal symbols. Figure 4(a) shows corresponding DAG representa-
tion, where dashed circles represent non-terminal symbols, circles represent terminal
symbols, and edges are annotated by run-lengths. For example, the run-length an-
notated symbol 〈A : 1〉 at the end of the start rule is captured by the node A and
the incoming edge S

1→ A for node A. We then use a root-to-leaf path π over the

Dynamic Slicing on Java Bytecode Traces · 15

S

(a) (b) (c)

non-terminal symbol terminal symbol grammar node the root-to-leaf path

A c

a b

2 1 1

1 2

S

A c

a b

2 1 1,1

1 2,1

S

A c

a b

2 1 1,1

1 2,2

S

A c

a b

2 1 1,1

1,1 2

S

A c

a b

2 1,1 1

1 2

S

A c

a b

2,1 1 1

1 2,1

(d) (e) (f)

Sequence: abbabbcabb

RLESe grammar: S -> A:2, c:1, A:1

A -> a:1, b:2

S

A c

a b

2 1 1,1

1 2,0

(g)

Fig. 4. An example showing extraction of operand sequence (without decompression) from RLESe
representation.

DAG representation to mark the symbol in σ that was last visited during backward
traversal. For every edge of the path π, we maintain both the run length n of cor-
responding grammar node X = 〈sym : n〉, and a visitation counter k ≤ n, where k
denotes the number of times that node X has been visited so far. For example, in
the edge A

2,1→ b in Figure 4(c), 2 represents the run length of grammar node 〈b : 2〉,
and 1 represents that this node has been visited once.

The dynamic slicing algorithm maintains one root-to-leaf path π for every com-
pressed operand sequence. The path π is initialized from the root to the rightmost
leaf node in the DAG, and the visitation counter annotated for the last edge in π is
set to 0, since no symbol has been visited. The slicing algorithm then uses the path
π to find the last unvisited terminal symbol of the RLESe grammar by invoking the
getLast method of Figure 5. In the getLast method, G is the DAG representa-
tion of the RLESe grammar for a sequence σ and π is the root-to-leaf path for the
symbol in σ that was last visited. The getLast method returns the last unvisited
symbol and updates the path π. Note that the “immediate left sibling” of an edge
e = x → y is the edge e′ = x → z where node z is the immediate left sibling of
node y in the graph; this notion is used in lines 10 and 11 of Figure 5.

For the example operand sequence 〈abbabbcabb〉, Figure 4(b) shows the initialized
root-to-leaf path π for the RLESe grammar. Figure 4(c-g) present the resultant
path π by calling the getLast method of Figure 5 each time, and the symbol of
the leaf node pointed by the path π is returned as the last unvisited symbol. For
example, Figure 4(c) shows the path π after the first calling the getLast method.
The path π includes two edges (i.e. S

1,1→ A and A
2,1→ b), representing both edges

have been visited once. The leaf node b is referenced by π. Thus, b is returned by
the getLast method, which represents the last symbol b in the original sequence
〈abbabbcabb〉.

With the getLast algorithm in Figure 5, we can extract an operand sequence
efficiently. Given the grammar for a sequence with length N , the getLast method
will be invoked N times to extract the entire sequence. The overall space overhead

16 · Wang and Roychoudhury

1 getLast(G: Grammar, π: path in G)

2 e = the last edge of π;

3 while (e is defined)

4 let e = sym1
n1,k1−→ sym′

1;
5 if (k1 < n1)

6 break;

7 else
8 remove edge e from π;

9 change the annotation of edge e from (n1, k1) to (n1);

10 Sibe= immediate left sibling of e in G;
11 if (such a sibling Sibe exists)

12 e = Sibe;

13 break;
14 else

15 e = last edge of π;

16 let e = sym2
n2,k2−→ sym′

2;
17 change the annotation of edge e from (n2, k2) to (n2, k2 + 1);

18 GX = DAG rooted at node sym′
2 within G;

19 for (each edge e′ from node sym′
2 to rightmost leaf node of GX)

20 insert edge e′ into π;

21 let e′ = sym3
n3→ sym′

3;
22 change the annotation of edge e′ from (n3) to (n3, 1);

23 return symbol in rightmost leaf node of GX ;

Fig. 5. One step in the backward traversal of a RLESe sequence (represented as DAG) without

decompressing the sequence.

is O(N), and the overall time overhead is O(N). The space overhead is caused by
maintaining the root-to-leaf path π, which is used by all invocations of the getLast
method to extract a sequence. The length of path π is linear in the number of
grammar rules (the grammar has no recursive rules). There are fewer grammar
rules than grammar nodes, and the number of grammar nodes is bounded by the
length of the original sequence. Thus, the space overhead to extract the entire
sequence is O(N).

The time overhead to extract the entire sequence comes from the time to access
edges and nodes in the DAG. Whenever a node with terminal symbol is accessed, the
getLast method immediately returns the terminal symbol. So, the total number of
times to access node with terminal symbol is O(N) in order to extract a sequence
with length N . The total number of accesses to non-terminal nodes is O(

∑
i

N
2i)=

O(N). Consequently, the time overhead to extract the entire sequence from a
RLESe grammar (by repeatedly invoking getLast to get the last symbol which has
not been visited) is O(N).

3.3 Computing Data Dependencies

The typical way to detect dynamic data dependencies is to compare addresses of
variables defined/used by bytecode occurrences (line 27 of Figure 2). However,
this is complicated by Java’s stack based architecture. During execution, the Java
virtual machine uses an operand stack to hold partial results of execution. Thus,
dynamic data dependence exists between bytecode occurrences β and β′, when

Dynamic Slicing on Java Bytecode Traces · 17

1 updateOpStack (β: bytecode occurrence, bβ : bytecode)

2 for (i = 0; i < def op(bβ); i = i + 1)

3 pop(op stack);
4 for (i = 0; i < use op(bβ); i = i + 1)

5 push(op stack, β);

Fig. 6. Maintain the simulation stack op stack.

a value is pushed into the operand stack by β and is popped by β′. Consider
the program in Figure 1 as an example. Assume that statement 27 of the source
program is executed, and the corresponding trace at the level of bytecode is 〈271,
282, 293, 304〉 where 271 means that the first element of the trace is bytecode 27
and so on. Bytecode occurrence 304 (which defines the array element arr[i] at line
27 of the source program) is dynamically data dependent on bytecode occurrences
271, 282 and 293 (which load local variables k and i, array object reference arr at
line 27 of the source program, respectively). The three bytecode occurrences push
three values into the operand stack, all of which are popped and used by bytecode
occurrence 304.

Clearly, dynamic data dependencies w.r.t. local variables and fields can be
easily detected by comparing the addresses (or identities) of accessed variables.
However, detecting data dependencies w.r.t. the operand stack requires reverse
simulating the operand stack (since we traverse the trace backwards). Figure 6
presents how to maintain the stack op stack for simulation, which is used by the
dynamic slicing algorithm at line 35 of Figure 2. We pop the simulation stack for
defined operands, and push used operands into the simulation stack. The function
def op(bβ) (use op(bβ)) at line 2 (4) of Figure 6 returns the number of operands
defined (used) by bytecode bβ . Note that the stack simulated during slicing does
not contain actual values of computation. Instead, each entry of the stack stores
the bytecode occurrence which pushed the entry into the stack.

Figure 7 shows the method to determine whether a bytecode occurrence has
affected the slicing criterion via dynamic data dependencies. This method is used
by the dynamic slicing algorithm at line 27 of Figure 2. If a bytecode occurrence β
defines a variable which needs explanation (lines 2-10 of Figure 7), or β defines a
partial result which needs explanation (lines 11-13 of Figure 7), the method returns
true to indicate that β has affected the slicing criterion. A partial result needs
explanation if the bytecode occurrence which pushes corresponding entry into the
stack has already been included in ϕ. The function def op(bβ) at line 11 of Figure
7 returns the number of operands defined by bytecode bβ . Our dynamic slicing
algorithm needs the addresses of variables accessed by each bytecode occurrence
for detecting data dependencies (lines 20, 25, 28 and 30 of Figure 2 and lines 3-8 of
Figure 7). If a local variable or a static field is accessed, the address can be found
from the class files. If an object field or an array element is accessed, the address
can be found from operand sequences of corresponding bytecode in the compact
bytecode trace.

When the algorithm detects data dependencies via reverse stack simulation, it
requires analyzing some bytecodes whose operands are not traced. Consider the

18 · Wang and Roychoudhury

1 computeDataDependence (β: bytecode occurrence, bβ : bytecode)

2 if (β defines a variable)

3 if (β defines a static field or local variable)
4 def loc= get address of the defined static field or local variable from class files;

5 if (β defines an object field or an array element)

6 G= compressed operand sequence for bβ in the compact bytecode trace H
7 π= a root-to-leaf path for G;

8 def loc= getLast(G, π);

9 if (def loc ∈ δ)
10 return true;

11 ω= the set of bytecode occurrences in top def op(bβ) entries of op stack;
12 if (ω ∩ ϕ 6= ∅)
13 return true;

14 return false;

Fig. 7. Detect dynamic data dependencies for dynamic slicing

50
5

50
5

50
5

48
3

48
3

48
3

Empty

op_stack

after 50
5

after 49
4

after 48
3

after 47
2

after 46
1

Fig. 8. An example shows the op stack after each bytecode occurrence encountered during back-

ward traversal

program in Figure 1 as an example. The statement if (j%2==1) at line 5 of the
source program corresponds to bytecode sequence 〈461, 472, 483, 494, 505〉. Figure
8 shows the op stack after processing each bytecode occurrence during backward
traversal. Note that the operands of bytecode 48 (i.e. bytecode irem which stands
for the mathematical computation “%”) are not traced. When bytecode occurrence
483 is encountered, computeDataDependence method in Figure 7 can detect that
505 is dynamically data dependent on 483. In addition, the bytecode 48 will also
update the op stack, as shown in Figure 8. As we can see from the example, in
order to detect implicit data dependencies involving data transfer via the operand
stack, it is important to know which bytecode occurrence pushes/pops an entry
from the op stack. The actual values computed by the bytecode execution are
not important. This highlights difference between our method and the work on
Abstract Execution [Larus 1990]. In Abstract Execution, a small set of events are
recorded and these are used as guide to execute a modified program. In our work,
we record some of the executed bytecodes in our compressed trace representation.
However, the untraced bytecodes are not re-executed during the analysis of the
compressed trace.

3.4 Example

Consider the example program in Figure 1, and corresponding compressed trace in
Table I. Assume that the programmer wants to find which bytecodes have affected

Dynamic Slicing on Java Bytecode Traces · 19

β δ fram op stack ∈ ϕ
method γ

4131 {} main {} 〈4131, 4131〉
4030 {k} main {4030} 〈4131〉 ?

3929 {k} main {4030} 〈〉
2628 {k} main {4030} 〈2628, 2628〉
2527 {k} main {4030} 〈2628〉
2426 {k} main {4030} 〈〉
3825 {k} main {4030} 〈〉
3724 {k} main {4030} 〈〉
3623 {} main {4030, 3623} 〈3623〉 ?

