
Scratchpad Allocation for Concurrent
Embedded Software

VIVY SUHENDRA
Institute for Infocomm Research, Singapore
ABHIK ROYCHOUDHURY and TULIKA MITRA
National University of Singapore, Singapore

Software-controlled scratchpad memory is increasingly employed in embedded systems as it offers

better timing predictability compared to caches. Previous scratchpad allocation algorithms typ-

ically consider single process applications. But embedded applications are mostly multi-tasking
with real-time constraints, where the scratchpad memory space has to be shared among interacting

processes that may preempt each other. In this work, we develop a novel dynamic scratchpad al-
location technique that takes these process interferences into account to improve the performance

and predictability of the memory system. We model the application as a Message Sequence Chart

(MSC) to best capture the inter-process interactions. Our goal is to optimize the worst-case
response time (WCRT) of the application through runtime reloading of the scratchpad memory

content at appropriate execution points. We propose an iterative allocation algorithm that consists

of two critical steps: (1) analyze the MSC along with the existing allocation to determine potential
interference patterns, and (2) exploit this interference information to tune the scratchpad reload-

ing points and content so as to best improve the WCRT. We present various alternative scratchpad

allocation heuristics and evaluate their effectiveness in reducing the WCRT. The scheme is also
extended to work on Message Sequence Graph models. We evaluate our memory allocation scheme

on two real-world embedded applications controlling an Unmanned Aerial Vehicle (UAV) and an

in-orbit monitoring instrument, respectively.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Memory Management

General Terms: Design, Performance

Additional Key Words and Phrases: Scratchpad memory, Compiler controlled memories, Multi-

core architectures, Worst-case response time, Message Sequence Chart, UML Sequence Diagram.

1. INTRODUCTION

Scratchpad memory is a software-managed on-chip memory that has been widely accepted
as an alternative to caches in real-time embedded systems, as it offers better timing pre-
dictability compared to caches [Banakar et al. 2002]. The scratchpad memory is mapped
into the address space of the processor, and is accessed whenever the address of a memory
access falls within a pre-defined range (Figure 1). The compiler and/or the programmer

Authors’ addresses: Vivy Suhendra, Institute for Infocomm Research, 1 Fusionopolis Way, Singapore
138632; e-mail: vsuhendra@i2r.a-star.edu.sg; Abhik Roychoudhury and Tulika Mitra, Department
of Computer Science, National University of Singapore, 13 Computing Drive, Singapore 117417; e-mail:
{abhik,tulika}@comp.nus.edu.sg
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 2010 ACM 0164-0925/2010/0500-0001 $5.00

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010, Pages 1–43.

2 · V. Suhendra, A. Roychoudhury and T. Mitra

CPU
SRAM

Scratchpad

(on-chip)

DRAM

Main memory

(off-chip)

Memory

address

space

Fig. 1. Scratchpad memory

explicitly controls the allocation of instructions and data to the scratchpad memory. This
operating principle makes the latency of each memory access, and thus program execu-
tion time, completely predictable. However, this predictability is achieved at the cost of
compiler support for content selection and runtime management.

In this paper, we address the problem of scratchpad memory allocation for concurrent
embedded software (with real-time constraints) running on uniprocessor or multiprocessor
platforms. Our objective is to reduce the worst-case response time (WCRT) of the entire
application. Our problem setting is representative of the current generation embedded ap-
plications (e.g., in automotive and avionics domain) that are inherently concurrent in nature
and, at the same time, are expected to satisfy strict timing constraints. The combination
of concurrency and real-time constraints introduces significant challenges to the memory
allocation problem.

Given a sequential application, the problem of content selection for scratchpad memory
has been studied extensively [Puaut 2006; Suhendra et al. 2005; Udayakumaran and Barua
2003]. However, these techniques are not directly applicable to concurrent applications
with multiple interacting processes. Let us illustrate the issues involved with an exam-
ple. Figure 2 shows a Message Sequence Chart (MSC) model [Alur and Yannakakis 1999;
ITU-T 1996] depicting the interaction among the processes in an embedded application.
We use MSC model as it provides a visual but formal mechanism to capture the inter-
process interactions. Visually, an MSC consists of a number of interacting processes, each
shown as a vertical line. Time flows from top to bottom along each process. A process in
turn consists of one or more tasks represented as blocks along the vertical line. Message
communications between the processes are shown as horizontal or downward sloping ar-
rows. Semantically, an MSC denotes a labeled partial order of tasks. This partial order is
the transitive closure of (1) the total order of the tasks in each process, and (2) the ordering
imposed by message communications — a message is received after it is sent.

Consider the MSC example in Figure 3, which has been extracted from the earlier ap-
plication. A naive scratchpad allocation strategy can be to share the scratchpad memory
among all the tasks of all the processes throughout the lifetime of the application. This is
illustrated in Figure 4a, where the distribution of scratchpad space over tasks is depicted
in the horizontal direction, while the content reloading over time is depicted in order from
top to bottom. The scratchpad is loaded with the designated memory contents once when
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

Scratchpad Allocation for Concurrent Embedded Software · 3

AP

Main

Modem

Control

AP-SPI

Control

GPS

Control

[Env]

Modem

fly_by_wire

Report

Unit

FBW

Main

Servo

Control

Radio

Control

FBW-SPI

Control

[Env]

Radio

[Env]

Servo
[Env]

SPI

autopilot

fm0

fm1

fm2

fm3

fm4

fv0
fr0

fr1

fs0

fs1

fs2

fm5

fv1

as0

as1

as2

as3

am0

as4

am1

am2

am3

am4

ag0

ar0

ad0

ad1

ad2

Fig. 2. Message Sequence Chart (MSC) model of the adapted UAV control application

the tasks start execution. Allocation algorithms proposed in the literature for sequential
applications can be easily adapted to support this strategy. However, this strategy is clearly
sub-optimal, as a task executes for only a fraction of the application’s lifetime yet occupies
its share of the scratchpad space for the entire lifetime of the application. Instead, two tasks
with disjoint lifetimes (e.g., tasks fm1 and fm2) should be able to use the same scratch-
pad space through time multiplexing. This is known as dynamic scratchpad allocation or
scratchpad overlay, where the scratchpad content can be replaced and reloaded at runtime.

At the other extreme of this approach, we can also let each task occupy the whole
scratchpad while it is executing (Figure 4b). When a task is preempted, its correspond-
ing memory content in the scratchpad is replaced by that of the preempting task. Certainly,
the loading and reloading of the scratchpad memory following each preemption and resum-
ing of task execution also add to the total latency experienced by the system, and they have
to be bounded to provide timing guarantee. In a system with a large number of tasks vying
for CPU time, the chain of preemptions can get arbitrarily long and difficult to analyze.

The key to our proposed technique is finding a balance between these two extremes.
Clearly, we would like to employ scratchpad overlay as much as possible for optimal gain
in application response time. However, as timing predictability is the main motivation
behind the choice of scratchpad memory over caches, it should be maintained even in the
presence of scratchpad overlay. This implies that in a concurrent system (e.g., as shown in
Figure 2), two tasks should be mapped to the same memory space only if we can guarantee
that they have disjoint lifetimes. Otherwise, the task with higher priority may preempt the
other, leading to scratchpad reloading delay when the preempted task resumes.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

4 · V. Suhendra, A. Roychoudhury and T. Mitra

fm
1

fm
2

fm
4

fr
0

fr
1

fs
0

FBW-SPI

Control

Radio

Control

FBW

Main

Fig. 3. A sample MSC extracted from the UAV control application case study

scratchpad space

(a) A simple “never flush” memory allocation (b) A simple “always flush” memory allocation

scratchpad space

tim
e

tim
e

task fm2 preempted:
replace content

task fm2 resumed:
reload content

Fig. 4. Naive scratchpad allocation schemes for the model in Figure 3

scratchpad spacescratchpad space scratchpad space

(b) Unsafe overlay(a) Safe overlay (assuming fm2
finishes before fr1)

(c) Optimal overlay

tim
e

tim
e

tim
e

Fig. 5. Choices of scratchpad overlay schemes for the model in Figure 3: (a) safe, (b) unsafe, and (c) optimal

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

Scratchpad Allocation for Concurrent Embedded Software · 5

We can trivially identify certain tasks with disjoint lifetimes based on the partial order
of an MSC; for example, as task fm1 “happens before” task fm2, clearly fm1 and fm2

have disjoint lifetimes (Figure 3). However, there may exist many pairs of tasks that are
incomparable as per MSC partial order but still have disjoint lifetimes. For instance, after
examining the execution schedule of tasks, the timing analysis may be able to determine
that the execution time of fr0, given any input, is always long enough to ensure that the
succeeding task fr1 can never be started before fm2 finishes executing. In this case,
we will be able to employ a better scratchpad overlay scheme as illustrated in Figure 5a,
where fm1, fm2, fm4 and fr1 are mapped to the same scratchpad space which they
can utilize during their respective lifetimes without disrupting one another. On the other
hand, we should not arrive at a decision such as the one in Figure 5b, which lets fr0 and
fs0 share the same scratchpad space without any guarantee that fs0 will not preempt fr0
in the actual execution. This situation will lead to unexpected reloading delays that will
invalidate the WCRT estimation.

A scratchpad allocation scheme that achieves optimal WCRT reduction for this par-
ticular example may look like the layout in Figure 5c, which requires a deeper analysis
of process interaction to arrive at. Moreover, as scratchpad allocation reduces execution
times of the individual tasks, the lifetimes of the tasks and thus their interaction pattern
may change. Therefore, an effective scratchpad allocation scheme attempting to minimize
the WCRT of the application should consider process interferences as well as the impact
of allocation on process interferences.

In this paper, we propose an iterative scratchpad allocation algorithm consisting of two
critical steps: (1) analyze the MSC along with existing allocation to estimate the lifetimes
of tasks and hence the non-interfering tasks, and (2) exploit this interference information to
tune scratchpad reloading points and content so as to best improve the WCRT. The iterative
nature of our algorithm enables us to handle the mutual dependence between scratchpad
allocation and process interaction. In addition, we ensure monotonic reduction of WCRT
in every iteration, so that our allocation algorithm is guaranteed to terminate.

Concretely, the main contribution of this paper is a novel dynamic scratchpad alloca-
tion technique that takes process interferences into account to improve the performance
and predictability of the memory system for concurrent embedded software. Our case
studies with two complex embedded control applications for an Unmanned Aerial Vehicle
(UAV) and an in-orbit monitoring instrument reveal that we can achieve significant perfor-
mance improvement through appropriate content selection and runtime management of the
scratchpad memory.

Following this section, we discuss the current state of research for scratchpad memory
allocation and its application in the multiprocessing environment. Section 3 then estab-
lishes basic concepts and presents the problem formulation. We present the big picture of
our allocation framework in Section 4, followed by the detailed techniques in Section 5.
Section 6 evaluates the performance of the proposed scheme on our first case study. In
Section 7, we extend our framework to handle Message Sequence Graph models and re-
port the result when evaluated on the same case study. Next, we prove the scalability of
our method by applying it on the second case study of a larger scale in Section 8. Finally,
Section 9 concludes the paper and discusses extensions to the presented work.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

6 · V. Suhendra, A. Roychoudhury and T. Mitra

2. RELATED WORK

2.1 Scratchpad Memory Allocation and Content Selection

The problem of content selection for scratchpad memory has been studied extensively for
sequential applications. The memory objects considered for allocation into the scratchpad
can be program data [Avissar et al. 2002; Deverge and Puaut 2007; Dominguez et al. 2005;
Panda et al. 2000; Udayakumaran and Barua 2003], program code [Angiolini et al. 2004;
Egger et al. 2006; Janapsatya et al. 2006; Ravindran et al. 2005; Verma et al. 2004a], or
a combination of both [Verma et al. 2004b; Wehmeyer et al. 2004]. The different mem-
ory access behaviors between these two types give rise to different concerns. Allocating
program code requires additional care to maintain program flow [Steinke, Wehmeyer et
al. 2002], while allocating program data generally calls for specific considerations de-
pending on the type of the data (global, stack, or heap) and the different nature of their
access. The allocation schemes are often coupled with supporting techniques such as data
partitioning [Falk and Verma 2004], loop and data transformations [Kandemir et al. 2004]
or memory-aware compilation [Marwedel et al. 2004] to make the access pattern more
amenable for allocation.

Existing scratchpad allocation schemes in the literature can be majorly classified into
compile-time and runtime techniques (Figure 6), differing in the point of time when the
allocation decision is made. Compile-time scratchpad allocation techniques perform offline
analysis of the application program and select beneficial memory content to be placed in
the scratchpad. This approach incurs no computation overhead during the execution of
the application itself. The methods in this category can be further classified into static
allocation and dynamic overlay.

Static allocation loads selected memory blocks into the scratchpad during system ini-
tialization, and does not change the content until the completion of the application. The
techniques for scratchpad content selection include dynamic programming [Angiolini et al.
2004] and 0-1 ILP [Wehmeyer et al. 2004]. Panda et al. [2000] view the allocation problem
as a partitioning of data into the different levels of the memory hierarchy. They present a
clustering-based partitioning algorithm that takes into account the lifetimes and potential
access conflicts among the data, as well as possibilities of context switching in a multi-
tasking environment. The static allocation scheme is reasonably efficient to implement,
even though its effectiveness may be limited to applications with relatively small memory
requirement compared to available memory space.

Scratchpad allocation with dynamic overlay, on the other hand, may reload the scratch-
pad with new contents when the execution reaches designated program points. This ap-
proach requires a way to reason about the contents of the scratchpad memory over time.
Udayakumaran [2003] introduces the concept of timestamps to mark the program points
of interest. A cost model determines the cost of memory transfers at those points, and a
greedy compile-time heuristic selects transfers that maximize the overall runtime benefit.
Verma et al. [2004b] performs liveness analysis to determine the live range of each mem-
ory object to be placed in the scratchpad. This information is then used to construct an
ILP formulation with the objective of maximizing energy savings. Steinke et al. [Steinke,
Grunwald et al. 2002] also formulates the problem as an ILP optimization by modeling the
cost of copying memory objects at selected program points. Kandemir et al. [2001] focus
on data reuse factor and uses Presburger formula to determine the maximal set of loop iter-
ations that reuse the elements residing in the scratchpad, in order to minimize data transfer
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

Scratchpad Allocation for Concurrent Embedded Software · 7

compile-time

runtime

static allocation

dynamic overlay

average-case optimization

worst-case optimization

by objective

by decision point

Scratchpad

allocation

program data

program code

by memory objects

Fig. 6. Classification of scratchpad allocation techniques

between on-chip and off-chip memory. For these methods, even though the reloading of
scratchpad contents is executed at runtime, the entire analysis to select memory blocks and
reloading points is performed at compile time, thus incurring no runtime delay for compu-
tation of the gain functions. Note that the dynamic overlay in the above context is restricted
to individual tasks, and is different from the inter-task overlay that we address in this work.

