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Many reactive control systems consist of classes of active objects involving both intra-class interac-
tions (i.e. objects belonging to the same class interacting with each other) and inter-class interac-
tions. Such reactive control systems appear in domains such as telecommunication, transportation
and avionics. In this paper, we propose a modeling and simulation technique for interacting pro-
cess classes. Our modeling style uses standard notations to capture behavior. In particular, the

control flow of a process class is captured by a labeled transition system, unit interactions between
process objects are described as transactions and the structural relations are captured via class
diagrams. The key feature of our approach is that our execution semantics leads to an abstract
simulation technique which involves: (i) grouping together active objects into equivalence classes
according their potential futures, and (ii) keeping track of the number of objects in an equivalence
class rather than their identities. Our simulation strategy is both time and memory efficient and
we demonstrate this on well-studied non-trivial examples of reactive systems. We also present
a case study involving a weather-update controller from NASA to demonstrate the use of our
simulator for debugging realistic designs.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements / Speci-
fications; D.2.2 [Software Engineering]: Design Tools and Techniques—State Diagrams

General Terms: Design, Languages, Verification

Additional Key Words and Phrases: Abstract Execution, Active Objects, Message Sequence
Charts, Unified Modeling Language (UML)

1. INTRODUCTION

Classes of behaviorally similar processes arise naturally in application domains such
as telecommunications, transportation systems and avionics. We propose a mod-
eling language based on conventional notations to describe classes of interacting
processes. In these settings, during the initial design phase it will often be unnatu-
ral to fix the number of objects in each process class of the system. One possibility
might be to arbitrarily fix a small number np of objects for each process p. How-
ever it is difficult to ensure that the resulting restricted system exhibits all the
interesting behaviors of the intended system.

In our current framework, we allow for a class to have an unbounded number of
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objects. In other words, we allow np, the number of objects to be left unspecified
and define a semantics which is valid for any value of np. Thus, in the present
setting, we allow np to be specified, either as a constant, or an unbounded number
represented by ω. Moreover, when np is specified as a constant, it may still grow
unbounded due to the dynamic creation of active objects from a class. In section 6.2,
we discuss the support for dynamic object creation and deletion in our framework.

Thus, we develop a modeling framework, where one can efficiently simulate and
validate a system with an arbitrary number of active objects, such as a telephone
switch network with thousands of phones, an air traffic controller with hundreds of
clients etc. If the execution semantics of such systems maintains the local state of
each object, this will lead to an impractical blow-up in memory usage during simu-
lation. Instead, we propose an abstract execution semantics, where we dynamically
group together objects that will have similar future behaviors. While doing so, we
keep track of only the number of objects in each equivalence class and not their
identities. This results in considerable time and memory efficiency of our simula-
tor. However, this also leads to a loss of information due to presence of associations
between objects as explained below.

We use labeled transition systems to describe the behavior of process classes. The
unit of interaction between the objects can involve more than two participants.
Further, it can be an abstraction of a protocol that involves bidirectional flow
of signals and data between the objects taking part in the interaction. In our
operational semantics, this unit of interaction, called a transaction, is executed in
an atomic fashion. For illustrative purposes however, we often use the notation of
Message Sequence Charts (MSCs) to refine the transactions.

We also specify static and dynamic associations between objects. We use class
diagrams in a standard way to specify static associations. Structural constraints
imposed by the system are naturally captured via static associations. For instance,
a node may be able to take part in a “transmit” transaction only with nodes
with which it has a “neighbor-of” association. Dynamic associations on the other
hand are needed to guarantee that proper combinations of objects take part in
a transaction. For instance, when choosing a pair of phone objects to take part
in a “disconnect” transaction, we may have to choose a pair which is currently
in the “connected” relation. This relation has presumably arisen due to the fact
that they took part last in a “connect” transaction. The combination of these
features together with the imperative to develop an abstract execution semantics
is a challenging task.

To avoid the blow-up caused by tracking object identities, one must use an ab-
straction, which in our case is count-based and more importantly class-based. In
other words, an abstract state will specify the number of objects currently resid-
ing in an equivalence class of objects. Naturally, a necessary -but not sufficient-
condition for two objects to be behaviorally equivalent is that they must belong to
the same process class. In addition, we must also keep track of -in this abstract
setting- the current associations that exist between the objects, since they will play
a crucial role in determining whether or not a transaction can take place. This is
the key challenge in formulating an abstract execution semantics.

We tackle this problem here and present a simulator based on our solution. We
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also measure the time/memory efficiency of our simulation mechanism on well-
known non-trivial examples of reactive control systems.

The present paper is an expanded and improved version of the conference paper
[Goel et al. 2006]. The main additions are as follows.

—To achieve time and memory efficient simulation, our execution semantics is de-
signed to be an “over-approximation”; it allows behaviors which cannot appear
in a concrete execution. The inexactness arises from the way we manage asso-
ciations. We establish the exactness of our abstract execution semantics in the
absence of associations. We also prove that our abstract execution semantics is
an over-approximation when static/dynamic associations are considered. These
results appear in Section 8.1.

—We elaborate on the usage of the model checker Murphi to automatically de-
tect spurious execution runs produced by our abstract execution semantics (see
Section 8.2, 8.3 and Appendix B).

—Apart from investigating the space/time efficiency of our simulator for abstract
semantics, we have used it for-

a) Test generation, where we generate a set of witness traces from a system
model, which satisfy a test-purpose given as a sequence of transactions. The ex-
perimental results for various examples we have modeled appear in Section 9.4.

b) Debugging realistic controller examples. In particular, we have located cer-
tain design bugs in the CTAS weather-update controller from NASA. This
is a part of a larger system that has been deployed for controlling incoming
air-traffic in large airports. These new results appear in Section 9.6.

We develop our modeling language in two steps. First we present the core model-
ing language without associations and develop its concrete execution semantics. We
then formulate our abstract execution semantics. As a second step, we introduce
(static and dynamic) object associations and correspondingly extend the seman-
tics. Further, we establish results relating the concrete semantics to the abstract
semantics. Finally, we present experimental results demonstrating capabilities of
the simulator for our model.

2. RELATED WORK

The use of visual and executable notations for specifying the requirements of com-
plex reactive systems is an important research area. Use of such models during
early phases of system development forms an easy and more sound basis of com-
munication between users and system designers. Moreover, such specifications can
be used for requirements simulation and validation. This can provide the user with
an early feedback and help detect various design errors in early stages of system
design.

Broadly, such modeling notations fall in two categories: a) Intra-object or state-
based notations, or b) Inter-object or scenario-based notations. The state-based
notations specify the control flow of various classes of objects using finite state
machine representations such as Statecharts [Harel and Gery 1997]. While, the
scenario-based notations, such as, Live Sequence Charts [Damm and Harel 2001]
and Triggered Message Sequence Charts [Sengupta and Cleaveland 2002], are used
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to specify various interaction scenarios between system processes. There has also
been work on using a combination of state-based and scenario-based notations,
where the control flow for various processes is specified using labeled transition sys-
tems and the inter-object interactions are specified using Message Sequence Charts
(MSCs) [Roychoudhury and Thiagarajan 2003]. All these approaches deal with
concrete objects and their interactions.

Executable State-based models. There are a number of design methodologies based
on the notions of class and state diagrams as exemplified in the UML-based tools
Rhapsody and RoseRT [I-Logix ; Rational Rose ]. These tools emphasize the use
of state-based notations for system modeling and also have limited code generation
facilities. However, no abstract execution semantics is provided and the interac-
tions between the objects -not classes- have to be specified at a fairly low level of
granularity, such as a single message send/receive. The new standard UML 2.0 ad-
vocates the use of “structured classes” where interaction relationships between the
sub-classes can be captured via entities such as ports/interfaces; Our present frame-
work does not cater for structured classes but it can easily accommodate notions
such as ports/interfaces.

Executable Scenario-based Models. In our present work, we use labeled transi-
tions systems to specify the control flow of each process class, while the notion of a
transaction is used for describing an interaction involving multiple processes. More-
over, as we illustrate using various examples, we can use Message Sequence Charts
for describing transactions, hence leading to an executable scenario based model.
In existing literature, Live Sequence Charts (LSCs)[Damm and Harel 2001; Harel
and Marelly 2003] offer an MSC-based inter-object modeling and simulation frame-
work for reactive systems. LSCs describe system behavior by prescribing existential
and universal temporal properties that the overall system interactions should obey,
rather than giving a per-process state machine. As a consequence, LSCs completely
suppress the control flow information pertaining to individual process classes. More
importantly, we note that in the LSC framework, though the objects of a process
class can be specified symbolically, the execution mechanism (the play-engine as
described in [Harel and Marelly 2003]) does not support abstract execution. The
symbolic instances must be instantiated to concrete objects during simulation. The
approach taken in [Wang et al. 2004] alleviates this problem by maintaining con-
straints on process identities but falls short of a fully abstract execution. In the
present setting, we do not maintain the process identifiers at all. Also, the work
on Triggered Message Sequence Charts [Sengupta and Cleaveland 2002] allows for
a non-centralized execution semantics, in comparison to the play-engine of LSCs.
However, the TMSC language supports neither symbolic specifications nor abstract
execution of process classes.

Parameterized System Verification. Our method of grouping together active ob-
jects is related to abstraction schemes developed for grouping processes in param-
eterized systems (e.g., see [Delzanno 2000; Pnueli et al. 2002]). In such systems,
there are usually unboundedly many processes whose behavior can be captured by
a single finite state machine or an extended finite state machine. It is then cus-
tomary to maintain the count of number of processes in each state of the finite
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state machine; the names/identities of the individual processes are not maintained.
For instance, in [Pnueli et al. 2002] a concrete system consisting of n > 1 identi-
cal processes is abstracted into a finite state system in which for each local state,
the process count can be either 0, 1 or 2. The count of 0(1) indicates currently
zero(single) process in the corresponding state, while count of 2 indicates 2 or more
processes in a state. However, in our setting inter-object associations across classes
have to be maintained — an issue that does not arise in parameterized system
verification. This indeed is the key technical challenge in our work: How does one
capture the information, say, “an object i is linked via some association asc to
an object j” when we do not maintain object identities in our abstract execution
semantics?

Model Checking and Abstraction. There are several works which employ abstrac-
tion techniques for the purpose of model checking [Clarke et al. 1994; Henzinger
et al. 2002; Clarke et al. 2003]. The main aim is to reduce the state space of a given
system-model in order to make model checking tractable. In these approaches, var-
ious data types are replaced with smaller-sized types, thus obtaining an abstract
model of the system in terms of behaviors, which is generally an over-approximation
of the original system. Such an abstraction preserves the correctness of properties,
in the sense that, a property proven correct for the abstract model, also holds for
the original model.

In our present work, we only abstract away the process identities and dynamically
group together various processes having identical state during run-time. Thus, cur-
rently we do not abstract away any other data types; but it can be easily integrated
in to our framework.

Other Works. The notion of “roles” played by processes in protocols have ap-
peared in other contexts (e.g. [Selic 1998]). Object orientation based on the actor-
paradigm has been studied thoroughly in [Lee and Neuendorffer 2004]. We see
this work approach as an orthogonal one where the computational rather than
the control flow features are encapsulated using classes and other object-oriented
programming notions such as inheritance.

Finally, our model can be easily cast in the setting of Colored Petri nets [Jensen
1995] with our operational semantics translating into an appropriate token game.
We feel however our formulation is simpler and better structured in terms of a
network of communicating transition systems.

3. THE MODELING LANGUAGE

Our model consists of a network of interacting process classes where processes
with similar functionalities are grouped together into a single class. We will often
say “objects” instead of processes and speak of “active” objects when we wish to
emphasize their behavioral aspects.

In what follows, we fix a set of process classes P with p, q ranging over P . For
each process class p, we let the set of objects in class p to be a finite non-empty set
but do not require its cardinality to be specified; this is a fundamental feature of our
modeling language. We now describe the notion of a transaction for specifying
a unit of execution involving one or more processes in the system. A transaction
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γ = (R, I, Ch) consists of three components-

(1) A finite set of roles R. Each role r in R is a pair (p, ρ) where p ∈ P is the name
of a class from which an object playing this role is to be drawn. On the other
hand, ρ indicates the functionality assigned to the role r (“Sender”, “Receiver”
etc.).

(2) I is a guard consisting of conjunction of guards, one for each role r in R. The
guard Ir associated with role r = (p, ρ) specifies the conditions that must be
satisfied by an object of class p in order for it to be eligible to play the role r.

(3) Ch represents the behavior corresponding to roles R in transaction γ.

The set of all transactions is denoted as Γ.
We require that if (p1, ρ1) and (p2, ρ2) are two distinct members of R , then

ρ1 6= ρ2. We however do not demand p1 6= p2. Thus two different roles in a
transaction may be played by two objects drawn from the same class. Further,
for a transaction γ = (R, I, Ch) ∈ Γ, the way Ch is defined is not central to
our modeling notation and its semantics; any suitable means for specifying the
behavior can be used– for example, Message Sequence Charts (MSCs) specifying the
communication/computation actions to be executed by objects assigned to various
roles in a transaction, or, simply post-conditions specifying change in the variable
valuations of objects playing various roles in a transaction can be used.

