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ABSTRACT
Estimating the Worst Case Execution Time (WCET) of a
program on a given hardware platform is useful in the design
of embedded real-time systems. These systems communi-
cate with the external environment in a timely fashion, and
thus impose constraints on the execution time of programs.
Estimating the WCET of a program ensures that these con-
straints are met. WCET analysis schemes typically model
micro-architectural features in modern processors, such as
pipeline and caches, to obtain tight estimates.

In this paper, we study the effects of dynamic branch
prediction on WCET analysis. Branch prediction schemes
predict the outcome of a branch instruction based on past
execution history. This allows the program execution to
proceed by speculating the control flow. Branch predictions
schemes can be local or global. Local schemes predict a
branch outcome based exclusively on its own execution his-
tory whereas global schemes take into account the outcome
of other branches as well. Current WCET analysis schemes
have largely ignored the effect of branch prediction.

Our technique combines program analysis and microarchi-
tectural modeling to estimate the effects of branch predic-
tion. Starting from the control flow graph of the program,
we derive linear inequalities for bounding the number of mis-
predictions during execution (for all possible inputs). These
constraints are then solved by any standard integer linear
programming solver. Our technique models local as well
global branch prediction in a uniform fashion. Although
global branch prediction schemes are used in most modern
processors, their effect on WCET has not been modeled be-
fore. The utility of our method is illustrated through tight
WCET estimates obtained for benchmark programs.

Keywords
Worst Case Execution Time, Embedded code, Branch pre-
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1. INTRODUCTION
Estimating the Worst Case Execution Time (WCET) of

a program is an important problem [7, 8, 9, 14, 17, 18, 22,
25]. WCET analysis computes an upper bound on the pro-
gram’s execution time on a particular processor for all pos-
sible inputs. The immediate motivation of this problem lies
in the design of embedded real-time systems [13]. Typically
an embedded system contains processor(s) running specific
application programs and communicating with an external
environment in a timely fashion. Many embedded systems
are safety critical, e.g., automobiles and power plant applica-
tions. The designers of such embedded systems must ensure
that all the real-time constraints are satisfied. Real-time
constraints impose hard deadlines on the execution time of
embedded software. WCET analysis of the program can
guarantee that these deadlines are met.

Static program analysis techniques have been used for es-
timating the WCET of a program [22, 25]. These works
disregard the underlying hardware execution platform of
the program. Modern processors employ advanced micro-
architectural features such as pipeline, caches, and branch
prediction to speed up program execution. By modeling
these features we can get accurate WCET estimates. Hence,
substantial research has been devoted to combining program
analysis and micro-architectural modeling for WCET esti-
mation [4, 8, 14, 15, 18, 23]. Among the micro-architectural
features, the effect of pipeline and cache (particularly in-
struction cache) has been extensively studied. However, the
effect of branch prediction has been largely ignored.

Branch prediction.The presence of branch instructions
forms control dependency between different parts of the pro-
gram. This dependency causes pipeline stalls which can
be avoided by speculating the control flow subsequent to a
branch. Current generation processors perform control flow
speculation through branch prediction, which predicts the
outcome of branch instructions [11]. If the prediction is cor-
rect, then execution proceeds without any interruption. For
incorrect prediction, the speculatively executed instructions
are undone, incurring a branch misprediction penalty.

A classification of branch prediction schemes appears in
Figure 1. Branch prediction can be static or dynamic. Static
schemes associate a fixed prediction to each branch instruc-
tion via compile time analysis [1]. Almost all modern pro-
cessors, however, predict the branch outcome dynamically
based on past execution history [11]. Dynamic schemes are
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Figure 1: Classification of Branch Prediction
Schemes. At each level, the more widely used cate-
gory is underlined.

more accurate than static schemes, and in this work we study
only dynamic branch prediction.

Dynamic prediction schemes use prediction table(s) to
store the outcomes of the recently executed branches. These
past outcomes are used to predict future branches. The sim-
plest branch prediction schemes are local [19]; the prediction
of a branch instruction I is based exclusively on the past
outcomes of I. Most modern processors however use global
branch prediction schemes [27], which are more accurate.
Examples of embedded processors using global branch pre-
diction include IBM PowerPC 440GP [20] and SB-1 MIPS
64 [12], both of which use the popular gshare prediction
scheme [19]. In these schemes, the prediction of the outcome
of a branch I not only depends on I’s recent outcomes, but
also on the outcome of the other recently executed branches.
Global schemes can exploit the fact that behavior of neigh-
boring branches in a program are often correlated.

In this paper, we model the effects of branch prediction
on WCET of a program. Our technique combines program
analysis with micro-architectural modeling to obtain linear
constraints on the total misprediction count. These lin-
ear constraints are automatically generated from the con-
trol flow graph of the program, and are solved by a stan-
dard integer linear programming (ILP) solver. For every
branch instruction I our constraints bound (a) the number
of times I looks up a specific entry in the prediction table (b)
the number of times this results in a misprediction. These
bounds are then used to estimate the maximum number of
mispredictions of I for all possible inputs.

Summary of contributions.The contributions of this pa-
per are summarized as follows.

• We model the effects of local and global schemes for
branch prediction on a program’s WCET. Until re-
cently, effects of dynamic branch prediction have been
considered to be difficult to model statically [3]. To the
best of our knowledge, ours is one of the first works to
estimate the effects of (dynamic) branch prediction on
the WCET of a program. Earlier, Colin and Puaut
[4] have investigated the effects of local branch pre-
diction schemes for estimating WCET. Conceptually,
this work is a simple modification of cache modeling
techniques for WCET. As a result, it cannot be ex-
tended to global branch prediction schemes (which are

routinely used in modern processors).

