
1

Interacting Process Classes
Abhik Roychoudhury

National University of Singapore
Joint work with Ankit Goel and P.S. Thiagarajan

Visit to UNU-IIST May 29/30 2006

The problem addressed

z Reactive systems with many similar objects.
{Telecom -- Phones, Switches.
{Air-traffic controller -- Incoming aircrafts.
zExact # of objects not known at design time.

z Specify and simulate these systems without suffering
blow-up.
{Functional validation of the entire assembly at the

design level for a system with large # of (similar)
objects.

What kind of objects ?

z Active
{With a control flow of their own.
{A process

z Many similar objects in a system
{A process class
{Behavior of a process class described via LTS, but

the actions are “protocols”
zA (guarded) Message Sequence Chart is our

choice.
zDescription of “protocol” to not central.

Highlights - Simulation

z A symbolic execution semantics for a system with
process classes.
{Leads to space and time efficient simulation of

important use cases.
{State of concrete objects not maintained during

execution
zName space of objects is not referred
zObjects grouped into partitions dynamically

based on behavior.
• Partitions are created/merged during simulation.

Highlights - Modeling

z An MOC for reactive systems with many similar
processes.
{ A network of FSMs.
zOne for each “class” of similar processes.

{Interact on common “communication actions”.
zCommunication actions as Sequence Diagrams.

{The architecture of the system is given by class
diagrams.
zClass Associations.

Hasn’t it been studied ?

z Reasoning about Parameterized Systems
{Control abstractions for grouping processes,

without mentioning their names
z But, associations between processes ??
{Static (relation contents fixed during exec.)
zCruiser, Brake control of a car

{Dynamic (relation contents change during exec.)
zPhones engaged in a conversation

2

Any easy solutions?

z Simulate a system with lesser number of processes
per class
{10 phones, 20 switches instead of millions
{How to settle on the cutoff number for exposing

all behaviors of the general system
zHard for an arbitrary system with complex

interactions between processes
• Results exist for very restricted families of

systems – rings etc.

Relevant work

z Executable MSC based modeling languages
{ Live Sequence Chart [Damm/Harel/Marelly] is such an effort
{Only symbolic specification of process classes – blow

them up during simulation.
z Behavioral Sub-typing [Liskov&Wing, Niestratz,…]
{Originally studied for passive objects
{For active obj. use behavioral inclusion from PA
{Beh. Subclasses, not dynamically changing

partitions
z Parameterized System Validation: already discussed

MSCs --- Possible Behavior

user host display

on

green

The user may switch on the host following by the host turning the
display to green.

Illegal Behavior

user host display

on

green

Whenever the user switches on the host , the host must turn the
display to green.

How to specify such requirements?

Live Sequence Charts

on

green

user host display

on

green

user host display

Existential Chart Universal Chart

ok ok

View from MSC angle

z Message Sequence Charts
{ Scenarios in Sys. Execution --- Weak form of Requirement
{ Says what is possible, not what is not possible.

z Live Sequence Charts
{Executable Requirements based on MSCs
{ Centralized execution semantics which monitors all charts

in the specification.
{No support for Process Classes

z Interacting Process Classes
{Executable, with per-process semantics.
{Symbolic execution semantics to support classes.

3

Organization

zConcrete Execution Semantics
{Transactions – guarded MSCs

zSymbolic Execution Semantics
{Dynamically collecting processes of a class

into partitions based on their behavior so far
zChecking spurious execution traces
zExamples and Experiments

Example of a Process Class

Store

Erase

Txsnd

Txrcv

s1

s2
Role snd

TSNode

Role rcv

¬ ((ActNode) * Txsnd)

data

Transaction Tx

(ActNode) *

Concrete Execution Semantics

z Each action is a transaction
{Guarded MSC involving several processes.
{Executed atomically.

z Any execution trace of the system
{Sequence of MSCs.
zSynchronous Concatenation

z Guard of a MSC
{Locally evaluated per-process.

Concrete Execution

Store

Txsnd

Txrcv

Store

Txsnd

Txrcv

Tx

The number of nodes could be very large, consider

107 phones in a region of a telecom network

Symbolic Execution Semantics

{States of concrete processes not directly
represented

{Partition concrete processes of a process class
zCurrent control state
zHistory of MSCs executed

• different histories may lead to diff. futures
from the same control state.

• Regular expression over MSC alphabet.
{Maintain # of processes in each partition
zNo need to maintain identifiers of behaviorally

indistinguishable processes.

Symbolic Simulation

Store

Txsnd

Txrcv

Store

Txsnd

Txrcv

Tx

s1

s2

s1

s2

(s1 -> 2, s2 -> 0) (s1 -> 1, s2 -> 1)

More details due to handling of guards of Tx – not shown.