For the purpose of exposition we will use Message Sequence Charts (MSCs) for
describing the behavior (Ch) of a transaction. For a transaction γ = (R, I, Ch) ∈ Γ,
we view Ch as a labeled poset of the form Ch = ({Er}r∈R,≤, λ)1 where Er is the
set of events that the role r takes part in during the execution of γ. The labeling
function λ, with a suitable range of labels, describes the messages exchanged by
the instances as well as the internal computational steps during the execution of
Ch. Finally, ≤ is the partial ordering relation over the occurrences of the events
in {Er}r∈R. Within the MSCs, the communication via sending and receiving of
messages can be synchronous or asynchronous. This issue is orthogonal to our
model. In the operational semantics of our model, we assume for convenience that
the execution of each transaction is atomic. As a consequence, the concatenation
of MSCs in our setting, say, to depict the execution of a sequence of transactions,
will be synchronous [Alur et al. 1996].

We show an example transaction in Figure 1(a). It occurs in our IPC model
of Rail-car example presented in [Damm and Harel 2001; Harel and Gery 1997].
For the moment, let us ignore the regular expression at the top portion of this
chart. Note that as a notational shorthand we often write the role (p, ρ) as pρ.
This convention has been followed in the transactions of Figure 1. In Figure 1(a),
the roles are “CarReqSendr”, “CarHandlerReqRecvr” and “CruiserStartRecvr”. This
naming convention is intended to indicate that the functionality “ReqSendr” is
played by an object drawn from the class “Car”, the functionality “ReqRecvr” is
played by an object belonging to the class “CarHandler”, and so on.

For each class, a labeled transition system will capture the common sequences
of actions that the objects belonging to the class can go through. An action label

1We often use the expression {Xr}r∈R as an abbreviation for {Xr |r ∈ R}.
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Fig. 1. Transactions departReqA & noMoreDest; A is an internal computation event in
noMoreDest

will name a transaction and the role to be played by an object of the class in the
transaction. We use Actp to denote the set of all actions that process class p can go
through. Accordingly, a member of Actp will be a triple of the form (γ, p, ρ) with
γ = (R, I, Ch) ∈ Γ, r = (p, ρ) ∈ R. The action label (γ, p, ρ) will be abbreviated as
γr. When p is clear from the context it will be further abbreviated as γρ.

As mentioned earlier, in a transaction γ = (R, I, Ch), the guard Ir associated
with the role r = (p, ρ) will specify the conditions that must be satisfied by an
object Or belonging to the class p in order for it to be eligible to play the role
r. These conditions will consist of two components: The first one is a history
property of the execution sequence of actions that Or has so far gone through. It
will be captured using regular expressions over the alphabet Actp, the set of all the
action labels corresponding to process class p. We denote it using Λ. The second
component is a propositional formula (denoted as Ψ) built from boolean assertions
regarding the values of the variables owned by Or . Thus, guard of a role r is of the
form Ir = (Λ, Ψ). For instance, consider the transaction “departReqA” shown in
Figure 1(a)). A Car object wishing to play the role (Car, ReqSendr) must have last
played the role (Car, DestRecvr) in the transaction setDest or in the transaction
selectDest . This is captured by the guard

Act⋆
car .(setDestDestRecvr |selectDestDestRecvr)

shown at the top of the lifeline corresponding to role (Car, ReqSendr) in Figure 1(a).
As this example shows, we use regular expressions to specify the history component
of a guard. Also, note that in the transaction “departReqA” , the guard does not
restrict the local variable valuation of participating objects in any way. On the
other hand, in the transaction of Figure 1(b), the variable “dest” owned by the car-
object intending to play the role (Car,StopSendr) must satisfy “dest = 0”; there is
no execution history based guard for this role. Finally, if for some role no guard
is mentioned (e.g. CruiserStartRecvr in Fig.1(a)) then the corresponding guard is
assumed to be vacuously true.

The transition system describing the common control flow of the objects belong-
ing to the class p will be denoted as TSp. It is a structure of the form

TSp = 〈Sp, Actp,→p, initp, Vp, vinitp
〉.

We first explain the nature of the components Actp, Vp and vinitp
. As described
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Fig. 2. Rail-car system
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Fig. 3. Terminal

earlier, Actp is the set of action labels, with each label specifying a transaction and
a role in that transaction, that the p-objects can play in the transactions in Γ. The
effects of the computational steps performed by an object will be described with
the help of the set of variables Vp associated with p. Each object O in p of course
will have its own copy of the variables in Vp. For convenience, we shall assume
that for each variable u ∈ Vp, all the objects of class p assign the same initial
value to u. This initial assignment is captured by the function vinitp

. We assume
appropriate value domains for the variables in Vp exist but will not spell them
out here. A computational step can be viewed as a degenerate type of transaction
having just one role. Hence we will not distinguish between computational steps and
transactions in what follows. Returning to TSp = 〈Sp, Actp,→p, initp, Vp, vinitp

〉,
Sp is the finite set of local states, initp ∈ Sp is the initial state and →p⊆ Sp×Actp×
Sp is the transition relation. In summary, our model can be defined as follows.

Definition 1. The IPC Model Given a set P of process-classes, a set Γ of
transactions and a set of action labels Actp for p ∈ P involving transactions from
Γ, a system of Interacting Process Classes (IPC) is a collection of P-indexed labeled
transition systems {TSp}p∈P where

TSp = 〈Sp, Actp,→p, initp, Vp, vinitp
〉

is a finite state transition system as explained above.

4. MODELING A RAIL-CAR SYSTEM: THE FIRST-CUT

We discuss here the preliminary modeling of a Rail-car example [Damm and Harel
2001; Harel and Gery 1997] using the Interacting Process Classes (IPC) formalism.
This example was initially developed in [Harel and Gery 1997] and used subse-
quently in [Damm and Harel 2001] to illustrate the modeling capabilities of Live
Sequence Charts. It is a non-trivial distributed control system with many process
classes such as cars, cruiser, terminal etc. The schematic structure is shown in
Figure 2. There are six terminals located along two parallel cyclic tracks, one of
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Process Class # Concrete Objects

Control Center 1
Car 48

CarHandler 48
Cruiser 48

Proximity Sensor 48
Terminal 6

Platform Manager 6
Entrance 12

Exit 12
Exit Manager 6
cDestPanel 48
tDestPanel 6

Table I. Process Classes and Object counts in Rail-car Example with 48 cars

them running clockwise and the other anti-clockwise. Each adjacent pair of these
terminals is connected by the two parallel tracks. There is fixed number of rail cars
for transporting passengers between the terminals. There is a control center which
receives, processes and communicates data between various terminals and railcars.

As shown in Figure 3, each terminal has four parallel platforms. At any time at
most one car can be parked at a platform. Further, there are two entrance and two
exit segments which connect the two main rail tracks to the terminal’s platform
tracks. Also, each terminal has a destination board for the use of passengers. It
contains a push button and an indicator for each destination terminal. Each rail-car
also has a similar destination-panel for the use by passengers. Further, a rail-car is
equipped with an engine and cruise-controller to maintain the speed. The cruiser
can be off, engaged or disengaged.

The list of process classes and the number of concrete objects in each process
class for a rail-car system with 48 cars is shown in Table I. Note that tDestPanel
represents the destination panel in the terminal and cDestPanel represents the
destination panel in the rail-car. Thus, with 48 cars and 6 terminals, we have 48
cDestPanel and only 6 tDestPanel (refer Table I). We have only one ControlCenter
object which is related to all the Terminal and Car objects. Also each Car is
associated to a ProximitySensor, which notifies the car when it arrives within 100
and 80 yards of some terminal, and also associated to a Cruiser which maintains
the car speed.

When a car is at a terminal or arrives in one, a unique CarHandler gets asso-
ciated with the Car to handle communication between the car and the terminal.
Once the car leaves the terminal a CarHandler is no longer associated with it. We
have two Entrance and two Exit objects associated with each terminal. They rep-
resent the entrance and exit segments connecting the rail tracks to the terminal’s
platforms. PlatformManager and ExitsManager respectively allocate platforms
and exits to CarHandler, which in turn notifies the Car of these events.

We show a fragment of the IPC model of the Rail-car example in Figure 4. Con-
trolling the movement of the cars between the terminals involves a complex descrip-
tion. The classes shown in Figure 4 are Car, Cruiser, Terminal and CarHandler.
The Cruiser stands for the cruise control of a car. This will be captured as asso-
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Fig. 4. Fragment of Labeled Transition Systems for process classes of the
Rail-car example — (a)Car (b)Cruiser (c)Terminal (d)Carhandler

ciations via Class Diagrams as discussed in Section 7. The CarHandler manages
interaction between an approaching/departing car and the corresponding terminal.

In Figure 4, for each process class, we have shown a fragment of the transition
system corresponding to that process class. As explained in the last section, the
action labels of the transition system for a process class specify a transaction and
a role in that transaction (which we model using a Message Sequence Chart). We
have not shown all the transactions corresponding to the (transaction, role) pairs
appearing as action labels in Figure 4; there are too many of them. However, two
of these transactions, namely, departReqA and noMoreDest appear in Figure 1.

In this preliminary model, we do not discuss associations; the class associations
for the rail-car example appear in Figure 5. The modeling and simulation of pro-
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cess classes with associations will be dealt with in Section 7 after developing the
execution semantics of the core model.

5. CONCRETE EXECUTION SEMANTICS

We now formulate a concrete execution semantics of the IPC model. Given a
set of transactions Γ and an IPC model {TSp}p∈P as defined in Section 3 (Defi-
nition 1), for any class p we define Hp to be the least set of minimal DFAs (Deter-
ministic Finite State Automata) [Hopcroft and Ullman 1979] given by: A is in Hp

iff there exists a transaction γ = (R, I, Ch) and a role r ∈ R of the form (p, ρ) such
that the guard Ir of r is (Λ, Ψ) and A is the minimal DFA recognizing the language
defined by the regular expression Λ, the history part of the guard, i.e.

Hp = {dfa(Λ)|γ = (R, I, Ch) ∈ Γ ∧ r = (p, ρ) ∈ R ∧ Ir = (Λ, Ψ)}. (1)

Expression dfa(Λ) in Eq. (1) above represents the minimal DFA corresponding to
regular expression Λ.

To capture the state of an object we now define the notion of a behavioral partition

Definition 2. Behavioral Partition Let the following be an IPC description.

{TSp = 〈Sp, Actp,→p, initp, Vp, vinitp
〉}p∈P

Let Hp = {A1, . . . ,Ak} be the set of minimal DFAs defined for class p (Eq.(1)).
Then a behavioral partition behp of class p is a tuple (s, q1, . . . , qk, v), where

s ∈ Sp, q1 ∈ Q1, . . . , qk ∈ Qk, v ∈ V al(Vp).

Qi is the set of states of automaton Ai and V al(Vp) is the set of all possible valu-
ations of variables Vp. We use BEHp to denote the set of all behavioral partitions
of class p.

A concrete configuration is used to capture the “local states” of all objects of all
process classes and is defined below.

Definition 3. Concrete Configuration Given an IPC specification
S = {TSp}p∈P such that Op represents the set of objects of process class p, a
concrete configuration of S is defined as follows.

cfgc = {pmapp : Op → BEHp}p∈P ,

where BEHp is the set of all behavioral partitions of class p (Definition 2). The
set of all concrete configurations of S is denoted as Cc

S .

The system moves from one concrete configuration to another by executing a
transaction. A transaction γ ∈ Γ can be executed at a concrete configuration
cfgc = {pmapp}p∈P iff for each role r = (p, ρ) of γ where r has the guard (Λ, Ψ),
there exists a distinct object o ∈ Op such that (s, q1, . . . , qk, v) = pmapp(o) and
following conditions hold-

(1) s
(γr)
−→ s′ is a transition in TSp

(2) For all 1 ≤ i ≤ k, if Ai is the DFA corresponding to the regular expression of
Λ, then qi is an accepting state of Ai.

(3) v ∈ V al(Vp) satisfies the propositional guard Ψ.
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This implies that there exists a distinct object for each role r of γ, such that these
objects can together execute the transaction γ. We let objects(γ) represent the set
of objects chosen to execute transaction γ. Computing the new configuration cfg′c
as a result of executing transaction γ in configuration cfgc involves computing the
new state or destination behavioral partition for each object o ∈ objects(γ). For an
object o playing the role r in transaction γ, such that its current state is given by the
behavioral partition pmapp(o) = (s, q1, . . . , qk, v), we use ‘nstateγr

(o)’ to represent
the corresponding destination behavioral partition (s′, q′1, . . . , q

′
k, v′), where:

- s
(γr)
−→ s′ is a transition in TSp.

- for all 1 ≤ i ≤ k, qi
(γr)
−→ q′i is a transition in DFA Ai.

- v′ ∈ V al(Vp) is the effect of executing γr on v.

Thus, an object o in the state given by behavioral partition pmapp(o) moves
to a new state given by behavioral partition nstateγr

(o) by performing role r in
transaction γ. The new concrete configuration cfg′c as result of executing transaction
γ in configuration cfgc is obtained as follows-

cfg′c = {pmap′p|p ∈ P}, where

∀p ∈ P . pmap′p(o) =

{

pmapp(o), o ∈ Op\objects(γ)
nstateγr

(o), o ∈ Op ∩ objects(γ)

Thus, for all the objects that do not participate in transaction γ, i.e. they are
in the set (∪p∈POp)\objects(γ), their state in the new configuration cfg′c remains
unchanged from cfgc. While for all the objects which execute γ, their states in cfg′c
are computed as described above.

Example. For illustration, consider the example shown in Figure 4. Suppose c is
a concrete configuration at which

—Two Car objects Oc1 and Oc2 are residing in state stopped and a third object, Oc3,
is in state s2 of TSCar. Further suppose they have the values 0, 1 and 2 respec-
tively for the variable dest and have no regular expression based history guards.
Then we have– pmapCar(Oc1) = 〈stopped, 0〉, pmapCar(Oc2) = 〈stopped, 1〉 and
pmapCar(Oc3) = 〈s2, 2〉.