In contrast to the compile-time allocation described above, runtime scratchpad alloca-
tion techniques decide on the scratchpad memory content when the application is running.
There can be several reasons to opt for this approach. One reason is the situation when it
is not possible to perform selection at compile time, because the size of the scratchpad or
the program memory requirement is unknown at compile time. Such a situation may arise
when the embedded program is not burned into the system at the time of manufacture, but
is rather downloaded during deployment via the network or portable media [Nguyen et al.
2005]. Another reason is the situation when the memory requirement of the specific appli-
cation varies widely across its input. In this case, a beneficial allocation decision can be
better determined after analysing the execution trace or history [Egger et al. 2008; Ravin-
dran et al. 2005]. Egger et al. [2008], in particular, make use of the page fault exception
mechanism of the Memory Management Unit (MMU) to track page accesses and copy
frequently executed code sections into the scratchpad.

Runtime allocation methods inevitably add the cost of performing content selection to
the application runtime, even if it may be offset by the gain due to allocation. Neverthe-
less, most methods are able to alleviate this overhead by pre-computing part of the analysis
that does not depend on runtime information. Nguyen et al. [2005] first identify poten-
tially beneficial memory blocks at compile time when the scratchpad size is still unknown;
then perform the actual selection once the program loader discovers the scratchpad size at
startup. In a similar approach, Dominguez et al. [2005] allow allocation of heap objects
whose sizes are unknown at compile time. The method performs compile-time analysis
to determine potential allocation sites, then reserves fixed-size portions in the scratchpad
to be occupied by subsets of these objects once they are created, selected at runtime via a
cost-model driven heuristic.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

8 · V. Suhendra, A. Roychoudhury and T. Mitra

Most of the works discussed above aim to minimize the average-case execution time or
energy consumption through scratchpad allocation. The timing predictability of scratchpad
memory has made it especially suited for use in real-time systems, where the concern is in-
stead the worst-case execution time (WCET) of the application. Consequently, researches
have also considered scratchpad allocation to optimize the worst-case performance (Fig-
ure 6). Our previous work [Suhendra et al. 2005] presented optimal and heuristic WCET-
centric static allocation methods for program data, while Deverge and Puaut [2007] con-
sidered dynamic allocation for global and stack data. The main concern in WCET-centric
allocation is that the worst-case execution path of the program may change as scratchpad
allocation changes. These methods account for this change in WCET path by performing
iterative analysis along with incremental fine-tuning of the scratchpad allocation.

Following the classification in Figure 6, this paper addresses static allocation for pro-
gram code that optimizes the worst-case performance. While worst-case performance is a
central concern, the scheme presented here can be extended beyond the two other axes to
handle data allocation as well as to further apply intra-task dynamic overlay.

2.2 Scratchpad Allocation for Multiprocessing Systems

As we move on to consider applications running on multiprocessor systems, concurrency
and sharing among the multiple tasks or processing elements (PEs) become important fac-
tors. Early static allocation methods [Panda et al. 2000] simply partition the scratchpad to
the tasks according to gain functions extended from allocation strategy for single-process
applications. As noted in the motivating example, this simple approach suffers from under-
utilization of scratchpad space.

Verma et al. [2005] present a set of scratchpad sharing strategies among the processes
for energy consumption minimization. Processes may take up disjoint space in the scratch-
pad so that no restoration is required upon context switch, or they may share the whole
scratchpad whose content will be refreshed when a process is activated. A hybrid between
the two is also considered. Their work assumes a statically defined schedule, where all
processes have equal priority and are scheduled in a round-robin manner. In contrast, we
consider priority-driven preemptive scheduling, which provides better flexibility for real-
time and reactive systems as they move from one mode of execution to another during
the mission, ensuring that critical functions are accomplished in time. Moreover, as the
method in [Verma et al. 2005] assumes a non-preemptive system, it is not applicable to
systems with heavy process interactions, where it is critical to account for interferences
among tasks in order to provide real-time guarantees as in the domain we consider.

Another class of scratchpad allocation methods focuses on the mapping of codes/data
to the scratchpad memories so as to maximize the benefit from the allocation. Avissar
et al. [2002] formulate the distribution of program data among multiple memory banks
in a heterogeneous system, taking into account the individual space limitation, to achieve
best latency reduction. The problem is modeled via Integer Linear Programming which
can be solved optimally, subject to the accuracy of the memory access profile used. Their
method handles context-switching environments by simply partitioning the available space
across the processors and considering all the memory requirement simultaneously. On
the other hand, Kandemir et al. [2002] address the problem of mapping shared arrays to
private scratchpad memories of the PEs in order to reduce off-chip memory accesses. In
this setting, the private scratchpad of a PE can be accessed by other PEs albeit with slightly
longer latency. Their method examines the access patterns to the shared array as issued by
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

Scratchpad Allocation for Concurrent Embedded Software · 9

the different processors, and schedules the accesses to optimize the collective reusability
of the portions of the array brought into any of the scratchpad space. The more recent work
of the group [Kandemir 2007] introduces the concept of inter-processor reuse distance to
capture the access patterns, and optimizes the temporal locality of shared data via code
restructuring to modify shared data access patterns such that accesses to the same data
from multiple processors are closer in time.

Others propose runtime customization of scratchpad sharing among tasks or PEs to
adapt to the changing memory requirement. Kandemir et al. [2004] present a strategy to
dynamically reconfigure scratchpad sharing and allocation among PEs to adapt to runtime
variations in data storage demand and interprocessor sharing patterns. Ozturk et al. [2006]
first perform automated compiler analysis to capture memory requirements and reuse char-
acteristics of the tasks at loop granularity, then use this information to dynamically partition
the available SPM space across tasks at runtime.

In a broader perspective, researches have also looked at exploration of scratchpad de-
sign space in conjunction with other multiprocessing aspects. We have previously recog-
nized the dependency among scratchpad allocation with how tasks are scheduled on the
multiple processing elements, and formulated an integrated approach to optimize the gain
from scratchpad allocation for all tasks [Suhendra, Raghavan, and Mitra 2006]. Issenin et
al. [2006] present a multiprocessor data reuse analysis that explores a range of customized
memory hierarchy organizations with different size and energy profiles.

Finally, this work complements the research on cache-related preempted delay (CRPD)
analysis [Lee et al. 1998; Negi et al. 2003; Tomiyama and Dutt 2000; Staschulat and Ernst
2004]. CPRD analysis provides timing guarantee for concurrent software by analyzing
interferences in cache memory due to process interactions. An important point of this
analysis is identifying memory blocks of a process that are at risk of getting replaced by
a preempting process, and the additional miss latencies. Our work, on the other hand,
eliminates interference in memory through scratchpad allocation.

3. PROBLEM FORMULATION

Let us now formally present our problem formulation.

3.1 Application Model

The input to our problem is in the form of Message Sequence Chart (MSC) [Alur and
Yannakakis 1999; ITU-T 1996] that captures process interactions corresponding to a con-
current embedded application. An MSC is equivalent to the labeled partial sequence order
of a task graph model. It provides an explicit, intuitive view of the task distribution on mul-
tiple processes within the application, which helps in the design of our interaction-based
allocation schemes.

We assume a preemptive, multi-tasking execution model. The application is periodic in
nature. The MSC represents interactions within one such invocation. In other words, a
complete execution of the MSC accomplishes one activation of the application ‘mission’,
with the ‘work’ distributed among the processes involved. Therefore, all tasks in all in-
volved processes within the same MSC adhere to a common period and deadline, which
is the period of the application. The concept of task periodicity can thus be abstracted
from our framework, which works on a single MSC. In general, an application may have
several functionalities that execute with different periods. Such an application needs to
be represented as a set of MSCs in order to capture all possible process interactions. The

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

10 · V. Suhendra, A. Roychoudhury and T. Mitra

P
1

P
2

P
3

PE1 PE2

t
1

t
2

t
3

t
4

SPM1 SPM2

Main Memory (Off-chip)

Bus

Fig. 7. A simple MSC running on two processing elements PE1 and PE2 with scratchpad memories SPM1

and SPM2, respectively

MSCs can then be aggregated via unfolding to the hyper-period and replicating the tasks
as necessary, before being handled by our method.

The underlying hardware platform contains one or more processing elements (PEs),
each associated with a private scratchpad memory. We do not consider any other memory.
Figure 7 shows a simple example that illustrates this setting. The scratchpad memories
are connected via bus to a main memory. The scratchpad may be reloaded at runtime
with content from the main memory through this connection, incurring a constant delay
per fetch (bus contention is abstracted). Inter-task communication takes place via message
exchange in separate buffers, which are not modeled in this paper beyond the introduced
delay. The scratchpad memory is reserved for the memory requirement of tasks alone,
which in this paper refers to program code.

A vertical line in the MSC represents the lifeline of a process, that is, the time period
during which the process is alive. A process may consist of more than one tasks. A process
typically corresponds to a specific functionality, and it is thus natural to assign all the tasks
in a process to one PE. The order in which the tasks appear on the process lifeline in the
MSC reflects their order of execution on the PE. In Figure 7, tasks t1 and t2 belong to
the same process P1 scheduled on PE1, and t2 executes after t1 completes execution on
the same PE. Dependencies across processes are represented as horizontal arrows from the
end of the predecessor task to the start of the successor task. In our example, the com-
munication delay between processes are zero. Including non-zero communication delay in
the analysis is straightforward: the start of the successor task is simply pushed back by the
amount of the delay.

Each process is assigned a unique static priority. The priority of a task is equal to the
priority of the process it belongs to. If more than one processes are assigned to the same
PE, then a task executing on that PE may get preempted by a task from another process
with higher priority if their lifetimes overlap. The assignment of static priorities to pro-
cesses and the mapping of processes to PEs are inputs to our framework. Note that static
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

Scratchpad Allocation for Concurrent Embedded Software · 11

priority assignment alone does not guarantee a fixed execution schedule at runtime. The
preemptions and execution time variations depending on input lead to varying completion
times of a task. This, in turn, gives rise to different execution schedules. In Figure 7, sup-
posing process P3 has higher priority than P2 on PE2, then task t3 will be preempted when
task t4 becomes ready, if the execution times of the tasks in that particular invocation are
such that t3 has not completed execution when task t2 completes on PE1. We see that this
situation is determined not only by the tasks involved in the preemption, but other tasks in
the system with dependency relationship with these tasks as well.

The analysis and discussion in the rest of this paper will be at the task level instead of
the process level, as we make allocation decision for each task individually. Formally, let
t1, . . . , tN denote the tasks belonging to all the processes in the application. Each task
ti (1 ≤ i ≤ N) is associated with:

(1) a static priority, pr(ti), in the range [1, R] with 1 being the highest priority, and
(2) mapping to a PE, PE(ti), in the range [1, Q], where Q is the number of PEs in the

system.

As mentioned earlier, all the tasks belonging to a process have the same priority and are
mapped to the same PE. This policy arises from the fact that the concept of a process
represents a specific functional unit in the actual system. For example, the radio controller
unit in our referenced UAV application is represented as the ‘Radio Control’ process in the
MSC model (Figure 2), and all tasks of the ‘Radio Control’ process executes on the radio
controller unit in reality. As we will see in the experiments (Section 7), this convention may
lead to less-than-ideal processor utilization in certain cases, but is nevertheless realistic.

3.2 Response Time

We use the term task lifetime to mean the interval from the time a task is started and the
time it completes execution, specified in absolute time values. The absolute time that a
task can be started depends on the completion times of its predecessors, according to the
dependency specified in the MSC model. The length of a task’s lifetime is its response
time, which consists of the time it takes to perform computation (without interruption) and
the delay it experiences due to preemptions by higher priority tasks.

In general, the computation time of a task may vary due to (1) the variation in input data
that triggers different execution paths within the program, and (2) the variation in memory
access latencies (whether the accessed code/data object is in scratchpad or main memory).
The uninterrupted computation time required by each individual task can be determined
via static analysis [Li et al. 2007] of the program corresponding to a task, and represented
as a range between its best-case execution time (BCET) and worst-case execution time
(WCET) [Mitra and Roychoudhury 2007]. However, this estimation is intertwined with
the second component, memory access latencies, as we will elaborate when we discuss
scratchpad allocation in the next subsection. The timing analysis needs to account for both
components in an integrated manner [Suhendra, Mitra, and Roychoudhury 2006].

Obviously, the longer the execution time of a task, the longer its response time. However,
the impact of a task’s response time on other tasks’ response times (and thus overall appli-
cation response time) is not straightforward. In the example shown in Figure 7, a longer t2
execution time will cause t4 to start later and not preempt t3 on the same PE (supposing t4
has higher priority than t3). In this scenario, the response time of t3 becomes shorter, and
this possibly leads to an earlier completion time of the overall application. As our ultimate

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

12 · V. Suhendra, A. Roychoudhury and T. Mitra

aim is to optimize for the worst-case response time (WCRT) of the whole application, we
need to take into account the interplay among these components.

3.3 Scratchpad Allocation

The term scratchpad allocation in our context consists of two components: (1) the distri-
bution of scratchpad space among the application tasks, and (2) the selection of memory
blocks of each task to fit into the allocated space. When a task can access part of its memory
requirement from the scratchpad memory instead of the significantly slower main memory,
its execution time can reduce dramatically. Depending on the portion of memory address
space allocated to the scratchpad memory, the time taken by a single execution path within
the task itself may vary greatly. Therefore, in the presence of scratchpad memory, the exe-
cution path and execution time of a task in the best or worst case should be determined by
taking into account the allocation decision.

In this work, we consider allocating program codes of the tasks into the scratchpad. The
granularity of allocation can be basic blocks or entire functions, or other less common op-
tions such as partial basic blocks. Hereafter we shall use the general term of ‘code blocks’
to refer to the unit of allocation. The methodology presented here uses the granularity of
basic blocks, as will be apparent in Section 5. The presented method can be directly ap-
plied to data allocation so long as the accesses can be determined statically. In this case,
instead of code blocks of the task, the candidates for allocation are data variables (scalars
and arrays) accessed by the task. Data allocation does not affect program control flow as
code allocation does, as we shall see in later sections. Instead, the major concern in data
allocation is regarding dynamically allocated data, whose sizes are not known at compile
time. The full treatment of data allocation is left as future work.