4

Handling of Guards

Txsnd, Erase

Txrcv Store

s1

s2

Erase, Store – No communication

Guards of Tx

∑* , ¬(∑* Txsnd)

∑ = {Erase,Store,Txsnd, Txrcv }

∑
t u1

Txsnd

Txsnd

¬Tx snd¬Tx snd

u2

Behavioral partitions
(s1, t, u1) (s1,t,u2) (s2,t,u1) (s2,t,u2)

snd rcv

∑* ¬ (∑* Tx snd)
Tx

Handling of Guards
Txsnd, Erase

Txrcv Store

s1

s2

∑
t

u1

Txsnd

Txsnd

¬Tx snd¬Tx snd

u2

One step of symbolic simulation
(s1, t, u1) = 100 (s1,t,u2) = (s2,t,u1) =(s2,t,u2) = 0

Tx

(s1, t, u1) = 98 (s1,t,u2) =1 (s2,t,u1) =1 (s2,t,u2) = 0

sender receiver

Behavioral Partitions

z Group processes of a class into “Behavioral
Partitions”
{Control state of Process class’s FSM.
{Automata states for each history-based guard of

the process class.
z Maintain count of processes in each behavioral

partition during simulation.
{Process names not mentioned anywhere.

The problem now is …

zPut two processes in the same partition
{When their computation trees are same …
zStrong kind of behavioral equivalence

{Just maintain count of processes in each
partition during simulation
zCounts change as the simulation proceeds ☺

{How to maintain assoc. between processes
zSystem state does not refer to process names /

Associations

Txsnd

Txrcv Acksnd

Dynamic relation Wait-for-Ack

Tx inserts (snd, rcv) to Wait-for-Ack

Ack checks (rcv,snd) ∈ Wait-for-Ack

Ack deletes (rcv,snd) from Wait-for-Ack
s

t1 t2

Ackrcv

Simulation

Txsnd

Txrcv Acksnd

Execute Tx

Ackrcv

s

t1 t2

Initially, s->100, t1 ->0, t2->0

s -> 98, t1 -> 1, t2 -> 1

In addition, maintain

Wait-for-ack = { (t1,t2) }

Maintain associations between behavioral partitions

5

More on Associations

z Dynamic (contents change during exec.)
{asc. between classes p,q maintained between behavioral

partitions (not objects) of p, q
zAll object asc in concrete exec reflected
zNot vice versa: incompleteness of execution semantics.

z Static (contents fixed during exec.)
{No need to maintain if asc. not checked during exec.
{Whenever a transaction guard requires an asc. between

two roles
zAssert relationship between corresp. beh. partitions

T1 T1 T2 T2

T3 T3 T3

CarCruiser Brake-Control

T1 played by Black Car

Abstract exec. allows spurious
traces

T1 checks itsCruiser association (static) in guard

T1 T1 T2 T2

T3 T3 T3

CarCruiser Brake-Control

T2 played by Red Car

Abstract exec. allows spurious
traces

T2 checks itsBrakeControl association (static) in guard

T1 T1 T2 T2

T3 T3 T3

CarCruiser Brake-Control

Which car will execute T3 ?

T3 can still execute in the
abstract execution, but …

We can then check that
T1,T2,T3 is a spurious run.

Abstract exec. allows spurious
traces

T1 checks itsCruiser association (static) in guard
T2 checks itsBrakeControl association (static) in guard
T3 checks both associations in guard

Checking simulation runs

z Decidable in our control abstraction setting.
{Process classes may contain unbounded objects.
{For predicate abstraction of data vars., accumulate

constraints from trace – constraints can refer to any
operation appearing in the program.

z To check run σ = T1,…,Tk
{ensure that σ is a concrete run in a sys. where a

process class p has at least X(p, σ) objects.
{X(p, σ) =
ztotal # of times p occurs in transactions Ti of σ

Checking simulation runs

z Construct cut-off num. X(p, σ) for each class p.
z Consider reduced system with X(p, σ) objects in each

process class p.
{ Reduces infinite state sys. to finite state sys.
{ Constructed to capture σ, not all behaviors.

z Find whether σ is an allowed behavior of reduced sys.
{Model checking is an option.
{ Fast, by exploiting symmetry reduction among objects.
{MC with inbuilt symmetry reduction --- Murphi.

z Check is used only when user suspects false +ve
{Only one spurious run among all test-cases of all our ex.

6

What do we have ?