—Three Cruiser objects, O1 . . . O3 are residing in state started of TSCruiser such
that the histories of O1 and O2 satisfy the regular expression

(ActCruiser )
⋆.alertStopDisEgRecvr

while the history of O3 satisfies the regular expression

(ActCruiser )
⋆.departAckAGetStarted .

Further, let ‘(ActCruiser )
⋆.alertStopDisEgRecvr ’ be the only regular expression guard

appearing in the Cruiser’s specification. It can be easily verified that the minimal
DFA, say A1, recognizing the language of this regular expression has only two
states- let these be q1 and q2, where q1 is the initial state and q2 is the accept-
ing state. Assuming no Cruiser variables, at current configuration c we have–
pmapCruiser(O1) = pmapCruiser(O2) = 〈started, q2〉 and pmapCruiser(O3) =
〈started, q1〉.
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—Six Terminal objects, Ot1 . . . Ot6 are residing in state s1 of TSTerminal. Assuming
no history based guards and local variables, we have– pmapTerminal(Ot1) = . . . =
pmapTerminal(Ot6) = 〈s1〉.

Suppose we want to execute transaction noMoreDest shown in Figure 1(b) at
configuration c. As for the role (Car,StopSendr), though Oc1 and Oc2 are in the
appropriate control state, only Oc1 can be chosen since it (and not Oc2) satisfies
the guard dest = 0. For the cruisers, we observe that all the three Cruiser objects
O1, O2, O3 are in the “appropriate” control state at configuration c for the purpose
of executing noMoreDest. However, only O1 and O2 have histories which satisfy
the history part of the guard associated with the role (Cruiser,StopRecvr), i.e. they
are in the accepting state q2 of DFA A1 representing this history guard. Hence
either one of them (but not O3) can be chosen to play this role. For the role
(Terminal,Inc), both the history and propositional guards are vacuous and hence
we can choose any one of the 6 objects residing in the control state s1.

Assume that Oc1, O1 and Ot1 are chosen to execute transaction noMoreDest in
configuration c. In the resulting configuration c′, all objects other than Oc1, O1 and
Ot1 will have their control states, histories and variable valuations unchanged from
c, thus remaining in the same behavioral partitions as c. The objects Oc1, O1, Ot1
will move to control states idle, stopped, s1 in their respective transition systems.
Value of variable dest for Oc1 remains unchanged, while the state of DFA A1 for O1

is updated to q1. Thus at the resulting configuration c′ we have– pmap′Car(Oc1) =
〈idle, 0〉, pmap′Cruiser(O1) = 〈stopped, q1〉 and pmap′Terminal(Ot1) = 〈s1〉.

6. ABSTRACT EXECUTION SEMANTICS

We observe that various objects of a process class have same local state (i.e. they
map to the same behavioral partition) at a given concrete configuration during
execution, and are thus behaviorally indistinguishable. Further, for classes with
unboundedly many instances at run-time, the concrete execution semantics will
produce an infinite-state system. Thus, we formulate an abstract execution
semantics of the IPC model, where we do not maintain states and identities of
individual objects. Instead, during execution, the objects of a class are grouped
into behavioral partitions.

Let {TSp = 〈Sp, Actp,→p, initp, Vp, vinitp
〉}p∈P be an IPC specification S. Now

suppose c is a concrete configuration and an object O belonging to process class p
has an execution history σ ∈ Act⋆p at c. Then at c, the state of object O is given by
the behavioral partition (s, q1, . . . , qk, v) in case- O resides in s ∈ Sp at c, qj is the
state reached in the DFA Aj ∈ Hp when it runs over σ for each j in {1, . . . , k}, and
the valuation of O’s local variables is given by v. Thus, two p-objects O1 and O2 of
process class p map to the same behavioral partition (at a concrete configuration)
if and only if the following conditions hold.

—O1 and O2 are currently in the same state of Sp,

—Their current histories lead to the same state for all the DFAs in Hp, and

—They have the same valuation of local variables.

This implies that the computation trees of two objects in the same behavioral par-
tition at a concrete configuration are isomorphic. We make use of this property for
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dynamically grouping together objects of a process class into behavioral partitions.
This is a strong type of behavioral equivalence to demand. There are many weaker
possibilities but we will not explore them here.

6.1 Abstract Execution of Core Model

To explain how abstract execution takes place, we first define the notion of an
“abstract configuration”.

Definition 4. Abstract Configuration Let {TSp}p∈P be an IPC specifica-
tion S such that each process class p contains Np objects. An abstract configuration
of the IPC is defined as follows.

cfga = {countp}p∈P

- countp : BEHp → N ∪ {ω} is a mapping s.t.

Σb∈BEHp
countp(b) = Np

- BEHp is the set of all behavioral partitions of class p,

- ω represents an unbounded number.

So countp(b) is the number of objects in partition b. The set of all abstract config-
urations of an IPC S is denoted as Ca

S .

We note that Np can be a given positive integer constant or it can be ω (standing
for an unbounded number of objects). If Np is ω, our operational semantics remains
unchanged provided we assume the usual rules of addition/subtraction (i.e. ω+1 =
ω, ω − 1 = ω and so on). For a process class p, Np can be ω if, either a) the initial
object count for p is explicitly specified as ω, in order to model and validate a
system with any number of p objects, or b) objects of class p can be dynamically
created and we specify a threshold object count, exceeding which the object count
of p will become ω. We discuss the exact mechanism for object creation/deletion
for a process class p later in Section 6.2. For convenience of explanation, we assume
that Np is a given constant in the rest of the paper.

Our abstract execution efficiently keeps track of the objects in various process
classes by maintaining the current abstract configuration; only the behavioral par-
titions with non-zero counts are kept track of. The system moves from one abstract
configuration to another by executing a transaction. How can our simulator check
whether a specific transaction γ is enabled at an abstract configuration cfg? Since
we do not keep track of object identities, we define the notion of witness partition
for a role r, from which an object can be chosen to play the role r in transaction γ.

Definition 5. Witness partition Let γ ∈ Γ be a transaction and cfga ∈ Ca
S be

an abstract configuration. For a role r = (p, ρ) of γ where r has the guard (Λ, Ψ), we
say that a behavioral partition beh = (s, q1, . . . , qk, v) is a witness partition, denoted
as witness(r, γ, cfga), for r at cfga if

(1 ) s
(γr)
−→ s′ is a transition in TSp

(2 ) For all 1 ≤ i ≤ k, if Ai is the DFA corresponding to the regular expression of
Λ, then qi is an accepting state of Ai.

(3 ) v ∈ V al(Vp) satisfies the propositional guard Ψ.
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(4 ) countp(b) 6= 0, that is there is at least one object in this partition in the con-
figuration cfga.

An “enabled transaction” at an abstract configuration can now be defined as
follows.

Definition 6. Enabled Transaction Let γ be a transaction and cfga ∈ Ca
S be

an abstract configuration. We say that γ is enabled at cfga iff for each role r = (p, ρ)
of γ , there exists a witness partition witness(r, γ, cfga) such that

- If beh ∈ BEHp is assigned as witness partition of n roles in γ, then countp(b) ≥
n. This ensures that one object does not play multiple roles in a transaction.

The “destination partition” — the partition to which an object moves from its
“witness partition” after executing a transaction — can be defined as follows. We
denote the destination partition of beh w.r.t. to transaction γ and role r as beh′ =
dest(beh, γ, r). Thus, an object in behavioral partition beh moves to partition
dest(beh, γ, r) by performing role r = (p, ρ) in transaction γ.

Definition 7. Destination Partition Let γ be an enabled transaction at an
abstract configuration cfga ∈ Ca

S and beh = (s, q1, . . . , qk, v) be the witness partition
for the role r = (p, ρ) of γ. Then we define dest(beh, γ, r) — the destination
partition of beh w.r.t. transaction γ and role r — as a behavioral partition beh′ =
(s′, q′1, . . . , q

′
k, v′), where

- s
(γr)
−→ s′ is a transition in TSp.

- for all 1 ≤ i ≤ k, qi
(γr)
−→ q′i is a transition in DFA Ai.

- v′ ∈ V al(Vp) is the effect of executing γr on v.

We now describe the effect of executing an enabled transaction γ at a given
abstract configuration cfga. Computing the new abstract configuration cfg′a as
a result of executing transaction γ in configuration cfga involves computing the
destination behavioral partition beh′ = dest(beh, γ, r) corresponding to witness
partition beh = witness(r, γ, cfga) for each role r of γ, and then computing the new
count of objects for each behavioral partition. In other words, we have

∀b ∈ BEHp . count′p(b) = countp(b)
+ |{x | b = dest(w, γ, x) ∧ w = witness(x, γ, cfg)}|
- |{x | b = witness(x, γ, cfg)}|

where countp(b) and count′p(b) are the number of objects of class p appearing in
the behavioral partition b in the abstract configurations cfga and cfg′a respectively.
Recall that BEHp is the set of all behavioral partitions of p. Hence, given the
abstract source configuration cfga, the above formula determines the abstract des-
tination configuration cfg′a.

Example. Consider TSCruiser shown in Figure 4(b). Suppose we simulate the
specification with 24 Cruiser objects (assume that other process-classes are also
appropriately populated with objects) using abstract execution semantics. In the
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transition system TSCruiser, only the transition noMoreDestStopRecvr is guarded us-
ing a non-trivial regular expression Act⋆

Cruiser .alertStopRcvDisEng ; the corresponding
DFA, say A1, will have just two states as can be easily verified. Initially all the
24 objects will be in the stopped state of TSCruiser with null history and this will
correspond to the initial state, say q1, of A1. All these objects are in the same
behavioral partition 〈stopped , q1 〉, where we have suppressed the valuation compo-
nent since there are no local variables associated with this class in this example.
Suppose now a cruiser object, say O1, executes (in cooperation with objects in other
classes) the trace:

“departReqAStartRecvr , departAckAGetStarted , engageEngRecvr , alertStopDisEgRecvr”

O1 will now reside in the control state started. Also, since alertStopDisEgRecvr is
executed at the end, O1’s history will correspond to the non-initial state (call it
q2) of the DFA A1. Subsequently suppose another cruiser object, say O2, executes
the trace: “departReqAStartRecvr , departAckAGetStarted”. Then O2 will also end up
in the control state started. However, unlike O1, the execution history of O2 will
correspond to q1, the initial state of A1. After the above executions we have three
non-empty behavioral partitions for cruiser objects — (i) 〈stopped , q1 〉 which has
22 objects which have remained idle, (ii) 〈started , q2 〉 which has object O1 and
(iii) 〈started , q1 〉 which has object O2. Objects in different behavioral partitions
have different sets of actions enabled, thereby leading to different possible future
evolutions. Now let object O1 execute the action noMoreDestStopRecvr . This will
result in O1 migrating from behavioral partition (ii) to (i) above. Thus, O1 will be
now indistinguishable from the 22 objects which have remained idle throughout.
For all of these 23 objects, the action departReqAStartRecvr is now enabled. This is
the manner in which objects migrate between different behavioral partitions during
abstract execution.

Maximum Number of Partitions. We shall assume in what follows that the value
domains of all the variables are finite sets. Thus, the number of behavioral partitions
of a process class is finite. In fact, the number of partitions of a process class p is
bounded by

|Sp| × |V al(Vp)| ×
∏

A∈Hp

|A|

where |Sp| is the number of states of TSp, |V al(Vp)| is the number of all possible
valuations of variables Vp, |A| is the number of states of automaton A ∈ Hp. Recall
that Hp is the set of minimal DFAs accepting the regular expression guards of
the various roles of different transactions played by class p (Eq.(1)). Note that
the maximum number of behavioral partitions does not depend on the number of
objects in a class. In practice, many regular expression guards of transactions are
vacuous leading to a small number of partitions. For example, the Cruiser class
of the Rail-Car Example shown in Figure 4(b) can have at most 14 behavioral
partitions since — (i) TSCruiser has seven (7) states (not all of them are shown in
Figure 4(b)), (ii) the Cruiser class has no local variables that is VCruiser = ∅ and
(iii) only one of the regular expression guards involving a Cruiser object results in
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a DFA with two states2; all other regular expression guards involving the Cruiser
class are accepted by a single state DFA. Thus, the number of behavioral partitions
of the Cruiser class is at most 7 ∗ 2 = 14 while the number of objects can be very
large. In fact, in Section 9 we report experiments that the number of behavioral
partitions encountered in actual abstract execution runs is often lower than the
upper bound on number of partitions (48 Cruiser objects are divided into less than
6 partitions, see Table II).

6.2 Dynamic Process Creation/Deletion

We also support dynamic process creation and deletion by means of special trans-
actions whose names are prefixed with start p or stop p for all p ∈ P . We let
start pX/stop pX denote any such special transaction name. A transaction
start pX (stop pX) contains a single role r which does not contain any events,
though role r may have a guard Ir = (Λ, Ψ) as any other transaction. Transaction
start pX starts off a new process instance of class p, while transaction stop pX
terminates the process instance executing it. A start pX transaction can appear
in the transition system of a process class q, where q may be different from p (i.e.
q 6= p), thus allowing an object of one process class to create an object of another
process class. However, transaction stop pX can only appear in TSp, the transition
system for process class p. We now discuss the effect of executing these transactions
for abstract execution semantics.