• The only assumption made by our modeling is the
presence of a single prediction table. The various pre-
diction schemes differ from each other in how they
index into this table (for finding the prediction of a
branch instruction). By defining this index appropri-
ately, we have been able to reuse the same constraints
for modeling the effects of local and global branch pre-
diction schemes (including popular schemes such as
gshare). This gives a common framework for studying
the effects of various prediction schemes on WCET.

• Even though our technique is fully ILP based, the in-
sights gained from our modeling can be useful for other
WCET analysis techniques. In Section 6 we discuss
which of the constraints in our modeling can be used
in a multi-phased WCET analysis (where path analy-
sis and architectural modeling are separated).

2. RELATED WORK
Analyzing the WCET of a program has been extensively

investigated. Earlier works [22, 25] estimated the WCET
of a program by finding the longest execution path via pro-
gram analysis. The cost of a path is the sum of the costs of
the different instructions, assuming that the execution time
of each instruction is constant. Presence of performance en-
hancing micro-architectural features such as pipeline, cache
and branch prediction make this cost model inapplicable.
Due to control and data dependences between instructions,
the execution time of an instruction in a pipelined processor
depends on the past instructions. Recent works on WCET
analysis have therefore modeled micro-architectural features
such as pipelined processors [6, 9], superscalar processors
[16] and cache memories [8, 14].

Little work has been done to study the effects of branch
prediction on a program’s WCET. Effects of static branch
prediction on WCET have been investigated in [3, 16]. How-
ever, most current day processors (Intel Pentium, AMD, Al-
pha, SUN SPARC) implement dynamic branch prediction
schemes, which are more difficult to model.

To the best of our knowledge, [4] is the only other work on
estimating WCET under dynamic branch prediction. Their
technique models the prediction table as a direct mapped
cache, and is applicable to only local prediction schemes. In
particular, [4] considers a scheme where the prediction for a
particular branch instruction is either absent or present in
a specific row of a prediction table. This assumption does
not hold for global schemes where a branch instruction’s
prediction may reside in various rows of the prediction table.

Using Integer Linear Programming (ILP) for WCET anal-
ysis is not new. In particular, [14] has reduced the WCET
analysis of instruction cache behavior into an ILP problem.
In [7, 26], ILP has been used for program path analysis sub-
sequent to abstract interpretation based micro-architectural
modeling of instruction cache, pipelines etc.

3. BRANCH PREDICTION SCHEMES
As mentioned before, existing branch prediction schemes

can be broadly categorized as static and dynamic (refer Fig-
ure 1). In a static scheme, a branch is predicted in the
same direction every time it is executed. Either the com-
piler can attach a prediction bit to every branch through

2



analysis, or the hardware can predict using simple heuris-
tics, such as backward branches are predicted taken and
forward branches are predicted non-taken. However, static
schemes are much less accurate than dynamic schemes.

Dynamic schemes predict a branch depending on the ex-
ecution history. The first dynamic technique proposed is
called local branch prediction, where each branch is predicted
based on its last few outcomes. This is called “local” because
prediction of a branch is only dependent on its own history
[11]. This scheme uses a 2n-entry branch prediction table to
store the past branch outcomes, which is indexed by the n
lower order bits of the branch address. In the simplest case,
each prediction table entry is 1-bit and stores the last out-
come of the branch mapped to that entry. When a branch
is encountered, the corresponding table entry is looked up
and used as the prediction. When a branch is resolved, the
corresponding table entry is updated with the outcome. A
more accurate version of local scheme uses k-bit counter per
table entry.

The local prediction scheme cannot exploit the fact that a
branch outcome may be dependent on the outcomes of other
recent branches. The global branch prediction schemes (also
called correlation based schemes in architecture literature)
can take advantage of this situation [27]. Global schemes
uses a single shift register, called branch history register
(BHR) to record the outcomes of n most recent branches.
As in local schemes, there is a global branch prediction ta-
ble (also called Pattern History Table (PHT) in architecture
literature) in which the predictions are stored. The vari-
ous global schemes differ from each other (and from local
schemes) in the way the prediction table is looked up when
a branch is encountered.

Among the global schemes, three are quite popular and
have been widely implemented [19]. In the GAg scheme, the
BHR is simply used as an index to look up the prediction
table. In the popular gshare scheme, the BHR is XOR-
ed with last n bits of the branch address to look up the
prediction table. Usually, gshare results in a more uniform
distribution of table indices compared to GAg. Finally, in
the gselect (GAp) scheme, the BHR is concatenated with
the last few bits of the branch address to look up the table.

Note that even with accurate branch prediction, the pro-
cessor needs the target of a taken branch instruction. Cur-
rent processors employ a small branch target buffer to cache
this information. We have not modeled this buffer in our
analysis technique; its effect can be modeled via instruc-
tion cache analysis techniques [14]. Furthermore, the effect
of the branch target buffer on a program’s WCET is small
compared to the total branch misprediction penalty. This is
because the target address becomes available at the begin-
ning of the pipeline, whereas the branch outcome becomes
available near the end of the pipeline.