But, the proof of the pudding is…

Modeled Examples

zNASA CTAS
{ Automation tools for managing large volume arrival air

traffic in large airports.
{ Final Approach Spacing Tool

zDetermine speed and trajectory of incoming aircrafts on
their final approach.

zMaster controller updates weather info. to “clients”
• controllers using inputs to compute aircraft

trajectories.
zModeled and simulated the Weather update subsystem

from Requirements Document.

Weather update Subsystem

CM

WCP
Clients

1

1
N1

1 1

0..N

connected
itsWCP

WCP -- Weather Control Panel

(contains weather info.)

CM -- Communications Manager

(transfers info from WCP to clients)

Clients – Weather aware, seek connection with CM

Symbolic Simulation

Connect

Snd_Init_Wthr

Rcv_Init_Wthr

INIT

Client
…

…

Rcv_Init_Wthr

…

…

CM

Symbolic Simulation

Connect

Snd_Init_Wthr

Rcv_Init_Wthr

INIT

Client
…

…

Rcv_Init_Wthr

…

…

CM

Client CM

yes

setstatus(3)

useNewWthr

a

Rcv_Init_Wthr

Experience
z Cuts simulation time/memory for diff. controllers
{CTAS weather update controller
zSimulator found realizable bugs in the examples
zDeadlock scenarios in CTAS weather controller

{Rail Shuttle system from Paderborn
zExamples for State + Seq. Diagram based
modeling
zController for a rail shuttle system where
shuttles bid for orders to transport
passengers in an interconnection network.

7

Experience

{Rail car (from Live Sequence Charts – modeled in
our MOC)
zPopularized as an benchmarks for executable

object modeling --- using Statechart or LSCs.
zMany cars operating in two parallel cyclic paths
zComplex System, many process classes + assoc.

• cars, cruisers, proximity sensors,
• Terminal, Carhandler …

{Telephone switch network (from SPIN’s
benchmark suite)
zCall-waiting, 3-way calling and other features in

tel. network

Simulation Results

Simulation stopped after 1000 transactions

189644.11.5CTAS
(20)

876321.5CTAS
(10)

69181.20.44Shuttle
(60)

33180.70.44Shuttle
(30)

153847.02.2Rail-car
(48 cars)

173833.92.1Rail-car
(24 cars)

Mem (S)
MB

Mem (C)
MB

Time (S)
secs

Time (C)
secs

Symbolic vs concrete execution Wrapping up
z Combining intra-component and inter-component style

to produce an executable spec.
z Avoiding blow-up in specification and execution of such

specs. due to many similar processes.
{Symbolic execution semantics
{Can check whether a exec run corresponds to a

concrete one.
z Many avenues for future work
{Hierarchy of process classes?
zWe only consider a collection of process classes

{Abstraction refinement based Model Checker?
{Test Generation

Ongoing work- Test Generation

z Conventional Model-based Testing
{Generate tests from state diagram models
{Test-spec. often given as MSC.
{Test case defined as sequence of events.

zOur proposal
{Use executable MSC based models (IPC)
{Test-spec. given as sequence of transactions (MSCs)
zT1,…,Tn

{Generated test is an exec trace in IPC model
zA seq. of MSCs containing T1,…,Tn as a subsequence

Witness Test Generation

zGiven seq. of transactions T1,…,Tn
{Find an exec. trace (seq. of tx.) in the IPC

model which contains T1,…,Tn as subseq
{Model check F(T1 ∧ F(T2 ∧ … F(Tn)…))
zInefficient with standard search strategies
zDFS --- long witnesses, BFS --- inefficient time/space
zCannot just feed in the problem to a MC

{Developed search strategies based on A* search
zDirected search --- choosing a node to expand

depending on estimated distance to “goal”
zEmployed on graph defined by our symbolic exec.

semantics.

8

Experience

zMedia-Oriented Systems Transport
{Protocol for managing comm. between diff

multimedia devices in a car network.
{Maintained by MOST co-operation
zBMW, Daimler-Chrysler,…

{Req. document gives per-process flow and
system scenarios as MSCs
zSubstantial modeling effort: 4 process classes

with 53 transactions in our IPC model.
zTest gen. for coverage and witness generation.

References

z Interacting Process Classes
{Intl. Conf. on Software Engineering (ICSE) 2006.

z Communicating Transaction Processes
{A. Roychoudhury and P.S. Thiagarajan

z Lectures on Concurrency and Petri Nets 2003, LNCS
3098, pages 789-818 .
zAppl. of Concurrency in System Design (ACSD) 03

z Symbolic simulation tool
{ http://www.comp.nus.edu.sg/~ankit/simulator
{ Examples designs/models available.