Let {TSp = 〈Sp, Actp,→p, initp, Vp, vinitp
〉}p∈P be an IPC specification and

transaction start pX appearing in TSq (q may be different from p) be enabled
at an abstract configuration cfga with b = (s, q1, . . . , qk, v) as a witness parti-
tion. Let Np be the current object count of process class p, and q0

i be the ini-
tial state of DFA Ai ∈ Hp, where i ∈ {1, . . . , k} and k = |Hp|. Then executing
start pX at cfga with b as the witness partition will result in the new configura-
tion cfg′a such that: i) a process instance of q executing start pX will move from
witness partition b to destination partition b′ = dest(b, start pX, r) resulting in
count′q(b) = countq(b) − 1, count′q(b

′) = countq(b
′) + 1, and ii) a new p-process

instance will start off in the initial partition given by bi = (initp, q
0
1 , . . . , q

0
k, vinitp

)
such that, count′p(bi) = countp(bi) + 1, if the number of objects in process class p
(i.e. Np) is less than a given threshold value (say tp) which is set by the user, and
count′p(bi) = ω otherwise. We also update N ′

p = Np + 1, when Np is less than the
threshold value tp; otherwise N ′

p = ω.
Similarly, if stop pX is enabled at an abstract configuration cfga with

b = (s, q1, . . . , qk, v) as a witness partition, then executing stop pX at cfga with b as
the witness partition will result in the new configuration cfg′a such that count′p(b) =
countp(b)− 1, when countp(b) is a constant number, and count′p(b) = ω otherwise.
Thus, we just decrement the count of witness partition b by 1 (when it is a constant),
without incrementing the count of its corresponding destination partition. This in-
dicates termination of the process instance executing this transaction. Similarly,
we also update N ′

p = Np − 1, when Np is constant; otherwise N ′
p = ω.

2This is the guard for the role CruiserStopRecvr in transaction noMoreDest, see Figure 1(b).
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Fig. 5. Class diagram for Rail-car example.

7. ASSOCIATIONS

We now turn to extending our language with static and dynamic associations. This
will help us to model different kinds of relationships (either structural or established
through communications) that can exist between objects. The ability to track such
relationships substantially increases the modeling power.

7.1 Modeling Static and Dynamic Associations

Our notion of static and dynamic associations is similar to the classification pre-
sented in [Stevens 2002].

Static Associations. A static association expresses a structural relationship be-
tween the classes. In a class-diagram, a static association is annotated with fixed
multiplicities at both its ends. Static associations, as the name suggests, remain
fixed and do not change at runtime. We can refer to static associations in transac-
tion guards to impose the restriction that objects chosen for a given pair of agents
should be statically related. The full class diagram for the Rail-car example with
24 cars appears in Figure 5. For example, the following pairs of classes: (Platfor-
mManager, Terminal), (Terminal, ControlCenter), (Car, ControlCenter) and (Car,
Cruiser) are statically associated in Figure 5. In particular, the association be-
tween Car class and the Cruiser class denotes the itsCruiser relation of a car with
its cruiser. Note that we do not allow dynamic object-creation/deletion of a stati-
cally associated class– such as Car, Terminal etc. in the Rail-car example.
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Dynamic Associations. A dynamic association expresses behavioral relationship
between classes, which in our case would imply that the objects of two dynamically
associated classes can become related to each other through exchange of messages
(by executing transactions together) and then at some stage leave that relation. In
the class-diagram, a dynamic association is annotated with varying multiplicities
at both its ends.

7.2 Concrete execution of IPC models with associations

In our concrete execution semantics, for a k-ary association asc relating objects
of process classes p1, . . . , pk, the k-tuple(s) of objects 〈O1, . . . , Ok〉 following the
association are stored in relation asc during execution . We now describe the
steps for handling an arbitrary association asc of arity k involving process classes
p1, . . . , pk during concrete execution.

—Initialization: For a k-ary static association asc, the k-tuples of objects follow-
ing the association are inserted in relation asc. For example, if k = 2 (binary
association), and asc is a one-to-one binary association between two process
classes p1, p2 each containing n objects O1, . . . , On(O′

1, . . . , O
′
n), we populate asc

with n object pairs, 〈O1, O
′
1〉, . . . , 〈On, O′

n〉.
If asc is a dynamic association, for convenience we assume that initially asc
does not contain any k-tuple of objects. However, its content can change during
execution.

—Check: Let γ be a transaction and r1, . . . , rk be the roles in transaction γ with
the guard (r1, . . . , rk) ∈ asc. If O1, . . . , Ok are the objects chosen to play the
roles r1, . . . , rk respectively, we also require that the the k-tuple 〈O1, . . . , Ok〉 be
present in the asc relation.

—Insert: Let γ be a transaction and r1, . . . , rk be the roles in transaction γ with
the post-condition insert (r1, . . . , rk) into asc. Let O1, . . . , Ok be the objects
chose to play the roles r1, . . . , rk respectively. Upon executing γ, we insert the k-
tuple 〈O1, . . . , Ok〉 in the relation asc. Note that the insert operation is possible
only if asc is a dynamic association.

—Delete: Let γ be a transaction and r1, . . . , rk be the roles in transaction γ with
the post-condition delete (r1, . . . , rk) from asc. If O1, . . . , Ok are the objects
chosen to play the roles r1, . . . , rk respectively, we require that the the k-tuple
〈O1, . . . , Ok〉 be present in the relation asc. Furthermore, we delete the above
k-tuple from asc upon executing γ. Note that the delete operation is possible
only if asc is a dynamic association.

Example. We now illustrate the use of dynamic associations using the Rail-car
example. During execution, various rail-cars enter and leave the terminals along
their paths. When a car is approaching a terminal, it sends arrival request to
that terminal by executing contactTerminal transaction and while leaving the ter-
minal, its departure is acknowledged by the terminal by executing departAckA or
departAckB transaction. Hence, the guard of departAck(A/B) requires that the
participating Car and Terminal objects should have together executed contactTer-
minal in the past. Since this condition involves a relationship between the local
histories of multiple objects, we cannot capture it via regular expressions over the
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inserts (O1,O2)  into itsTerminalcontactTerminal
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Fig. 6. Dynamic Relation itsTerminal

individual local histories. Hence we make use of the dynamic relation itsTerminal
between the Car and Terminal classes as part of our specification.

Instead of giving details of the contactTerminal and departAck(A/B) transac-
tions, we list here relevant roles of these transactions.

—contactTerminal has roles (Car,ReqSendr) and (Terminal,ReqRecvr),

—departAckA and departAckB have roles (Car,AckRecvr) and (Terminal,AckSendr).
Note that transactions departAck(A/B) also involve other roles which we choose
to ignore here for the purpose of our discussion.

In the concrete execution, if car object Oc and terminal object Ot play the roles
(Car,ReqSendr) and (Terminal,ReqRecvr) in contactTerminal, then the effect of
contactTerminal is to insert the pair 〈Oc, Ot〉 into the itsTerminal relation (refer to
Figure 6). The departAck(A/B) transaction’s guard now includes the check that the
object corresponding to the role (Car,AckRecvr) and object corresponding to role
(Terminal,AckSendr) be related by the dynamic relation itsTerminal; so if objects
Oc and Ot are selected to play the (Car,AckRecvr) and (Terminal,AckSendr) roles in
departAck(A/B), the check will succeed. Furthermore, the effect of departAck(A/B)
transaction is to remove the tuple 〈Oc, Ot〉 from itsTerminal relation.

Thus, for a dynamic relation, the specifications will include the effect of each
transaction on the relation in terms of insertion/deletion of tuples of objects into
the relation. Furthermore, the guard of a transaction can contain a membership
constraint (‘check’) on one or more of the specified static/dynamic relations. For
execution of concrete objects, it is clear how our extended model should be executed.
The question is how can we keep track of associations in the abstract execution
semantics.

7.3 Abstract execution of IPC models with associations

For associations, the key question here is how we maintain relationships between
objects if we do not keep track of the object identities. We do so by maintaining
associations between behavioral partitions. To illustrate the idea, consider a binary
relation D which is supposed to capture some dynamic association between objects
of the process class p. In our abstract execution, each element of D will be a
pair (b, b′) where b and b′ are behavioral partitions of class p; furthermore for all
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pairs (b, b′) ∈ D we also maintain a count indicating the number of concrete object
pairs in behavioral partitions b, b′ which are related via D. To understand what
(b, b′) ∈ D means, consider the concrete execution of the process class p. If after
an execution σ (a sequence of transactions), two concrete objects O, O′ of p get
D-related (〈O, O′〉 ∈ D) then the abstract execution along the same sequence of
transactions σ must produce 〈b, b′〉 ∈ D where b (b′) is the behavioral partition
in which O (O′) resides after executing σ. The same idea can be used to manage
relations of larger arities. Note that associations are maintained between behavioral
partitions, but associations are not used to define behavioral partitions. Hence there
is no blow-up in the number of behavioral partitions due to associations.

Formally, the set of abstract configurations (Definition 4) in our operational
model remains unchanged. Recall from Definition 4 that an abstract configuration is
defined as cfg = {countp}p∈P where countp(b) is the number of objects in partition
b ∈ BEHp; BEHp is the set of all behavioral partitions of class p. In the presence
of a k-ary association asc relating objects of process classes p1, . . . , pk we maintain
asc in our abstract execution as

BEHp1
× BEHp2

× . . . × BEHpk
→ N ∪ {ω}

The association is maintained by maintaining counts for k-tuples 〈beh1, . . . , behk〉
where beh1 ∈ BEHp1

, . . . , behk ∈ BEHpk
. Following are the steps for handling

associations in our abstract execution. We describe the steps for an arbitrary
association asc of arity k involving process classes p1, p2, . . . , pk.

—Initialization: For each process class p we have an initial variable valuation
vinit

p and an initial state initp in the high-level LTS of class p. Consequently,

we can compute an initial behavioral partition behinit
p for each process class p.

Now, if asc is a static association, we initialize the counts of k-tuples of behavioral
partitions in the following way. For every k-tuple other than 〈behinit

p1
, . . . , behinit

pk
〉

we set the asc count to be zero. For the k-tuple 〈behinit
p1

, . . . , behinit
pk

〉, the count
is non-zero and is obtained from the class diagram annotations. For example, if
k = 2 (binary association), and asc is a one-to-one binary association between
two process classes p1, p2 each containing n objects, we initialize the count for
〈behinit

p1
, behinit

p2
〉 to be n.

Now suppose asc is a dynamic association. For convenience we assume that
initially asc does not contain any k-tuple of objects (which are in their initial
state and have null histories). Consequently, the counts for every k-tuple of
behavioral partitions is set to zero.

—Check: Let γ be a transaction and r1, . . . , rk be the roles in transaction γ with
the guard (r1, . . . , rk) ∈ asc. If beh1, . . . , behk are the chosen witness partitions
for r1, . . . , rk respectively, we also require that the asc count maintained for the
k-tuple 〈beh1, . . . , behk〉 be greater than zero. Furthermore, let beh′

1, . . . , beh
′
k be

the destination partitions of beh1, . . . , behk respectively, upon executing γ. We
then decrement the asc count for the k-tuple 〈beh1, . . . , behk〉 by 1; the asc count
for the k-tuple 〈beh′

1, . . . , beh
′
k〉 is incremented by 1.

—Insert: Let γ be a transaction and r1, . . . , rk be the roles in transaction γ with the
post-condition insert (r1, . . . , rk) into asc. Let beh′

1, . . . , beh
′
k be the destination

partitions of the roles r1, . . . , rk respectively, upon executing γ. We increment
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the asc count for the k-tuple 〈beh′
1, . . . , beh

′
k〉 by 1. Note that the insert operation

is possible only if asc is a dynamic association.

—Delete: Let γ be a transaction and r1, . . . , rk be the roles in transaction γ
with the post-condition delete (r1, . . . , rk) from asc. If beh1, . . . , behk are the
chosen witness partitions for r1, . . . , rk respectively, we require that the asc count
maintained for the k-tuple 〈beh1, . . . , behk〉 be greater than zero. Furthermore,
we decrement the asc count for the k-tuple 〈beh1, . . . , behk〉 by 1, upon executing
γ. Note that the delete operation is possible only if asc is a dynamic association.

—Default: Let γ be a transaction and r1, . . . , rj (1 ≤ j ≤ k) be the roles in
transaction γ without any association guard or post-condition. Let beh1, . . . , behj

be the witness partitions chosen for r1, . . . , rj respectively, and beh′
1, . . . , beh

′
j

be the corresponding destination partitions upon executing γ. Then if the asc
count maintained for the k-tuple τ = 〈beh1, . . . , behj, behj+1, . . . , behk〉 is greater
than zero, the asc count for the k-tuple τ ′ = 〈beh′

1, . . . , beh
′
j, behj+1, . . . , behk〉 is

incremented by 1.

The default case is required to update the asc count for a k-tuple such that–

(1) its asc-count is greater than 0, and

(2) a (non-empty) subset of its behavioral partitions participate as witness parti-
tions in execution of a transaction γ, without any asc guard or post-condition
over the roles they are chosen for.

Note that, the j objects chosen above from behavioral partitions beh1, . . . , behj to
participate in transaction γ may or may-not follow association asc with objects in
behj+1, . . . , behk. Hence, we over-approximate by not decrementing the asc-count
for k-tuple τ , but incrementing it for the destination k-tuple τ ′ by 1.