4. MODELING BRANCH PREDICTION
In this section, we illustrate how the effects of branch

prediction on WCET analysis can be estimated. We con-
sider GAg, a global branch prediction scheme [19, 27]. This
scheme and its variations (such as gshare) have been widely
implemented in general-purpose and embedded processors,
e.g., IBM PowerPC 440GP [20], AMD, Alpha. However, our
modeling is generic and not restricted to GAg. In Section
6, we will demonstrate how it easily captures other global
prediction schemes as well as local schemes.

4.1 Issues in Modeling Branch Prediction
Micro-architectural features such as pipeline and instruc-

tion cache have been successfully modeled for WCET anal-
ysis. In the presence of these features, the execution time
of an instruction may depend on the past execution trace.
For pipeline, these dependencies are typically local. That
is, the execution time of an instruction may depend only
on the past few instructions, which are still in the pipeline.
To model the effect of caches and branch prediction, more
complicated global analysis is required. This is because both
cache hit/miss of an instruction and correct/incorrect pre-
diction of a branch instruction depend on the complete ex-
ecution trace so far. However, there are two significant dif-
ferences between global analysis of instruction cache and
branch prediction.

Both instruction cache and branch prediction maintain
global data structures that record information about past
execution trace, namely the cache and the branch predic-
tion table. For instruction cache, a given instruction can
reside only in one row of the cache: if it is present it is a
cache hit, otherwise it is a cache miss. Local branch predic-
tion is quite similar - outcomes of a given branch instruction
is stored only in one entry of the prediction table and pre-
diction of the branch instruction depends on the content
of only that entry. However, for global branch prediction
schemes, a given branch instruction may use different en-
tries of the prediction table at different points of execution.
Given a branch instruction I, a global branch prediction
scheme uses the history HI (which is the outcome of last
few branches before arriving at I) to decide the prediction
table entry. Because it is possible to arrive at I with various
history, the prediction for I can use different entries of the
prediction table at different points of execution.

The other difference between instruction cache and branch
prediction modeling is obvious. In case of instruction cache,
if two instructions I and I ′ are competing for the same cache
entry, then the flow of control either from I to I ′ or from
I ′ to I will always cause a cache miss. However, for branch
prediction, even if two branch instructions I and I ′ map
to same entry in the prediction table, the flow of control
between them does not imply correct or incorrect prediction.
Their competition for the same entry may have constructive
or destructive effect in terms of branch prediction depending
on the outcomes of the branches I and I ′.

4.2 WCET Estimation Technique

Control flow graph.The starting point of our analysis is
the control flow graph (CFG) of the program. The vertices
of this graph are basic blocks, and an edge i→ j denotes flow
of control from basic block i to basic block j. We assume
that the control flow graph has a unique start node and a
unique end node, such that all program paths originate at
the start node, and terminate at the end node.

Each edge i→ j of the control flow graph is labeled.

label(i→ j) = U if i→ j denotes unconditional flow

0 if i→ j denotes control flow via

not taking the branch at i

1 if i→ j denotes control flow via

taking the branch at i

For any basic block i, if the last instruction of i is a branch
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then it has two outgoing edges labeled 0 and 1. Otherwise,
basic block i has only one outgoing edge with label U .

We construct the CFG of programs with procedures and
functions (recursive or otherwise) in the following way. For
every distinct call of a procedure P in the source code, we
create a separate copy of the CFG of procedure P . Thus,
each call of P transfers control to its corresponding copy.
However, we require any basic block b appearing in the CFG
of P to have the same instruction addresses in all copies of
the CFG. Thus our approach is not equivalent to procedure
inlining.

Flow constraints and loop bounds.Let vi denote the
number of times block i is executed, and let ei,j denote the
number of times control flows through the edge i → j. As
inflow equals outflow for each basic block i (except the start
and end nodes), we have the following equations.

vi =
∑
j

j→i

ej,i =
∑
j

i→j

ei,j

Furthermore, as the start and end blocks are executed
exactly once, we get:

vstart = vend = 1 =
∑
i

start→i

estart,i =
∑
i

i→end

ei,end

We provide bounds on the maximum number of iterations
for loops and maximum depth of recursive invocations for
recursive procedures. These bounds can be user provided, or
can be computed offline for certain programs via techniques
such as [10].

Defining WCET.Let costi be the execution time of basic
block i assuming perfect branch prediction. Given the pro-
gram, costi is a fixed constant for each i. Then, the total
execution time of the program is

Time =
∑
i

(costi ∗ vi + penalty ∗mi)

where penalty is a constant denoting the penalty for a single
branch misprediction; mi is the number of times the branch
in block i is mispredicted. If block i does not contain a
branch, then mi = 0. To find the worst case execution time,
we need to maximize the above objective function. For this
purpose, we need to derive constraints on vi and mi.

Introducing History Patterns.To determine the predic-
tion of a block i, we first compute the index into the predic-
tion table. In the case of GAg, this index is the outcome of
last k branches before block i is executed. These k outcomes
are recorded in the Branch History Register (BHR). Thus,
if k = 2 and the last two branches were taken (1) followed
by not taken (0), then the index would be 10. We define vπi
and mπ

i : the execution count and the misprediction count
of block i when i is executed with Branch History Register
= π. By definition:

mπ
i ≤ vπi

mi =
∑
π

mπ
i and vi =

∑
π

vπi

For each basic block i and history π, we find out whether it
is possible to reach block i with history π. This information

can be obtained via static analysis of the control flow graph
and is denoted by a predicate poss where:

poss(i, π) = true if i can be reached with history π
false otherwise.