To make better use of the limited scratchpad space, we allow scratchpad overlay, that is,
the same scratchpad memory space can be allocated to two or more tasks as long as they
have disjoint lifetimes. Certainly, this condition is always true for tasks belonging to the
same process, as they execute one after another. However, analysis may also reveal tasks
on different processes that have disjoint lifetimes and may share scratchpad space. In our
formulation, we do not make explicit distinction of these cases, and only focus on task-
level non-interference property as a requirement for scratchpad overlay. As apparent from
Figure 7, each PE accesses its own scratchpad, and the space will be shared among tasks
executing on the corresponding PE only; we do not consider accesses to remote scratchpad
which will be effective only if the PEs have access to fast interconnection network [Kan-
demir et al. 2002].

Formally, let S be a particular scratchpad allocation for the application. As described
earlier, S consists of two components:

(1) space(ti), the amount of scratchpad space allocated to each task ti, 1 ≤ i ≤ N , and
(2) the allocation of space(ti) among the code blocks of ti.

By virtue of scratchpad overlay, the sum of the scratchpad space allocated to all tasks,∑N
i space(ti), is not necessarily less than or equal to the total available scratchpad space.

This will be clear in the description that follows.
Let Mem(ti) denote the set of all code blocks of ti available for allocation. Given

space(ti) assigned in S , the allocation Alloc(ti,S) ⊆ Mem(ti) is the set of most prof-
itable code blocks from ti to fit the capacity. The BCET and WCET of ti as a result of
allocation S are denoted as bcet(ti,S) and wcet(ti,S) respectively. Given an allocation S
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

Scratchpad Allocation for Concurrent Embedded Software · 13

and the corresponding BCET, WCET of the tasks, we can estimate the lifetime of each task
ti, defined as the interval between the lower bound on its start time, EarliestSt(ti,S), and
the upper bound on its completion time, LatestF in(ti,S). This estimation should take
into account the dependencies among the tasks specified in the model (total order among
the tasks within a process, and the ordering imposed by message communication) as well
as preemptions.

The WCRT of the whole application is now given by

WCRT = max1≤i≤N LatestF in(ti,S)−min1≤i≤N EarliestSt(ti,S) (1)

that is, the duration from the earliest start time of any task in the application until the latest
completion time of any task in the application.

Our goal is to construct the scratchpad allocation S that utilizes inter-task overlay to
minimize the WCRT of the application (Equation 1). We define a scratchpad overlay set
for a certain time interval [s, e] as a set of tasks that are allotted the same space in the
scratchpad during the time interval [s, e]. Such a set, denoted G[s,e], is constructed to have
the following properties.

(1) All tasks in the set start and complete execution within the time interval [s, e].

∀ t ∈ G[s,e] s ≤ EarliestSt(t,S) < LatestF in(t,S) ≤ e

(2) Any pair of tasks in the set have disjoint lifetimes. That is, for any pair of tasks (t, u)
chosen from the set, either u completes before t starts, or t completes before u starts.
The tasks are not necessarily related via dependency; the situation may also arise if
the times of dispatch are well separated so that one task invariably completes before
the other is ready.

∀ t, u ∈ G[s,e] EarliestSt(t,S) > LatestF in(u,S)
∨ EarliestSt(u,S) > LatestF in(t,S)

(3) The set, as a whole, shall be allotted a portion of size space(G[s,e]) in the scratchpad
throughout the interval [s, e]. space(G[s,e]) is not necessarily non-zero. All tasks in
the set may occupy this same portion for allocation. It is important to note that the
space should be reserved throughout the interval to preserve predictability.

∀ t ∈ G[s,e] space(t) ≤ space(G[s,e])

The illustration in Figure 8 is based on the same example presented in Figure 3 earlier.
If we consider the time interval [a, d], a valid overlay set is {fm1, fm2, fr1, fm4}.

More than one scratchpad overlay sets can exist for the same time interval. To construct
a complete allocation layout for a certain time interval [s, e], we construct the sets such
that every task that executes within [s, e] (satisfying property (1)) belongs to exactly one
overlay set for that interval. The overlay set may have the task as a single member if the
task’s lifetime overlaps with all other tasks (failing property (2)). When [s, e] covers the
entire application lifetime, we have the complete allocation solution for the application.

Collectively, all overlay sets for the same time interval [s, e] will contain all tasks that
are active within [s, e]. We use the term configuration to refer to the collective overlay sets.
The implication of this concept is that the scratchpad space will be partitioned exclusively
among the sets in the same configuration, while tasks within each set will occupy the same
partition over time. That is, the sum of space(G[s,e]) over all overlay sets in a configuration

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

14 · V. Suhendra, A. Roychoudhury and T. Mitra

fm
1

fm
2

fm
4

fr
0

fr
1

fs
0

FBW-SPI

Control

Radio

Control

FBW

Main

a

b

c

d

Fig. 8. MSC extracted from the UAV control application case study, with time intervals

is less than or equal to the scratchpad capacity. In general, there can be more than one ways
to group tasks into overlay sets, and thus more than one choices of configuration that satisfy
the above properties. Our goal then translates to finding the optimal configuration in terms
of WCRT reduction.

In Figure 8, the time interval [a, d] covers the entire execution of the MSC. For this
interval, we can construct a configuration consisting of three overlay sets

{ {fm1, fm2, fr1, fm4}, {fr0}, {fs0} }

A different possible configuration is

{ {fm1, fm2, fs0}, {fr0, fr1} }

Both choices give a complete solution to scratchpad allocation for the MSC, and the eval-
uated gain of these choices will determine the actual layout chosen.

In the above, we have considered the entire MSC duration at once. In Figure 8, we
can observe ‘clean breaks’ of execution at point b and point c. In real applications, these
may correspond to the points when the system moves from one stage to another, for in-
stance. Naturally, these are ideal points to reload the entire scratchpad, as all current
contents (belonging to completed tasks) have just become obsolete. In our context, this
translates to sub-dividing the time interval. The configuration constructed for each interval
will have less tasks that are competing for space, and therefore potentially greater gain
can be achieved. In the illustration, if we consider the time interval [a, b] alone, the trivial
choice of configuration is the singleton {{fm1}}. This implies that task fm1 can utilize
the entire scratchpad space throughout its execution, since no other task is active at the
same time. Similarly, {{fm4}} is the obvious choice for time interval [c, d]. We can then
search for an optimizing configuration for [b, c] to complete the allocation solution.

The rest of this paper shall elaborate the schemes that seek to define such optimizing
time intervals and scratchpad overlay configurations.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

Scratchpad Allocation for Concurrent Embedded Software · 15

Interference

improves?

Task lifetimes &

interference

graph

Scratchpad
sharing scheme

& allocation

WCRT
analysis

Stop

Task
analysis

Start

Scratchpad

allocation

decision

Task execution times

& memory access

information

Initialize:

• empty allocation

• full interference

Yes No

Fig. 9. Workflow of the proposed WCRT-optimizing scratchpad allocation

4. METHOD OVERVIEW

Our proposed method for scratchpad allocation is an iterative scheme (Figure 9). Analysis
is performed on each task to determine the bounds on its execution time, given the initially
empty scratchpad allocation. The memory access information of the task is also produced
as a by-product of this analysis, to be used in the later steps. The WCRT analysis then
takes in the execution time values and computes the lifetimes of all tasks. An inter-task
interference graph is then constructed. Figure 10a shows task lifetimes computed by the
WCRT analysis for our MSC example in Figure 3, along with the constructed interference
graph. An edge between two nodes in the graph implies overlapping lifetimes of the two
tasks represented by the nodes.

Based on the analysis result, we can decide on a suitable scratchpad sharing scheme
and select actual scratchpad contents for each task, making use of the memory access
information from the earlier task analysis. One possible scheme is illustrated in Figure 10b,
which shows the space sharing among tasks as well as the dynamic overlay over time. With
the change in allocation, the execution time of each task is recomputed, and the WCRT
analysis is performed once again to update task lifetimes (see Figure 9). We ensure at this
point that inter-task interference does not worsen. The reason and technique for this will
be elaborated in the discussion that follows. If task interference has been reduced because
of scratchpad allocation, we end up with more tasks that are disjoint in their lifetimes
(Figure 10c). We shall see in Section 5 how we may direct the solution to actively seek
reduced task interference as shown. These tasks can now enjoy more scratchpad space
through dynamic overlay. If this is the case, we proceed to the next iteration, in which
the scratchpad sharing scheme is re-evaluated and the allocation is enhanced (Figure 10d);
otherwise, the iteration terminates.

We elaborate each of these steps in the following.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

16 · V. Suhendra, A. Roychoudhury and T. Mitra

fm1 fm2 fm4fr0 fr1fs0

fm2

fs0

fr0

fr1fm4

fm1

W1

W2

W3

(a) Before allocation

Task lifetimes

Interference graph

(c) Improved interference pattern

fm2

fs0

fr0

fr1fm4

fm1

Task lifetimes

Interference graph

(b) Allocation based on (a)

W1

W2

W3

scratchpad space

fm1 fm2 fm4fr0 fr1fs0

W1’

W2’

W4’

W3’

(d) Allocation based on (c)

scratchpad space

W1’

W2’

W4’

W3’

Fig. 10. Task lifetimes before and after allocation, and the corresponding interference graphs

4.1 Task Analysis

The Task Analysis step determines both the best-case execution time (BCET) and worst-
case execution time (WCET) of each task, given a certain scratchpad allocation. These two
values bound the range of uninterrupted execution time required to complete the task given
all possible inputs.

The timing analysis of the task for a given scratchpad allocation proceeds as follows.
We extract the control flow graph (CFG) of each task. Each node in the CFG is a basic
block, a sequence of program instructions that forms the unit of the path-based analysis.
The time required to execute each of these basic blocks can be determined via micro-
architectural modeling that accounts for the execution cycles of each instruction, along
with features such as pipelining and branch prediction policy. In this work, we assume a
simple non-pipelined architecture with perfect branch prediction. With this assumption,
the only factor affecting execution time is the memory latency, which is the focus of this
paper. Nevertheless, the micro-architectural modeling is an independent routine whose
effect is restricted to the basic block execution time determination, and can be extended
to more complex execution platforms using a state-of-the-art WCET analysis tool such as
Chronos [Li et al. 2007].

To the basic block execution time obtained above, we add the additional delay for fetch-
ing these instructions from memory, whose value depends on whether the allocation deci-
sion places this particular basic block in the scratchpad or in the main memory. Note that
this work uses the allocation granularity of basic blocks, which coincides with the compu-
tation unit in a path-based timing analysis. A different choice of allocation granularity can
be accomodated during the timing analysis by propagating the allocation decision to each
basic block (for granularity larger than a basic block) or breaking down the computation
for the basic block (for granularity smaller than a basic block).

A static path-based timing analysis method we previously developed [Suhendra, Mitra,
and Roychoudhury 2006] then traverses the CFG to find the path with the longest (respec-
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

Scratchpad Allocation for Concurrent Embedded Software · 17

tively, shortest) execution time. The program may contain loops, which make the CFG
cyclic. We require that the bounds on the iteration counts are specified as input to the
analysis, so that the execution time can be bounded. To tighten the estimation, our timing
analysis method performs simple infeasible path detection during traversal of the CFG.
This is achieved by ruling out pairwise branch outcomes that are statically known to be
impossible given the constraint implied by the execution sequence up to that point. This
detection reduces the possibility of reporting an infeasible execution path as the worst-
case (respectively, best-case) execution path, which may result in large overestimation and
mislead the scratchpad allocation decision.

After determining the best-case and worst-case execution paths, we may then extract
the execution frequencies of basic blocks along these paths. This gives us the current gain
of allocating each of the blocks. The cost of allocating the block is the area it occupies
in the memory space. These two values form the memory access information of the task,
which will serve as input to the scratchpad content selection in the next iteration of the our
technique. In this particular setting, we choose to use the memory access information cor-
responding to the worst-case execution path. This information will be used in refining the
scratchpad allocation, which will in turn affect the execution time of each basic block, and
ultimately affect the best- and worst-case execution paths. Following each such change,
the memory access information is also updated. We see here that the allocation step and
the task analysis form a feedback loop, which justifies the need for an iterative solution.

4.2 Worst-Case Response Time (WCRT) Analysis

As established in the earlier discussion, the response time of a single task has two compo-
nents: its uninterrupted execution time, and the delay due to preemptions by higher priority
tasks. The preemption delay is itself a function of the execution time of the task, as the
lifetime of a task affects the way it interacts with other tasks.

The WCRT Analysis step takes the task execution times estimated in the Task Analy-
sis step and the dependencies specified in the MSC model as input. Based on these, it
determines the lifetime of each task ti, which ranges from the time when ti may start
execution until the time when ti may complete execution, represented by the four val-
ues EarliestSt(ti,S), LatestSt(ti,S), EarliestF in(ti,S), and LatestF in(ti,S). The
WCRT of the application given scratchpad allocation S, as formulated in Equation 1, is
determined via a fixed-point computation that updates these values for each task ti as more
interaction information becomes available throughout the iteration. The change in each
iteration is brought on by the variation in the execution time of the individual tasks as the
allocation is refined, as well as possible preemption scenarios that arise from the different
task lifetimes.

The WCRT analysis method is modified from Yen and Wolf’s method [1998] and pro-
ceeds as follows. We first examine the delay component resulting from preemptions among
tasks assigned to the same PE. A higher priority task can only preempt ti on the same PE if
it is possible to start execution during the execution of ti, that is, after ti starts and before
ti finishes. Recall that we denote the priority of task ti as pr(ti), with a smaller value
translating to a higher priority. Certainly, the priority order makes sense only among tasks
competing on the same PE. The following equation defines the set of such tasks, denoted
as intf(ti).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

18 · V. Suhendra, A. Roychoudhury and T. Mitra

intf(ti) =
{
tj
∣∣ pr(tj) < pr(ti) ∧ (2)

EarliestSt(ti,S) < EarliestSt(tj ,S) < LatestSt(tj ,S) < LatestF in(ti,S)
}

In the very first round of computation, the start and end times of each task are not yet
known, and it is assumed that all higher priority tasks on the same PE can preempt ti
unless they are related by dependency. That is, before the start and end times of tasks
are completely determined, the last condition in Equation 2 fails only for dependencies
inferred from the MSC model. This information will be refined in the subsequent rounds
as we shall see later in this section.

Given the possible preemptions as inferred above, the WCRT of a single task ti can then
be computed as

wcrt(ti,S) = wcet(ti,S) +
∑

tj∈intf(ti)

wcet(tj ,S) (3)

The term wcet(ti,S) refers to the WCET value of ti given allocation S determined in the
Task Analysis step. The second term in the above equation gives the total preemption delay
endured by ti in the worst scenario. As all tasks in the model adhere to the same period (see
Section 3.1), each task may preempt another task at most once, and the maximum duration
of the delay due to a preempting task tj ∈ intf(ti) is the WCET of tj . The best-case
response time (BCRT) of ti can be computed similarly.