It might seem that our maintenance of association information will lead to undue
blow-up. This is because we maintain counts corresponding to k-tuples of behav-
ioral partitions. However, typically we only have binary associations in the class
diagrams of the IPC specifications. So, we only need to maintain counts for pairs
of behavioral partitions. Furthermore, very few of these pairs have non-zero counts
during execution, and we only need to maintain pairs which have non-zero counts.

Example. As discussed earlier, the dynamic relation itsTerminal is maintained
between the objects of class Car and Terminal (as shown in Figure 6). This
relationship is established between a Car and a Terminal object while execut-
ing contactTerminal and exists till the related pair executes either departAckA
or departAckB. For illustration, suppose one object each from class Car and class
Terminal plays the role (Car,ReqSendr) and (Terminal,ReqRecvr) respectively in
the transaction contactTerminal. Let bCar (bTerm) be the behavioral partitions in
to which the objects of Car (Terminal) go by executing contactTerminalReqSendr

(contactTerminalReqRecvr). So in our abstract execution, corresponding to pairs of
behavioral partitions of the Car and Terminal class, we maintain a count indicat-
ing the number of pairs in the itsTerminal relation. Thus, for the pair 〈bCar, bTerm〉
we increment its count by 1.

Now when we execute departAck(A/B) transaction, we will pick a pair from this
relation as witness behavioral partitions for the roles (Car,AckRecvr) and (Termi-
nal,AckSendr). We have not maintained information about which Terminal object
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in bTerm is related to which Car of bCar. In our abstract execution, when we pick
bCar and bTerm as witness partitions of two roles in transaction departAck(A/B), we
are assuming that the corresponding objects of bCar and bTerm which are associated
via itsTerminal are being picked. Furthermore, after executing departAck(A/B)
transaction, we decrement the count for pair 〈bCar, bTerm〉 by 1.

8. EXACTNESS OF ABSTRACT SEMANTICS

In this section we first show that our abstract execution semantics is an over-
approximation in the sense that every concrete execution can be realized under the
abstract execution semantics but the converse, in general, is not true. We then
describe a procedure for checking whether an abstract execution run is a spurious
one.

8.1 Over-Approximation Results

In what follows, we only consider finite sequence of transactions. After all, traces
produced by (concrete or abstract) execution are always finite.

Theorem 1. Suppose σ is a finite sequence of transactions that can be exhibited
in the concrete execution of an IPC model S. Then σ can also be exhibited in the
abstract execution of S.

The proof of Theorem 1 proceeds by induction on N , the length of the execution
sequence σ. The detailed proof appears in Appendix A.

We next note that the converse of the above theorem holds in the absence of
associations.

Theorem 2. Suppose S is an IPC model which has no association relations
appearing in the guards of any of the transactions. Then every finite sequence of
transactions under the abstract execution semantics is also an execution sequence
under the concrete execution semantics.

Proof. The proof follows by a straightforward induction on the length of ab-
stract execution run. The induction hypothesis is:

Let σ be a finite sequence of transactions allowed in the abstract execution seman-
tics of an IPC model S. Let beh ∈ BEHp be a behavioral partition of class p with
count = n after the abstract execution of σ. Then σ is also a concrete execution.
Furthermore, after the concrete execution of σ there exists exactly n concrete ob-
jects of class p which reside in partition beh based on their control state, execution
history and variable valuation.

Let σ = σprev ◦ γ and the induction hypothesis holds for σprev. In the induction
step, we need to show that the above holds after the execution of σ = σprev ◦ γ
as well. Let r1, . . . , rm be the roles of transaction γ and let beh1, . . . , behm be
their witness behavioral partitions in the abstract execution of γ. By the induc-
tion hypothesis, we have concrete objects o1, . . . , om, whose states are given by the
behavioral partitions beh1, . . . , behm, to play the roles r1, . . . , rm in the concrete
execution of γ. Furthermore, if beh′

1, . . . , beh
′
m are the destination partitions of

beh1, . . . , behm after the abstract execution of γ, we are guaranteed that o1, . . . , om

will move to beh′
1, . . . , beh

′
m after the concrete execution of γ. This follows from-
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Fig. 7. An example to show spurious runs in our abstract execution semantics

a) the definition of a destination partition, Def. 7, and b) the method for com-
puting the behavioral partition representing the new state of an object in concrete
execution semantics (Section 5). Now, in abstract execution, the object count of
each of the witness (destination) partition behi(beh

′
i) will be decremented (incre-

mented) by 1 after executing γ. Similarly, after the concrete execution of γ, the
number of objects whose state is given by the behavioral partition behi(beh

′
i), will

be decremented (incremented) by 1. Thus, the induction step is established.

8.2 Spurious abstract executions

We now show that the converse of theorem 1 does not hold, i.e. a finite sequence
of transactions exhibited by the abstract execution of an IPC model S may not be
exhibited by the concrete execution of S. Consider a fictitious system consisting
of 3 process classes: Cruiser, Car and BrakeControl, such that each Cruiser and
BrakeControl object is associated with a Car object via static associations Asc1

and Asc2. In other words, Asc1 (Asc2) captures the relationship between a car and
itsCruiser (itsBrakeController). Fragments of the transition systems for these com-
ponents are shown in Figure 7, along with the checks on the static associations by
various transactions. Assume that there are no variables declared in these process
classes and that all the action labels shown in the example have trivial guards, that
is they do not impose any restriction on the execution history of the object to play
that role (of course the object should be in the appropriate control state). Suppose
now, that we have an initial abstract configuration

c = {(〈sA1〉, 2), (〈sB1〉, 2), (〈sC1〉, 2)}.

ACM Journal Name, Vol. V, No. N, Month 20YY.



Interacting Process Classes · 25

Process classes Cruiser, Car and BrakeControl contain 2 objects each, in their initial
states sA1, sB1 and sC1 respectively.

Furthermore, for the association Asc1 (representing itsCruiser relationship), the
count associated with the pair 〈sA1, sB1〉 is 2, and for the association Asc2 (repre-
senting itsBrakeController relationship), the count associated with the pair 〈sB1, sC1〉
is 2.

It is easy to see that the abstract execution semantics allows the sequence of
transactions t1, t2, t3. After a car object and its cruiser execute t1, abstract con-
figuration reached is

c1 = {(〈sA1〉, 1), (〈sA2〉, 1), (〈sB1〉, 1), (〈sB2〉, 1), (〈sC1〉, 2)}.

Also, for the association Asc1, the count associated with the pair 〈sA1, sB1〉 now
becomes 1 (it is decremented by 1), and incremented by 1 for the pair 〈sA2, sB2〉.
There is no change in the association content for Asc2.

Since the car object executing t1 (call it Car1 for convenience of explanation) is
now in state sB2 it cannot execute transaction t2 since it is not enabled from sB2.
Suppose now t2 is executed by another car object (call it Car2 for convenience of
explanation). This produces the configuration

c2 = {(〈sA1〉, 1), (〈sA2〉, 1), (〈sB2〉, 2), (〈sC1〉, 1), (〈sC2〉, 1)}.

For association Asc2, the count associated with the pair 〈sB1, sC1〉 is decremented
by 1, and incremented by 1 for the pair 〈sB2, sC2〉. There is no change in the
association content for Asc1.

In our abstract execution, the two car objects are not distinguishable at this
point since they are both in state sB2. One of these cars (actually Car1) has its
cruiser in state sA2 from where transaction t3 is enabled; another car (actually
Car2) has its brake controller in state sC2 from where t3 is enabled. But since the
distinction between Car1 and Car2 is not made in abstract execution, transaction
t3 (involving all the classes — Car, Cruiser, BrakeControl) will be executed in the
abstract execution. In particular note that in the association information for Asc1

(Asc2), the count associated with 〈sA2, sB2〉 (〈sB2, sC2〉) is greater than zero. This
will allow t3 to be executed “as per” our abstract execution semantics.

In the concrete execution, however t3 cannot be executed after transactions t1, t2
are executed. After executing transactions t1, t2 there cannot be any concrete car
object which has its cruiser (related by association Asc1) as well its brake con-
troller (related by association Asc2) in the appropriate control states for executing
transaction t3. Thus, if trace σ is simulated in the concrete execution, it will get
deadlocked after executing the transactions t1, t2. Though in this example we have
only considered static associations, similar incompleteness of our abstract execution
can be shown with dynamic associations.

8.3 Detecting spurious abstract executions

Detecting spurious abstract executions is similar in objective to detecting spurious
counter-example traces in abstraction-refinement based software model checking
(e.g. see [Henzinger et al. 2002]). In our setting, this can be done effectively.

Theorem 3. There is an effective procedure which accepts as input an IPC
S = {TSp}p∈P and a finite sequence σ which is an execution sequence under the
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abstract execution semantics, and determines whether or not σ is a spurious exe-
cution sequence; in other words, σ is not an execution sequence under the concrete
semantics.

Proof. Let σ = γ1 . . . γn be a finite sequence of transactions from an IPC S
which is allowed under our abstract execution semantics.

For each process class p, let nump,σ denote an upper-bound on the number of
p-objects required for exhibiting the execution sequence σ. We define nump,σ to be
the total number of roles (p, ρ) appearing in transaction sequence σ s.t. for each
such role (p, ρ) in a transaction occurrence γi in σ, γi

ρ is an outgoing transition
from the initial state of TSp (the transition system for process class p). This is
because, the number of unique p-objects that can participate in transactions in σ,
must have initially executed a role (p, ρ) in a transaction γi (occurring in σ) s.t.
γi

ρ is an outgoing transition from the initial state of TSp. Note that, a transaction
γ can occur more than once in an execution trace σ. For computing nump,σ, we
treat each transaction occurrence as distinct.

We now define xp,σ = min(Np, nump,σ) if Np, the number of objects in p is
a given constant. Otherwise the number of objects of p is not fixed and we set
xp,σ = nump,σ. It is worth noting that xp,σ serves as a cutoff on the number of
objects of class p only for the purpose of exhibiting the behavior σ and not all the
behaviors of the system. For the execution trace σ, we can say that σ is a concrete
run in the given system iff it is a concrete run in the finite state system where each
process class p has xp,σ objects. To show this we consider the following two cases:

(1) Np ≤ nump,σ for each process class p ∈ P . In this case xp,σ = Np for all p and
hence the given system and the finite state system are equivalent.

(2) Np > nump,σ for some process classes p ∈ P . Then xp,σ = nump,σ for the
process classes having Np > nump,σ, and xp,σ = Np for the remaining process
classes. From our earlier argument that nump,σ gives an upper bound on the
number of p-objects for each class p to exhibit the trace σ, if this finite state
system exhibits σ, it must be exhibited by the concrete execution of the given
system with Np objects for each class p. The reverse direction follows from the
reasoning that no more than nump,σ objects of class p can participate in one or
more transactions of trace σ, even if the system has more than nump,σ objects
of class p.

Using an illustrative example, we now show how a spurious run is detected for
a given IPC system S and a trace σ, by first deriving a finite state system from
S corresponding to σ. Again, we consider the example discussed in Section 8.2
(Figure 7), consisting of three process classes- Cruiser, Car and BrakeControl. Also,
consider the trace σ = t1.t2.t3 which can be exhibited in the given system following
our abstract execution semantics, as was demonstrated in Section 8.2.

Suppose we now want to check whether or not σ is spurious. From Figure 7 we
obtain the roles for transactions in σ– for t1, roles are (Cruiser,P1) and (Car,P2),
for t2, roles are (Car,Q1) and (BrakeControl,Q2), and roles in transaction t3 are
(Cruiser,R1), (Car,R2) and (BrakeControl,R3). We now compute nump,σ for each
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process class in the system. First, we consider the Cruiser class. It participates
in transactions t1 and t3 in σ, playing the roles (Cruiser,P1) and (Cruiser,R1) in
these transactions respectively. Only one of these roles, (Cruiser,P1) in transaction
t1, is played from the initial state sA1 of the transition system describing Cruiser
(Figure 7). Thus, numCruiser,σ = 1. Similarly we can determine that numCar,σ = 2
and numBrakeControl,σ = 1. As NCruiser = NCar = NBrakeController = 2 in the
given system S, we get xCruiser,σ = 1, xCar,σ = 2 and xBrakeControl,σ = 1. Now to
detect whether or not σ is spurious in the given system S, we only need to check
if σ is a valid execution trace of the finite state system obtained above. Note that
we have already shown σ to be spurious for the given system S in Section 8.2.
Following the similar reasoning, σ can easily be shown spurious for this finite state
system as well, leading to a deadlock after the execution of transactions t1, t2.

We have implemented the above procedure using the Murphi model checker [Mur-
phi 2005]. This model checker has in-built support for symmetry reduction [Ip and
Dill 1996] which can be exploited in the IPC setting. We present the details of the
implementation in Appendix B.

9. EXPERIMENTS

We have implemented our abstract execution method by building a simulator in
OCaml [OCaml 2005], a general purpose programming language supporting func-
tional, imperative and object-oriented programming styles.

9.1 Modeled Examples

For our initial experiments, we modeled a simple telephone switch drawn from [Holz-
mann 2004]. It consists of a network of switch objects with the network topology
showing the connection between different geographical localities. Switch objects in
a locality are connected to phones in that locality as well as to other switches as
dictated by the network topology. We modeled basic features such as local/remote
calling as well as advanced features like call-waiting. Next we modeled the rail-
car system whose behavioral requirements have been specified using Statecharts in
[Harel and Gery 1997] and using Live Sequence Charts in [Damm and Harel 2001].
As mentioned in Section 4, Rail-Car system is a substantial sized system with a
number of process classes: car, terminal, cruiser (for maintaining speed of a rail-
car), car-handler (a temporary interface between a car and a terminal while a car
is in that terminal), etc.