3522 {} main {4030, 3623} 〈3522, 3522〉 ?

5721 {} foo {5721} 〈3522, 5721〉 ?
main {4030, 3623}

5620 {ret} foo {5721, 5620} 〈3522〉 ?
main {4030, 3623}

5319 {ret} foo {5721, 5620} 〈3522〉
main {4030, 3623}

5218 {} foo {5721, 5620, 5218} 〈3522, 5218〉 ?
main {4030, 3623}

5117 {} foo {5721, 5620, 5218, 5117} 〈3522〉 ?
main {4030, 3623}

5016 {} foo {5721, 5620, 5016} 〈3522, 5016, 5016〉 ?
main {4030, 3623}

4915 {} foo {5721, 5620, 5016, 4915} 〈3522, 5016〉 ?
main {4030, 3623}

4814 {} foo {5721, 5620, 5016, 4915, 4814} 〈3522, 4814, 4814〉 ?
main {4030, 3623}

4713 {} foo {5721, 5620, 5016, 4915, 4814, 4713} 〈3522, 4814〉 ?
main {4030, 3623}

4612 {j} foo {5721, 5620, 5016, 4915, 4814, 4713, 4612} 〈3522〉 ?
main {4030, 3623}

3411 {} main {4030, 3623, 3411} 〈3522, 3411, 3411〉 ?

3310 {i} main {4030, 3623, 3411, 3310} 〈3522, 3411〉 ?

329 {i, obj} main {4030, 3623, 3411, 3310, 329} 〈3522〉 ?

318 {i, obj, k} main {4030, 3623, 3411, 3310, 329, 318} 〈〉 ?

307 {i, obj, k} main {4030, 3623, 3411, 3310, 329, 318} 〈307, 307, 307〉
296 {i, obj, k} main {4030, 3623, 3411, 3310, 329, 318} 〈307, 307〉
285 {i, obj, k} main {4030, 3623, 3411, 3310, 329, 318} 〈307〉
274 {i, obj, k} main {4030, 3623, 3411, 3310, 329, 318} 〈〉
263 {i, obj, k} main {4030, 263} 〈263, 263〉 ?

252 {i, obj, k} main {4030, 263, 252} 〈263〉 ?

241 {i, obj, k} main {4030, 263, 252, 241} 〈〉 ?

Table II. An example to show each stage of the dynamic slicing algorithm in Figure 2. The column

β shows bytecode occurrences in the trace being analyzed.

the value of k at line 31 of the source program. Table II shows each stage using
the dynamic slicing algorithm in Figure 2 w.r.t. the k. For simplicity, we do not
illustrate slicing over the entire execution, but over last executed eight statements
– 〈26, 27, 28, 5, 6, 9, 26, 31〉. The corresponding bytecode sequence is a sequence
of thirty-one bytecode occurrences shown in the first column of Table II. For each
bytecode occurrence, the position number 1, . . . , 31 of the bytecode occurrence in
the sequence is marked as superscript for the sake of clarity.

For each bytecode occurrence β encountered during backward traversal, one row
of Table II shows resultant δ, fram, op stack and ϕ after analyzing β by our dy-
namic slicing algorithm. The ? in the last column indicates that the corresponding
bytecode occurrence has affected the slicing criterion and is included into ϕ.

20 · Wang and Roychoudhury

When bytecode occurrence 4030 is encountered, it is found to be the slicing
criterion. The used variable k is inserted to δ to find which bytecode occurrence
defines k; the bytecode occurrence 4030 is inserted to γ for control dependency
check; we pop 4131 from the operand stack op stack because 4030 loads one value
to the operand stack during trace collection. It should be noted that in this simple
example, we refer to a variable with its name (e.g. k), since both methods are
invoked once, and every variable has a distinct name in this example. This is for
simplicity of illustration. In the implementation, we use identifiers to distinguish
between variables from same/different method invocation.

After 4030, bytecode occurrence 3929 is encountered during backward traversal
and so on. We omit the details of the entire traversal but highlight some represen-
tative bytecode occurrences.

—After analyzing bytecode occurrence 5620, the slicing algorithm finds that byte-
code 56 has two predecessors, and retrieves last unvisited value from operand
sequence of bytecode 56 in Table I(b). Therefore, bytecode occurrence 5319 is
next analyzed.

—When bytecode occurrence 307 is encountered, o2 and 3 are retrieved from
operand sequences of bytecode 30 in Table I(a), representing an assignment to
array element o2[3]. However, o2[3] is irrelevant to the slicing criterion, so neither
δ nor γ is updated.

3.5 Proof of Correctness and Complexity Analysis

In this section we discuss the correctness proof and complexity analysis of our
dynamic slicing algorithm.

Theorem 3.5.1. Given a slicing criterion, the dynamic slicing algorithm in Fig-
ure 2 returns dynamic slice defined in Definition 3.0.1.

Proof Sketch: We only present the proof sketch here. The full proof appears in our
technical report [Wang and Roychoudhury 2007], which is available online.

Let ϕi be the ϕ set after i loop iterations of the dynamic slicing algorithm in
Figure 2, ϕ∗ be the resultant ϕ set when the algorithm finishes, and β be the
bytecode occurrence encountered at the ith loop iteration.

We prove the soundness of the algorithm by induction on loop iterations of the
slicing algorithm, i.e. for any β′ ∈ ϕ∗ we show that β′ is reachable from the slicing
criterion in the dynamic dependence graph (DDG).

We prove the completeness of the slicing algorithm, i.e. ∀β′ reachable from slicing
criterion in the Dynamic Dependence Graph (DDG) ⇒ β′ ∈ ϕ∗. Note that there
is no cycle in the DDG, so we prove the completeness by induction on structure of
the DDG. 2

Now we analyze the cost of the dynamic slicing algorithm in Figure 2. Given the
compressed trace for an execution which executes N bytecodes, the space overhead
of the slicing algorithm is O(N), and the time overhead is O(N2).

The space overhead of the algorithm is caused by the maintenance of δ, ϕ,
op stack, fram, compressed operand sequences and root-to-leaf paths for every
compressed sequence. The sizes of δ, ϕ, op stack and fram are all O(N). For δ,
this is because one execution of a bytecode can use a constant number of variables;

Dynamic Slicing on Java Bytecode Traces · 21

for op stack, this is because the number of operands popped from and pushed
to the operand stack by one bytecode is bound by a constant; for fram, this is
because the γ set of each method invocation in fram only contains bytecode oc-
currences for this invocation, and does not overlap with each other. Assume that
each bytecode bi has executed η(bi) times, so

∑
bi

η(bi)= N . The size of all com-
pressed operand sequences is

∑
bi

O(η(bi))= O(N), because every bytecode has a
fixed number of operand sequences, and the size of the compact representation is
linear in the length of original operand sequence; proof of this claim appears in our
technical report [Wang and Roychoudhury 2007]. The size of each root-to-leaf path
is bound by the size of corresponding compressed operand sequence. Consequently,
the overall space cost of the slicing algorithm is O(N).

During dynamic slicing, the algorithm performs the following four actions for
each occurrence β of bytecode bβ encountered during backward traversal of the
execution trace.

(1) extract operand sequences of bytecode bβ from the compressed trace for back-
ward traversal,

(2) perform slicing criterion, dynamic control/data dependency checks,
(3) update δ, ϕ, op stack, and fram,
(4) get previous executed bytecode.

According to the complexity analysis of the getLast method which is presented
in Section 3.2, it needs O(η(bi)) time to extract an operand sequence of bytecode
bi which is executed η(bi) times during trace collection. Note that

∑
i η(bi)= N .

Consequently, the overall time overhead to perform action (1) to extract all operand
sequences is

∑
i O(η(bi))= O(N), that is, linear in the length of the original exe-

cution. After extracting operand sequences, the overall time to perform action (2)
and (3) is clearly O(N2), since they may update/enquire sets δ, ϕ, op stack and
fram whose sizes are bound by N . This complexity can be improved further by
using efficient data structures for set representation.

The getPrevBytecode method of Figure 3 may perform two actions in order
to get the previous executed bytecode (action (4) in the preceding) — (a) get
the predecessor bytecode from class files, or (b) extract last executed bytecode
from compressed operand sequences. The overall time to perform get predecessor
bytecode from class files is O(N), since it needs constant time to get the predecessor
bytecode from Java class files every time. The overall time to extract operand
sequences is O(N) as discussed earlier.

Consequently, the overall time cost of the dynamic slicing algorithm is O(N2).

4. RELEVANT SLICING

In the previous section, we presented dynamic slicing which can be used for focusing
the programmer’s attention to a part of the program. However, there are certain
difficulties in using dynamic slices for program debugging/understanding. In par-
ticular, dynamic slicing does not consider that the execution of certain statements
is wrongly omitted. Consequently, all statements responsible for the error may not
be included into the dynamic slice, and the slice may mislead the programmer.

As an example, consider the program fragment presented in Figure 9, which is
a simplified version of the program in Figure 1. Let us assume that the statement

22 · Wang and Roychoudhury

1 b = 1;

2 k = 1;
3 if (a > 1) {
4 if (b > 1){
5 k = 2

}
}

6 . . . = k

Fig. 9. A “buggy” program fragment

b=1 at line 1 should be b=2 in a correct program. With input a=2, the variable k at
line 6 is 1 unexpectedly. The execution trace is 〈 11, 22, 33, 44, 65 〉, where 11 means
statement 1 is executed as the first statement and so on. If we use dynamic slicing to
correct the bug w.r.t. the incorrect value of k at 65, the dynamic slice computed by
the slicing algorithm of Section 3 contains only lines 2 and 6. Changing line 2 may
fix the bug, since such a change will change the value of k at line 6. Unfortunately,
line 1, the actual bug, is excluded from the dynamic slice. In this example the error
arises from the execution of line 5 being wrongly omitted, which is caused by the
incorrect assignment at line 1. In fact, changing line 1 may cause the predicate at
line 4 to be evaluated differently; then line 5 will be executed and the value of k at
line 6 will be different. In other words, dynamic slicing does not consider the effect
of the unexecuted statement at line 5.

The notion of relevant slicing, an extension of dynamic slicing, fills this caveat.
Relevant slicing was introduced in [Agrawal et al. 1993; Gyimóthy et al. 1999].
Besides dynamic control and data dependencies, relevant slicing considers potential
dependencies which capture the potential effects of unexecuted paths of branch and
method invocation statements. The relevant slice include more statements which,
if changed, may change the ”wrong” behaviors w.r.t. the slicing criterion. In the
example of Figure 9 with input a=2, 65 is potentially dependent on execution of the
branch at line 4 (44), because if the predicate at 44 is evaluated differently, the
variable k is re-defined and then used by 65. Considering that 44 is dynamically
data dependent on 11, 11 has potential effects over 65. Thus, line 1 is included into
the resultant relevant slice.

In general, Dynamic Slice ⊆ Relevant Slice ⊆ Static Slice. In our experiments
(refer Section 5), we show that the sizes of the relevant slices are close to the sizes
of the corresponding dynamic slices. Like dynamic slices, the relevant slices are
also computed w.r.t. a particular program execution (i.e. it only includes executed
statements).