Clearly, if ¬poss(i, π) then vπi = mπ
i = 0. Otherwise, we

need to estimate vπi and mπ
i .

Control flow among history patterns.First, we define
constraints on vπi . This provides an upper bound on mπ

i .
Recall that our index into the prediction table is simply a
history recording the past few branch outcomes. To model
the change in history due to control flow, we use the left
shift operator ; thus left(π, 0) shifts pattern π to the left by
one position and puts 0 as the rightmost bit. We define:

Definition 1. Let i → j be an edge in the control flow
graph and let π be the history pattern at basic block i. The
change in history pattern on executing i → j is given by
Γ(π, i→ j) where:

Γ(π, i→ j) = π if label(i→ j) = U

left(π, 0) if label(i→ j) = 0

left(π, 1) if label(i→ j) = 1

Now consider all inflows into block i in the control flow
graph. Basic block i can execute with history π only if:
block j executes with some history π′, control flows along
the edge j → i, and Γ(π′, j → i) = π.

Note that for any incoming edge j → i, there can be at
most two history patterns π′ such that Γ(π′, j → i) = π.
For example if label(j → i) = 1, then Γ(011, j → i) =
Γ(111, j → i) = 111. For any basic block i (except the start
block), from the inflows of i’s execution with history π we
get:

vπi ≤
∑
j

j→i

∑
π′

π = Γ(π′,j→i)

vπ
′
j

Similarly, for any basic block i (except the end block) from
the outflows of i’s execution with history π we get:

vπi ≤
∑
j

i→j

vπ
′
j

where π′ = Γ(π, i→ j). In this case, for any outgoing edge
i→ j, there can be only one such π′.

Repetition of a history pattern.Let us suppose there is a
misprediction of the branch in block i with history π. This
means that certain blocks (including i itself) were executed
with history π; the outcome of these branches appear in the
πth row of the prediction table. Furthermore, the outcome
of these branches must have created a prediction different
from the current outcome of block i.

To model mispredictions, we need to capture repeated oc-
currence of a history π during program execution. For this
purpose, we define the quantity pπi j below. Note that if
history π occurs at a basic block with a branch instruction,
then the πth row of the prediction table is looked up for
branch prediction.

Definition 2. Let i be either the start block of the control
flow graph or a basic block with branch instruction. Let j be
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either the end block of the control flow graph, or a basic block
with a branch instruction. Let π be a history pattern. Then
pπi j is the number of times a path is taken from i to j s.t.

• π never occurs at a node with branch instruction be-
tween i and j.

• If i 6= start block, then π occurs at block i

• If j 6= end block, then π occurs at block j

Intuitively, pπi j denotes the number of times control flows
from block i to block j s.t. (a) π th row of the prediction
table is used for branch prediction at blocks i and j, and
(b) the π th row of the prediction table is never used for
branch prediction between blocks i and j. In these scenarios,
the outcome of block i can affect the prediction of block j
(and cause a misprediction). Furthermore, pπstart i (pπi end)
denotes the number of times the π th row of the prediction
table is looked up for the first (last) time at block i.

When the πth row of the prediction table is used at block i
for branch prediction, either it is the first use of the π th row
(denoted by pπstart i) or the π th row was used for branch
prediction last time in some block j 6= start. Similarly, for
every use of the π th row of the prediction table at block i,
either it is the last use of the πth row (denoted by pπi end) or
it is used for branch prediction next time in block j 6= end.
Since vπi denotes the number of times block i uses the πth
row of prediction table (the execution count of block i with
history π), therefore:

vπi =
∑
j

pπj i =
∑
j

pπi j

Also, there can be at most one first use, and at most
one last use of the π th row of the prediction table during
program execution. Therefore we get∑

i

pπstart i ≤ 1 and
∑
i

pπi end ≤ 1

Furthermore, if ¬poss(i, π) or ¬poss(j, π) or j is not reach-
able from i then we set: pπi j = 0.

Introducing branch outcomes.To model mispredictions,
we not only need to model the repetition of history patterns,
but also the branch outcomes. Misprediction occurs on dif-
fering branch outcomes for the same history pattern. For
this reason, we define two new variables pπ,1i j and pπ,0i j . Let
i be a basic block with a branch instruction. Then it has
two outgoing edges i → k and i → l labeled 1 and 0 (cor-
responding to the branch being taken or not taken). For
any block j and any index π, let Allpaths(pπi j) denote the
set of program paths contributing to the count pπi j . Any
such path must either begin with the edge i→ k or the edge
i→ l. We define the following:

• pπ,1i j denotes the execution count of those paths in
Allpaths(pπi j) which begin with the edge i→ k

• pπ,0i j denotes the execution count of those paths in
Allpaths(pπi j) which begin with the edge i→ l

By definition pπi j = pπ,1i j + pπ,0i j
Also, for any block j and history pattern π, a path con-

tributing to the count pπ,1i j must begin with the edge i→ k
i.e. branch at block i is taken. A similar constraint holds
for the count pπ,0i j . Thus:

∑
j

∑
π p

π,1
i j ≤ ei,k and

∑
j

∑
π p

π,0
i j ≤ ei,l

Recall that ei,k and ei,l denote the execution counts of the
edges i→ k and i→ l respectively.