We have also modeled the requirement specification of two other systems - one
drawn from the rail transportation domain and another taken from air traffic con-
trol (see http://scesm04.upb.de/case-studies.html for more details of these
examples). We now briefly describe these two systems. The automated rail-shuttle
system [RailShuttle System] consists of various shuttles which bid for orders to
transport passengers between various stations on a railway-interconnection net-
work. The successful bidder needs to complete the order in a given time, for which
it gets the payment as specified in the bid; the shuttle needs to pay the toll for
the part of network it travels. If an order is delayed or not started in time, a pre-
specified penalty is incurred by the responsible shuttle. A part of network may be
disabled some times due to repair work, causing shuttles to take longer routes. A
shuttle may need maintenance after traveling a specified distance, for which it has
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Example Process Class # Concrete Objects # of partitions
in Test Case
I II III

Telephone Phone 60 9 9 7
Switch Switch 30 9 9 9

Car 48 12 10 11
CarHandler 48 3 8 8
Terminal 6 6 6 6
Platform 6 1 3 3
Mngr.
Exits 6 1 2 2
Mngr.

Rail-Car Entrance 12 2 1 2
Example Exit 12 1 2 2

Cruiser 48 1 3 5
Proximity 48 1 1 2

Sensor
cDestPanel 48 1 1 1
tDestPanel 6 1 1 1

Automated Shuttle 60 6 5 6
Shuttle Agent

Weather Clients 20 3 3 3
Update

Table II. Maximum Number of Behavioral partitions observed during abstract simu-
lation

to pay. Also, in case a shuttle is bankrupt (due to payment of fines), it is retired.
The weather update controller [CTAS] is a an important component of the Center
TRACON Automation System, automation tools developed by NASA to manage
high volume of arrival air traffic at large airports. The case study involves three
classes of objects: weather-aware clients, weather control panel and the controller or
communications manager. The latest weather update is presented by the weather
control panel to various connected clients, via the controller. This update may
succeed or fail in different ways; furthermore, clients get connected/disconnected
to the controller by following an elaborate protocol.

9.2 Use Cases

We used guided abstract simulation on each of our examples to test out the promi-
nent use cases. The details of these experiments appear in Table II. For the
Telephone Switch example with call-waiting feature, we consider three possible test
cases. In the first one there were three calls made, each independent of another,
and without invoking the call-waiting feature. In the second and third cases, we
have two ongoing calls and then a third call is made to one of the busy phones,
invoking the call-waiting feature. These two cases differ in how the calls resume
and terminate.

For the Rail-car example we simulate the following test cases– (a) cars mov-
ing from a busy terminal to another busy terminal (i.e. a terminal where all the
platforms are occupied, so an incoming car has to wait), while stopping at every ter-
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Time Memory
Example Setting (sec) (MB)

C A C/A C A C/A

Telephone 60 phones 2.0 1.5 1.3 87 63 1.4
switch 120 phones 4.1 1.5 2.7 189 64 3.0

Rail-Car 24 cars 3.9 2.1 1.9 173 83 2.1
48 cars 7.0 2.2 3.2 353 84 4.2

Automated 30 cars 0.7 0.4 1.6 33 18 1.8
Shuttle 60 cars 1.2 0.4 2.7 69 18 3.8

Weather 10 clients 0.6 0.5 1.2 21 18 1.2
Update 20 clients 0.8 0.5 1.6 27 18 1.5

C ≡ Concrete Exec., A ≡ Abstract Exec.

Table III. Timing/Memory Overheads of Concrete Execution and Abstract Execution

minal, (b) cars moving from a busy terminal to less busy terminals while stopping
at every terminal, and (c) cars moving from one terminal to another while not stop-
ping at certain intermediate terminals. In the rail shuttle-system example, again
we report the results for three test runs corresponding to (a) timely completion of
order by shuttle leading to payment, (b) late completion of order leading to penalty,
and (c) shuttle being unable to carry out order as it gets late in loading the order.
Finally, for the weather update controller, we report the results of simulating three
test cases corresponding to (a) successful update of latest weather information to
all clients, (b) unsuccessful weather update where clients revert to older weather
settings, and (c) unsuccessful update leading to disconnecting of clients.

For each test case, we report the object count for each process class as well as the
maximum number of behavioral partitions observed during simulation. We have
reported the results for only process classes with more than one object. Since we are
simulating reactive systems, we had to stop the simulation at some point; for each
test case, we let the simulation run for 100 transactions – long enough to exhibit
the test case’s behavior. From Table II, we can see that the number of behavioral
partitions is substantially less than the number of concrete objects. Furthermore,
even if the number of concrete objects is increased (say instead of 48 cars in the
Rail-car example, we have 96 cars), the number of behavioral partitions in these
simulation runs remain the same.

9.3 Timing and Memory Overheads

Since one of our main aims is to achieve a simulation strategy efficient in both
time and memory, a possible concern is whether the management of behavioral
partitions introduces unacceptable timing and memory overheads. We measured
timing and memory usage of several randomly generated simulation runs of length
1000(i.e. containing 1000 transactions) in our examples and considered the maxi-
mum resource usage for each example. We also compared our results with a concrete
simulator (where each concrete object’s state is maintained separately). For mean-
ingful comparison, the concrete simulator is also implemented in OCaml and shares
as much code as possible with our abstract simulator. Simulations were run on a
Pentium-IV 3 GHz machine with 1 GB of main memory. The results are shown
in Table III. For each example we show the time and memory usage for both the
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Fig. 8. Execution Time and Memory Usage for different settings of the RailCar
example.

abstract and concrete simulation. Also, for a given example, we obtained results
for two different settings, where the second setting was obtained by doubling the
number of objects in one or more of the classes, e.g. in the rail-car example with
24 and 48 cars respectively.

We observe that for a given example and a given number of objects, the running
time and memory usage for the concrete simulator are higher than that for the
abstract simulator. Also for the same example but with higher number of objects,
in case of abstract execution, the time/memory remain roughly the same, whereas
they increase for the concrete case (as indicated by the increase in ratio C/A for
higher number of objects in Table III).

Furthermore, in the graphs shown in Figure 8, we compare the growth in timing
and memory usage in the railcar example, for both concrete and abstract sim-
ulations. Each successive setting is obtained by increasing the number of cars
and its associated components: “car-handler”, “proximity-sensor”, “cruiser” and
“dest-panel” by 24. Clearly our abstract execution allows the designer to try out
different settings of a model by varying the number of objects without worrying
about time/space overheads.

9.4 Test-case generation from IPC models

We have also used our IPC execution semantics for test generation. In particular,
we generate a set of witness traces from an IPC model, which satisfy a high-level
test purpose given as a sequence of transactions. This serves the purpose of– a)
validating the requirements from which the IPC model has been derived, and b)
the generated traces can be used as test cases to test an implementation derived
from the same requirements.

The user gives a sequence of transactions γ1γ2 . . . γn as a test purpose. At this
level of abstraction it is much more intuitive and easier for user to design test
specifications corresponding to various use case scenarios. The test-case generation
procedure aims at producing one or more test sequences of the form

γ1
1 . . . γi1

1 γ1γ
1
2 . . . γi2

2 γ2 . . . γin

n γn

This can be viewed as finding a witness trace satisfying the Linear-time Temporal
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Logic (LTL) property [Clarke et al. 2000]-

F(γ1 ∧ (F(γ2 ∧ (. . . (Fγn) . . .)))

We always generate only finite witness traces (i.e., a finite sequence of transac-
tions) such that any infinite trace obtained by extending our finite traces will satisfy
the above mentioned LTL property.

Example Test Expl. # Witnesses Exec. Times(sec)
Spec. # Depth C A C/A C A C/A

Telephone 1 5 560 70 8 28 1 28
Switch 2 8 80 12 6.67 138 7 19.71

(5 phones) 3 9 80 12 6.67 212 17 12.47

Rail-Car 1 18 – 6 – > 1 hr. 380 –
(6 cars, 2 15 – 32 – > 1 hr. 19 –

3 terminals) 3 15 – 62 – > 1 hr. 19 –

Automated 1 15 11 5 2.2 15 0.7 21.43
Shuttle 2 15 18 9 2 15 0.72 20.83

(5 shuttles) 3 17 5 2 2.5 63 2 31.5

Weather 1 20 129 5 25.8 2.5 0.1 25
Update 2 20 3 2 1.5 2.5 0.1 25

(10 clients) 3 25 7 3 2.33 12 0.15 80

Table IV. Comparing Abstract and Concrete test generation, A ≡ Abstract, C ≡ Concrete.

Experiments. Again, the experiments were performed for the IPC models of the
four controller examples described earlier on a Pentium-IV machine with 3GHz CPU
and 1GB of main memory. We compared the test-suite size and generation times
obtained via abstract execution semantics with corresponding numbers for concrete
execution semantics (where the state of each object is maintained separately). The
results appear in Table IV. The results serve as a measure of importance of abstract
execution for model based test generation. For each test purpose, the state space of
the models were explored (using both abstract and concrete execution semantics)
in breadth- first manner up to a given depth, and the total number of all possible
witness-traces corresponding to the given test purpose were recorded within that
exploration tree. The time to generate the test cases is much lower in abstract
execution as compared to concrete execution. More importantly, using abstract
execution we can group many behaviorally similar tests into a single test case. For
example in the first test specification of the Telephone Switch example (see Table
IV), 560 concrete test cases are grouped into 70 abstract tests. Note that the
number of concrete tests is not always an exact multiple of the number of abstract
tests. This is because different abstract tests may be blown up into a different
number of concrete tests.

We also tried the notion of transaction coverage based test suite generation for
the IPC models described earlier, where the aim is to generate a set of witness
traces covering all the transactions in the system model at least once. Again, the
transaction coverage was conducted for abstract execution of the models. If we try
to achieve transaction coverage by concrete execution, the test-suite construction
does not even terminate in reasonable time for most examples. Using abstract
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execution the coverage was achieved within 20 seconds for all examples and the
test-suite sizes thereby produced ranged from 10 to 700.

9.5 Checking for spurious execution runs

Recall that in the presence of associations, our abstract execution semantics is
sound but incomplete. Consequently, we may encounter execution runs which are
”spurious”, that is, do not appear in any concrete system execution. In Section
8.3, we have presented a decision procedure for checking whether a finite sequence
of transactions produced by our abstract simulator is spurious. As mentioned, we
used the Murphi model checker to implement this spuriousness check.

During our experiments, we found that the spuriousness check for all the test
cases of all our examples was completed in less than 0.1 second using Murphi. Also,
when simulating an example system against meaningful use cases, the execution run
produced by our abstract simulator was typically not spurious. In fact, there was
only one false positive among all the test cases we tried for all the examples. This
is to be expected, since we use our simulator to try out meaningful/prominent
use-cases for a given system specification in the IPC model.

Also, in order to evaluate the overheads involved, we implemented an exact
version of abstract execution semantics, with the difference being that for any object
following an association, we treat it as a concrete object and do not merge it with
other objects in the same behavioral partition as this object. This will eliminate
the spuriousness, since any loss of information with respect to associations will be
avoided. For the random simulation runs, we observed that the execution times
and memory usage for the exact abstract execution semantics lies between those for
the abstract and concrete semantics; thus making it an attractive alternative for
our abstract execution semantics for simulation purposes. However, we found that
the exact abstract semantics are still not suitable for experiments involving state-
space exploration of the models- such as model checking, test generation, etc. This
was demonstrated in the case of Rail-Car example for witness trace generation
experiments, where the experiment did not even terminate for one of the test-
specification and took nearly 10 minutes in the other two cases. Note that, for the
first test-specification, abstract semantics took 380 seconds, while only 19 sec. were
required for remaining two cases (see results for Rail-Car example in Table IV).

9.6 Debugging Experience

In this section, we share some experiences in reactive system debugging gained
using our simulator tool. In particular, we describe our experiences in debugging
the weather-update control system [CTAS]. The weather-update control system
consists of three process classes: the communications manager (call it CM), the
weather control panel (call it WCP) and Clients. Both CM and WCP have only one
object, while the Client class has many objects. In Figure 9, we show a snippet of
the transition system for CM. Even for the snippet shown in Figure 9, the transition
system shown is a slightly simplified version of our actual modeling. We have given
the transactions names to ease understanding, for example Snd Init Wthr stands
for “send initial weather” and so on.

We now discuss two bugs that we detected via simulation. The first one is an
under-specification in the informal requirements document for the weather-update
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controller. In Figure 9, the controller CM initially connects to one or more clients
by executing the transactions Connect and Snd Init Wthr. In the Connect transac-
tion CM disables the Weather Control Panel (WCP). If the client subsequently
reports that that it did not receive the weather information (i.e. transaction
Not Rcv Init Wthr is executed), CM goes back to Idle state without re-enabling
the Weather Control Panel (WCP). Hence no more weather-updates are possible
at this stage. This results from an important under-specification of the weather-
update controller’s informal requirements document. This error came up in a nat-
ural way during our initial experiments involving random simulation. Simulation
runs executing the sequence of transactions

Connect,Snd Init Wthr,Not Rcv Init Wthr,Upd from WCP

got stuck and aborted as a result of which the simulator complained and provided
the above sequence of transactions to us. From this sequence, we could easily fix the
bug by finding out why Upd from WCP cannot be executed (i.e. the Weather Con-
trol Panel not being enabled). We note that since the above sequence constitutes a
meaningful use-case we would have located the bug during guided simulation, even
if it did not appear during random simulation. In this context it is worthwhile to
mention that for every example, after modeling we ran random simulation followed
by guided simulation of prominent test cases.