The rest of this section is organized as follows. In Section 4.1, we recall past work
on potential dependencies, a notion which is crucial for computing the relevant
slice. We then present our definition of relevant slice. Since the existing works
on relevant slicing present a slice as a set of program statements, we first define a
relevant slice as a set of statements. However, like our dynamic slicing algorithm,
our relevant slicing algorithm (refer Figure 11 in Section 4.2) operates at the level
of bytecodes. This is discussed in Section 4.2.

Dynamic Slicing on Java Bytecode Traces · 23

4.1 Background

In this subsection, we recapitulate the definition of potential dependence. The
material in this subsection was mostly studied in [Agrawal et al. 1993; Gyimóthy
et al. 1999].

Relevant slicing extends dynamic slicing by considering statements which may
affect the slicing criterion. These statements are executed and do not affect the
criterion. However, if these statements are changed, branches may be evaluated
differently, or alternative methods may be invoked. We consider the following two
situations for the execution of alternative code fragment due to program changes.

(1) Branch: If the value of a variable used by the predicate of a branch statement
is changed, the predicate may be evaluated differently.

(2) Method invocation: If the programmer changes the assignment w.r.t. the ob-
ject which invokes a method, or the declaration of parameters, an alternative
method may be called.

In relevant slicing, we use the notion of potential dependence to capture the
effects of these branch and method invocation statements. If these statements are
evaluated differently, variables may be re-defined and affect the slicing criterion.
We define potential dependence as follows; for any statement occurrence β, the
corresponding statement is written as Sβ .

Definition 4.1.1. Potential Dependence Given an execution trace H of a pro-
gram P , for any statement instances β and β′ appearing in H, β is potentially
dependent on an earlier branch or method invocation statement instance β′ if and
only if all of the following conditions hold.

(1) β is not (transitively) dynamically control/data dependent on β′ in H.
(2) there exists a variable v used by β s.t. v is not defined between β′ and β in H

and v may be defined along an outgoing edge l of statement Sβ′ where Sβ′ is
the statement at statement occurrence β′. That is, there exists a statement X
satisfying the following.
—(a) X is (transitively) control dependent on Sβ′ along the edge l, and
—(b) X is an assignment statement which assigns to variable v or a variable u

which may be aliased to v.
(3) the edge l is not taken at β′ in H.

The purpose of potential dependence is to find those statements which will be
missed by dynamic slicing. If a branch or method invocation statement has affected
the slicing criterion, we do not consider that it has potential influence, since the
dynamic slice will always include such a statement. We use condition (1) to exclude
dynamic control and data dependencies from potential dependencies. Conditions
(2) and (3) ensure that β′ has potential influence on β. The statement X in condi-
tion 2(b) appears in program P , but its execution is prohibited by the evaluation
of branch/method invocation in β′. However, if it is executed (possibly due to a
change in the statement Sβ′), the value of variable v used at β will be affected. We
cannot guarantee that v must be re-defined if β′ is evaluated to take edge l. This
is because even if β′ is evaluated differently, execution of the assignment to v may

24 · Wang and Roychoudhury

be guarded by other (nested) conditional control transfer statements. Furthermore,
condition (2) requires computation of static data dependence. In the presence of ar-
rays and dynamic memory allocations, we can only obtain conservative static data
dependencies in general. We now proceed to define a relevant slice, and introduce
our relevant slicing algorithm to compute such a slice.

4.2 Relevant Slice and the Relevant Slicing Algorithm

To define relevant slices, first we define the notion of an Extended Dynamic De-
pendence Graph (EDDG). The EDDG captures dynamic control dependencies, dy-
namic data dependencies and potential dependencies w.r.t. a program execution.
It is an extension of the Dynamic Dependence Graph (DDG) described in [Agrawal
and Horgan 1990]. Each node of the DDG represents one particular occurrence of
a statement in the program execution; edges represent dynamic data and control
dependencies. The EDDG extends the DDG with potential dependencies, by intro-
ducing a dummy node for each branch statement occurrence or a method invocation
statement occurrence. For each statement occurrence β in the execution trace, a
non-dummy node nn(β) appears in the EDDG to represent this occurrence. In
addition, if β is a branch statement or a method invocation statement, a dummy
node dn(β) also appears in the EDDG. As far as the edges are concerned, the fol-
lowing are the incoming edges of any arbitrary node nn(β) or dn(β) appearing in
the EDDG.

—dynamic control dependence edges from non-dummy node nn(β′) to nn(β), iff.
β′ is dynamically control dependent on β.

—dynamic data dependence edges from both non-dummy node nn(β′) and dummy
node dn(β′) (if there is a dummy node for occurrence β′) to nn(β), iff. β′ is
dynamically data dependent on β.

—potential dependence edges from non-dummy node nn(β′) and dummy node
dn(β′) (if there is a dummy node for β′) to dn(β), iff. β′ is potentially dependent
on β.

These dependencies can be detected during backwards traversal of the execution
trace.

What is a Relevant Slice. The relevant slice is then defined based on the extended
dynamic dependence graph (EDDG) as follows.

Definition 4.2.1. Relevant slice for a slicing criterion consists of all statements
whose occurrence nodes can be reached from the node(s) for the slicing criterion in
the Extended Dynamic Dependence Graph (EDDG).

In order to accurately capture the effects w.r.t. potential dependencies, we have
introduced a dummy node into the EDDG for each occurrence of a branch or
method invocation statement. The EDDG can then represent dynamic control de-
pendence edges and potential dependence edges separately. This representation
allows the reachability analysis for relevant slicing not to consider dynamic control
dependence edges which are immediately after potential dependence edges, because
such dynamic control dependencies cannot affect behaviors w.r.t. the slicing crite-
rion. Figure 10 shows the EDDG for the example program in Figure 9 for input

Dynamic Slicing on Java Bytecode Traces · 25

Fig. 10. The EDDG for the program in Figure 9 with input a=2.

a = 2. The execution trace is 〈11, 22, 33, 44, 65〉. The resultant relevant slice w.r.t.
variable k at line 6 consists of lines {1, 2, 4, 6}, because nodes 11, 22, 44 and 65 can
be reached from the criterion 65. Note that statement occurrence 65 is potentially
dependent on 44, and 44 is dynamically control dependent on statement occurrence
33. However, changes related to line 3 will not affect the value of k at 65, nor will
it decide whether line 6 will be executed. Therefore, line 3 should not be included
into the slice and reported. By using the dummy node to separate dynamic control
dependencies and potential dependencies w.r.t. statement occurrence 44, we can
easily exclude line 3 of Figure 9 from our relevant slice.

We now discuss how our dynamic slicing algorithm described in Section 3 (operat-
ing on compact Java bytecode traces) can be augmented to compute relevant slices.
Thus, like the dynamic slicing algorithm, our relevant slicing algorithm operates on
the compact bytecode traces described in Section 2.

As in dynamic slicing, relevant slicing is performed w.r.t. a slicing criterion
(H,α, V), where H is the execution history for a certain program input, α repre-
sents some bytecodes the programmer is interested in, and V is a set of variables
referenced at these bytecodes. Again, the user-defined criterion is often of the form
(I, l, V) where I is the input, and l is a line number of the source program. In
this case, H represents execution history of the program P with input I, and α
represents the bytecodes corresponding to statements at l.

Figure 11 presents a relevant slicing algorithm, which returns the relevant slice
as defined in Definition 4.2.1. This algorithm is based on backward traversal of
the compressed execution trace H (described in Section 2). The trace H contains
execution flow and identities of accessed variables, so that we can detect various
dependencies during the traversal. Although the slice can also be computed af-
ter constructing the whole EDDG, this approach is impractical because the entire
EDDG may be too huge in practice. Before slicing, we compute the control flow
graph, which is used to detect potential dependencies and to get last executed byte-
code. We also pre-compute the static control dependence graph [Ferrante et al.
1987] which will be used at lines 22, 23 and 47 of Figure 11, and at line 9 of the
computePotentialDependence method in Figure 12. Also, prior to running our rel-

26 · Wang and Roychoudhury

evant slicing algorithm we run static points-to analysis [Andersen 1994; Steensgaard
1996]; the results of this analysis are used for determining potential dependencies.

In the relevant slicing algorithm, we introduce a global variable θ, to keep track
of variables used by bytecode occurrences β, iff. β is included into the slice because
of potential dependencies. In particular, each element in θ is of the form 〈β, prop〉,
where β is an bytecode occurrence, and prop is a set of variables. Every variable
in prop is used by a bytecode occurrence β′, where

— β′ is included into ϕ (the relevant slice) because of potential dependencies,
and

— β′ = β, or β′ is (transitively) dynamically control dependent on β.

The purpose of the δ set (set of unexplained variables) is the same as in the
dynamic slicing algorithm. That is, the δ set includes variables used by bytecode
occurrence β for explanation, where β is included into the slice ϕ because β belongs
to the slicing criterion, or there is any bytecode occurrence in ϕ which is dynamically
control/data dependent on β.

For each bytecode occurrence β of bytecode bβ encountered during the backward
traversal for slicing, we first check if β has affected the slicing criterion via dynamic
control/data dependencies as the in dynamic slicing algorithm of Figure 2. In
particular, line 19 checks whether β belongs to the slicing criterion. Line 22 checks
dynamic control dependencies if bβ is a conditional control transfer bytecode. Line
27 checks dynamic data dependencies. With the introduction of θ, variables in both
δ and θ need explanation. Consequently, the computeDataDependence method has
been slightly changed, as re-defined in Figure 13. If all the three checks fail, the
algorithm proceeds to check the potential dependencies at line 38, by invoking the
computePotentialDependence method in Figure 12.

For the computation of potential dependencies, we need to pre-compute the ef-
fects of various outcomes of a control transfer bytecode. Each such outcome triggers
a different code fragment whose effect can be summarized by all possible assignment
bytecodes executed. This summarization is used by computePotentialDependence
method in Figure 12. Note that δ is used to check dynamic data dependencies (line
27 of Figure 11) as well as potential dependencies (line 6 in Figure 12).