The start and completion time of task ti are related to wcrt(ti,S) and bcrt(ti,S) as
follows.

EarliestF in(ti,S) = EarliestSt(ti,S) + bcrt(ti,S)

LatestF in(ti,S) = LatestSt(ti,S) + wcrt(ti,S)

Further, the partial ordering of tasks in the MSC imposes the constraint that task ti can
start execution only after all its predecessors have completed execution, that is

EarliestSt(ti,S) ≥ EarliestF in(tj ,S)

LatestSt(ti,S) ≥ LatestF in(tj ,S)

for all tasks tj preceding ti in the partial order of the MSC.
Observing these constraints, the WCRT analysis computes the lifetimes of all tasks in

the application. As mentioned earlier, the first round of this computation uses task WCRT
values that have been determined with the assumption that preemptions will occur between
any pair of tasks with no dependency. Once the start and finish times of tasks are deter-
mined in a certain iteration, it may become apparent that the lifetimes of certain tasks are
well separated, and thus they cannot preempt one another. Given this refined information,
the estimation of each task lifetime becomes tighter in the subsequent iteration. The fixed-
point computation terminates when there is no further refinement. The application WCRT
is then determined based on Equation 1.

From the analysis result, tasks with overlapping lifetimes are said to be interfering, with
the higher-priority task possibly preempting the lower-priority task. This interference pat-
tern is captured in a task interference graph (Figure 10a) for the purpose of scratchpad
allocation in the next stage.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

Scratchpad Allocation for Concurrent Embedded Software · 19

4.3 Scratchpad Sharing Scheme and Allocation

Given the current interference pattern captured in the interference graph, we decide on a
scratchpad sharing scheme among the tasks that incurs no unpredictable reloading delay
when tasks resume after preemption. In this paper, we consider four scratchpad sharing
schemes with varying sophistication. The simplest scheme (Profile-based Knapsack) per-
forms scratchpad space distribution and allocation without any regard for the interference
pattern. The second scheme (Interference Clustering) groups tasks based on their life-
time overlap, thus isolating the interference within mutually exclusive time windows and
enabling time-multiplexing among the groups. The third scheme (Graph Coloring) im-
proves this by mapping the allocation problem to a graph coloring problem. Our final
proposal (Critical Path Interference Reduction) eliminates interferences that compromise
tasks on the critical path of the application by inserting strategically placed slacks, in order
to improve the situation before applying the allocation scheme. These techniques will be
discussed in full details in the next section.

Figure 10b and 10d visualize possible allocation schemes based on task lifetimes in Fig-
ure 10a and 10c, respectively. They clearly show how task interference pattern influences
the allocation decision. An important feature of the allocation is that each task occupies
the space assigned to it for the whole duration of its execution, without being preempted
by any other task. This ensures that reloading of the scratchpad occurs exactly once for
each task activation, and the incurred delay can be tightly bounded.

In each scheme, aside from the scratchpad sharing, the memory content to be allocated
in the scratchpad for each task is also selected for optimal WCRT. After the allocation is
decided, each task goes through the Task Analysis step once again to determine the updated
BCET, WCET, and worst-case memory access information.

4.4 Post-Allocation WCRT Analysis

Given updated task execution times after allocation, the WCRT analysis is performed once
again to compute updated task lifetimes. There is an important constraint to be observed
in the WCRT analysis when the allocation decision has been made. The new WCET and
BCET values have been computed based on the current scratchpad allocation, which is
in turn decided based on the task interference pattern resulting from the previous analy-
sis. In particular, scratchpad overlays have been decided among tasks determined to be
interference-free. Therefore, these values are only valid for the same interference pattern,
or for patterns with less interference.

To understand this issue, suppose the interference graph in Figure 11a leads to the al-
location decision in Figure 11b. The reduction in WCET due to the allocation in turn
reduces task response times and changes task lifetimes to the one shown in Figure 11c.
However, this computation of lifetimes is incorrect, because it has assumed the BCET and
WCET values of fs0 given that it can occupy the assigned scratchpad space throughout
its execution. If fm4 is allowed to start earlier, right after its predecessor fr1 as shown in
Figure 11c, it may in fact preempt fs0, flushing the scratchpad content of fs0 and causing
additional delay for reload when fs0 resumes. Indeed, we see that the interference graph
deduced by the WCRT analysis in Figure 11c has an added edge from fm4 to fs0.

To avoid this unsafe assumption, we need to maintain that tasks known not to interfere
when a certain allocation decision is made will not become interfering in the updated life-
times. This is accomplished by introducing a slack that forces the later task to “wait out”

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

20 · V. Suhendra, A. Roychoudhury and T. Mitra

fm1 fm2 fm4fr0 fr1fs0

fm2

fs0

fr0

fr1fm4

fm1

W1

W2

W3

(a) Before allocation

Task lifetimes

Interference graph

fm1 fm2 fm4fr0 fr1fs0

W1’

W2’

fm1 fm2 fm4fr0 fr1fs0

W1’

W2’

W3’

(c) After allocation, without slack (d) After allocation, with slack

Interference graph

fm2

fs0

fr0

fr1fm4

fm1

fm2

fs0

fr0

fr1fm4

fm1

Task lifetimesTask lifetimes

Interference graph

(b) Allocation based on (a)

W1

W2

W3

scratchpad space

Fig. 11. Motivation for requiring non-increasing task interference after allocation

the conflicting time window. The adapted WCRT analysis consults existing interference
graph and adjusts the start time of fm4 such that

EarliestSt(fm4,S) ≥ LatestF in(fs0,S)

The start times of tasks that are dependent on fm4 are adjusted accordingly. Figure 11d
shows the adjusted schedule, which maintains the same interference graph as Figure 11a
by forcing fm4 to start after fs0 has completed, thus inserting a slack between the fm4

and its immediate predecessor fr1.
With a more sophisticated sharing/allocation scheme and schedule adjustment as we will

introduce next, we can sometimes remove existing task interferences without adding inter-
ference elsewhere (for example, in a situation depicted in Figure 10). When this happens,
we iterate over the allocation and analysis steps to enhance current decision, until no more
improvement can be made (Figure 9). Through the above step, we enforce that task inter-
ferences are monotonically non-increasing from one iteration to the next. Therefore, the
gain from scratchpad allocation, which is decided based on the interference pattern, will
either improve or equal to the gain from the previous iteration. Given that the scratch-
pad capacity is finite, the improvement will reach a point where no further refinement is
enabled. The iterative allocation scheme is thus guaranteed to terminate.

5. ALLOCATION METHODS

This section describes the scratchpad allocation routine, which is the main focus of our
paper. The emphasis in our scratchpad allocation strategy is to achieve a balance between
scratchpad overlay (time-sharing) and scratchpad partitioning (space-sharing). We want
to maximize the utilization of the available scratchpad space via overlay for tasks which
are guaranteed to never interfere with each other, while maintaining timing predictability
by reserving partitions among tasks which may be preempted during its execution.

Figure 12 illustrates four allocation schemes considered in this paper. The left side of
each picture shows task lifetimes as determined by the WCRT analysis, and the right side
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

Scratchpad Allocation for Concurrent Embedded Software · 21

fm1 fm2 fm4fr0 fr1fs0

(a) Profile-based Knapsack (PK) (b) Interference Clustering (IC)

tim
e

scratchpad spacescratchpad space fm1 fm2 fm4fr0 fr1fs0

tim
e

(c) Graph Coloring (GC) (d) Critical Path Interference Reduction (CR)

scratchpad space

tim
e

fm1 fm2 fm4fr0 fr1fs0
scratchpad space

tim
e

fm1 fm2 fm4fr0 fr1fs0

Fig. 12. Four scratchpad allocation schemes with varying degrees of sophistication

sketches the state of the scratchpad memory due to the different allocation schemes. We
shall now elaborate on the techniques utilized in each scheme.

5.1 Profile-based Knapsack (PK)

As the baseline method, we consider a straightforward static allocation strategy where all
tasks executing on the same PE will share the PE’s scratchpad space throughout application
lifetime. It does not take into account the possible interferences among tasks running on
the PE. The main focus here is the scratchpad content selection routine, which uses the
information on sizes (cost) and access frequencies (gain) of code blocks along the worst-
case execution path of the tasks. In other words, the allocation decision is based on the
‘worst-case execution profile’ obtained via static analysis of the task. We thus refer to this
scheme as Profile-based Knapsack (PK), illustrated in Figure 12a.

As each PE makes use of its own scratchpad space, we can perform allocation for each
PE independently. Partitioning and static scratchpad allocation for a PE q can be simulta-
neously optimized via a 0-1 Integer Linear Programming (ILP) formulation.

Objective Function. An ILP formulation for an allocation that minimizes energy con-
sumption has been presented in [Steinke, Wehmeyer et al. 2002]. However, our objective
here is to minimize the WCRT of the whole application. This presents a significantly differ-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

22 · V. Suhendra, A. Roychoudhury and T. Mitra

ent challenge, as there exists no closed-form linear representation for the definition of the
application WCRT given a particular allocation decision (Equation 1). In fact, the WCRT
evaluation requires a fixed-point computation as we have seen in the previous section.
Hence, the objective function to find the optimal allocation S is formulated to approximate
this definition, as follows. ∑

ti:PE(ti)=q

(F (ti) + d)× wcet(ti,S)

Recall that wcet(ti,S) denotes the WCET of task ti given scratchpad allocation S. This
variable is weighted by the value F (ti) + d, which measures the potential contribution of
the task to the application WCRT.

Task Criticality. The first term, F (ti), represents the contribution of ti to the current
application WCRT, which includes the delay ti possibly introduces when it preempts any
other task. The value of F (ti) is estimated based on the current WCRT path of the appli-
cation (critical path) P0 using the following rules:

F (ti) =

lifetime(ti,S0)

W0
if ti ∈ P0;

wcrt(ti,S0)
W0

if ti may preempt a task in P0;

0 otherwise.

The term S0 denotes the current scratchpad allocation (empty for the first allocation at-
tempt), while the termW0 denotes the current application WCRT.

If ti is part of the current WCRT path, then ti’s contribution to the current application
WCRT is the ratio of the length of its lifetime to the overall WCRT W0. Here, the task
lifetime lifetime(ti,S0) includes the whole duration when ti is active, from the earliest
start time to the latest completion time:

lifetime(ti,S0) = LatestF in(ti,S0)− EarliestSt(ti,S0)

If ti is not on the critical path itself but may preempt a task on that path, then ti may intro-
duce a preemption delay up to the maximum length of its own response time, wcrt(ti,S0).
Recall that the WCRT of an individual task ti is related to its lifetime as follows.

wcrt(ti,S0) = LatestF in(ti,S0)− LatestSt(ti,S0)

Critical Path Shift. The second term of the objective function, d, is a measure of the
density of the critical path of the application, defined as the ratio of the number of tasks in
the critical path to the total number of tasks in the application, N :

d =
|P0|
N

The value of d (0 < d ≤ 1) is evaluated following each round of WCRT analysis. In our
context here, it may be taken to indicate the reverse likelihood of the critical path shifting.
If few, long tasks dominate the runtime of the application, then it is likely that these tasks
will remain in the critical path. In this case, d evaluates to a small value, and the allocation
objective will put more weight on F (ti). Hence, tasks that concretely participate in the
current WCRT path will be prioritized over tasks that are unlikely to contribute to the
WCRT. If, on the contrary, the critical path is formed by many tasks, then d will have a
large value, which serves as a base weight for tasks that do not participate in the current
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

Scratchpad Allocation for Concurrent Embedded Software · 23

critical path. This induces a more balanced runtime reduction across tasks that have similar
possibilities of forming the application WCRT path.

Task Execution Time. We now examine the variable component of the objective func-
tion. The WCET of ti in the presence of scratchpad allocation S is defined as

wcet(ti,S) = c(ti)− saving(ti,S) + load(ti,S) + trans(ti,S)

c(ti) is the uninterrupted worst-case running time of ti without any allocation (i.e., all
code blocks are fetched from the main memory), which is evaluated once for each task
during the initial Task Analysis step. From this value, we discount the time savings due to
allocation, saving(ti,S), but account for the time needed to load the allocated blocks into
the scratchpad once at the start of the task, load(ti,S), as well as additional instructions
needed for transition between scratchpad memory and main memory, trans(ti,S). We
elaborate these terms below.

Time Saving. Let wd denote the unit of memory transfer of the system, that is, the
amount of memory (in bytes) that can be transferred in a single fetch. Further, let latS
denote the latency of a single memory fetch from the scratchpad, and let latM denote the
latency of a single fetch from the main memory. Naturally latM > latS , and the difference
between the two gives the time saving for each access to a memory unit of size wd allocated
in the scratchpad. The total time saving for ti due to allocation S is defined as

saving(ti,S) =
∑

b∈Alloc(ti,S)

freqb ×
⌈areab

wd

⌉
× (latM − latS)

areab is the memory space (in bytes) occupied by a memory block b, and freqb is the
execution frequency of b in the worst-case execution path; both information are obtained
during the Task Analysis step. As defined in the problem formulation, Alloc(ti,S) refers
to the selected set of code blocks of ti in scratchpad allocation S. In the ILP formulation,
this term is expanded using binary decision variables Xb for each block b ∈ Mem(ti),
whose value is 1 if b ∈ Alloc(ti,S), or 0 otherwise. Recall that Mem(ti) is the set of all
code blocks of ti that are considered for allocation (see Section 3.3). The above definition
translates to

saving(ti,S) =
|Mem(ti)|∑

b=0

Xb × freqb ×
⌈areab

wd

⌉
× (latM − latS)

Loading Time. The time taken to load the scratchpad at the start of the task is directly
proportional to the total size of the allocated blocks, fetched once from the main memory:

load(ti,S) =
∑

b∈Alloc(ti,S)

⌈areab
wd

⌉
× latM

which is expanded in the same manner as saving(ti,S) into

load(ti,S) =
|Mem(ti)|∑

b=0

Xb ×
⌈areab

wd

⌉
× latM

Transition Cost. In this work, we handle code allocation with the granularity of a basic
block. This choice requires that an adjustment is made to maintain correct control flow

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

24 · V. Suhendra, A. Roychoudhury and T. Mitra

[Steinke, Wehmeyer et al. 2002]. Scratchpad allocation essentially divides the program
address space between the scratchpad and the main memory. The basic block allocation
granularity makes it possible for two sequential basic blocks in the control flow graph
to be stored in non-sequential order in memory (one in scratchpad and the other in main
memory). If the basic block ends with an unconditional jump, the compiler will supply the
correct destination address to the jump instruction after allocation is decided. Otherwise,
an additional jump instruction has to be inserted at the end of the earlier block to maintain
the correct control flow. Note that this applies to a branch instruction as well, because in
the case that the branch condition is not satisfied, the control will simply fall through to the
next basic block.