Modeling mispredictions.As mentioned before, mispre-
diction occurs at block i if there are differing branch out-
comes for a repeating history pattern. For simplicity of ex-
position, let us assume that each row of the prediction table
contains a one bit prediction: 0 denotes a prediction that
the branch will not be taken, and 1 denotes a prediction
that the branch will be taken. However, our technique for
estimating the mispredictions is generic. It can be extended
if the prediction table maintains ≥ 2 bits per entry.

Recall that the prediction table is indexed by π, the his-
tory pattern. For every basic block i with a branch instruc-
tion, for every index π, we need to estimate mπ

i . It denotes
the number of mispredictions of the branch in block i when
block i is executed with history pattern π. There can be two
scenarios in which block i is mispredicted with history π.

• Case 1: Branch of block i is taken
The number of such outcomes is ≤

∑
j p

π,1
i j , since this

denotes the total outflow from block i when it is ex-
ecuted with history π and the branch at i is taken.
Also, since branch at i was mispredicted the predic-
tion in row π of the prediction table must have been 0
(not taken). This is possible only if: another block j
was executed with history π, branch of block j was not
taken, and history π never appeared between blocks j
and i. The total number of such inflows into block i is
at most

∑
j p

π,0
j i.

• Case 2: Branch of block i is not taken
The number of such outcomes is ≤

∑
j p

π,0
i j . Again,

since branch at i was mispredicted the prediction in
row π of the prediction table must have been 1 (taken).
This is possible only if: another block j was executed
with history π, branch of block j was taken, and his-
tory π never appeared between blocks j and i. The
total number of such inflows into block i is at most∑
j p

π,1
j i.

From the above, we derive the following bound on mπ
i

mπ
i ≤ min(

∑
j

pπ,1i j ,
∑
j

pπ,0j i)

+ min(
∑
j

pπ,0i j ,
∑
j

pπ,1j i)

This constraint can be straightforwardly rewritten into
linear inequalities by introducing new variables (which we
do not show here). Also, we derived the above bound on mπ

i

by assuming that each row of the prediction table contains
one bit. For this, we considered (a) possible outcomes at
block i with history π (b) possible last use of the π th row
of the prediction table before arriving at i. If each row of the
prediction table contains k > 1 bits (in practice at most 2
bits are used) we can constrain mπ

i similarly. In particular,
we then consider the outcomes at block i, and last k uses of
the π th row of the prediction table before arriving at i.

Putting it all together.In the above, we have derived linear
inequalities on vi (execution count of block i) and mi (mis-
prediction count of block i). We now maximize the objective
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Figure 2: Example Control Flow Graph

function subject to these constraints using an (integer) lin-
ear programming solver. This gives an upper bound on the
program’s WCET.

5. AN EXAMPLE
In this section, we illustrate our WCET estimation tech-

nique with a simple example. Consider the control flow
graph in Figure 2. The start and end blocks are called
“start” and “end” respectively. All edges of the graph are
labeled. Recall that the label U denotes unconditional con-
trol flow and the label 1 (0) denotes control flow by taking
(not taking) a conditional branch. We assume that a 2 bit
history pattern is maintained, i.e., the prediction table has
four rows for the history patterns 00, 01, 10, 11.

Flow constraints and loop bounds.The start and end
nodes execute only once. Hence

vstart = vend = 1 = estart,1 = e2,end + e1,end

From the inflows and outflows of blocks 1 and 2, we get:

v1 = estart,1 + e2,1 = e1,2 + e1,end

v2 = e1,2 = e2,end + e2,1

Furthermore, the edge 2→ 1 is a loop, and its bound must
be given. Let us consider a bound of 100. Then, e2,1 < 100.

Defining WCET.Let us assume a branch misprediction
penalty of 3 clock cycles. The WCET of the program is
obtained by maximizing

Time = 2vstart + 2v1 + 4v2 + 2vend + 3m1 + 3m2

assuming coststart = cost1 = 2, cost2 = 4 and costend = 2.
Recall that costi is the execution time of block i (assuming
perfect prediction); mi is the number of mispredictions of
block i. There are no mispredictions for executions of start
and end blocks, since they do not have branches.

Introducing History Patterns.We find out the possible
history patterns π for each basic block i via static analysis
of the control flow graph. This information is denoted by
the predicate poss(i, π). The initial history at the beginning
of program execution is assumed to be 00 i.e. poss(start, π)

is true iff π = 00. In our example, we obtain that poss(1, π)
is true iff π ∈ {00, 01} and poss(2, π) is true iff π ∈ {00, 10}.

We now introduce the variables vπi and mπ
i : the execution

count and misprediction count of block i with history π.

m00
1 ≤ v00

1 and m01
1 ≤ v01

1 m00
2 ≤ v00

2 and m10
2 ≤ v10

2

m1 = m00
1 +m01

1 v1 = v00
1 + v01

1

m2 = m00
2 +m10

2 v2 = v00
2 + v10

2

The variables vπstart, v
π
end are also defined similarly.

Control flow among history patterns.We now derive the
constraints on vπi based on flow of the pattern π. Let us
consider the inflows and outflows of block 1 with history 01.
From the inflow we get:

v01
1 ≤ v10

2 + v00
2

Note that the inflow from block start to block 1 is au-
tomatically disregarded in this constraint since it cannot
produce a history 01 when we arrive at block 1. Also,
for the inflows from block 2 the history at block 2 can be
either 00 or 10. Both of these patterns produce history
01 at block 1 when control flows via the edge 2 → 1 i.e.
Γ(00, 2→ 1) = Γ(10, 2→ 1) = 01 from Definition 1.