The intersect(MDS,δ) method used by the computePotentialDependence
method in Figure 12 checks whether the execution of the alternative path of a
bytecode bβ may define some variables which are used by bytecode occurrences in
the slice. Here MDS includes variables which may be defined if bβ is evaluated
differently, and δ includes variables which have affected the slicing criterion and need
explanation. This check is non-trivial because MDS contains static information,
while δ contains dynamic information. Let meth be the method that the bytecode
bβ belongs to, and curr invo be the current invocation of meth. Note that both
MDS and δ include local variables and fields. Every local variable in MDS is also
a local variable of method meth, and is represented by its identity 〈var〉. Every
local variable in δ for explanation is represented as 〈invo, var〉, where invo refers to
the method invocation which uses the local variable var. Many points-to analysis
algorithms [Andersen 1994; Steensgaard 1996] represent abstract memory locations
of objects using their possible allocation sites. Thus, we represent an object field in
MDS as 〈site, name〉, where site refers to a possible allocation site of the object,

Dynamic Slicing on Java Bytecode Traces · 27

1 (H, α, V)= the slicing criterion

2 δ= ∅, a set of variables whose values need to be explained

3 ϕ= ∅, the set of bytecode occurrences which have affected the slicing criterion
4 op stack= empty, the operand stack for simulation

5 fram= empty, the frames of the program execution
6 θ = ∅, (bytecode occurrences, used variables) included in slice due to potential dependencies

7 relevantSlicing()

8 bβ = get last executed bytecode from H;

9 while (bβ is defined)
10 if (bβ is a return bytecode)

11 new fram= createFrame();

12 new fram.γ=∅;
13 push(fram, new fram);

14 last fram=null;

15 if (bβ is a method invocation bytecode)
16 last fram=pop(fram);

17 β = current occurrence of bytecode bβ ;
18 curr fram = the top of fram;

19 if (β is the last occurrence of bβ and bβ ∈ α)

20 use vars = V ∩ variables used at β;
21 ϕ = ϕ ∪ {β};
22 if (computeControlDependence(bβ , curr fram, last fram))

23 BC= {β′ | β′ ∈ curr fram.γ and β′ is dynamically control dependent on bβ ;}
24 curr fram.γ = curr fram.γ −BC ;

25 use vars = variables used at β;

26 ϕ = ϕ ∪ {β};
27 if (computeDataDependence(β, bβ))

28 def vars = variables defined at β;

29 δ = δ − def vars;

30 use vars = variables used at β;

31 ϕ = ϕ ∪ {β};
32 for (each 〈β′, prop′〉 in θ)

33 prop′ = prop′ − def vars;

34 if (β ∈ ϕ)
35 curr fram.γ = curr fram.γ ∪ {β};
36 δ = δ ∪ use vars;

37 else
38 if (computePotentialDependence(β, bβ))

39 ϕ = ϕ ∪ {β};
40 if (bβ is a branch bytecode)
41 use vars = variables used at β; θ = θ ∪ {〈β, use vars〉};
42 if (bβ is a method invocation bytecode)
43 o = the variable to invoke a method; θ = θ ∪ {〈β, {o}〉};
44 if (bβ is a branch bytecode or method invocation bytecode)

45 prop=∅;
46 for (each 〈β′, prop′〉 in θ)

47 if (β′ = β or β′ is control dependent on β)
48 prop = prop ∪ prop′; θ = θ − {〈β′, prop′〉};
49 θ = θ ∪ {〈β, prop〉};
50 updateOpStack(β, bβ);

51 β = getPrevBytecode(β, bβ);
52 return bytecodes whose occurrences appear in ϕ;

Fig. 11. The relevant slicing algorithm.

28 · Wang and Roychoudhury

1 computePotentialDependence (β: bytecode occurrence, bβ : bytecode)

2 if (bβ is a branch or method invocation bytecode)

3 for (each possible outcome x of bβ)
4 if (outcome x of bβ did not occur at β)

5 MDS = the set of variables which may be defined

when outcome x occurs;
6 if (intersect(MDS, δ))

7 return true;

8 for (each 〈β′, prop′〉 in θ)
9 if (β′ is not control dependent on β and intersect(MDS, prop′))

10 return true;
11 return false;

Fig. 12. Detect potential dependencies for relevant slicing.

1 computeDataDependence (β: bytecode occurrence, bβ : bytecode)

2 if (β defines a variable)

3 if (β defines a static field or local variable)
4 def loc= get address of the defined static field or local variable from class files;

5 if (β defines an object field or an array element)

6 G= compressed operand sequence for bβ in the compact bytecode trace H
7 π= a root-to-leaf path for G;

8 def loc= getLast(G, π);

9 if (def loc ∈ δ)

10 return true;

11 for (each 〈β′, prop′〉 in θ)
12 if (def loc ∈ prop′)
13 return true;

14 ω= the set of bytecode occurrences in top def op(bβ) entries of op stack;
15 if (ω ∩ ϕ 6= ∅)
16 return true;

17 return false;

Fig. 13. Detect dynamic data dependencies for relevant slicing.

and name refers to the name of the field. We also represent an object field in δ
as 〈site, timestamp, name〉, where site refers to the allocation site of the object,
timestamp distinguishes between objects created at the same allocation site, and

name refers to field name. Note that timestamp is only important for detecting
dynamic data dependencies. The intersect(MDS,δ) method returns true iff:

—there is a local variable where 〈var〉 ∈ MDS and 〈curr invo, var〉 ∈ δ, or
—there is a field where 〈site, name〉 ∈ MDS and 〈site, timestamp, name〉 ∈ δ.

We do not consider partial results (i.e. operands in the operand stack) for potential
dependencies because partial results will not be transferred between bytecodes of
different statements.

The proof of correctness of the relevant slicing algorithm in Figure 11 is similar to
that of the dynamic slicing algorithm in Figure 2. The detailed proof of correctness
can be found in our technical report [Wang and Roychoudhury 2007].

Dynamic Slicing on Java Bytecode Traces · 29

Now we analyze the cost of the relevant slicing algorithm in Figure 11. The
space overheads of the slicing algorithm are O(N2 + m3), and the time overheads
are O(m2 · N3), where N is the length of the execution, and m is the number of
bytecodes of the program. Since the relevant slicing algorithm is similar with the
dynamic slicing algorithm in Figure 2, the cost analysis is also similar except costs
w.r.t. the θ and MDS.

The θ set contains at most N elements of the form 〈β, prop〉, because every
bytecode occurrence β has at most one element 〈β, prop〉 in θ. The size of each prop
is O(N), because at most N bytecode occurrences are (transitively) dynamically
control dependent on β and every bytecode occurrence uses a constant number of
variables. Consequently, the space overheads of θ are O(N2).

Each MDS includes the set of variables which may be defined when a specific
outcome of a branch bytecode occurs. If m is the number of bytecodes in the pro-
gram, clearly there are at most m MDSs. How do we bound the size of each MDS?
Each MDS may have at most m assignments and each of these assignments may
affect at most m locations (provided we distinguish locations based on allocation
sites as is common in points-to analysis methods). Thus, the size of each MDS is
O(m2). Since there are at most m MDSs, the space overheads of maintaining the
MDSs are O(m3). The other portions of the relevant slicing algorithm are taken
from dynamic slicing; the space overheads of these portions of the relevant slicing
algorithm are O(N), as explained in Section 3. So, the overall space overheads of
our relevant slicing algorithm are O(N2 + m3).

We now calculate the time overheads of relevant slicing. First we estimate the
time overheads for maintaining the θ set in the relevant slicing algorithm. Note
that the θ set contains O(N) elements of the form 〈β, prop〉. The set difference
operation at line 33 of Figure 11 is executed O(N2) times. Since each prop set
contains O(N) variables, the overall time overheads to perform the set difference
operation at line 33 of Figure 11 are O(N3). The total time overheads to perform
the set union operation at lines 41, 43 and 49 of Figure 11 are O(N2), because lines
41, 43 and 49 are executed O(N) times and the size of the θ set is O(N). Given
a bytecode occurrence β and the θ set, there are a constant number of elements
〈β′, prop′〉 ∈ θ, where β′ is (directly) dynamically control dependent on β. This is
because there is no explicit goto statement in Java programs. Different occurrences
of the same bytecode are dynamically control dependent on different bytecode oc-
currences. Note that there are a constant number of bytecodes which are statically
control dependent on the bytecode bβ of occurrence β. Thus, there are a constant
number of bytecode occurrences which are directly dynamically control dependent
on β. In addition, every bytecode occurrence β′ has at most one 〈β′, prop′〉 in θ.
Consequently, line 48 is executed O(N) times, and the overall time overheads to
execute line 48 are O(N3). The total time overheads to perform check at line 12
of Figure 13 are O(N3), which is similar to perform set difference operation at line
33 of Figure 11.

Now, we analyze the overall time overheads to perform the intersect operation
by the computePotentialDependence method in Figure 12. The intersect oper-
ation at line 6 of Figure 12 can be executed at most N times. In each execution
of the intersect operation we compare the contents of MDS and δ. Since the size
of MDS is O(m2) and the size of the set δ is O(N), therefore the time overheads

30 · Wang and Roychoudhury

of a single intersect operation are O(N · m2). Thus, the total time overheads
to execute all the intersect operations at line 6 of Figure 12 are O(N · N · m2).
Similarly, the total time overheads to execute all the intersect operations at line
9 of Figure 12 are O(N3 ·m2), since this intersect operation is executed O(N2)
times.

The other portions of the relevant slicing algorithm are taken from dynamic
slicing; the time complexity of these portions of the relevant slicing algorithm is
O(N2), as discussed in Section 3. This leads to a time complexity of O(N3 · m2)
for our relevant slicing algorithm.

5. EXPERIMENTAL EVALUATION

We have implemented a prototype slicing tool and applied it to several subject
programs. The experiments report time and space efficiency of our trace collection
technique. We compress traces using both SEQUITUR and RLESe, and compare
the time overheads and effectiveness of the improved compression algorithm against
the previous one, in order to investigate the cost effectiveness of the proposed
compression algorithm. In addition, the experiments report time overheads to
compute dynamic and relevant slices, and the sizes of these slices.

To collect execution traces, we have modified the Kaffe virtual machine [Kaffe
] to monitor interpreted bytecodes. In our traces, we use object identities instead
of addresses to represent objects. Creation of structures such as multi-dimensional
arrays, constant strings etc. may implicitly create objects. We trace and allocate
identities to these objects as well. The virtual machine may invoke some methods
automatically when “special” events occur (e.g. it may invoke the static initializer
of a class automatically when a static field of the class is first accessed). These
event are also stored, and used for backward traversal of the execution trace.

Most Java programs use libraries. Dynamic dependencies introduced by the exe-
cution of library methods are often necessary to compute correct slices. Our imple-
mentation does not distinguish between library methods and non-library methods
during tracing and slicing. However, after the slicing finishes, we will filter state-
ments inside the libraries from the slice. This is because libraries are often provided
by other vendors, and programmers will not look into them.

Finally, note that static points-to analysis results are required in our relevant
slicing algorithm (for computing potential dependencies). To compute points-to
sets, we used the spark toolkit [Lhoták 2002] which is integrated in the compiler
optimization framework soot [Vallée-Rai et al. 1999].

5.1 Subject Programs

The subjects used in our experiments include six subjects from the Java Grande Fo-
rum benchmark suite [JGF], three subjects from the SPECjvm suite [SPECjvm98
1998], and one medium sized Java utility program [Berk and Ananian 2003]. De-
scriptions and inputs of these subjects are shown in Table III. We ran and collected
execution traces of each program with inputs shown in the third column in Table III.
Corresponding execution characteristics are shown in Table IV. The second column
in Table IV shows the number of bytecodes of these subjects. The column Executed
bytecodes in Table IV presents the number of distinct bytecodes executed during
one execution, and the fourth column in Table IV shows corresponding total num-

Dynamic Slicing on Java Bytecode Traces · 31

Subject Description Input

Crypt IDEA encryption and decryption 200,000 bytes

SOR Successive over-relaxation on a grid 100 × 100 grid

FFT 1-D fast Fourier transform 215 complex numbers

HeapSort Integer sorting 10000 integers

LUFact LU factorisation 200 × 200 matrix

Series Fourier coefficient analysis 200 Fourier coefficients

201 compress Modified Lempel-Ziv method (LZW) 228.tar in the SPECjvm suite

202 jess Java Expert Shell System fullmab.clp in the SPECjvm suite

209 db Performs multiple database functions db2 & scr2 in the SPECjvm suite

JLex A Lexical Analyzer Generator for Java sample.lex from the tool’s web site

Table III. Descriptions and input sizes of subject programs.