Let Yb be a binary variable whose value is 1 if b is allocated in the scratchpad (Xb = 1)
but the block following it is not (Xb+1 = 0) and 0 otherwise. When Yb = 1, it means that
an additional jump instruction should be inserted at the end of block b in the scratchpad
to jump to the start of block (b + 1) in the main memory. Similarly, let Zb be the binary
variable whose value is 1 if Xb = 0 and Xb+1 = 1, to represent the insertion of a jump
instruction at the end of block b in the main memory to jump to the start of block (b+1) in
the scratchpad. Otherwise, Zb has value 0. The definition of Yb and Zb can be linearized
in terms of Xb and Xb+1 as follows:

Yb <= Xb ; Yb <= 1−Xb+1 ; Yb >= Xb −Xb+1

Zb <= Xb+1 ; Zb <= 1−Xb ; Zb >= Xb+1 −Xb

Let the size of the jump instruction be jz bytes, and the time to execute the instruction be
jt. The total time needed to fetch and execute these additional jump instructions is

trans(ti,S) =
∑

b∈MemN (ti)

freqb × (Yb × jcostS + Zb × jcostM)

jcostS = jt+

⌈
jz

wd

⌉
× latS ; jcostM = jt+

⌈
jz

wd

⌉
× latM

where MemN (ti) ⊆ Mem(ti) represents the basic blocks of ti that do not end with an
unconditional jump.

Capacity Constraint. Finally, all blocks selected for allocation should fit into the scratch-
pad space of the host PE. Any additional jump instruction inserted into blocks allocated in
the scratchpad should also be accounted for. Given the scratchpad size of capq attached to
PE q, the capacity constraint is expressed as

|Mem(ti)|∑
b=0

(Xb × areab + Yb × jz) ≤ space(ti) (4)

for each task ti, and ∑
ti:PE(ti)=q

space(ti) ≤ capq (5)

The ILP formulation is solved for Xb, Yb and Zb. The solution values for Xb indi-
cate the actual selection of memory blocks for optimal allocation given current worst-case
execution profile.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

Scratchpad Allocation for Concurrent Embedded Software · 25

5.2 Interference Clustering (IC)

In this second method, we use task lifetimes determined by the WCRT analysis to form
interference clusters. Tasks whose lifetimes overlap at some point are grouped into the
same cluster. They will share the scratchpad for the entire duration of the common interval,
from the earliest start time to the latest finish time among all tasks in the cluster.

Clusters := ∅1

foreach task t in the application do2

if ∃ C ∈ Clusters s.t.3

[C.Begin, C.End] ∩ [EarliestSt(t,S), LatestF in(t,S)] 6= ∅ then

/* update C to include t */4

C.Tasks := C.Tasks ∪ {t};5

changed := FALSE;6

if EarliestSt(t,S) < C.Begin then7

C.Begin := EarliestSt(t,S); changed := TRUE;8

if LatestF in(t,S) > C.End then9

C.End := LatestF in(t,S); changed := TRUE;10

/* check if inclusion of t affects the overall clustering */11

if changed then12

foreach cluster C ′ ∈ Clusters \ {C} do13

if [C.Begin, C.End] ∩ [C ′.Begin, C ′.End] 6= ∅ then14

/* merge the two clusters */15

C.Tasks := C.Tasks ∪ C ′.Tasks;16

C.Begin := min (C.Begin, C ′.Begin);17

C.End := max (C.End,C ′.End);18

Clusters := Clusters \ {C ′};19

else20

/* create a new cluster C′ for t */21

C ′.Tasks := {t};22

C ′.Begin := EarliestSt(t,S);23

C ′.End := LatestF in(t,S);24

Clusters := Clusters ∪ {C ′};25

Algorithm 1: The Interference Clustering (IC) algorithm

The clustering is performed as detailed in Algorithm 1. We start with an empty cluster
set (line 1). For each task, we try to find an existing cluster whose duration overlaps the
lifetime of t (line 3). If there is no such cluster, we start a new cluster with t as the only
member (lines 22–25). Otherwise, we add t into the existing cluster C and update C’s
duration (lines 5–10). If the duration of the cluster changes because of the new inclusion,
we check against all other existing clusters whether any of them now overlaps with C, in
which case they will be merged (lines 16–19).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

26 · V. Suhendra, A. Roychoudhury and T. Mitra

After the clustering is decided, the same routine in PK that simultaneously optimizes
partitioning and allocation is employed within each cluster. The ILP capacity constraint in
Equation 5 is therefore modified to∑

ti∈C
space(ti) ≤ capq

for each cluster C of tasks executing on PE q. Two distinct clusters on q are guaranteed
to have disjoint execution time intervals, thus the allocated memory blocks of tasks in a
later cluster can completely replace the scratchpad content belonging to the previously
executing cluster when the corresponding execution interval is entered.

The left part of Figure 12b shows the clustering decision for the given task schedule.
Three clusters have been formed, and fm1 as well as fm4 have been identified as having
no interference from any other task. Each of them is placed in a singleton cluster and
enjoys the whole scratchpad space during its lifetime.

5.3 Graph Coloring (GC)

The Interference Clustering (IC) method is prone to produce large clusters due to transi-
tivity. In Figure 12b, even though fm2 and fs0 do not interfere with each other, their
independent interferences with fr0 end up placing them in the same cluster. Because of
this, simply clustering the tasks will likely result in inefficient decisions. The third method
attempts to enhance the allocation within the clusters formed by the IC method by con-
sidering task-to-task interference relations captured in the interference graph. If we apply
graph coloring to this graph, the resulting assignment of colors will give us groups of tasks
that do not interfere with each other within the cluster. Tasks assigned to the same color
have disjoint lifetimes, thus can reuse the same scratchpad space via further overlay.

Graph coloring using the minimum number of colors is known to be NP-Complete. We
employ the Welsh-Powell algorithm [Welsh and Powell 1967], a heuristic method that
assigns the first available color to a node, without restricting the number of colors to use.
Given the interference graph, the algorithm can be outlined as follows.

(1) Initialize all nodes to uncolored.
(2) Traverse the nodes in decreasing order of degree, assigning color 1 to a node if it is

uncolored and no adjacent node has been assigned color 1.
(3) Repeat step (2) with colors 2, 3, etc. until no node is uncolored.

The above algorithm is illustrated in Figure 13, featuring the tasks that have been assigned
to the same cluster by IC in our running example. The numbering in Figure 13a shows
the order of traversal based on the degree of the nodes. The first iteration (Figure 13b)
assigns the first color to all uncolored nodes with no neighbor of the same color, that is,
fs0 followed by fm2. The next iteration (Figure 13c) assigns the second color to fr0 and
fr1, and completes the coloring with a total of two colors used. This result dictates that
the scratchpad space will be partitioned into two: one portion to be occupied by fm2 and
fs0 during their respective lifetimes, and another portion to be occupied by fr0 and fr1
during their respective lifetimes.

Even though the graph coloring algorithm is a heuristic, in practice we observe that it
does not pose serious sub-optimality to the solution, due to the fact that coloring options
for actual task interference graphs are typically limited by the dependencies.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

Scratchpad Allocation for Concurrent Embedded Software · 27

fm
2

fs
0

fr
0

fr
1

fm
2

fs
0

fr
0

fr
1

1

2
3

4

fm
2

fs
0

fr
0

fr
1

(b) Iteration 1 (c) Iteration 2(a) Initialization

Fig. 13. Welsh-Powell algorithm for graph coloring, applied to the set of tasks clustered together in Figure 12(b)

After we obtain the color assignment, we formulate the scratchpad partitioning/allocation
with the refined constraint (replacing Equation 4) that each task ti with assigned color
color(ti) can occupy at most the space allocated for color(ti), denoted by space(color(ti)).

|Mem(ti)|∑
b=0

(Xb × areab + Yb × jz) ≤ space(color(ti))

In place of Equation 5, we now have the constraint that the scratchpad space given to all
Mq colors used for PE q add up to its total scratchpad capacity capq:

Mq∑
m=1

space(color(ti)) ≤ capq

Figure 12c shows the further partitioning within the second cluster previously formed
by the IC scheme. fm2 and fs0 have been assigned the same color, and are allocated the
same partition of the scratchpad to occupy at different time intervals. The similar decision
applies to fr0 and fr1. The partition will be reloaded with the relevant task content when
execution transfers from one task to another.

5.4 Critical Path Interference Reduction (CR)

While the above three schemes try to make the best out of the given interference pattern,
the final method that we propose turns the focus to reducing the interference instead. This
is motivated by the observation that allocation decisions are often compromised by heavy
interference. When the analysis recognizes a potential preemption of one task by another,
both tasks will have to do space-sharing; in addition, the lifetime interval of the preempted
task t must make allowance for the time spent waiting for the preempting task u to com-
plete. If t is on the critical path of the application, it may be beneficial for the application
WCRT to let t complete first before allowing u to start. By removing the interference be-
tween t and u, we will be able to apply scratchpad overlay on the both of them as well. The
gain from allocation will potentially reduce the execution time of both, leading to further
reduction in WCRT. However, the interference elimination requires delaying the start of
task u and hence pushing back its entire lifetime, albeit with potentially reduced length
after the updated scratchpad allocation. This delay may be propagated to other tasks with
direct or indirect correlations with u. Therefore, we need to ensure that the decision will
not adversely lead to an undesirable increase in the final WCRT.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

28 · V. Suhendra, A. Roychoudhury and T. Mitra

repeat1

/* Identify task interferences on current WCRT path P0 */2

CrIf := { (t, u) | t ∈ P0 ∧ u ∈ intf(t) };3

/* intf(t): set of higher priority tasks who may preempt t (Equation 2) */4

/* Evaluate effect of eliminating each interference */5

foreach interference pair (t, u) ∈ CrIf do6

/* Cost: propagated slack */7

slack := LatestF in(t,S)− LatestF in(u,S);8

maxEnd :=W0; /* current WCRT */9

foreach task v that starts after u in current schedule do10

if v depends on u then11

maxEnd := max (maxEnd,LatestF in(v,S) + slack);12

else if v /∈ intf(u) ∧ EarliestSt(v,S) < LatestF in(u,S) + slack13

then
vSlack := (LatestF in(u,S) + slack)− EarliestSt(v,S);14

maxEnd := max (maxEnd,LatestF in(v,S) + vSlack);15

/* Gain: removed preemption and potential gain via overlay */16

preemptLen := LatestF in(u,S)− EarliestSt(u,S);17

/* bestF it(x, y): set of most-accessed unallocated blocks of x to fit space(y) */18

tGain :=
∑

b∈bestF it(t,u) freqb × areab × (latM − latS);19

uGain :=
∑

b∈bestF it(u,t) freqb × areab × (latM − latS);20

/* Projected WCRT if this interference is eliminated */21

estW(t, u) := maxEnd− preemptLen− tGain− uGain;22

if estW(t, u) >W0 then23

Remove (t, u) from CrIf ;24

/* Choose most beneficial interference to eliminate */25

if CrIf 6= ∅ then26

Find (tm, um) ∈ CrIf s.t. estW(tm, um) ≤ estW(t, u) ∀(t, u) ∈ CrIf ;27

Set constraint EarliestSt(um,S) ≥ LatestF in(tm,S);28

Run WCRT analysis to propagate lifetime shift;29

until CrIf = ∅ ;
Algorithm 2: The Critical Path Interference Reduction (CR) algorithm

Our final proposed method proceeds as shown in Algorithm 2. We first work on the
schedule produced by the WCRT analysis to improve the interference pattern. We consider
all interferences in which tasks on the critical path are preempted or have to wait for tasks
with higher priority (line 3). Each candidate is evaluated to find out the effect on overall
WCRT if it is chosen to be eliminated. Interference among a task t and its preempting task
u is eliminated by forcing u to wait until the completion of t, as illustrated in Figure 14b.
The amount of slack introduced, slack, is thus the remaining execution time of t after the
original preemption, LatestF in(t,S)− LatestF in(u,S) (line 8).
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

Scratchpad Allocation for Concurrent Embedded Software · 29

t

(a)

EarliestSt (t,S)

preemptLen

u

EarliestSt (u,S)

LatestFin (u,S)

LatestFin (t,S)

t u

slack

(b)

Fig. 14. Mechanism of slack insertion for interference elimination

We then examine all tasks that execute after u in the current schedule to see if the prop-
agated slack pushes their lifetime beyond the current WCRT (line 9). The slack may affect
tasks executing after u in two ways. First, if a task v is dependent on u (either as a direct
successor or in the transitive closure of u’s succeeding tasks), its start and completion time
will also be pushed back by up to the same amount of slack (line 12). Second, if a task v is
not dependent on u but is not interfering with u in the current schedule, then our iterative
scratchpad algorithm will require us to maintain the non-interference among them. As the
execution of u has been pushed back, it now completes only at LatestF in(u,S) + slack.
We check if this new lifetime interval intrudes into the lifetime of v. If necessary, the
start and completion time of v will also be pushed back so that its lifetime remains not
overlapping with u’s (lines 13–15).

We move on to examine the potential gain from eliminating the candidate interference.
The first source of gain is the removed preemption delay along the critical path (Figure 14a)
which amounts to the length of the preempting task u’s lifetime (line 17). The second
source of gain is the potential time saving due to allocation, as we can now allow t and u to
occupy more scratchpad space via overlay. This value is estimated by assuming t can place
a selection of its unallocated code blocks into the scratchpad space currently occupied by u,
and vice versa (lines 18–20). The selected blocks for this estimation are those with highest
access frequency along the task’s current WCET path, among all blocks that are currently
not allocated in the scratchpad. Note that for the first iteration of this algorithm, the current
scratchpad allocation refers to an empty allocation. This selection strategy is chosen for
efficiency, and differs from the actual ILP-based content selection (as described in Section
5.1) in that it uses sub-optimal first-fit ‘packing’ of these most-accessed blocks, and it does
not account for the transfer code needed between the scratchpad and main memory.

We can now estimate the application WCRT after the elimination of this candidate in-
terference. It is the latest completion time over all tasks affected by the inserted slack,
discounting the original preemption delay and the projected gain from allocation (line 22).
If this estimated WCRT is larger than the current WCRT, then we conclude that it is
not beneficial to remove this interference, and remove this candidate from consideration
(lines 23–24). Note that this estimated WCRT is a heuristic that may not capture all actual
impacts of eliminating the interference (for example, the delay on v at line 14 may trig-
ger another series of delays following v). An accurate estimation will require invoking a
full-fledged WCRT analysis for each candidate, on top of actually performing the contem-
plated changes, because updating allocation will potentially lead to new task lifetimes and

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

30 · V. Suhendra, A. Roychoudhury and T. Mitra

new task interaction patterns. The actual impact will be accurately determined after the
considered elimination is selected and carried out later in this algorithm.