From the outflows of the executions of block 1 with history
01 we have:

v01
1 ≤ v10

2 + v11
end

If the branch at block 1 is taken, then control flows to block
end and the history is 11 i.e. Γ(01, 1 → end) = 11. Other-
wise the branch is not taken and the control flows to block
2 with history 10 i.e. Γ(01, 1→ 2) = 10.

The constraints for the other blocks and patterns are de-
rived similarly.

Repetition of a history pattern.To model the repetition
of history pattern along a program path, the variables pπi j
are introduced (refer Definition 2). We now present the
constraints for the pattern 01. Corresponding to the first
and last occurrence of the history pattern 01 we get:

p01
start 1 ≤ 1 and p01

1 end ≤ 1

Corresponding to the repetition of the pattern 01, the
constraints are as follows:

Exec. with Inflow from last Outflow to next

pattern 01 occurrence of 01 occurrence of 01

v01
1 = p01

1 1 + p01
start 1 = p01

1 1 + p01
1 end

Constraints for the other patterns are derived similarly.

Modeling mispredictions.Using the variables vπi , pπi,j and

ei,j we get constraints for m00
1 , m00

2 , m01
1 and m10

2 (not
shown dues to space limitations). This bounds the total
number of mispredictions m1 + m2. The objective func-
tion is maximized subject to these constraints to obtain the
WCET.

6. EXTENSIONS
We now discuss the extensions of the technique for mod-

eling other branch prediction schemes. We also discuss how
(some of) our constraints can be used in a WCET analysis
which is not exclusively based on ILP.

6



6.1 Modeling other prediction schemes
Our modeling is independent of the definition of the pre-

diction table index, so far called as the history pattern π. All
our constraints only assume the following: (a) the presence
of a global prediction table, (b) the index π into this predic-
tion table and (c) every time the π th row is looked up for
branch prediction, it is updated subsequent to the branch
outcome. These constraints continue to hold even if π does
not denote the history pattern (as in the GAg scheme).

In fact, the different branch prediction schemes differ from
each other primarily in how they index into the prediction
table. Thus, to predict a branch I, the index computed is
a function of: (a) the past execution trace (history) and (b)
address of the branch instruction I. In the GAg scheme, the
index computed depends solely on the history and not on the
branch instruction address. Other global prediction schemes
(gshare, gselect) use both history and branch address, while
local schemes use only the branch address.

To model the effect of other branch prediction schemes,
we only alter the meaning of π, and show how π is updated
with the control flow (the Γ function of Definition 1). No
change is made to the linear constraints described in Section
4. These constraints then bound a program’s WCET (under
the new branch prediction scheme).

Other global schemes.In gshare [19, 27], the index π used
for a branch instruction I is defined as

π = historym ⊕ addressn(I)

wherem,n are constants, n ≥ m, ⊕ is XOR, addressn(I) de-
notes the lower order n bits of I’s address, and historym de-
notes the most recent m branch outcomes (which are XOR-
ed with higher-order m bits of addressn(I)). The updating
of π due to control flow is modeled by the function:

Γgshare(π, i→ j) = Γ(historym, i→ j)⊕ addressn(I)

where i → j is an edge in the control flow graph and Γ is
the function on history patterns described in Definition 1.
The modeling of the gselect prediction scheme [27] is similar
and is omitted for space considerations.

Local prediction schemes.In local schemes the index π
into the prediction table for predicting the outcome of in-
struction I is π = addressn(I). Here n is a constant and
addressn(I) denotes the least significant significant n bits of
the address of branch instruction I. Updating of the index
π due to control flow is given by Γlocal(π, i → j) = lsbn(j).
Again i→ j is an edge in the control flow graph and lsbn(j)
is the least significant n bits of the last instruction in basic
block j. If j contains a branch instruction I, it must be
the last instruction of j. Thus the least significant n bits of
the address of I are used to index into the prediction table
(as demanded by local schemes). If j does not contain any
branch instruction, then the index computed is never used
to lookup the prediction table.

6.2 Two phase WCET Analysis
In the technique presented in Section 4, the search for

the longest path as well as the architectural modeling has
been fused into a single step. In general, this may lead to a
large number of variables and constraints in the ILP prob-
lem. Moreover, when various architectural features such as

pipeline, cache and branch prediction are modeled together,
the resulting ILP problem size can potentially blow up.

In this situation, we can sacrifice some of the accuracy of
the ILP based approach and perform a faster, multi-phased
analysis. This approach has been successfully applied for
WCET analysis of (combinations of) instruction cache and
pipeline behavior [7, 26]. In the case of branch prediction,
we can achieve this separation of analysis as follows. In the
first phase, we conservatively classify the branch instruc-
tions. For each history π, we find which branches are always
correctly predicted when reached via history π. In the sec-
ond phase we use ILP to maximize the execution time which
is defined as

∑
i v
π
i ∗ timeπi . Here, vπi is the number of times

block i is executed with history π and timeπi is the worst
case execution time of block i with history π. Note that
timeπi is set to be a constant. Let ti be the execution time
of block i without branch misprediction. Then timeπi = ti
if the branch in block i was inferred (in the first phase) to
be always correctly predicted with history π. Otherwise we
set timeπi = ti+ branch penalty. Of course, if block i has no
branch instruction we set timeπi = ti for all π.