Subject Total # of Executed # Bytecode # Branch # Method

Bytecodes Bytecodes Instances Instances invocations

Crypt 2,939 1,828 103,708,780 1,700,544 48

SOR 1,656 740 59,283,663 1,990,324 26

FFT 2,327 1,216 72,602,818 2,097,204 37

HeapSort 1,682 679 11,627,522 743,677 15,025

LUFact 2,885 1,520 98,273,627 6,146,024 41,236

Series 1,800 795 16,367,637 1,196,656 399,425

201 compress 8,797 5,764 166,537,472 7,474,589 1,999,317

202 jess 34,019 14,845 5,162,548 375,128 171,251

209 db 8,794 4,948 38,122,955 3,624,673 19,432

Jlex 22,077 14,737 13,083,864 1,343,372 180,317

Table IV. Execution characteristics of subject programs.

Subject Orig. Trace RLESe All All/Orig.
Trace Table Sequences (%)

Crypt 64.0M 8.9k 8.8k 17.8k 0.03

SOR 73.4M 7.6k 10.8k 18.5k 0.02

FFT 75.2M 8.2k 87.3k 95.5k 0.12

HeapSort 23.6M 7.7k 1.7M 1.7M 7.20

LUFact 113.1M 9.1k 179.7k 188.9k 0.16

Series 24.4M 7.7k 444.4k 452.2k 1.81

201 compress 288.6M 23.7k 8.8M 8.8M 3.05

202 jess 25.7M 79.2k 3.4M 3.4M 13.23

209 db 194.5M 29.0k 39.2M 39.2M 20.15

Jlex 49.9M 62.6k 1.5M 1.5M 3.01

Table V. Compression efficiency of our bytecode traces. All sizes are in bytes.

ber of bytecode occurrences executed. The last two columns present the number of
branch bytecode occurrences and method invocations, respectively. Bytecodes from
Java libraries are not counted in the table. However, bytecodes of user methods
called from library methods are included in the counts shown.

32 · Wang and Roychoudhury

0

10

20

30

40

50

60

70

80

90

Crypt SOR FFT HeapSort LUFact Series _201_compress _202_jess _209_db Jlex

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
) Original

RLESe

SEQUITUR

Fig. 14. Time overheads of RLESe and SEQUITUR. The time unit is second.

5.2 Time and Space Efficiency of Trace Collection

We first study the efficiency of our compact trace representation. Table V shows the
compression efficiency of our compact trace representation. The column Orig. Trace
represents the space overheads of storing uncompressed execution traces on disk.
To accurately measure the compression achieved by our RLESe grammars, we leave
out the untraced bytecodes from the Orig. Trace as well as the compressed trace.
Next two columns Trace Table and RLESe Sequences show the space overheads
to maintain the trace tables and to store the compressed operand sequences of
bytecodes on disk. The column All represents the overall space costs of our compact
bytecode traces, i.e. sum of space overheads of Trace Table and RLESe Sequences.
The % column indicates All as a percentage of Orig. Trace. For all our subject
programs, we can achieve at least 5 times compression. Indeed for some programs
we get more than two orders of magnitude (i.e 100 times) compression.

Figure 14 presents the absolute running time of the subject programs without in-
strumentation, tracing with RLESe and tracing with SEQUITUR. All experiments
were performed on a Pentium 4 3.0 GHz machine with 1 GB of memory. From this
figure we can see that the slowdown for collecting traces using RLESe compared to
the original program execution is 2− 10 times for most subject programs, and the
slowdown is near 20 times for 209 db which randomly accesses a database. This
shows that our method is suitable for program executions with many repetitions,
but the time overhead may be not scalable to program executions with too many
random accesses. Note that these additional time overheads are caused by com-
pression using RLESe/SEQUITUR. The results reflect one limitation of RLESe (as
well as SEQUITUR) — the time efficiency of the compression algorithm heavily
depends on the efficiency of checking the digram uniqueness property. To speed up
this check, a sophisticated index of digrams should be used. However, the choice of
the index has to trade-off between time and space efficiency, since the index will in-
troduce additional space overheads during trace collection. In our implementation,
we use the B+ tree (instead of sparse hash) to index digrams during compressing,
and the index is no longer needed after compression is completed.

Dynamic Slicing on Java Bytecode Traces · 33

Subject RLESe % SEQUITUR %

Crypt 0.03 0.07

SOR 0.02 0.04

FFT 0.12 0.34

HeapSort 7.20 7.20

LUFact 0.16 0.40

Series 1.81 2.50

201 compress 3.05 3.12

202 jess 13.23 13.62

209 db 20.15 18.35

Jlex 3.01 4.01

Table VI. Comparing compression ratio of RLESe and SEQUITUR.

We now compare the space efficiency of RLESe against SEQUITUR. Both algo-
rithms were performed on operand sequences of bytecodes. For a fair comparison,
we use the same index to search for identical/similar digrams in the implementation
of both algorithms. Table VI compares the space costs of both algorithms by pre-
senting their compression ratio (in percentage). From the tables, we can see that
the space consumption of compressed traces produced by both algorithms are some-
what comparable. RLESe outperforms SEQUITUR for eight subject programs, and
SEQUITUR outperforms for one (where the 209 db program randomly accesses a
database and does not have many contiguous repeated symbols in operand traces).
Since RLESe employs run-length encoding of terminal and non-terminal symbols
over and above the SEQUITUR algorithm, nodes in grammars produced by RLESe
are usually less than those produced by SEQUITUR. However, each grammar node
of RLESe has an extra field to record the run-length. This will lead to higher
memory consumption when RLESe cannot reduce enough nodes (e.g. compressed
traces for 209 db).

Figure 14 compares the time overheads of RLESe and SEQUITUR. Clearly
RLESe outperforms SEQUITUR in time on studied programs. The time overheads
of both algorithms are mainly caused by checking digram uniqueness property.
RLESe usually produces less nodes in grammars, so that similar digrams can be
found more efficiently. In addition, RLESe checks this property after contiguous
repeated symbols have finished, whereas SEQUITUR does this on reading every
symbol. Table VII shows this by representing the frequency of checking the digram
uniqueness property. When there are many contiguous repeated symbols in the ex-
ecution traces (e.g. the LUFact, SOR subjects), RLESe checks the property much
less frequently than SEQUITUR. Consequently the tracing overheads of RLESe are
also much less than those of SEQUITUR.

5.3 Overheads for Computing Dynamic Slice and Relevant Slice

We now measure the sizes of dynamic and relevant slices and the time overheads to
compute these slices. Thus, apart from studying the absolute time/space overheads
of dynamic slicing, these experiments also serve as comparison between dynamic
and relevant slicing. For each subject from the Java Grande Forum benchmark
suite, we randomly chose five distinct slicing criteria; for other bigger subjects, we
randomly chose fifteen distinct slicing criteria.

34 · Wang and Roychoudhury

Subject RLESe SEQUITUR

Crypt 800,605 20,499,488

SOR 393,202 25,563,918

FFT 2,020,976 25,722,054

HeapSort 2,262,916 7,066,784

LUFact 561,233 42,586,136

Series 2,501,001 9,507,982

201 compress 10,240,652 80,923,387

202 jess 2,090,153 6,666,460

209 db 24,386,746 54,033,314

Jlex 4,555,338 15,497,211

Table VII. The number of times to check digram uniqueness property by RLESe and SEQUITUR.

0

200

400

600

800

1,000

1,200

1,400

1 2 3 4 5

Slicing Criterion

S
l
i
c
e

S
i
z
e

(
n
u
m
b
e
r

o
f

b
y
t
e
c
o
d
e
s
)

DS

RS

0

50

100

150

200

250

300

1 2 3 4 5

Slicing Criterion

S
l
i
c
e

S
i
z
e

(
n
u
m
b
e
r

o
f

b
y
t
e
c
o
d
e
s
)

DS

RS

0

100

200

300

400

500

600

700

1 2 3 4 5

Slicing Criterion

S
l
i
c
e

S
i
z
e

(
n
u
m
b
e
r

o
f

b
y
t
e
c
o
d
e
s
)

DS

RS

Pgm. DS RS %

2,939 862 868 0.70

Pgm. DS RS %

1,656 130 131 0.77

Pgm. DS RS %

2,327 199 199 0.00

Crypt SOR FFT

0

50

100

150

200

250

300

1 2 3 4 5

Slicing Criterion

S
l
i
c
e

S
i
z
e

(
n
u
m
b
e
r

o
f

b
y
t
e
c
o
d
e
s
)

DS

RS

0

200

400

600

800

1,000

1,200

1 2 3 4 5

Slicing Criterion

S
l
i
c
e

S
i
z
e

(
n
u
m
b
e
r

o
f

b
y
t
e
c
o
d
e
s
)

DS

RS

0

50

100

150

200

250

300

1 2 3 4 5

Slicing Criterion

S
l
i
c
e

S
i
z
e

(
n
u
m
b
e
r

o
f

b
y
t
e
c
o
d
e
s
)

DS

RS

Pgm. DS RS %

1,682 195 195 0.00

Pgm. DS RS %

2,885 420 420 0.00

Pgm. DS RS %

1,800 149 149 0.00

HeapSort LUFact Series

Fig. 15. Compare sizes of relevant slices with dynamic slices. Pgm. represents size of the
program. DS and RS represent average sizes of dynamic slices and relevant slices, respectively.

All sizes are reported as the number of bytecodes. The last % column represents the increased
sizes of relevant slices (i.e. RS−DS

DS
) in percentage.

Dynamic slice and relevant slice. Figure 15 and 16 present the slice sizes. As we
can see, most dynamic slices and relevant slices were relatively small, less than 30%
of corresponding source programs on average in our experiments. This is because
programs often consist of several parts which work (almost) independently. The
irrelevant portions are excluded from both dynamic slices and relevant slices. In
our experiments, control and data structures of subject programs from Java Grande

Dynamic Slicing on Java Bytecode Traces · 35

0
200
400
600
800
1000
1200
1400
1600
1800
2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Slicing Criterion

Sl
ic

e
Si
ze

(n
um
be

r
of
 b

yt
ec

od
es
)

DS

RS

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Slicing Criterion

Sl
ic

e
Si
ze

(n
um
be

r
of
 b

yt
ec

od
es
)

DS

RS

Pgm. DS RS %

8,797 1,054 1,082 2.66

Pgm. DS RS %

34,019 7,023 9,440 34.42

201 compress 202 jess

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Slicing Criterion

Sl
ic
e

Si
ze

(n
um
be

r
of
 b

yt
ec
od

es
)

DS

RS

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Slicing Criterion

Sl
ic
e

Si
ze

(n
um
be

r
of
 b

yt
ec
od

es
)

DS

RS

Pgm. DS RS %

8,794 2,448 2,988 22.06

Pgm. DS RS %

22,077 3,283 3,784 15.26

209 db JLex

Fig. 16. Compare sizes of relevant slices with dynamic slices. Pgm. represents size of the

program. DS and RS represent average sizes of dynamic slices and relevant slices, respectively.
All sizes are reported as the number of bytecodes. The last % column represents the increased

sizes of relevant slices (i.e. RS−DS
DS

) in percentage.