After evaluating the gain function for all candidate interferences along the critical path,
we select one of them to remove. A sensible choice is the candidate with the best projected
WCRT after removal (line 27). We eliminate this interference by forcing a delayed start for
the preempting task (line 28), then propagate the shift to all tasks by re-running the WCRT
analysis (line 29). Certainly, new interferences are not allowed to arise in this step.

From the new schedule, we again consider preemptions on the critical path, which may
or may not have shifted. The elimination and re-analysis are iterated until no more in-
terferences can be eliminated from the current critical path. We then proceed to perform
scratchpad partitioning/allocation routine as used by the Graph Coloring (GC) scheme on
this improved interference graph.

In Figure 12d, the interference between fs0 and fr1 has been eliminated by letting fr1
wait out the lifetime of fs0 instead of starting immediately after the completion of its
predecessor fr0. This improvement frees fr1 from all interference. It can now occupy the
whole scratchpad memory throughout its lifetime.

It is worth noting that this scheme is indeed a greedy heuristic, as it chooses the inter-
ference to eliminate based on best projected gain for the current worst-case path known at
the point of decision. There remains a possibility that a decision with worse result in one
iteration may lead to better improvement in future iterations, which may not be enabled in
scenarios resulting from current better results. This makes the search for global optimum
exponential.

6. EXPERIMENTS

6.1 Setup

We use two real-life embedded applications to evaluate the scracthpad allocation schemes
that we have presented. Our first case study is the Unmanned Aerial Vehicle (UAV) control
application from PapaBench [Nemer et al. 2006], a derivation from the real-time embedded
UAV control software Paparazzi. We adapt the C source code of this application into a
distributed implementation. The task programs are compiled for the SimpleScalar PISA
architecture platform [Austin et al. 2002], and our analysis works on the resulting binaries.

The controller consists of two main functional units, fly by wire and autopilot,
inter-connected by SPI serial link. The fly by wire unit is responsible for managing
radio-command orders and servo-commands, while autopilot runs the navigation and
stabilization tasks of the aircraft. The two components can operate in one of two modes. In
the manual mode, fly by wire obtains navigation instructions via the radio, passes them
through autopilot computation, then communicates the necessary actions to the servos.
In the automated mode, autopilot reads information from the GPS unit to compute
necessary adjustments, which are then passed to fly by wire to be actuated by the servos.

Figure 2, at the beginning of this paper, shows the active processes in one of the sce-
narios under the manual mode. This is the MSC we use in the experiments. The original
implementation as shown uses 2 PEs with a total of 5KB scratchpad memory space. For
the purpose of observation, we perform experiments for 1-PE, 2-PE, and 4-PE settings.
We consider a homogeneous system where all the PEs are identical. The 1-PE case has all
tasks assigned to the single PE. The 2-PE case follows the same division as the original
implementation (fly by wire, autopilot) shown in Figure 2. The task scheduling in
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

Scratchpad Allocation for Concurrent Embedded Software · 31

PE
i

t
i

Codesize (bytes) c
i

(cycles)

1

fm0

fm1

fm2

fm3

fm4

fm5

808

96

96

1,696
136

248

12,237

612

612

10,487
815

1,629

1
fv0

fv1

520
656

3,866
52,957

2
fr0

fr1

384
4,552

2,646
28,008

2

fs0

fs1

fs2

272

992
1,840

1,932

16,597
11,606

PE
i

t
i

Codesize (bytes) c
i

(cycles)

3

am0

am1

am2

am3

am4

768

96

96

1,240

1,536

10,186

612

612

9,173

9,579

3

ad0

ad1

ad2

352

2,296
6,496

2,442

13,345
36,374

4

as0

as1

as2

as3

as4

560
2,744

1,720

168

656

3,968
17,726

12,116

1,221

4,277

4 ag0 400 2,748

4 ar0
5,520 34,944

Fig. 15. Codesize and WCET of tasks in the PapaBench application

the 4-PE case is shown in Figure 15 along with the codesizes and uninterrupted worst-
case runtimes of each task on the given architecture platform. The uninterrupted runtime
values are obtained via WCET analysis of the program code assuming all instructions are
fetched from the main memory. As the PEs are homogeneous in this setting, these values
remain the same irrespective of PE assignment. We assume uniform execution time of 1
cycle per instruction, and compute the execution time of tasks as elaborated in Section 4.1.
We assume fetch width of 16 bytes. It takes 1 cycle for a single fetch from the scratchpad
memory. The off-chip memory latency is set at 100 cycles per fetch, given that real systems
may have off-chip latencies ranging from 50 to over 100 cycles.

Total scratchpad size (for instructions) is varied from 512B to 8KB, distributed evenly
among the PEs. The range is chosen to provide reasonable contention for memory space
given the codesizes of the tasks. The ILP formulation for scratchpad content selection
is solved using the tool CPLEX from ILOG [CPLEX 2002]. The solution determines
scratchpad allocation for each scheme, which then becomes an input to the WCRT analysis
(Section 4.2). The WCRT values obtained by the analysis for the different schemes are then
compared.

6.2 Results and Discussion

Figure 16 shows the WCRT (in kilocycles) of the application for various scratchpad con-
figurations. The first column shows the application WCRT without any allocation, that
is, all memory blocks are fetched from the main memory. The next four columns show
the final WCRT after applying the four discussed schemes respectively. The three charts
correspond to the cases where the tasks are distributed on 1, 2, and 4 PEs. Obviously, with
more PEs, less interference is observed among the tasks. On the other hand, it also means
less scratchpad space per PE for the same total scratchpad size, which limits the maximum
space utilizable by a task. We see from the figure that the application WCRT without al-
location reduces by a small margin as we go from 2 to 4 PEs, which implies a limit in
the extent of paralellization due to task dependencies. This means that task interferences

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

32 · V. Suhendra, A. Roychoudhury and T. Mitra

PK IC GC CR

2 x 256B

2 x 512B

2 x 1KB

2 x 2KB

2 x 4KB

10.0

10.1

10.1

9.9

10.5

10.8

13.9

10.6

10.5

10.9

15.3

39.0

38.9

12.2

15.4

13.8

13.9

21.7

15.1

17.8

PK IC GC CR

4 x 128B

4 x 256B

4 x 512B

4 x 1KB

4 x 2KB

11.6

11.5

10.4

10.2

10.2

12.3

11.8

12.1

12.1

16.5

17.1

12.9

14.2

19.0

53.8

17.6

13.2

17.4

57.4

16.9

PK IC GC CR

512B

1KB

2KB

4KB

8KB

10.1

11.0

10.8

12.0

11.6

10.1

11.1

11.0

11.9

11.5

18.6

20.7

15.9

15.0

15.7

14.9

17.0

17.0

17.8

18.6

Algorithm runtime (seconds)

Algorithm runtime (seconds)

Algorithm runtime (seconds)

1-PE

10

50

90

130

170

210

250

290

330

512 B 1 KB 2 KB 4 KB 8 KB

Scratchpad configuration

W
C

R
T

 (
K

c
y

c
le

s
)

None

PK

IC

GC

CR

2-PE

10

50

90

130

170

210

250

290

330

2 x 256B 2 x 512B 2 x 1KB 2 x 2KB 2 x 4KB

Scratchpad configuration

W
C

R
T

 (
K

c
y
c
le

s
) None

PK

IC

GC

CR

4-PE

10

50

90

130

170

210

250

290

330

4 x 128B 4 x 256B 4 x 512B 4 x 1KB 4 x 2KB

Scratchpad configuration

W
C

R
T

 (
K

c
y

c
le

s
) None

PK

IC

GC

CR

Fig. 16. WCRT of the benchmark application, before and after allocation by Profile-based Knapsack (PK),
Interference Clustering (IC), Graph Coloring (GC), and Critical Path Interference Reduction (CR), along with
algorithm runtime

do not change significantly between these two settings; however, the utilizable scratchpad
space is smaller for each task, leading to decreased gain. Consequently, we see that the
WCRT reductions achieved by the allocation schemes are generally worse.

When only 1 PE is utilized, most tasks are interfering with each other. The Interfer-
ence Clustering (IC) method does not improve over the baseline Profile-based Knapsack
(PK), as the transitive interference places most tasks into the same space-sharing cluster.
The Graph Coloring (GC) method performs much better than IC here, as it has a more re-
fined view of interference relation among individual tasks. The Critical Path Interference
Reduction (CR) method is, in turn, able to further improve the performance of GC.

When we move to the 2-PE setting, we see a drastic drop in application WCRT obtained
by all schemes, as task interferences have reduced considerably. This confirms our obser-
vation that task interferences significantly influence application response time. With more
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

Scratchpad Allocation for Concurrent Embedded Software · 33

PEs employed, IC is able to perform better than PK, though the improvement is still not
much, when compared to the reduction achieved by GC and CR. Again, CR emerges with
the most performance gain in this setting.

As task interferences reduce even more in the 4-PE setting, the improvement by GC and
CR also lessens, as the lack of refined task interaction knowledge is less damaging. With
the reduced dominance of task interferences on performance here, we observe that relative
performance gain follows more or less a normal curve along the scratchpad size axis –
when the scratchpad space is very small, it gives little flexibility to all schemes. When
the scratchpad space is large relative to task memory requirements, it allows reasonable
performance gain even without overlay. The advantage of sophisticated account of task
interaction is nevertheless pronounced for common cases in between these extremes.

From these results, we can conclude that the proposed scheme CR gives the best WCRT
improvement over all other schemes. Averaged over all settings, the resulting application
WCRT achieved by CR allocation is 42.2% lower than that achieved by the baseline PK.
Individually, the reduction ranges from 7.9% to 87.6%. This justifies the strategy of elim-
inating critical interferences via slack enforcement, whenever any additional delay that is
incurred can be overshadowed by the gain through a better scratchpad sharing and alloca-
tion scheme.

In all cases, when we compare the application WCRT without any allocation to the appli-
cation WCRT after applying any of the allocation schemes (Figure 16), we see that scratch-
pad allocation indeed improves application WCRT tremendously. The simplest scheme,
PK, is able to achieve 20.6% improvement. The gains from IC and GC are 24.9% and
45.3% respectively; and the best improvement by CR achieves 52.3% improvement. In par-
ticular, with a moderately-sized scratchpad, the gain from allocation is already larger than
the gain from simply distributing the application on more PEs without allocation (compare
for example GC on 1 PE with 1 KB scratchpad, with no-allocation on 4 PEs).

Finally, the tables of Figure 16 show the comparison of algorithm runtimes when run
on a 3.0 Ghz Pentium 4 CPU with 1MB cache and 2GB memory. Our iterative scheme
takes between 2–11 iterations to arrive at the final solution, where no further refinement
is seen. As discussed in Section 4, the termination of the scheme is guaranteed. We
observe a wide variation of runtime in certain cases, for example the runtime of GC in the
2-PE case. The dominant component of the algorithm runtime is the ILP solution time,
which highly depends on the complexity of the problem. The variation in runtime arises
from the variation in the complexity of the formulation due to different configurations and
scratchpad sharing decisions. Nevertheless, the runtimes of all schemes as shown here are
reasonably efficient, ranging from 10 seconds to a little less than a minute.

7. EXTENSION TO MESSAGE SEQUENCE GRAPH

Message Sequence Graph (MSG) is a finite state automaton where each state is described
by an MSC. Multiple outgoing edges from a node in the MSG represent a non-deterministic
choice, so that exactly one of the destination charts will be executed in succession. Fig-
ure 17 shows an example of an MSG, modeling the PapaBench application. The top left
box shows the MSG, and the labeled boxes display the MSCs corresponding to the nodes.
The MSC model used in the experiment presented earlier (Figure 2) corresponds to a sin-
gle execution path through this MSG, that is, it shows only one of the possible scenarios
represented by this MSG. While an MSC describes a single scenario in the system execu-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

34 · V. Suhendra, A. Roychoudhury and T. Mitra

FLY BY WIRE AUTOPILOT

Initialization

Initialization AP

Main

Modem

Control

AP-SPI

Control

GPS

Control

FLY-BY-WIRE

Report

Unit

FBW

Main

Servo

Control

Radio

Control

FBW-SPI

Control

AUTOPILOT

radio command

received

radio timeout

ManualCmd AutoMode

CmdProcess

manual command auto command
ManualCmd AutoMode

Navigation
FBW

Main

Radio

Control

FBW-SPI

Control

[Env]

Radio

[Env]

SPI

FLY-BY-WIRE

FBW

Main

Radio

Control

FBW-SPI

Control

[Env]

Radio

[Env]

SPI

FLY-BY-WIRE

St bili ti

Main Control ControlRadio SPI Main Control ControlRadio SPI

radio

timeout

Stabilization

TransmitServo

CmdProcessing Navigation Stabilization TransmitServo

AP ModemAP-SPI [Env][Env]

AUTOPILOT

AP GPS [Env]

AUTOPILOT

APAP-SPI[Env]

AUTOPILOT FLY-BY-WIRE

FBW Servo FBW-SPI[Env] [Env]

Main ControlControl

[]

Modem

[]

SPI Main Control

[]

GPS MainControl

[]

SPI Main Control Control

[]

Servo

[]

SPI

Fig. 17. Message Sequence Graph of the PapaBench application

tion, an MSG describes the control flow between these scenarios, allowing us to form a
complete specification of the application. Therefore, to optimize the WCRT of the entire
application, the analysis as well as the scratchpad allocation technique need to be extended
to take into account the conditional control flow specified by the MSG model.

An execution of the modeled application traces a path in the MSG from an initial state to
a terminal state (marked with double lining), and can be viewed as a concatenation of the
MSCs along that path [Harel and Thiagarajan 2003]. Here, we consider the synchronous
concatenation of the MSG, where all the tasks in an MSC (that is, an MSG node) must
complete before any task in a subsequent MSC can execute. Each MSC can thus be viewed
independently. The extended scratchpad allocation technique proceeds as follows.

(1) Perform scratchpad allocation on each MSC to obtain the WCRT-optimizing allocation
along with the post-allocation WCRT value for each MSG node.

(2) Traverse the MSG to find the longest path in terms of total post-allocation WCRT.
(3) Compose the scratchpad allocation of the MSG nodes according to their execution

order along the WCRT path.