We found another bug during guided simulation of the test case where connected
clients get disconnected from the controller CM since they cannot use the latest
weather information. This corresponds to the connected clients executing the Dis-
connect transaction with the CM, and the CM returning from Done2 to Idle by
executing Enable WCP (Figure 9). For this simulation run, even after all clients
are disconnected, the CM executes Upd from WCP (update from Weather Control
Panel) followed by Rdy for PreUpd (ready for pre-update). The simulator then
gets stuck at the PreUpd Wthr (pre-update weather) transaction since there are no
connected clients. From this run, we found a missing corner case in the guard for
Upd from WCP transaction – no weather updates should take place if there are no
connected clients. In this case, it was a bug in our modeling which was detected
via simulation.

Currently, our simulator supports the following features to help error detection.

—Random simulation for a fixed number of transactions

—Guided simulation for a use-case (the entire sequence of transactions to be exe-
cuted need not be given)

—Testing whether a given sequence of transactions is an allowed behavior.

In future, we plan to employ error localization techniques (e.g. dynamic slicing)
on problematic simulation runs. Full details of the simulator (along with its source
code) are available from the web-site http://www.comp.nus.edu.sg/~release/

simulator

10. DISCUSSION

In this paper, we have studied a modeling formalism accompanied by an execution
technique for dealing with interacting process classes; such systems arise in a num-
ber of application domains such as telecommunications and transportation. Our

ACM Journal Name, Vol. V, No. N, Month 20YY.



34 · Goel, Roychoudhury, Thiagarajan

PostRevert

Connect

Snd_Init_

Wthr

Not_

Rcv_

Init_

Wthr

Rcv_Init_W
thr

Used_

Init_

Wthr

Not_

Used_

Init_

Wthr

Idle

E
n
a
b
le

W
C

P

preInit

Init

postInit

E
n
a
b
le

W
C

P

Upd_from_WCP

Rdy_for_PreUpd

PreUpd_Wthr

Rdy_for_Upd

Upd_Wthr

Rdy_for_PostUpd

PostUpd_
Wthr

Rcv_Wthr N
ot

_
R
cv

_
W

th
r

………….

Chk_Usage

Used_W
thr

PreUpd

Done1

Done2

Not_Used_Wthr

Chk_Rcvd

PostUpd

Rdy_to_FinalizeSuccess

Disconnect

Upd

Fig. 9. Snippet of Transition System for Weather-Update Controller

models are based on standard notations for capturing behaviors and our abstract
execution strategy allows efficient simulation of realistic designs with large num-
ber of objects. The feasibility of our method has been demonstrated on realistic
examples.

In the present work, our state and class diagrams are “flat”; we plan to extend
this in future. We are also integrating timing features in our modeling framework
that would enable us to specify timing constraints such as: message delays and
upper/lower time bounds on a process to engage in certain events.

Also, currently we do not support class inheritance, either structural or behav-
ioral. The structural inheritance primarily aims at reusing existing class definitions
and possibly adding new behaviors, or redefining existing ones. However, this does
not guarantee any form of behavioral conformance between the subtype and the
supertype. On the other hand, the notion of behavioral subtyping plays a crucial
role in object oriented systems by allowing an object of a subtype to replace the
object of its parent type, without changing the overall system behavior. One of the
early works in this area is by Liskov and Wing [Liskov and Wing 1994] which fo-
cuses on passive objects – objects whose state change is only via method invocation
by other objects. Subsequently, behavioral subtyping of active objects has been
studied in many works (e.g. [Basten and van der Aalst 2001; Harel and Kupferman
2002; Wehrheim 2003]). These works mostly exploit well-known notions of behav-
ioral inclusion (such as trace containment or simulation relations) to define notions
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of behavioral subtyping. In future, we aim to incorporate similar notion(s) of be-
havioral inclusion to allow reuse of existing process classes, and define an efficient
mechanism for checking substitutability of a subtype for its supertype.

Finally, we plan to develop a verification framework centered on our abstract
execution semantics that will exploit the abstraction-refinement based approach to
software model checking. The abstraction refinement framework can be used to
find which associations need to be tracked in the abstract execution semantics, in
order to avoid spurious run(s). This is important since we may have transaction
guards of the form (r1, r2) ∈ asc1 ∧ (r2, r3) ∈ asc2 where r1, r2, r3 are transaction
roles. Consequently, it will not be sufficient to track only associations asc1 and
asc2 appearing in the system specification. Instead, we also need to track “derived”
associations during abstract execution; in the above example the relation formed by
the join of the asc1, asc2 relations is one such association. This is similar in flavor to
predicate abstraction based abstraction refinement [Ball et al. 2001; Henzinger et al.
2002] — where tracking the predicates/conditions appearing in the program is not
sufficient, and abstraction refinement gradually finds out the additional predicates
to track.
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APPENDIX

A. PROOF OF THEOREM 1

Proof. The proof is by induction on N , the length of the execution sequence
σ. It will be convenient to strengthen the induction hypothesis by assuming the
following two properties to hold inductively as well:

—Property (1) Let n be the number of objects whose local states are given by
the behavioral partition beh ∈ BEHp after the concrete execution of σ.3 Then,
after the abstract execution of σ, the object count for behavioral partition beh is
also n.

—Property (2) After the concrete execution of σ, let there be n tuples of the form
〈o1, . . . , ok〉 following association asc, where o1, . . . , ok are concrete objects, and
the states of o1, . . . , ok are defined by the behavioral partitions beh1, . . . , behk.
Then, after the abstract execution of σ, the association information maintained
is such that the asc count for the k-tuple 〈beh1, . . . , behk〉 is also n.

The result is obvious if N = 0. Hence assume that N > 0 so that σ = σprev◦γ and
the induction hypothesis holds for σprev. Let o1, . . . , om be the concrete objects used
to play the roles r1, . . . , rm in the concrete execution of transaction γ. If the states
of o1, . . . , om are given by behavioral partitions beh1, . . . , behm (beh′

1, . . . , beh
′
m) in

the concrete execution before (after) execution of γ, the following holds:

—beh1, . . . , behm can serve as witness partitions of lifelines r1, . . . , rm of transaction
γ under the abstract semantics after the execution of σprev. This follows from
properties (1) and (2) above in the induction hypothesis.

—beh′
1, . . . , beh

′
m are the destination partitions of beh1, . . . , behm in the abstract ex-

ecution of γ. This follows from the definition of destination partition (Definition
7).

Now, in the concrete execution of γ, corresponding to each participating object oi,
whose state changes from behi to beh′

i, the count of objects whose state is given
by the behavioral partition behi (beh′

i) is decremented (incremented) by 1. Note
that it is possible that there are more than one objects participating in γ whose
state is given by the same behavioral partition beh (beh′) before (after) execution
of γ. Suppose, there are n1 (n2) concrete objects (participating in γ) whose state
is given by the behavioral partition beh (beh′) before (after) execution of γ. Then,
after the execution of γ, the count of beh (beh′) will be decremented (incremented)
by n1(n2).

Similarly, in the abstract execution of γ, corresponding to each role ri in trans-
action γ, the object count of the witness (destination) partition, behi (beh′

i) will
be decremented (incremented) by 1.Again, it is possible for a behavioral partition
beh (beh′) to be the witness (destination) partition for more than one roles in γ.
Suppose, there are n1(n2) roles having same witness (destination) partition, beh
(beh′). Then, after the execution of γ, the count of beh (beh′) will be decremented
(incremented) by n1(n2). Thus, we can conclude that Property (1) of the induction

3Recall that whether an object resides in beh is determined by its control state, history and
valuation at the end of executing σ
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hypothesis therefore holds after the execution of σ = σprev ◦ γ.

To show that property (2) also holds, we consider the four cases according to the
ways in which a k-ary association asc may be altered via the concrete execution of
γ. Let r1, . . . , rm be the roles of transaction γ.

—Case A: We have a guard (ri1 , . . . , rik
) ∈ asc as part of γ. Suppose that there are

n1 and n2 number of k-tuples of concrete objects in association asc, whose local
states are given by the behavioral partitions beh1, . . . , behk and beh′

1, . . . , beh
′
k

respectively, before concrete execution of γ. Now, suppose a k-tuple of con-
crete objects 〈o1, . . . , ok〉 in association asc is chosen for concrete execution of γ,
s.t. the local states of objects o1, . . . , ok are given by the behavioral partitions
beh1, . . . , behk (beh′

1, . . . , beh
′
k) before (after) execution of γ. Thus, after the con-

crete execution of γ, the count of k-tuples in asc whose objects’ states are given
by beh1, . . . , behk (beh′

1, . . . , beh
′
k) is decremented (incremented) by 1, resulting

in association counts of ‘n1 − 1’ (n2 + 1).
By the induction hypothesis, the asc count for the k-tuple 〈beh1, . . . , behk〉
(〈beh′

1, . . . , beh
′
k〉) in the abstract execution is n1(n2) after σprev. Further, we

can choose the behavioral partitions beh1, . . . , behk as the witness partitions for
roles ri1 , . . . , rik

to execute γ. Then, from Property (1), the corresponding des-
tination partitions after executing γ are beh′

1, . . . , beh
′
k. Thus, after the abstract

execution of γ, the asc count for the k-tuple 〈beh1, . . . , behk〉 (〈beh′
1, . . . , beh

′
k〉)

is updated to ‘n1 − 1’ (n2 + 1) (see the case for “Check” in the handling of
associations, Section 7).

—Case B: We have insert (ri1 , . . . , rik
) into asc as the post-condition of γ. Sup-

pose o1, . . . , ok are the objects chosen to play the roles ri1 , . . . , rik
in the con-

crete execution of γ and their local states are given by the behavioral partitions
beh1, . . . , behk (beh′

1, . . . , beh
′
k) before (after) execution of γ. Then a new k-tuple

〈o1, . . . , ok〉 will be inserted in asc in concrete execution, thereby incrementing
the count of k-tuples in asc, whose objects’ states are given by beh′

1, . . . , beh
′
k, by

1. Due to induction hypothesis, in abstract execution we can choose the behav-
ioral partitions beh1, . . . , behk as the witness partitions for the roles ri1 , . . . , rik

for executing γ. This means that beh′
1, . . . , beh

′
k will be the destination partitions

of roles ri1 , . . . , rik
in the abstract execution; the asc count of the corresponding

k-tuple is incremented by 1 in the abstract execution as well.

—Case C: We have delete (ri1 , . . . , rik
) from asc as the post-condition of γ. Sup-

pose o1, . . . , ok are the objects chosen to play the roles ri1 , . . . , rik
in the con-

crete execution of γ and their local states are given by the behavioral partitions
beh1, . . . , behk before execution of γ. Then the k-tuple 〈o1, . . . , ok〉 is in asc before
executing γ and is removed from asc after executing γ, thus decrementing the
count of k-tuples in asc, whose objects’ states are given by beh1, . . . , behk, by 1.
Again, in abstract execution we choose the behavioral partitions beh1, . . . , behk

as the witness partitions for the roles ri1 , . . . , rik
for executing γ, and decrement

the count of k-tuple 〈beh1, . . . , behk〉 by 1 after executing γ.

—Case D: This is the default case where no association related guard or post-
condition is specified for the roles (ri1 , . . . , rik

) of γ. Suppose o1, . . . , ok are the
objects chosen to play the roles ri1 , . . . , rik

in the concrete execution of γ and their
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local states are given by the behavioral partitions beh1, . . . , behk (beh′
1, . . . , beh

′
k)

before (after) execution of γ. Then, if the asc count for the k-tuple 〈o1, . . . , ok〉
is greater than zero before the concrete execution of γ, the handling of associa-
tion counts in concrete and abstract executions will follow the ‘Case A’ above.
Otherwise, there will be no update in asc association counts corresponding to
the k-tuple of objects and behavioral-partitions for the roles (ri1 , . . . , rik

) in the
concrete and abstract executions of γ.

This concludes the induction step for Property (2).

B. CHECKING SPURIOUSNESS OF EXECUTION RUNS IN MURPHI

Here we elaborate how we can check whether an execution run produced by our
abstract simulator is spurious (i.e. cannot be realized in concrete executions). We
have implemented the spuriousness check using the Murphi model checker [Murphi
2005]. The reason for using Murphi is its inherent support for symmetry reduction
via the scalarset data type. We now discuss how Murphi’s support of symmetry
reduction is exploited to perform our spuriousness check efficiently.

We define the following data types for each process class.

—A scalarset type to act as an object identifier having the cut-off number4 as its
upper limit. For example, for Car class containing N objects, following type will
be declared:

Car: Scalarset(N); –index for process class Car

—Enumeration variable types which define sets of states of its LTS and various
DFAs. Assuming that the LTS of process class Car contains M states and one
of its DFAs, say dfai has Di states, the following translation will result:

stCar: Enum {st car1,...,st carM}; –states for LTS of Car
dfai Car: Enum {d car i1,...,d car iDi}; –states for dfai of Car

Based on the types defined above, following variables are declared for each process
class:

—An array of enumeration type representing the LTS states, indexed by the scalarset
type corresponding to this process class. For example, LTS states for objects of
process class Car will be represented using the following array variable:

Car lts: Array [Car] of stCar;

—Similarly, array variables are defined to represent the DFA states.