Forum benchmark suite are quite simple. Furthermore, class hierarchies of these
programs are simple, with only limited use of inheritance. The relevant slices are
almost the same as corresponding dynamic slices for these programs, as shown in
Figure 15.

On the other hand, other subject programs (i.e. 201 compress, 202 jess, 209 db,
and JLex) are more complex. These programs have more sophisticated control
structures. In addition, these programs use inheritance and method overloading
and overriding, so that different methods may be called by the same method in-
vocation bytecode. Both of the factors lead to potential dependencies between
bytecode occurrences. More importantly, these subject programs involve substan-
tial use of Java libraries, such as collection classes and I/O classes. These library
classes contribute a lot to relevant slices, because of their complex control struc-
tures and usage of object-oriented features like method overloading (which lead to
potential dependencies). In fact, if we do not consider potential dependencies inside
such library classes, the average sizes of relevant slices for 201 compress, 202 jess,
209 db, and JLex were 1072, 8393, 2523, and 3728, which were 1.71%, 19.51%,
3.06%, 13.55% bigger than corresponding dynamic slices, respectively.

36 · Wang and Roychoudhury

22.5

23.0

23.5

24.0

24.5

25.0

25.5

1 2 3 4 5

Slicing Criterion

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
)

DS

RS

0.0

5.0

10.0

15.0

20.0

25.0

1 2 3 4 5

Slicing Criterion

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
)

DS

RS

0.0

5.0

10.0

15.0

20.0

25.0

1 2 3 4 5

Slicing Criterion

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
)

DS

RS

DS RS %

23.8 24.7 3.78

DS RS %

17.1 17.6 2.92

DS RS %

20.5 20.9 1.95

Crypt SOR FFT

0.0

1.0

2.0

3.0

4.0

5.0

6.0

1 2 3 4 5

Slicing Criterion

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
)

DS

RS

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

1 2 3 4 5

Slicing Criterion

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
)

DS

RS

0.0
1.0
2.0
3.0
4.0
5.0

6.0
7.0
8.0
9.0

10.0

1 2 3 4 5

Slicing Criterion

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
)

DS

RS

DS RS %

4.9 5.1 4.08

DS RS %

33.4 35.0 4.79

DS RS %

6.6 8.8 33.33

HeapSort LUFact Series

Fig. 17. Compare time overheads of relevant slicing with dynamic slicing. DS and RS represent
average time to perform dynamic slicing and relevant slicing, respectively. All time are reported

in second. The last % column represents the increased time for relevant slicing (i.e. RS−DS
DS

) in

percentage.

Time overheads. Figure 17 and 18 show the time overheads to compute dynamic
slices and relevant slices. Clearly, the time overheads to compute dynamic slices
and relevant slices are sensitive to choice of programs and slicing criteria. According
to our slicing algorithms in Figure 2 and 11, the time overheads mainly come from:
(1) extracting operand sequences of bytecodes and backwards traversal, and (2)
updating/comparing various sets to detect dependencies. For a particular execution
trace, the first task is common for slicing w.r.t. every slicing criterion, and the
second task is sensitive to the sizes of the slices. For bigger slices, their sets to detect
dependencies are also bigger during slicing, resulting in larger time overheads.

5.4 Summary and Threats to Validity

In summary, the RLESe compaction scheme achieves comparable or better com-
pression ration than SEQUITUR. The time overheads for the online compaction in
RLESe is found to be less than the compaction time in SEQUITUR. Our compact
trace representation can be used to perform dynamic slicing and relevant slicing

Dynamic Slicing on Java Bytecode Traces · 37

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Slicing Criterion

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
)

DS

RS

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Slicing Criterion

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
)

DS

RS

DS RS %

56.9 65.1 14.41

DS RS %

5.7 7.6 33.33

201 compress 202 jess

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Slicing Criterion

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
)

Ds

Rs

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Slicing Criterion

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
)

Ds

Rs

DS RS %

37.7 48.3 28.12

DS RS %

9.5 13.6 43.16

209 db JLex

Fig. 18. Compare time overheads of relevant slicing with dynamic slicing. DS and RS represent
average time to perform dynamic slicing and relevant slicing, respectively. All time are reported

in second. The last % column represents the increased time for relevant slicing (i.e. RS−DS
DS

) in

percentage.

efficiently, both in time and space. The resultant dynamic slices are relatively
small, compared against the entire program. They can guide further analysis (e.g.
program debugging) working on a small but important portion of the program.
Relevant slices are often bigger than dynamic slices (since they consider potential
dependencies), but relevant slices are still relatively small compared against the en-
tire program. Of course, relevant slicing for a given criterion takes more time than
dynamic slicing for the same criterion. However, the increased time overheads,
which depend on the choice of slicing criterion, the control structures and data flow
structures of the program, were tolerable in our experiments.

We note that there are various threats to validity of the conclusion from our
experiments. Our conclusions on less time overheads of RLESe (as compared to
SEQUITUR) can be invalidated if the execution trace has very few contiguous
repeated symbols. In this case, RLESe checks the diagram uniqueness property
almost as frequently as SEQUITUR. This can happen in a program with ran-
dom data accesses (e.g., the 209 db subject program used in our experiments).

38 · Wang and Roychoudhury

Our conclusions on the sizes of dynamic and relevant slices can be invalidated for
programs with little inherent parallelism, and having long chains of control/data
dependencies. For such programs, the dynamic and the relevant slices may not be
substantially smaller than the program. Furthermore, as the slice sizes increase so
do the time to compute these slices, since additional statements in the slice will
result in more unexplained variables in the δ set. It is also possible to encounter a
situation where the dynamic slice is quite small compared to the program, but the
relevant slice is much bigger than the dynamic slice. Since relevant slice computa-
tion involves detecting potential dependencies and potential dependencies involve
computing static data dependencies, a lot depends on the accuracy of the points-to
analysis used to detect static data dependencies. If the points-to analysis is very
conservative, it may lead to a large relevant slice.

6. JSLICE: A DYNAMIC SLICING TOOL FOR JAVA PROGRAMS

We have made our Java dynamic slicing tool available for use by researchers and
developers. The tool is integrated with the Eclipse platform1. Programmers can
specify the dynamic slicing criterion, perform dynamic slicing, and inspect the
dynamic slice in the Integrated Development Environment (IDE) of Eclipse. Note
that programmers also develop and debug Java programs in this IDE. They can use
this dynamic slicing tool easily during their development. We will briefly introduce
the dynamic slicing tool in the following. More details are available in the tool’s
web site given in the following.

http://jslice.sourceforge.net/

Figure 19 presents the architecture of our JSlice dynamic slicing tool. The tool
consists of two parts: (a) a front end, which is the user interface, and (b) a back
end, which collects traces and performs dynamic slicing.

The front end is implemented as a Eclipse plug-in. It helps programmers to
specify the dynamic slicing criterion, and read the dynamic slice. For example,
programmers can specify the slicing criterion by selecting a line in the source code
editor. All variables referenced at the selected line will be included into the slicing
criterion. Figure 20 demonstrators how statements included in the dynamic slice
are highlighted in the source code editor, so that programmers can easily find and
inspect them.

The back end is integrated with the open-source Kaffe Virtual Machine. When
Kaffe is executing a Java program, we instrument the interpreter of the virtual
machine, and collect the compact trace at the level of bytecode. After the Java
program terminates, we perform dynamic slicing on the compact trace without
decompression, w.r.t. the slicing criterion specified via the front end. The resultant
slice is then transformed to the source code level with the help of information
available in Java class files.

The dynamic slicing tool supports various ways to specify the slicing criterion.
When a programmer selects a line in the source code editor as the slicing criterion
in the tool, he/she can specify whether the last occurrence or all occurrences of

1Details about Eclipse can be found at http://www.eclipse.org/.

Dynamic Slicing on Java Bytecode Traces · 39

GUI (a Eclipse plug-in)

Execute The Program Select

Kaffe VM

Instrument

Compact Bytecode Trace Slicing Criterion

Dynamic Slicing

 Dynamic Slice (bytecodes)

 Dynamic Slice

(statements)

Transform

Java Class Files

Front End

Back End

Fig. 19. The architecture of the JSlice tool.

Fig. 20. Highlighted statements capture the dynamic slice computed (by the JSlice tool).

this statement should be considered as the criterion.When a programmer is inter-
ested in variables referenced at a specific occurrence of a statement in the middle
of the execution, he/she can specify the statement as the slicing criterion, and ter-
minate the program’s execution as soon as the “interesting” statement occurrence
appears. The tool will then return the slice w.r.t. variables referenced at the “in-
teresting” statement occurrence. The next example shows how our dynamic slicing
tool supports this feature. Suppose we have the following program fragment,

40 · Wang and Roychoudhury

1. for (i = 0; i < 10; i + +){
2. j = k + f(i);

3. }

and we are interested in how the value of variable j in the 6th loop iteration is
computed. We can specify statement 2 as the dynamic slicing criterion, and add
two lines (i.e. line 3 and 4) into the program as shown in the following.

1. for (i = 0; i < 10; i + +){
2. j = k + f(i);

3. if (i >= 5)

4. java.lang.System.exit(1);
5. }

Our tool will then return the dynamic slice w.r.t. variables referenced at the 6th
occurrence of statement 2.

7. ONGOING EXTENSIONS OF OUR SLICING TOOL

The dynamic slicing tool JSlice supports most features of the Java programming
languages, such as object, field, inheritance, polymorphism and etc. In future, we
plan to enhance JSlice to support more features of the Java programming language.
In particular, exceptions, reflection and multi-threading are widely used features
of the Java programming language. We plan to extend our dynamic slicing tool to
handle these features in the following manner.

7.1 Exceptions

When a program violates any semantic constraint of the Java programming lan-
guage, the Java virtual machine throws an exception to signal this error [Joy et al.
2000]. This exception will cause a non-local transfer of control from the point where
the exception occurred to the exception handler which can be specified by the pro-
grammer. It is necessary to store this non-local transfer of control during trace
collection, so that we can reconstruct such a control transfer during the backward
traversal for dynamic slicing.

JSlice maintains traces of each bytecode separately in the trace tables for the
program, as discussed in Section 2. Thus, the non-local transfer of control should
be stored in the traces of the first bytecode of the exception handler. Note that
this control transfer will cause the Java virtual machine to change the call stack,
in the process of looking for an appropriate exception handler. In particular, the
virtual machine will pop method invocations from the call stack up to the method
invocation invo excep (which the exception handler belongs to), and then execute
the exception handler. For each invocation invo which is popped from or revised in
the call stack, we need to record the following (assume that invo is an invocation
of method meth).