The MSG may contain loops between the initial state and the terminal state, in which
case we require that the maximum number of times the cyclic edges can be traversed is
known, so that the longest path is well-defined. The WCRT of the application is then
the sum of the WCRT of the MSCs along the longest path, and the worst-case-optimizing
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

Scratchpad Allocation for Concurrent Embedded Software · 35

PK IC GC CR

2 x 256B

2 x 512B

2 x 1KB

2 x 2KB

2 x 4KB

15.9

14.5

27.6

15.4

29.1

18.5

24.1

32.5

32.1

19.5

17.9

24.4

20.2

19.6

22.2

19.9

19.3

21.6

19.4

21.3

PK IC GC CR

4 x 128B

4 x 256B

4 x 512B

4 x 1KB

4 x 2KB

15.7

15.6

16.2

17.7

16.3

16.9

35.9

35.8

37.3

18.6

17.6

20.0

20.2

22.5

19.4

17.1

30.4

30.0

31.4

20.1

PK IC GC CR

512B

1KB

2KB

4KB

8KB

14.4

16.3

16.9

16.9

27.6

23.4

18.3

18.1

18.2

37.2

24.2

18.2

18.6

19.3

31.4

21.6

22.1

21.0

21.3

31.4

Algorithm runtime (seconds)

Algorithm runtime (seconds)

Algorithm runtime (seconds)

2-PE

25

100

175

250

325

400

475

2 x 256B 2 x 512B 2 x 1KB 2 x 2KB 2 x 4KB

Scratchpad configuration

W
C

R
T

 (
K

c
y
c
le

s
) None

PK

IC

GC

CR

1-PE

25

100

175

250

325

400

475

512 B 1 KB 2 KB 4 KB 8 KB

Scratchpad configuration

W
C

R
T

 (
K

c
y
c
le

s
) None

PK

IC

GC

CR

4-PE

25

100

175

250

325

400

475

4 x 128B 4 x 256B 4 x 512B 4 x 1KB 4 x 2KB

Scratchpad configuration

W
C

R
T

 (
K

c
y
c
le

s
)

None

PK

IC

GC

CR

Fig. 18. WCRT of the complete PapaBench application, before and after allocation by Profile-based Knapsack
(PK), Interference Clustering (IC), Graph Coloring (GC), and Critical Path Interference Reduction (CR), along
with algorithm runtime

scratchpad allocation is the composition of the allocation decisions for the MSCs according
to their execution sequence on that path. This composition is basically a chart-level scratch-
pad overlay among the independent MSCs, justified by definition of the synchronous con-
catenation.

We run the extended scratchpad allocation on the PapaBench MSG (Figure 17). The
assignment of processes to PEs as well as latency settings are the same as in our experi-
ments on the single MSC, presented in the previous section. Figure 18 shows the resulting
WCRT after allocation by the four schemes, compared with the WCRT without allocation.
Here, task interactions are limited within each MSG node. Again, we observe that while
there is a little reduction in WCRT without allocation from the 2-PE to the 4-PE case, most
of the allocation results in the 4-PE settings do not gain as much as they do in the 2-PE
settings. This is due to the fact that the PEs are not necessarily fully utilized in each node,

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

36 · V. Suhendra, A. Roychoudhury and T. Mitra

as processes have been mapped to PEs according to functionality without regard for load
balancing (recall the scheduling policy described in Section 3.1). For example, in the 2-PE
case where one PE takes up fly by wire tasks and the other executes autopilot tasks,
then only one of them is active in MSG nodes other than Initialization. As we have
observed earlier, for the same total scratchpad space, utilizing more PEs narrows down the
available space on each PE, and tasks may contrarily take longer time to complete.

The results in terms of post-allocation WCRT of the complete application still confirm
our hypothesis that allocation techniques with more sophisticated view of task interactions
obtain better results. In particular, our proposed scheme CR still gives the best WCRT
improvement. In a similar trend as in the single MSC case, the improvements are more
pronounced in configurations with less number of PEs and hence heavier task interferences.
All four schemes achieve large improvement in WCRT compared to the case without any
allocation, with the gain ranging from 25.9% for PK up to 41.3% for CR.

As charts are examined individually, the method does not experience noticable scalabil-
ity problem. The tables in Figure 18 shows the time required by the schemes to produce the
allocation for this application, which consists of 7 individual MSCs with varying degree
of complexity. When we compute the individual increase in algorithm runtime compared
to the corresponding runtime for the single MSC model presented in Figure 16 (that is,
comparing the time taken by the same scheme for the same scratchpad configuration), we
see only about 50% increase across all schemes and settings.

8. METHOD SCALABILITY

To evaluate the scalability of our proposed technique, we run it on a more complex appli-
cation adapted from DEBIE-I DPU Software [European Space Agency 2008], an in-situ
space debris monitoring instrument developed by Space Systems Finland Ltd. We model
the software as an MSG, shown in Figure 19. The main functions involved have been
broken down into several concurrent processes.

The DEBIE instrument utilizes up to four Sensor Units to detect particle impacts on the
spacecraft. As the system starts up, it performs initializations and runs tests of the main
functionalities. The system then enters the Standby state. When the command to start the
acquisition of impact data is received via the Telecommand handler, the system goes into
the Acquisition state and turns on at least one of the Sensor Units. In this mode, each
particle impact will trigger a series of measurement, and the data are classified and logged
for further transmission to the ground station. Data acquisition will continue until the
stopping command is received, after which the system returns to the Standby state. In either
mode, the Health Monitoring process periodically monitors the health of the instrument and
runs housekeeping checks. If any error is detected, the system will reboot.

The codesize and WCET of each task as well as its mapping to 4 PEs are listed in Fig-
ure 20. When running the experiments for 2 PEs, the tasks in PE1 and PE2 are assigned
to the first PE, and the rest of the tasks are assigned to the second PE. As before, the WCET
values have been computed assuming all accesses are directed to the main memory, but we
assume an off-chip latency of 10 cycles instead of 100 cycles (as in the previous setting).
This adjustment has the effect of scaling down the difference between the shortest-running
task and the longest-running task in this application, and reduces the skew in evaluation.
As apparent from Figure 20, major tasks in this application have runtimes that are sev-
eral orders of magnitude larger than the previous PapaBench benchmark, even with this
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

Scratchpad Allocation for Concurrent Embedded Software · 37

Boot

Boot

Main

Boot

power-up watchdog checksum soft/warm
Power-up
ResetPower-up

Reset

power up
boot

Record WD
Failure

watchdog
boot

Record CS
Failure

checksum
boot

Warm Reset

soft/warm
boot

Main Class-
ification

Record WD Failure Record CS Failure
Initializations

Tests M iM iTests

(2)

(0) (0) MainMain

Warm Reset
telecommand:

telecommand:
“Stop Acquisition”

Standby
error

Classtelecommand:
“Start Acquisition”

Acquisition
error (2)

(1) Main Class-
ification

Initializations Standby
Health

MonitoringMain

Health
Monitoring

Tele-
command

Tele-
command

Acqui-
sition

Hit Trigger
ISR

SU
Interface

[Env]
Sensor Unit

Tests
Main Health

Monitoring
Tele-

command
Acqui-
sition

Hit Trigger
ISR

SU
Interface

[Env]
Sensor UnitTelemetry

Acquisition Class-
ification

Health
Monitoring

Tele-
command

Acqui-
sition

Hit Trigger
ISR

SU
Interface

[Env]
Sensor UnitTelemetry

Fig. 19. Message Sequence Graph of the DEBIE application

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

38 · V. Suhendra, A. Roychoudhury and T. Mitra

PE
i

t
i

Codesize (bytes) c
i

(cycles)

1

mn-boot

mn-pw1

mn-pw2

mn-wd

mn-cs

mn-wr1

mn-wr2

mn-ini1
mn-ini2
mn-ini3
mn-ini4
mn-tst1

mn-tst2

mn-tst3

mn-tst4

mn-tst5

mn-tst6

3,200
9,456

3,472

3,400

3,400

3,408
5,952

320

376

376

376
240

240

240

240

240
240

4,325
14,589

6,784

6,745

6,745

10,757
6,594

260

271

271

271
180

180

180

180

180
180

1
tm-tst

tm-acq

56,960
3,768

839,607
5,560

2

ht-ini

ht-tst

ht-acq

616

10,776

8,016

507

105,224,302

1,008,155

2

su-tst

su-sby1

su-sby2

su-sby3

su-acq0

su-acq1

su-acq2

su-acq3

50,176

6,512

4,392

1,320
2,536

6,512

4,392

1,320

15,606,989

103,375,726

51,684,932

91,593
712

103,375,726

51,684,932

91,593

PE
i

t
i

Codesize (bytes) c
i

(cycles)

3

cl-pw

cl-wr

cl-acq

1,648

1,648

3,064

1,266

1,266

14,637

3

tc-ini

tc-tst

tc-sby

tc-acq

4,408

45,368
23,288

23,288

3,341

38,009,988
117,268

117,268

4

aq-ini

aq-tst

aq-acq1

aq-acq2

200

44,128
3,136

3,024

165

126,996,985
2,400

2,688

4

hm-ini

hm-tst

hm-sby1

hm-sby2

hm-acq1

hm-acq2

5,224

44,176

16,992
448

16,992

448

155,055,938

743,373,112

413,497,626
343

413,497,626

343

Fig. 20. Codesize and WCET of tasks in the DEBIE application

adjustment. The scratchpad latency remains at 1 cycle. Following the increase in average
codesize of the tasks, the total scratchpad size is now varied from 1 KB to 16 KB.

The DEBIE application model as shown in Figure 19 is a cyclic MSG, and we have
indicated the bounds used for our experiments in the brackets labeling the cyclic edges.
Each specified bound is an absolute count of the number of times the edge is taken in a
complete scenario according to the MSG.

The optimization results in terms of post-application WCRT for the MSG along with al-
gorithm runtimes for all four schemes are shown in Figure 21, alongside the WCRT without
allocation. Overall, the allocation schemes improve performance by 24–31% compared to
the case without allocation.

As we compare the four allocation schemes, we observe two interesting phenomena.
First, we see that GC may sometimes perform worse than IC (for example, in the 2-PE,
2 x 2KB scratchpad configuration). In these cases, the performance flop is caused by the
decision to allocate less space to a color which is used by only one task, which then be-
comes the critical task in the particular chart. Recall that the allocation of scratchpad space
and the content selection are simultaneously performed to optimize for the approximated
definition of total WCRT. As coloring imposes a ‘grouping’ among tasks, the evaluation of
the gain function may be biased towards a group with more tasks, moreover when it is dif-
ficult to predict which tasks may turn out critical after all task interactions are considered.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

Scratchpad Allocation for Concurrent Embedded Software · 39

PK IC GC CR

2 x 512B

2 x 1KB

2 x 2KB

2 x 4KB

2 x 8KB

32.7

33.6

38.6

41.3

35.9

59.2

33.8

37.1

39.8

38.4

59.8

36.8

35.0

41.0

57.3

49.7

40.7

37.3

36.3

109.0

PK IC GC CR

4 x 256B

4 x 512B

4 x 1KB

4 x 2KB

4 x 4 KB

48.3

87.8

53.2

88.8

46.8

67.8

117.2

34.5

90.0

44.0

68.3

79.0

80.1

81.2

85.1

70.8

80.4

80.0

36.8

41.3

PK IC GC CR

1KB

2KB

4KB

8KB

16KB

33.3

37.4

40.9

35.4

37.1

34.4

38.6

38.1

38.0

36.6

32.9

38.2

40.3

47.1

41.2

36.4

37.0

46.7

47.2

51.7

Algorithm runtime (seconds)

Algorithm runtime (seconds)

Algorithm runtime (seconds)

1-PE

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

1 KB 2 KB 4 KB 8 KB 16 KB

Scratchpad configuration

W
C

R
T

 (
x
 1

0
9
 c

y
c
le

s
)

None

PK

IC

GC

CR

2-PE

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

2 x 512B 2 x 1KB 2 x 2KB 2 x 4KB 2 x 8KB

Scratchpad configuration

W
C

R
T

 (
x
 1

0
9
 c

y
c
le

s
)

None

PK

IC

GC

CR

4-PE

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

4 x 256B 4 x 512B 4 x 1KB 4 x 2KB 4 x 4KB

Scratchpad configuration

W
C

R
T

 (
x
 1

0
9
 c

y
c
le

s
)

None

PK

IC

GC

CR

Fig. 21. WCRT of the DEBIE application, before and after allocation by Profile-based Knapsack (PK), Interfer-
ence Clustering (IC), Graph Coloring (GC), and Critical Path Interference Reduction (CR), along with algorithm
runtime

Secondly, there are also cases where CR results in worse performance than GC or IC
(for example, in the 1-PE, 4KB scratchpad configuration). Investigation reveals that this
deterioration happens over the iterative improvements for certain charts in the application
(recall that allocation is done independently on each chart). The decision to eliminate se-
lected interferences does yield better reduction in the first few iterations of the allocation
scheme. However, as it continues, it hits a point when the refined allocation/content selec-
tion does not improve the WCRT, and thus the iteration ends. Meanwhile, the GC or IC
method, while achieving longer WCRT at first, continues to refine the allocation decision
over the iteration and finally reaches a better overall WCRT. The choice to eliminate certain
interferences certainly caters to the application WCRT as best as it can predict based on
the critical path at that moment, yet the non-interference constraint that is carried forward
to the next iterations restricts the ‘movement’ of tasks in the application. In these cases,

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

40 · V. Suhendra, A. Roychoudhury and T. Mitra

the shifting of tasks after the iterative improvement ultimately gives a chance to GC and
IC to obtain more beneficial allocation even with less overlay.

As far as scalability is concerned, we see that all schemes can complete their compu-
tation below 2 minutes, even though the charts to be optimized are considerably more
complex than the previous PapaBench benchmark. The larger codesizes imply increased
complexity in the ILP formulation for scratchpad content selection, as the application has
more task code blocks to consider for optimal allocation. We observe that the sizes of
the ILP formulation for the DEBIE benchmark is roughly 25 times the sizes of the ILP
formulation for the PapaBench benchmark. The longer runtimes also give larger windows
for more interferences to occur. Despite these, the methods are able to provide results in
reasonable time. We can therefore conclude that there is no evident scalability problem in
all four schemes.

9. EXTENSION AND DISCUSSION

In this work, we have done a detailed study of scratchpad allocation schemes for concur-
rent embedded software running on single or multiple processing elements. The novelty
of our work stems from taking into account both concurrency and real-time constraints in
our scratchpad allocation. Our allocation schemes consider (1) communication or interac-
tion among the threads or processes of the application, as well as (2) interference among
the threads or processes due to preemptive scheduling in the processing elements. The
Message Sequence Chart (MSC) model is chosen as it shows the process interaction ex-
plicitly. As the interactions and interference among the processes can greatly affect the
worst-case response time (WCRT) of a concurrent application, our scratchpad allocation
methods achieve substantial reduction in WCRT as evidenced by our experiments on two
real-world embedded case studies. The achieved gain ranges from 20% by the simplest
scheme to 52% by the most sophisticated scheme.