—Arrays corresponding to the variables in the IPC model. Murphi supports only
integer/boolean variables and the range for integer type needs to be specified in
declaration. For example, variable mode5 for the Car is declared as follows:

Car mode: Array [Car] of 0..1;

4The number xp,σ for process class p and execution run σ, defined in Section 8.3
5A car’s mode indicates whether the car will stop or pass through its current terminal.
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Associations are represented using two dimensional arrays having the value range
0..1. For an association “Asc” between two process classes A and B, assuming that
A and B have been declared as appropriate scalarset types, this array is declared
as follows:

Asc: Array [A] of Array [B] of 0..1;

An array entry of 1 will indicate the existence of an association between the objects
of A and B, whose identities are represented by the index values of that particular
array element.

For each transaction-occurrence in the trace σ being checked, a corresponding
rule is defined in Murphi (representing a guarded command) using the witness and
destination partitions’ information: control states, dfa states and variable valuations
for the participating agents, obtained from the abstract execution. The initial
configuration for the Murphi execution is given as the “Startstate” declaration,
where the initial control states, dfa states and variable valuations for various objects
are defined. If an execution run σ produced by our abstract simulation is suspected
to be spurious by the user, (s)he can submit it to Murphi for spuriousness check.
Given our encoding of the reduced concrete IPC model to Murphi, if σ is indeed
spurious it will correspond to a deadlocked run in Murphi, with Murphi getting
stuck at a spurious transaction. By slight modification in the Murphi code we are
able to precisely identify the transaction that σ got stuck at and furthermore report
the system state at that point. This can then be analyzed by the user to determine
the cause of spuriousness.

For illustration, in Appendix B.1 we give complete Murphi code listing corre-
sponding to the example discussed in Section 8.3, for which we found the trace
σ = t1.t2.t3 to be spurious. The declarations corresponding to the Cruiser, Car
and BrakeControl process classes and static associations between them appear at
the beginning (lines 1–21). Note that the scalarset types representing the object
identifiers for process classes Cruiser, Car and BrakeControl have size one, two
and one respectively (lines 3–5). As discussed in Section 8.3, these are the cut-off
number of objects for these classes to exhibit σ. An auxiliary variable ‘Count’ (line
27) is used to enforce the ordering, such that the rules corresponding to various
transactions can only be triggered in the sequence in which they appear in σ. Mur-
phi rules corresponding to transactions t1, t2 and t3 appear at lines 87–103, 105–120
and 122–141 respectively. The guard of rule for t1 (91–94) checks that– a) t1 is the
first transaction to execute (Count=1), b) participating Cruiser and Car compo-
nents are in the appropriate control states, and c) they satisfy the static association
Asc1. The body of the rule for t1 (97–100) updates the control states of partici-
pating objects and the Count variable. Code corresponding to transactions t2 and
t3 is similar to that of t1. The successful completion of the trace being checked is
indicated by an ‘Error’ state. It is reached in the last rule which is executed only
after the trace has been completely executed (lines 143–149). The “Startstate”
declaration, which sets the initial configuration for checking σ, appears at the end
(lines 151–206).

The output of the verifier generated from the Murphi code for this example is
presented in Appendix B.2. The trace σ can not be completely executed. This is
indicated in the ‘Status’ message ‘No error found’ (lines 51–53); while, there should
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be a ‘Trace Complete’ error message if the trace successfully executes, as discussed
above. Further, σ is executed only upto t2, after which Murphi gets deadlocked.
This is indicated in the output at lines 33–47, which also give system state at the
point of deadlock (35–47). The value of variable ‘Count’ is 3 (line 47), indicating
that transaction t3 should have executed next. Remaining variables give the control
states for various objects and the associations among them. By examining this state
and the guard of transaction t3 (Appendix B.1, lines 126–131), we find that Cruiser
object ‘Cruiser1 1’, Car objects ‘Car1 1’ and ‘Car1 2’, and BrakeControl object
‘BrakeControl1 1’ are in appropriate control states for executing t3. However, none
of the Car objects is associated both with a Cruiser object (via association Asc1)
and with a BrakeControl object (via association Asc2). Therefore, t3 can not be
executed.

B.1 Murphi Code for example demonstrating spuriousness in Section 8.3
1 Type

2 -- index for process classes Cruiser1, Car1 and BrakeControl1 --
3 Cruiser1: Scalarset(1);

4 Car1: Scalarset(2);
5 BrakeControl1: Scalarset(1);
6

7 -- enumeration types for LTS states for the three process classes --
8 stCruiser: Enum {st_Cruiser1,st_Cruiser2,st_Cruiser3};

9 stCar: Enum {st_Car1,st_Car2,st_Car3};
10 stBrakeControl: Enum {st_BrakeControl1,st_BrakeControl2,st_BrakeControl3};
11

12 Var
13 -- static associations Asc1 (Cruiser1, Car1) and Asc2 (Car1 and BrakeControl1)

14 s_Asc111:
15 Array [Cruiser1] of Array [Car1] of 0..1;

16 s_Asc211: Array [Car1] of Array [BrakeControl1] of 0..1;
17
18 -- variables representing current control state for objects of each process class --

19 Cruiser1_lts: Array [Cruiser1] of stCruiser;
20 Car1_lts: Array [Car1] of stCar;

21 BrakeControl1_lts: Array [BrakeControl1] of stBrakeControl;
22
23 -- auxiliary variables --

24 Cruiser1_mark: Array [Cruiser1] of boolean;
25 Car1_mark: Array [Car1] of boolean;

26 BrakeControl1_mark: Array [BrakeControl1] of boolean;
27 Count: 0..4;

28
29 -- function to check for static association Asc1 at runtime --
30 function s_Asc111_check (i1:Cruiser1; i2:Car1): boolean;

31 var
32 count1: 0..1;

33 count2: 0..1;
34 begin
35 if (s_Asc111[i1][i2] = 1) then return true; endif;

36 count1 := 0;
37 count2 := 0;

38
39 for j:Car1 Do

40 if (s_Asc111[i1][j] = 1)
41 then count1 := count1 + 1;
42 end;

43 end;
44

45 if (count1 = 1) then return false end;
46
47 for j:Cruiser1 Do

48 if (s_Asc111[j][i2] = 1)
49 then count2 := count2 + 1;

ACM Journal Name, Vol. V, No. N, Month 20YY.



42 · Goel, Roychoudhury, Thiagarajan

50 end;

51 end;
52

53 if (count2 = 1) then return false end;
54

55 return true;
56 end;
57

58 -- function to check for static association Asc2 at runtime --
59 function s_Asc211_check (i1:Car1; i2:BrakeControl1): boolean;

60 var
61 count1: 0..1;
62 count2: 0..1;

63 begin
64 if (s_Asc211[i1][i2] = 1) then return true; endif;

65 count1 := 0;
66 count2 := 0;

67
68 for j:BrakeControl1 Do
69 if (s_Asc211[i1][j] = 1)

70 then count1 := count1 + 1;
71 end;

72 end;
73

74 if (count1 = 1) then return false end;
75
76 for j:Car1 Do

77 if (s_Asc211[j][i2] = 1)
78 then count2 := count2 + 1;

79 end;
80 end;
81

82 if (count2 = 1) then return false end;
83

84 return true;
85 end;

86
87 -- rule corresponding to transaction t1 --
88 Ruleset i1:Cruiser1; i2:Car1 Do

89 Rule "Execute T1"
90 -- rule guard

91 (Count = 1 -- checking sequence
92 & Cruiser1_lts[i1] = st_Cruiser3 -- checking source control state
93 & Car1_lts[i2] = st_Car3 -- checking source control state

94 & s_Asc111_check(i1,i2) -- checking association Asc1
95 )

96 ==> -- rule body
97 s_Asc111[i1][i2] := 1;

98 Cruiser1_lts[i1] := st_Cruiser2; -- updating control state
99 Car1_lts[i2] := st_Car2; -- updating control state
100 Count := Count + 1;

101
102 End; --Rule

103 End; --Ruleset
104
105 -- rule corresponding to transaction t2 --

106 Ruleset i1:BrakeControl1; i2:Car1 Do
107 Rule "Execute T2"

108 -- rule guard
109 (Count = 2

110 & BrakeControl1_lts[i1] = st_BrakeControl3 -- checking source control state
111 & Car1_lts[i2] = st_Car3 -- checking source control state
112 & s_Asc211_check(i2,i1) -- checking association Asc2

113 )
114 ==> -- rule body

115 s_Asc211[i2][i1] := 1;
116 BrakeControl1_lts[i1] := st_BrakeControl2; -- updating control state
117 Car1_lts[i2] := st_Car2; -- updating control state

118 Count := Count + 1;
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119 End; --Rule

120 End; --Ruleset
121

122 -- rule corresponding to transaction t3 --
123 Ruleset i1:Cruiser1; i2:BrakeControl1; i3:Car1 Do

124 Rule "Execute T3"
125 -- rule guard
126 (Count = 3

127 & Cruiser1_lts[i1] = st_Cruiser2 -- checking source control state
128 & BrakeControl1_lts[i2] = st_BrakeControl2 -- checking source control state

129 & Car1_lts[i3] = st_Car2 -- checking source control state
130 & s_Asc111_check(i1,i3) -- checking association Asc1
131 & s_Asc211_check(i3,i2) -- checking association Asc2

132 )
133 ==> -- rule body

134 s_Asc111[i1][i3] := 1;
135 s_Asc211[i3][i2] := 1;

136 Cruiser1_lts[i1] := st_Cruiser1; -- updating control state
137 BrakeControl1_lts[i2] := st_BrakeControl1; -- updating control state
138 Car1_lts[i3] := st_Car1; -- updating control state

139 Count := Count + 1;
140 End; --Rule

141 End; --Ruleset
142

143 -- this rule executes after trace being checked is executed successfully --
144 Rule "Trace Completely Executed"
145

146 Count = 4
147 ==>

148 Error "Trace Complete."
149 End;
150

151 -- startstate declaration for setting the initial configuration --
152 Startstate

153 var
154 count: 0..2;

155 begin
156 For i1:Cruiser1 Do
157 For i2:Car1 Do s_Asc111[i1][i2] := 0; End;

158 End;
159 For i1:Car1 Do

160 For i2:BrakeControl1 Do s_Asc211[i1][i2] := 0; End;
161 End;
162

163 For i:Cruiser1 Do
164 Cruiser1_lts[i] := st_Cruiser3;

165 Cruiser1_mark[i] := false;
166 End; --For

167
168 count := 0;
169 For i:Cruiser1 Do

170 if (Cruiser1_mark[i] = false & count < 1)
171 then

172 count := count + 1;
173 Cruiser1_mark[i] := true;
174 End; --If

175 End; --For
176

177 For i:BrakeControl1 Do
178 BrakeControl1_lts[i] := st_BrakeControl3;

179 BrakeControl1_mark[i] := false;
180 End; --For
181

182 count := 0;
183 For i:BrakeControl1 Do

184 if (BrakeControl1_mark[i] = false & count < 1)
185 then
186 count := count + 1;

187 BrakeControl1_mark[i] := true;
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188 End; --If

189 End; --For
190

191 For i:Car1 Do
192 Car1_lts[i] := st_Car3;

193 Car1_mark[i] := false;
194 End; --For
195

196 count := 0;
197 For i:Car1 Do

198 if (Car1_mark[i] = false & count < 2)
199 then
200 count := count + 1;

201 Car1_mark[i] := true;
202 End; --If

203 End; --For
204

205 Count := 1;
206 End; --End Startstate

B.2 Murphi-verifier output for example in Section 8.3
1 ==========================================================================
2 Murphi Release 3.1

3 Finite-state Concurrent System Verifier.
4
5 Copyright (C) 1992 - 1999 by the Board of Trustees of

6 Leland Stanford Junior University.
7

8 ==========================================================================
9
10 Protocol: spur

11
12 Algorithm:

13 Verification by breadth first search.
14 with symmetry algorithm 3 -- Heuristic Small Memory Normalization

15 with permutation trial limit 10.
16
17 Memory usage:

18
19 * The size of each state is 104 bits (rounded up to 16 bytes).

20 * The memory allocated for the hash table and state queue is
21 8 Mbytes.
22 With two words of overhead per state, the maximum size of

23 the state space is 392159 states.
24 * Use option "-k" or "-m" to increase this, if necessary.

25 * Capacity in queue for breadth-first search: 39215 states.
26 * Change the constant gPercentActiveStates in mu_prolog.inc

27 to increase this, if necessary.
28
29 Warning: No trace will not be printed in the case of protocol errors!

30 Check the options if you want to have error traces.
31

32
33 ** Deadlocked state found **
34

35 s_Asc111[Cruiser1_1][Car1_1]:0
36 s_Asc111[Cruiser1_1][Car1_2]:1

37 s_Asc211[Car1_1][BrakeControl1_1]:1
38 s_Asc211[Car1_2][BrakeControl1_1]:0

39 Cruiser1_lts[Cruiser1_1]:st_Cruiser2
40 Cruiser1_mark[Cruiser1_1]:true
41 Car1_lts[Car1_1]:st_Car2

42 Car1_lts[Car1_2]:st_Car2
43 Car1_mark[Car1_1]:true

44 Car1_mark[Car1_2]:true
45 BrakeControl1_lts[BrakeControl1_1]:st_BrakeControl2
46 BrakeControl1_mark[BrakeControl1_1]:true

47 Count:3
48
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49 ==========================================================================

50
51 Status:

52
53 No error found.

54
55 State Space Explored:
56

57 3 states, 3 rules fired in 0.10s.
58

59 Analysis of State Space:
60
61 There are rules that are never fired.

62 If you are running with symmetry, this may be why. Otherwise,
63 please run this program with "-pr" for the rules information.
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