—the class name of meth, and
—the method name of meth, and
—the signature of meth, and
—the id/address of last executed bytecode of invo, and
—the size of the operand stack of invo before invo is popped or revised.

Dynamic Slicing on Java Bytecode Traces · 41

When the first bytecode b of an exception handler is encountered during the back-
ward traversal for slicing, the dynamic slicing algorithm should retrieve information
from the traces of b, and reconstruct the call stack, so that the backward traversal
can continue.

Exception handling also introduces extra dependencies into the program: the
dynamic control dependence between (a) the bytecode occurrence which throws
the exception and (b) the exception handler which catches the exception [Sinha
and Harrold 2000]. This means that, when any bytecode instance in the exception
handler is included into the dynamic slice, the bytecode occurrence which throws
the exception should also be included into the slice.

Finally block. For Java programs, exception handlers often come with a finally
block, where the Java Virtual Machine ensures that the finally block is always
executed even if an unexpected exception occurs. However, the usage of the finally
block complicates the construction of the control flow graph of a Java method, as
discussed in the following. During the execution of a Java method, a finally block
is always entered by executing a JSR bytecode. The semantics of the JSR bytecode
is very similar to that of the goto bytecode. However, when a JSR bytecode b is
executed, the address of the bytecode b′ which immediately follows b is stored into
the operand stack. When the finally block finishes execution, the saved address
of the bytecode b′ is retrieved and the execution continues from the bytecode b′.
In other words, the bytecode b′, which is executed after the finally block, is not
represented as an operand in the last bytecode of the finally block. As a result,
it is not clear which bytecodes may be executed after a finally block. In order
to discover this kind of information, the algorithm in Figure 21 is used. Given a
method meth, the algorithm in Figure 21 returns an array succ, where for every
bytecode exit which is the last bytecode of a finally block, succ[exit] represents the
set of bytecodes which may be executed after the bytecode exit. The algorithm
proceeds by traversing the bytecode sequence of the method meth twice. During
the first traversal, we mark the entry bytecode entry of each finally block, and
maintain next[entry], the set of bytecodes which may be executed after the finally
block. During the second traversal, for every entry bytecode of a finally block, we
detect the corresponding exit bytecode which exits the finally block. Additional,
we set succ[exit] to next[entry], so that we can get the control flow information
w.r.t. these exit bytecodes and construct the control flow graph as usual. The
stack entryStack is required here because of nested finally blocks.

7.2 Reflection

Reflection gives the Java code access to internal information of classes in the Java
Virtual Machine, and allows the code to work with classes selected during execution,
not in the source code. The main difficulty to support reflection for slicing lies in
the fact that many reflection methods are implemented as native methods, and
JSlice cannot trace details of native methods. Of all the native reflection methods,
the following two kinds of methods are particularly important for dynamic slicing.

—Native methods which invoke a Java method e.g. java.lang.reflect.Method.invoke
Clearly, there exists a control transfer from the native method to the callee Java
method. This control transfer is important for dynamic slicing, since we need

42 · Wang and Roychoudhury

1 findNext (meth: a Java method)

2 initialize each element of the array next and succ to ∅;
3 initialize entryStack to null;
4 for (each bytecode b of the method meth)

5 if (the bytecode b is a JSR bytecode)

6 entry = the operand bytecode of the JSR bytecode b;
7 mark the bytecode entry as an entry of a finally block;

8 b′ = the bytecode which immediately follows the JSR bytecode b;

9 next[entry] = next[entry] ∪ {b′};
10 for (each bytecode b of the method meth)

11 if (the bytecode b is an entry of a finally block)
12 push(entryStack, b);

13 if (the bytecode b is the last bytecode of a finally block)

14 entry = pop(entryStack);
15 exit = b;

16 succ[exit] = next[entry];

17 return succ;

Fig. 21. The algorithm to find the bytecodes which may be executed after each finally block.

to traverse the callee Java method for dynamic data dependence analysis. Here,
we have to explicitly record the control transfer. The class name, method name,
and signature of the callee method should be recorded.

—Native methods which read/write fields or arrays, where we can deduce which
variables are accessed according to the parameters and the invoking objects. For
example, field access methods in the java.lang.reflect.Field class fall into this
category. These native methods are also essential for dynamic data dependence
analysis. Note that these methods behave similarly with field/array access byte-
codes, we can trace and analyze these methods in a similar way as corresponding
bytecodes. That is, we trace the address (or identity) corresponding to the ob-
ject/array, and the field name or the index of the array element. During dynamic
slicing, such information is retrieved to detect dynamic data dependencies.

7.3 Multi-threading

We plan to extend JSlice to support multi-threaded Java programs. The trace
representation for a multi-threaded Java program could be similar to that for a
single-threaded Java program. That is, each method has one trace table, and each
row of the table maintains the control and data flow traces of a specific bytecode
(see Section 2 for the trace representation). However, Java threads often commu-
nicate with each other through inter-thread events, such as shared variable access
events, wait/notify events. The order of these events is required for dynamic slicing,
because such an order is essential to reason/detect inter-thread dynamic dependen-
cies. Levrouw et al. have proposed an efficient mechanism which can be used to
trace the order of these inter-thread events [Levrouw et al. 1994]. We now briefly
describe this approach in the following.

Levrouw’s approach is based on the Lamport Clocks [Lamport 1997]. During the
execution, each thread ti has a scalar clock ci

t, and each object o also maintains
a clock co. These clocks are initialized to 0. Whenever there is an inter-thread

Dynamic Slicing on Java Bytecode Traces · 43

event e where the thread ti accesses the object o, this event is recorded with a
time stamp ce = max(ci

t, co) + 1. The function max returns the maximum value
of the two inputs. Additionally, ci

t and co are updated to ce. These recorded time
stamps actually impose an partial order on all inter-thread events. Levrouw et
al. show that we can replay the original execution and re-construct the dynamic
dependencies, by enforcing inter-thread events following the partial order.

There is one practical problem in employing the above scheme for tracing multi-
threaded Java programs — all objects can be accessed by different threads, and
it is often non-trivial to know which objects are shared before the execution. As
a result, every access to an object should be considered as an inter-thread event.
However, if we trace the time stamp for every object access, the trace size may
explode. Fortunately, Levrouw et al. show that it is not necessary to trace all
time stamps to record the partial order. In particular, for an inter-thread event e
where the thread ti accesses the object o, let ci

t be the time stamp of ti, and co

of be the time stamp of o. We only need to trace the increment of ci
t before and

after the event e, if ci
t < co. The reader is refereed to [Ronsse and Bosschere 1999;

Levrouw et al. 1994] for details. Note that the tracing scheme given here will work
for multi-threaded Java programs running on multi-processor platforms as well.

The dynamic slicing algorithm for multi-threaded programs is similar to that
for single-threaded programs (see Section 3). However, the algorithm should now
maintain several operand stacks and call stacks, each of which corresponds to one
thread. At any specific time, only one operand stack and one call stack are active.
When we encounter an inter-thread event during the backward traversal, we pause
the traversal along this thread until we have traversed all inter-thread events with
a bigger time stamp. In addition, besides dynamic control and data dependencies,
the slicing algorithm should also consider inter-thread dependencies, such as the
dependencies introduced by wait-notify operations.

8. RELATED WORK

In this section, we survey related literature on compressed program trace represen-
tations, dynamic slicing and extensions of dynamic slicing for detecting omission
errors.

8.1 Work on Dynamic Slicing

Weiser originally introduced the concept of program slicing [Weiser 1984]. In the
last two decades, program slicing, in particular dynamic slicing, has been widely
used in many software engineering activities, such as program understanding, de-
bugging and testing [Agrawal et al. 1993; Korel and Rilling 1997; Lucia 2001; Tip
1995]. The first dynamic slicing algorithm was introduced by Korel and Laski [Ko-
rel and Laski 1988]. In particular, they exploited dynamic flow concepts to capture
the dependencies between occurrences of statements in the execution trace, and
generated executable dynamic slices. Later, Agrawal and Horgan used the dynamic
dependence graph to compute non-executable but precise dynamic slices, by repre-
senting each occurrence of a statement as a distinct node in the graph Agrawal and
Horgan 1990; Agrawal 1991]. A survey of program slicing techniques developed in
the eighties and early nineties appears in [Tip 1995].

44 · Wang and Roychoudhury

Static and dynamic slicing of object-oriented programs based on dependence
graphs have been studied in [Larsen and Harrold 1996] and [Xu et al. 2002] respec-
tively. Computation of control and data dependencies between Java bytecodes has
been discussed in [Zhao 2000]. The work of [Ohata et al. 2001] combined dynamic
and static slicing to avoid the space overheads of processing traces, at the cost of
precision of computed slices. Recently, Zhang et al. [Zhang et al. 2005] studied the
performance issues in computing the control/data dependencies from the execution
traces for slicing purposes.

In [Dhamdhere et al. 2003], Dhamdhere et al. present an approach for dynamic
slicing on compact execution traces. However, they do not employ any data com-
pression algorithm on the execution trace. They classify execution instances of
statements as critical or non-critical, and store only the latest execution instances
for non-critical statements. The classification of statements as critical/non-critical
is sensitive to the slicing criterion. In contrast, our compression scheme is not
related to the slicing criterion and exploits regularity/repetition of control/data
flow in the trace. Our slicing algorithm operates directly on this compressed trace
achieving substantial space savings at tolerable time overheads.

Extensions of Dynamic Slicing for Detecting Omission Errors. In the past, rel-
evant slicing has been studied as an extension of dynamic slicing for the purpose
of detecting omission errors in a program [Agrawal et al. 1993; Gyimóthy et al.
1999]. The approach in [Agrawal et al. 1993] relies on the huge dynamic depen-
dence graph. Furthermore, if b is a branch statement with which statements in the
slice have potential dependencies, [Agrawal et al. 1993] only computes the closure
of data and potential dependencies of b. In other words, control dependencies are
ignored w.r.t. statements on which b is data dependent. Gyimóthy proposed an
forward relevant slicing algorithm in [Gyimóthy et al. 1999], and it avoided using
the huge dynamic dependence graph. However, such an algorithm will compute
many redundant dependencies since it is not goal directed. In addition, while com-
puting the dependencies of a later occurrence of certain branch statements (those
which appear in the slice due to potential dependencies), the algorithm also includes
statements which affect an early occurrence of the same branch statement. In this
paper, we define a relevant slice over the Extended Dynamic Dependence Graph
(EDDG), and it is more accurate than previous ones. We have also presented a
space-efficient relevant slicing algorithm which operates directly on the compressed
bytecode traces.