We have also presented an extension of our scheme to the Message Sequence Graph
(MSG) model, where charts labeling the nodes in the graph are concatenated synchronously
to form a complete execution scenario. Alternatively, the charts can be concatenated asyn-
chronously. In this case, a task in an MSC may start as soon as all tasks of the same process
in the preceding MSC have completed. The result of an asynchronous concatenation forms
an MSC, while it is not necessarily so in the synchronous case.

Our scratchpad allocation method can be extended for the case of asynchronous con-
catenation as follows. By enumerating all paths through the MSG, we obtain all possible
execution scenarios of the application. If the MSG contains loops, then the bounds on the
edge counts should also be supplied to enable the enumeration of all possible paths. Each
path is formed by asynchronously concatenating the MSCs, thus resulting in an MSC.
Our method then performs WCRT analysis along with scratchpad allocation for each re-
sulting MSC as before. The path/MSC with the maximum WCRT value then determines
the WCRT of the application, and the allocation decision corresponding to that MSC is
the worst-case-optimizing scratchpad allocation for the application. The complexity of
the asynchronous concatenation method lies in the enumeration of the paths. The WCRT
analysis and scratchpad allocation operate on each result of concatenation as a stand-alone
MSC. As such, in our evaluation of this setting, the trend in results is similar to the single-
MSC case, that is, the application WCRT improves as more refined view of task interac-
tions is employed in the allocation schemes.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

Scratchpad Allocation for Concurrent Embedded Software · 41

As a concluding note, this paper has focused on inter-task dynamic allocation, where
a task loads its contents into the scratchpad once at the start of execution. Our proposed
scheme manages the scratchpad layout in such a way that the space assigned to the task
will not be subject to interference by others as long as it has not terminated. It is clearly
possible to further let the task manage this reserved space for better utilization, at the cost
of increased complexity. A natural extension is to allow intra-task dynamic scratchpad
allocation – on top of the presented inter-task overlay scheme – where a task can replace
the content it has in the scratchpad at its own discretion. The decision scheme for overlay
content and designated points of reload within the task can be accounted in the WCET
analysis of the task, thus preserving timing predictability.

ACKNOWLEDGMENTS

This work was partially supported by NUS research project “Platform-aware Timing Anal-
ysis of Behavioral System Models” (R252-000-321-112).

REFERENCES

ALUR, R. AND YANNAKAKIS, M. 1999. Model checking message sequence charts. In Proceedings of the 10th
International Conference on Concurrency Theory (CONCUR) (August 1999), J. C. BAETEN and S. MAUW,
Eds. Springer-Verlag, London, UK, 114–129.

ANGIOLINI, F., MENICHELLI, F., FERRERO, A., BENINI, L., AND OLIVIERI, M. 2004. A post-compiler
approach to scratchpad mapping of code. In Proceedings of the 2004 International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (CASES). ACM, New York, NY, USA, 259–267.

AUSTIN, T., LARSON, E., AND ERNST, D. 2002. SimpleScalar: An infrastructure for computer system model-
ing. IEEE Computer 35, 2, 59–67.

AVISSAR, O., BARUA, R., AND STEWART, D. 2002. An optimal memory allocation scheme for scratch-pad-
based embedded systems. ACM Transactions on Embedded Computing Systems (TECS) 1, 1, 6–26.

BANAKAR, R., STEINKE, S., LEE, B.-S., BALAKRISHNAN, M., AND MARWEDEL, P. 2002. Scratchpad mem-
ory: Design alternative for cache on-chip memory in embedded systems. In Proceedings of the 10th Interna-
tional Symposium on Hardware/Software Codesign (CODES). ACM, New York, NY, USA, 73–78.

CPLEX. 2002. The ILOG CPLEX Optimizer v7.5. Commercial software, http://www.ilog.com.
DEVERGE, J.-F. AND PUAUT, I. 2007. WCET-directed dynamic scratchpad memory allocation of data. In

Proceedings of the 19th Euromicro Conference on Real-Time Systems (ECRTS). IEEE Computer Society,
Washington, DC, USA, 179–190.

DOMINGUEZ, A., UDAYAKUMARAN, S., AND BARUA, R. 2005. Heap data allocation to scratch-pad memory
in embedded systems. Journal of Embedded Computing 1, 4, 521–540.

EGGER, B., KIM, C., JANG, C., NAM, Y., LEE, J., AND MIN, S. L. 2006. A dynamic code placement technique
for scratchpad memory using postpass optimization. In Proceedings of the 2006 International Conference on
Compilers, Architecture and Synthesis for Embedded Systems (CASES). ACM, New York, NY, USA, 223–233.

EGGER, B., LEE, J., AND SHIN, H. 2008. Dynamic scratchpad memory management for code in portable
systems with an MMU. ACM Transactions on Embedded Computing Systems (TECS) 7, 2, 1–38.

EUROPEAN SPACE AGENCY. 2008. DEBIE – First standard space debris monitoring instrument. Available at:
http://gate.etamax.de/edid/publicaccess/debie1.php.

FALK, H. AND VERMA, M. 2004. Combined data partitioning and loop nest splitting for energy consumption
minimization. In Proceedings of the 8th International Workshop on Software and Compilers for Embedded
Systems (SCOPES), H. SCHEPERS, Ed. Springer, Berlin/Heidelberg, 137–151.

HAREL, D. AND THIAGARAJAN, P. S. 2003. Message sequence charts. UML for Real: Design of Embedded
Real-time Systems, 77–105.

ISSENIN, I., BROCKMEYER, E., DURINCK, B., AND DUTT, N. 2006. Multiprocessor system-on-chip data
reuse analysis for exploring customized memory hierarchies. In Proceedings of the 43rd Design Automation
Conference (DAC). ACM, New York, NY, USA, 49–52.

ITU-T. 1996. Recommendation Z.120: Message Sequence Chart (MSC). ITU-T, Geneva.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

42 · V. Suhendra, A. Roychoudhury and T. Mitra

JANAPSATYA, A., IGNJATOVIC, A., AND PARAMESWARAN, S. 2006. A novel instruction scratchpad memory
optimization method based on concomitance metric. In Proceedings of the 2006 Conference on Asia South
Pacific Design Automation (ASP-DAC). IEEE Press, Piscataway, NJ, USA, 612–617.

KANDEMIR, M. 2007. Data locality enhancement for CMPs. In Proceedings of the 2007 International Confer-
ence on Computer-Aided Design (ICCAD). IEEE Press, Piscataway, NJ, USA, 155–159.

KANDEMIR, M., KADAYIF, I., AND SEZER, U. 2001. Exploiting scratch-pad memory using presburger formu-
las. In Proceedings of the 14th International Symposium on Systems Synthesis (ISSS). ACM, New York, NY,
USA, 7–12.

KANDEMIR, M., OZTURK, O., AND KARAKOY, M. 2004. Dynamic on-chip memory management for chip mul-
tiprocessors. In Proceedings of the 2004 International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems (CASES). ACM, New York, NY, USA, 14–23.

KANDEMIR, M., RAMANUJAM, J., AND CHOUDHARY, A. 2002. Exploiting shared scratch pad memory space
in embedded multiprocessor systems. In Proceedings of the 39th Design Automation Conference (DAC).
ACM, New York, NY, USA, 219–224.

KANDEMIR, M., RAMANUJAM, J., IRWIN, M. J., VIJAYKRISHNAN, N., KADAYIF, I., AND PARIKH, A. 2004.
A compiler based approach for dynamically managing scratch-pad memories in embedded systems. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD) 23, 2 (February), 243–
260.

LEE, C.-G., HAHN, J., SEO, Y.-M., MIN, S. L., HA, R., HONG, S., PARK, C. Y., LEE, M., AND KIM, C. S.
1998. Analysis of cache-related preemption delay in fixed-priority preemptive scheduling. IEEE Transactions
on Computers 47, 6, 700–713.

LI, X., LIANG, Y., MITRA, T., AND ROYCHOUDHURY, A. 2007. Chronos: A timing analyzer for embed-
ded software. Science of Computer Programming 69, 1-3, 56–67. http://www.comp.nus.edu.sg/

˜rpembed/chronos/.
MARWEDEL, P., WEHMEYER, L., VERMA, M., STEINKE, S., AND HELMIG, U. 2004. Fast, predictable and low

energy memory references through architecture-aware compilation. In Proceedings of the 2004 Conference
on Asia South Pacific Design Automation (ASP-DAC). IEEE Press, Piscataway, NJ, USA, 4–11.

MITRA, T. AND ROYCHOUDHURY, A. 2007. Worst case execution time and energy analysis. In The Compiler
Design Handbook: Optimizations and Machine Code Generation, 2nd Ed., Y. SRIKANT and P. SHANKAR,
Eds. CRC Press, Boca Raton, FL, USA, Chapter 1.

NEGI, H. S., MITRA, T., AND ROYCHOUDHURY, A. 2003. Accurate estimation of cache-related preemption
delay. In Proceedings of the 1st IEEE/ACM/IFIP International Conference on Hardware/Software Codesign
and System Synthesis (CODES+ISSS). ACM, New York, NY, USA, 201–206.

NEMER, F., CASS, H., SAINRAT, P., BAHSOUN, J.-P., AND MICHIEL, M. D. 2006. PapaBench: A free real-
time benchmark. In Proceedings of the 6th International Workshop on Worst-Case Execution Time Analysis
(WCET), F. MUELLER, Ed. Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI),
Schloss Dagstuhl, Germany. Available at: http://www.irit.fr/recherches/ARCHI/MARCH/
rubrique.php3?id_rubrique=97.

NGUYEN, N., DOMINGUEZ, A., AND BARUA, R. 2005. Memory allocation for embedded systems with a
compile-time-unknown scratch-pad size. In Proceedings of the 2005 International Conference on Compilers,
Architectures and Synthesis for Embedded Systems (CASES). ACM, New York, NY, USA, 115–125.

OZTURK, O., KANDEMIR, M., AND KOLCU, I. 2006. Shared scratch-pad memory space management. In
Proceedings of the 7th International Symposium on Quality Electronic Design (ISQED). IEEE Computer
Society, Washington, DC, USA, 576–584.

PANDA, P. R., DUTT, N. D., AND NICOLAU, A. 2000. On-chip vs. off-chip memory: the data partitioning prob-
lem in embedded processor-based systems. ACM Transactions on Design Automation of Electronic Systems
(TODAES) 5, 3, 682–704.

PUAUT, I. 2006. WCET-centric software-controlled instruction caches for hard real-time systems. In Proceed-
ings of the 18th Euromicro Conference on Real-Time Systems (ECRTS). IEEE Computer Society, Washington,
DC, USA, 217–226.

RAVINDRAN, R. A., NAGARKAR, P. D., DASIKA, G. S., MARSMAN, E. D., SENGER, R. M., MAHLKE, S. A.,
AND BROWN, R. B. 2005. Compiler managed dynamic instruction placement in a low-power code cache. In
Proceedings of the International Symposium on Code Generation and Optimization (CGO). IEEE Computer
Society, Washington, DC, USA, 179–190.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

Scratchpad Allocation for Concurrent Embedded Software · 43

STASCHULAT, J. AND ERNST, R. 2004. Multiple process execution in cache related preemption delay analysis.
In Proceedings of the 4th ACM International Conference on Embedded Software (EMSOFT). ACM, New
York, NY, USA, 278–286.

STEINKE, S., GRUNWALD, N., WEHMEYER, L., BANAKAR, R., BALAKRISHNAN, M., AND MARWEDEL, P.
2002. Reducing energy consumption by dynamic copying of instructions onto onchip memory. In Proceedings
of the 15th International Symposium on System Synthesis (ISSS). ACM, New York, NY, USA, 213–218.

STEINKE, S., WEHMEYER, L., LEE, B. S., AND MARWEDEL, P. 2002. Assigning program and data objects to
scratchpad for energy reduction. In Proceedings of the 2002 Design, Automation and Test in Europe (DATE).
IEEE Computer Society, Washington, DC, USA, 409.

SUHENDRA, V., MITRA, T., AND ROYCHOUDHURY, A. 2006. Efficient detection and exploitation of infeasible
paths for software timing analysis. In Proceedings of the 43rd Design Automation Conference (DAC). ACM,
New York, NY, USA, 358–363.

SUHENDRA, V., MITRA, T., ROYCHOUDHURY, A., AND CHEN, T. 2005. WCET centric data allocation to
scratchpad memory. In Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS).
IEEE Computer Society, Washington, DC, USA, 223–232.

SUHENDRA, V., RAGHAVAN, C., AND MITRA, T. 2006. Integrated scratchpad memory optimization and task
scheduling for MPSoC architectures. In Proceedings of the 2006 International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (CASES). ACM, New York, NY, USA, 37–42.

TOMIYAMA, H. AND DUTT, N. D. 2000. Program path analysis to bound cache-related preemption delay
in preemptive real-time systems. In Proceedings of the 8th International Workshop on Hardware/Software
Codesign (CODES). ACM, New York, NY, USA, 67–71.

UDAYAKUMARAN, S. AND BARUA, R. 2003. Compiler-decided dynamic memory allocation for scratch-pad
based embedded systems. In Proceedings of the 2003 International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems (CASES). ACM, New York, NY, USA, 276–286.

VERMA, M., PETZOLD, K., WEHMEYER, L., FALK, H., AND MARWEDEL, P. 2005. Scratchpad sharing
strategies for multiprocess embedded systems: A first approach. In Proceedings of the 3rd Workshop on
Embedded Systems for Real-Time Multimedia (ESTIMedia), M. MIRANDA and S. HA, Eds. IEEE Computer
Society, Washington, DC, USA, 115–120.

VERMA, M., WEHMEYER, L., AND MARWEDEL, P. 2004a. Cache-aware scratchpad allocation algorithm. In
Proceedings of the 2004 Design, Automation and Test in Europe (DATE). IEEE Computer Society, Washing-
ton, DC, USA, 21264.

VERMA, M., WEHMEYER, L., AND MARWEDEL, P. 2004b. Dynamic overlay of scratchpad memory for en-
ergy minimization. In Proceedings of the IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS). ACM, New York, NY, USA, 104–109.

WEHMEYER, L., HELMIG, U., AND MARWEDEL, P. 2004. Compiler-optimized usage of partitioned memories.
In Proceedings of the 3rd Workshop on Memory Performance Issues (WMPI). ACM, New York, NY, USA,
114–120.

WELSH, D. J. A. AND POWELL, M. B. 1967. An upper bound for the chromatic number of a graph and its
application to timetabling problems. The Computer Journal 10, 1, 85–87.

YEN, T.-Y. AND WOLF, W. 1998. Performance estimation for real-time distributed embedded systems. IEEE
Transactions on Parallel and Distributed Systems (TPDS) 9, 11, 1125–1136.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, February 2010.