Note that in the two-phased approach for WCET analy-
sis of branch prediction, vπi are variables of the ILP problem
in the second phase. Thus, all constraints on vi, v

π
i , ei,j

and pπi j developed in Section 4 can be directly used in
the second phase of the analysis. Note that this includes
constraints which model the control flow among the history
patterns, a concept central to branch prediction. The con-
straints modeling mispredictions via the variables mπ

i will
no longer be needed.

The above outlines a method for a two-phase WCET anal-
ysis of branch prediction behavior. We have discussed it
here mainly to show how certain aspects of our modeling
can be used in other WCET analysis techniques. We have
not implemented the two-phase approach. We now present
experimental results for our ILP-based WCET analysis.

7. EXPERIMENTAL RESULTS
We selected eight different benchmarks for our experi-

ments (refer Table 1). Out of these benchmarks, check,
matsum, matmult, fft and fdct are loop intensive programs
where almost all the executed conditional branches are loop
branches. Among these programs, the fft program is chal-
lenging because its innermost loop has a variable number of
iterations. Thus the loop branch instruction of the inner-
most loop of fft is hard to predict.

We also chose three other programs: isort, bsearch and
eqntott. These programs execute large number of hard-to-
predict conditional branches arising from if-then-else state-
ments within nested loops. More importantly, the behav-
ior of the conditional branches arising from the if-then-else
statements are correlated in bsearch and eqntott. In fact,
eqntott was one of the benchmarks used in branch predic-
tion research to show the utility of global prediction schemes
(also called correlation-based prediction) [21]. Including
such programs into our benchmark suite allows us to test
the accuracy of our global branch prediction modeling.

7.1 Methodology

Processor Model.In our experiments we assumed a per-
fect processor pipeline with no data dependency and cache
misses, except for control dependency via conditional branch
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Benchmark Description No. of lines in source code
check Checks for negative elements in 100-element array 20
matsum Summation of two 100× 100 matrices 12
matmul Multiplication of two 10× 10 matrices 16
fft 1024-point Fast Fourier Transform 53
fdct Fast Discrete Cosine Transform 346

isort Insertion sort of 100-element array 28
bsearch Binary search of 100 element array 27
eqntott Drawn from SPEC’92 integer benchmarks 44

Translates Boolean equation to Truth table

Table 1: Description of benchmark programs.

instructions. More concretely, we assumed that all instruc-
tions (except conditional branches) take a fixed number of
clock cycles to execute. These assumptions, although sim-
plistic, allow us to separate out and measure the effect of
branch prediction on WCET. We assumed that the branch
misprediction penalty is 3 clock cycles (as in the Intel Pen-
tium processor). Needless to say, any other choice of mis-
prediction penalty can also be used.

Simulation Platform.To evaluate the accuracy of our anal-
ysis, we need to choose a target hardware platform so that
we can measure the actual WCET. Unfortunately, no single
hardware platform will allow us to measure actual WCET
for different branch prediction schemes. Therefore, we de-
cided to use the SimpleScalar architectural simulation plat-
form [2]. SimpleScalar instruction set architecture (ISA) is
a superset of MIPS ISA - a popular embedded processor. By
changing simulator parameters, we could change the branch
prediction scheme and measure the actual WCET. The pro-
grams were compiled for SimpleScalar ISA using gcc.

Finding Actual WCET.Given a branch prediction scheme
and a benchmark program, we attempted to identify the pro-
gram input that will generate the WCET. Once this input is
found, the actual WCET and worst case profile can be com-
puted via SimpleScalar simulation. Among the benchmarks,
matsum, matmult, fft and fdct have only one possible in-
put. Since the other programs have many possible inputs,
determining the worst-case input can be tedious. In these
programs, we used human guidance to select certain inputs
(which are suspected to increase execution time via mis-
predictions). We then simulated the programs with these
selected inputs and reported the profile for the input which
maximizes the execution time. The input that produces
this maximum observed execution time (called “Observed
WCET” in Table 2) is the “observed worst case input”.

Interestingly, for the same program, the observed worst
case input is different for different branch prediction schemes.
For example, in the insertion sort program isort, the ob-
served worst case inputs are (assuming a four entry predic-
tion table in all schemes): 〈100, 99, . . . , 2, 1〉 for gshare and
local schemes and 〈1, 100, 99, . . . , 2〉 for GAg scheme. Thus
in the GAg scheme, the effects of branch prediction make
the input 〈1, 100, 99, . . . , 2〉 perform worse than the longest
execution path resulting from 〈100, 99, . . . , 2, 1〉.
Tool for Estimating Mispredictions.We wrote a proto-
type analyzer that accepts assembly language code anno-
tated with loop bounds. Our analyzer is parameterized
w.r.t. predictor table size, choice of prediction schemes
and misprediction penalty. This makes our branch predic-

tion analyzer retargetable w.r.t. various processor micro-
architectures. The analyzer first disassembles the code, iden-
tifies the basic blocks and constructs the the control flow
graph (CFG). Note that we take care of procedure and func-
tion calls at this stage in the manner described in Section 4.2.
From the CFG, our analyzer automatically generates the ob-
jective function and the linear constraints. These constraints
are then submitted to an ILP solver. For our experiments,
we used CPLEX [5], a commercial ILP solver distributed by
ILOG.

7.2 Accuracy
To evaluate the accuracy of our branch prediction mod-

eling, we present the experiments for three different branch
prediction schemes: gshare, GAg and local. For this pur-
pose, we need the actual WCET of a program. As explained
earlier, this depends on the program input for some of our
benchmarks. Since finding the worst case input of a bench-
mark (which produces the actual WCET) is a human guided
and tedious process, we only measured the actual WCET for
all the benchmarks and all the prediction schemes assuming
a 4-entry prediction table. The results appear in Table 2.