8.2 Work on Compact Trace Representations

Various compact trace representation schemes have been developed in [Goel et al.
2003; Larus 1999; Pleszkun 1994; Zhang and Gupta 2001; 2004] to reduce the high
space overheads of storing and analyzing traces. Pleszkun presented a two-pass
trace scheme, which recorded basic block’s successors and data reference patterns
[Pleszkun 1994]. The organization of his trace is similar to our trace table. However,
Pleszkun’s technique does not allow traces to be collected on the fly, and the trace is
still large because the techniques for exploiting repetitions in the trace are limited.
Recently, Larus proposed a compact and analyzable representation of a program’s
dynamic control flow via the on-line compression algorithm SEQUITUR [Larus

Dynamic Slicing on Java Bytecode Traces · 45

1999]. The entire trace is treated as a single string during compression, but it
becomes costly to access the trace of a specific method. Zhang and Gupta suggested
breaking the traces into per-method traces [Zhang and Gupta 2001]. However, it is
not clear how to efficiently represent data flow in their traces. In a later work [Zhang
and Gupta 2004], Zhang and Gupta presented a unified representation of different
types of program traces, including control flow, value, address, and dependence.

The idea of separating out the data accesses of load/store instructions into a
separate sequence (which is then compressed) is explored in [Goel et al. 2003] in the
context of parallel program executions. However, this work uses the SEQUITUR
algorithm which is not suitable for representing contiguous repeated patterns. In
our work, we have developed RLESe to improve SEQUITUR’s space and time
efficiency, by capturing contiguous repeated symbols and encoding them with their
run-length. RLESe is different from the algorithm proposed by Reiss and Renieris
[Reiss and Renieris 2001], since it is an on-line compression algorithm, whereas Reiss
and Renieris suggested modifying SEQUITUR grammar rules in a post processing
step.

Another approach for efficient tracing is not to trace all bytecodes/instructions
during trace collection. This approach is explored by the abstract execution tech-
nique [Larus 1990], which differs from ours in how to handle untraced instructions.
In particular, abstract execution executes a program P to record a small number of
significant events, thereby deriving a modified program P ′. The program P ′ then
executes with the significant events as the guide; this amounts to re-executing parts
of P for discovering information about instructions in P which were not traced. On
the other hand, our method records certain bytecodes in an execution as a com-
pressed representation. Post-mortem analysis of this compressed representation
does not involve re-execution of the untraced bytecodes. To retrieve information
about untraced bytecodes we detect dynamic dependencies via a lightweight flow
analysis.

9. DISCUSSION

In this paper, we have developed a space efficient scheme for compactly representing
bytecode traces of Java programs. The time overheads and compression efficiency of
our representation are studied empirically. We use our compact traces for efficient
dynamic slicing. We also extend our dynamic slicing algorithm to explain omission
errors (errors arising from omission of a statement’s execution due to incorrect
evaluation of branches/method invocations). Our method has been implemented
on top of the open source Kaffe Virtual Machine. The traces are collected by
monitoring Java bytecodes. The bytecode stream is compressed online and slicing is
performed post-mortem by traversing the compressed trace without decompression.
We have released our JSlice dynamic slicing tool as open-source software for usage
in research and development.

ACKNOWLEDGMENTS

This work was partially supported by a Public Sector research grant from the
Agency of Science Technology and Research (A*STAR), Singapore.

46 · Wang and Roychoudhury

REFERENCES

Agrawal, H. 1991. Towards automatic debugging of computer programs. Ph.D. thesis, Purdue

University.

Agrawal, H. and Horgan, J. 1990. Dynamic program slicing. In ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI). ACM, New York, USA, 246–256.

Agrawal, H., Horgan, J., Krauser, E., and London, S. 1993. Incremental regression test-
ing. In International Conference on Software Maintenance (ICSM). IEEE Computer Society,

Washington, DC, USA, 348–357.

Akgul, T., Mooney, V., and Pande, S. 2004. A fast assembly level reverse execution method via
dynamic slicing. In International Conference on Software Engineering (ICSE). IEEE Computer

Society, Edinburgh, Scotland, UK, 522–531.

Andersen, L. O. 1994. Program analysis and specialization for the c progranzming language.
Ph.D. thesis, University of Copenhagen.

Berk, E. J. and Ananian, C. S. 2003. A lexical analyzer generator for Java. website: http:

//www.cs.princeton.edu/∼appel/modern/java/JLex/.

Dhamdhere, D., Gururaja, K., and Ganu, P. 2003. A compact execution history for dynamic
slicing. Information Processing Letters 85, 145–152.

Ferrante, J., Ottenstein, K., and Warren, J. 1987. The program dependence graph and

its use in optimization. ACM Transactions on Programming Languages and Systems 9, 3,
319–349.

Goel, A., Roychoudhury, A., and Mitra, T. 2003. Compactly representing parallel program

executions. In ACM Symposium on Principles and Practice of Parallel Programming (PPoPP).
ACM, San Diego, CA, USA, 191–202.

Gyimóthy, T., Beszédes, A., and Forgács, I. 1999. An efficient relevant slicing method for

debugging. In 7th ACM SIGSOFT International Symposium on Foundations of Software En-
gineering. Springer-Verlag, Toulouse, France, 303–321.

Horwitz, S., Reps, T., and Binkley, D. 1990. Interprocedural slicing using dependence graphs.

ACM Transactions on Programming Languages and Systems (TOPLAS) 12, 1, 26–60.

JGF. The Java Grande Forum Benchmark Suite. website: http://www.epcc.ed.ac.uk/

javagrande/seq/contents.html.

Joy, B., Steele, G., Gosling, J., and Bracha, G. 2000. Java(TM) Language Specification (2nd

Edition). Prentice Hall PTR.

Kaffe. The kaffe virtual machine. website: http://www.kaffe.org.

Korel, B. and Laski, J. W. 1988. Dynamic program slicing. Information Processing Letters 29, 3,

155–163.

Korel, B. and Rilling, J. 1997. Application of dynamic slicing in program debugging. In

International Workshop on Automatic Debugging. Springer, Linkoping, Sweden.

Lamport, L. 1997. Time, clocks, and the ordering of events in a distributed system. Communi-
cations of the ACM 21, 558–565.

Larsen, L. and Harrold, M. 1996. Slicing object-oriented software. In Proceedings of

ACM/IEEE International Conference on Software Engineering (ICSE). IEEE Computer So-
ciety, Berlin, Germany, 495–505.

Larus, J. 1990. Abstract execution: A technique for efficiently tracing programs. Software -

Practice and Experience (SPE) 20, 1241–1258.

Larus, J. R. 1999. Whole program paths. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). ACM, Atlanta, Georgia, USA, 259–269.

Levrouw, L. J., Audenaert, K. M. R., and Campenhout, J. M. 1994. A new trace and

replay system for shared memory programs based on lamport clocks. In The second Euromicro
Workshop on Parallel and Distributed Processing. IEEE Computer Society, ELIS, Universiteit

Gent, Belgium, 471–478.

Lhoták, O. 2002. Spark: A flexible points-to analysis framework for Java. M.S. thesis, McGill
University.

Dynamic Slicing on Java Bytecode Traces · 47

Lindholm, T. and Yellin, F. 1999. The Java(TM) Virtual Machine Specification (2nd Edition).

Prentice Hall PTR.

Lucia, A. D. 2001. Program slicing: Methods and applications. In IEEE International Workshop

on Source Code Analysis and Manipulation. IEEE Computer Society, Florence, Italy, 142–149.

Majumdar, R. and Jhala, R. 2005. Path slicing. In Intl. Conf. on Programming Language
Design and Implementation (PLDI). ACM, Chicago, IL, USA.

Nevill-Manning, C. G. and Witten, I. H. 1997. Linear-time, incremental hierarchy inference for

compression. In Data Commpression Conference (DCC). IEEE Computer Society, Snowbird,
Utah, USA, 3–11.

Ohata, F., Hirose, K., Fujii, M., and Inoue, K. 2001. A slicing method for object-oriented
programs using lightweight dynamic information. In Asia-Pacific Software Engineering Con-

ference. IEEE Computer Society, Macau, China.

Pleszkun, A. R. 1994. Techniques for compressing programm address traces. In IEEE/ACM
International Symposium on Microarchitecture (MICRO). ACM, San Jose, CA, USA, 32–39.

Reiss, S. P. and Renieris, M. 2001. Encoding program executions. In ACM/IEEE Interna-

tional Conference on Software Engineering (ICSE). IEEE Computer Society, Toronto, Ontario,
Canada, 221–230.

Ronsse, M. and Bosschere, K. D. 1999. Recplay: a fully integrated practical record/replay

system. ACM Transactions on Computer Systems (TOCS) 17, 133–152.

Sazeides, Y. 2003. Instruction isomorphism in program execution. Journal of Instruction-Level

Parallelism 5.

Sinha, S. and Harrold, M. J. 2000. Analysis and testing of programs with exceptionhandling
constructs. IEEE Transactions on Software Engineering 26, 9, 849–871.

SPECjvm98. 1998. Spec JVM98 benchmarks. website: http://www.specbench.org/osg/jvm98/.

Steensgaard, B. 1996. Points-to analysis in almost linear time. In ACM SIGPLAN-SIGACT

symposium on Principles of programming languages. ACM, St. Petersburg Beach, Florida,

USA, 32–41.

Tip, F. 1995. A survey of program slicing techniques. Journal of Programming Languages 3, 3,

121–189.

Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., and Sundaresan, V. 1999. Soot
- a Java bytecode optimization framework. In Conference of the Centre for Advanced Studies

on Collaborative research (CASCON). IBM Press, Mississauga, Ontario, Canada, 13.

Wang, T. and Roychoudhury, A. 2004. Using compressed bytecode traces for slicing Java
programs. In ACM/IEEE International Conference on Software Engineering (ICSE). IEEE

Computer Society, Edinburgh, Scotland, UK, 512–521. Available from http://www.comp.nus.

edu.sg/∼abhik/pdf/icse04.pdf.

Wang, T. and Roychoudhury, A. 2007. Dynamic slicing on Java bytecode traces. Tech. Rep.

TRB3/07, National University of Singapore. March. http://www.comp.nus.edu.sg/∼abhik/
pdf/JSlice-TR.pdf.

Weiser, M. 1984. Program slicing. IEEE Transactions on Software Engineering 10, 4, 352–357.

Xu, B., Chen, Z., and Yang, H. 2002. Dynamic slicing object-oriented programs for debugging.
In IEEE International Workshop on Source Code Analysis and Manipulation. IEEE Computer

Society, Montreal, Canada.

Zhang, X. and Gupta, R. 2004. Whole execution traces. In IEEE/ACM International Symposium
on Microarchitecture (Micro). IEEE Computer Society, Portland, OR, USA, 105–116.

Zhang, X., Gupta, R., and Zhang, Y. 2005. Cost and precision tradeoffs of dynamic data slicing

algorithms. ACM Transactions on Programming Languages and Systems (TOPLAS) 27, 631–
661.

Zhang, Y. and Gupta, R. 2001. Timestamped whole program path representation and its applica-
tions. In ACM SIGPLAN Conference on Programming Language Design and Implementation.
ACM, Snowbird, Utah, USA, 180–190.

Zhao, J. 2000. Dependence analysis of Java bytecode. In IEEE Annual International Computer

Software and Applications Conference. IEEE Computer Society, Taipei, Taiwan, 486–491.

48 · Wang and Roychoudhury

Zilles, C. B. and Sohi, G. 2000. Understanding the backward slices of performance degrading

instructions. In International Symposium on Computer Architecture (ISCA). IEEE Computer
Society, Vancouver, BC, Canada, 172–181.