In Table 2, the observed WCET is a lower bound on the
actual WCET which is obtained by SimpleScalar simulation
of the observed worst-case input. The estimated WCET is
an upper bound of the actual WCET which is computed by
our estimation technique. The observed (estimated) mispre-
diction count is the total misprediction count that produces
the observed (estimated) WCET. Our estimation technique
obtains a very tight bound on the WCET and misprediction
count in all benchmarks except fft. The reason is that the
number of iterations of the innermost loop of fft depends
on the loop iterator variable value of the outer loops. Hence
the relationship between the loop iterator variable values for
the different loops has to be inferred via data-flow analysis
of these variables [4]. This is currently not captured by our
technique which focuses on analyzing control flow.

For the benchmark programs with only one possible in-
put, we used SimpleScalar simulation to measure the actual
misprediction count for the gshare scheme with larger pre-
diction tables (upto 1024 entries). The estimation accuracy
of our technique (estimated count : actual count) with a 4-
entry prediction table is roughly the same as the estimation
accuracy with larger sized prediction tables. These numbers
are not shown due to space considerations.

7.3 Scalability
One major concern with any ILP formulation of WCET

is the scalability of the resulting solution. To check the scal-
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Pgm. gshare GAg local
WCET Mispred WCET Mispred WCET Mispred

Obs. Est. Obs. Est. Obs. Est. Obs. Est. Obs. Est. Obs. Est.

check 611 611 3 3 611 611 3 3 1196 1196 198 198
matsum 101,417 101,417 204 204 101,417 101,417 204 204 101,405 101,405 200 200
matmul 15,735 15,735 223 223 15,735 15,735 223 223 15,666 15,666 200 200
fdct 2493 2493 7 7 2493 2493 7 7 2484 2484 4 4
fft 214,874 222,335 3678 6165 214,034 219,365 3398 5175 216,227 219,302 4129 5154
isort 74,225 74,871 9687 9952 46,526 46,554 587 598 46,447 46,447 399 399
bsearch 104 104 9 9 104 107 9 10 95 98 6 7
eqntott 2311 2317 203 205 2308 2320 202 206 2311 2314 203 204

Table 2: Observed and estimated WCET (in number of processor cycles) and misprediction count with gshare,
GAg, and local schemes.

ability of our solution, we formulated the WCET problem
for the popular gshare scheme with branch prediction table
size varying from 4–1024 entries. Recall that in gshare, the
branch instruction address is XOR-ed with the global branch
history bits. In practice, gshare scheme uses smaller number
of history bits than address bits, and XORs the history bits
with the higher order address bits [19, 24]. The choice of
the number of history bits in a processor depends on the ex-
pected workload. In our experiments, we used a maximum
of 4 history bits as it produces the best overall branch pre-
diction performance across all our benchmarks. As Figure 3
shows, the number of variables generated for the ILP prob-
lem initially increases and then decreases. With increas-
ing number of history bits, number of possible patterns per
branch increases. But with fixed history size and increasing
prediction table size, the number of cases where two or more
branches have the same pattern starts to decrease. This sig-
nificantly reduces the number of pπi j variables.

Finally, Table 3 shows the time required by CPLEX to
optimize the objective function under the linear constraints
generated by our analyzer. On a Pentium IV 1.3 GHz pro-
cessor with 1 GByte of main memory, CPLEX requires less
than 0.11 second for all the benchmarks with prediction ta-
ble size varying from 4–1024 entries.
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Figure 3: Change in ILP problem size with increase
in number of entries in the branch prediction table
for gshare scheme

8. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a framework to study the ef-

fects of dynamic branch prediction on the WCET of a pro-
gram. To the best of our knowledge, it is the first work to
model local and global branch prediction schemes for WCET
analysis. Indeed, the only assumption made in our model-
ing is the presence of a single prediction table. In particular,
we use program analysis and micro-architectural modeling
to derive bounds on the misprediction count of conditional
branch instructions in a program. Using our technique, we
have obtained tight WCET estimates for benchmark pro-
grams under various branch prediction schemes.

There are several avenues for future research on this topic.
As discussed in Section 6.2, we plan to investigate the the
two-phase approach for estimating branch prediction behav-
ior. This work will be similar to the study for instruction
cache reported in [26]. It would be interesting to evalu-
ate the accuracy performance tradeoff for the two-phased
WCET analysis (as compared to the ILP based technique of
this paper). Also, note that our technique requires the loop
bounds of the program as user input. To automate this
process, one can either employ a specialized technique for
computing the loop bounds offline [10] or integrate the loop
bound estimation into the WCET analysis framework [17,
18]. Integrating the loop bound estimation into our frame-
work can significantly reduce the pessimism in our estimated
WCET for benchmarks such as fft.

In the area of micro-architectural modeling, we plan to
study other branch prediction schemes such as PAg [27].
This scheme uses two separate tables for branch prediction,
the effect of which cannot be modeled by the read/write of a
single global table. Extending our framework to model such
schemes will increase the applicability of our technique.

Finally, this work focused on modeling branch prediction
by assuming a perfect cache and a perfect pipeline where
the only stalls arise from branch misprediction. This initi-
ates the task of integrating branch prediction behavior with
other micro-architectural features (pipeline, cache etc.) for
analyzing WCET.
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