
1

MSR Visit, Jan 4 2007 1

Memory Model Sensitive
Bytecode Verification

Abhik Roychoudhury
National University of Singapore

Joint work with T.Q. Huynh

MSR Visit, Jan 4 2007 2

An example
Initially : A = 0, flag = 0

A = 1;

flag = 1;

while (flag == 0) {};

print A;
||

Expected value = 1

Possible printed values {0, 1}
The two threads are executed on different processors.
The processors allow out-of-order execution (as long as
data dependencies are not violated).

MSR Visit, Jan 4 2007 3

Sequential Consistency

||

Op1;

Op2;

Op’ ;

Op’’ ;

Programmer expects statements within a thread to
complete in program order: Sequential Consistency

1. Each thread proceeds in program order
2. Operations across threads are interleaved

Op1 Op’’ Op2 Op’ violates SC

MSR Visit, Jan 4 2007 4

Is this a problem ?

Programmers expect SC
Verification techniques assume SC

All existing model checkers assume SC
Not demanded by C# lang. spec.

Violation of SC on real platforms leads to
unexpected results in “verified” programs
“C# Memory Model” weaker than SC

YES !!

MSR Visit, Jan 4 2007 5

Hardware memory model

Defines the values that can be returned
by a shared variable read operation
Constrains the reordering of memory
accesses to same/different locations
Eliminates the gap between
programmer’s expectation and actual
system behavior

MSR Visit, Jan 4 2007 6

Relaxed HW memory models

SC disallows compiler/hw optimizations.
Relaxed memory models allow different
level of memory operation reorderings

Never violate program dependencies

Examples: TSO < PSO < WO < RC

Processor 1 Processor 2

flag = 1; while (flag == 0) NOP;

A = 1; print A; [A = 0]

2

MSR Visit, Jan 4 2007 7

Multithreaded Java/C#

SC TSO RC

Bytecode

A=1 A=0 A=2

Violates platform independence guarantee

MSR Visit, Jan 4 2007 8

Language level Memory Model

Software memory consistency model
Defines the set of all possible behaviors of a
multithreaded Java/C# program on any
implementation platform
Provides platform independence for multithreaded
Java/C# programs on shared memory multiprocessors
More relaxed than SC to provide compiler/ hardware
optimizations opportunities

MSR Visit, Jan 4 2007 9

Compiler

Multithreaded Pgm.

VM

(Introduce barriers ?)

Hardware MM

(Abstraction of
multiprocessor)

Bytecode

…

Should
respect

language
level MM

MSR Visit, Jan 4 2007 10

What is the impact on verification

Programmers expect SC
Program verifiers use SC

Platform provides a weaker guarantee
C# Memory Model
Lot of work possible in designing MM, impact of
candidate MM on multiproc. performance!

How to enforce language level MM on platforms

MM sensitive program verification
Language level MM contract between programmer
and compiler/hardware designers.

MSR Visit, Jan 4 2007 11

Could we avoid the problem…

… instead of solving it? Try pgm
modifications which can be automated

Re-ordering of operations within a thread
should not be visible to other threads.
Threads communicate via shared variables.

Explicitly insert memory barriers between shared
variable accesses, or indirectly
Enclose shared variable accesses with locks which
typically flush out incomplete operations.

MSR Visit, Jan 4 2007 12

Is such a simple solution feasible?

NO !!
Inserting memory barriers between all
shared ops. causes big loss of performance.

Also barrier insertion should be done
automatically

Synchronizing all shared variable accesses is
done by many programmers, but

Programmers may avoid synch. overhead
May forget to synchronize (Common problem)

3

MSR Visit, Jan 4 2007 13

Wait a minute, volatile variables ?

Languages like C# allow variables to be
marked as volatile

Accesses to a volatile variable accesses its
“master copy”, but overheads lower than
synchronization.

Vol rd/wr claimed to have “lock
acquire/release semantics”

So, why not mark all shared variables as
volatile ?

MSR Visit, Jan 4 2007 14

Volatiles do not work

C# language spec. allows
Write A → Read B re-orderings for vol. vars.
A, B
Not exactly acquire-release semantics !!

C# implementations (.NET 2.0) allow such
re-orderings, confirmed by our
experiments.

MSR Visit, Jan 4 2007 15

Approach (1)

Formally specify bytecode re-orderings within
a thread allowed by (informal) C# MM spec.

Mem. Model may change later --- which opt.
allowed?

Effect of compiler opt. reflected already in bytecode.
Should the MM spec. be executable ?

MSR Visit, Jan 4 2007 16

Approach (2)

Use the formal MM spec. to build a bytecode
checker for invariant properties

Error detection: non-SC counter-example traces
not traversed by traditional model checkers.
Error Correction: Use minimal # of barriers to
remove all non-SC counterexample traces.

MSR Visit, Jan 4 2007 17

Bytecode re-orderings

Reorder
1st bytecode Read Write Volatile Read Volatile Write Lock Unlock
Read Yes Yes Yes No Yes No
Write Yes Yes Yes No Yes No
Volatile Read No No No No No No
Volatile Write Yes Yes Yes No Yes No
Lock No No No No No No
Unlock Yes Yes Yes No No No

2nd byte code

Op1: X = 1

Op2: read Y X,Y are marked as volatile variables

Op2 may be completed before Op1
MSR Visit, Jan 4 2007 18

Such re-orderings do matter

lock0=1
turn=1
while(1){

if(lock1!=1)or(turn==0)
break;

}
counter++;
lock0=0

lock1=1
turn=0
while(1){

if(lock0!=1)or(turn==1)
break;

}
counter++;
lock1=0

Initially lock0 = 0; lock1=0; turn=0

Mutual exclusion of Peterson’s ensures counter = 2 at end of execution.

On .NET 2.0 even with all shared vars. as volatile yields counter =1

4

MSR Visit, Jan 4 2007 19

Bytecode re-orderings

Divide bytecodes into types (based on
opcode)

Read, Write, Volatile-read, V-Write, Lock, Unlock
Simply define a matrix which captures the
pair of re-orderings allowed

Non-executable specification which needs to be
consulted by model checker during search.
More accessible to non FM-ers, but still
Completely Formal.

MSR Visit, Jan 4 2007 20

Bytecode level invariant checker

After specifying re-orderings, to-do list
Managing out-of-order exec during traversal

Role of re-ordering matrix
Explicit-state Bytecode level MC

Architecture similar to JPF for Java
Fixing the non-SC counterexamples produced

Using mincut algorithm on state transition graph.

MSR Visit, Jan 4 2007 21

Managing out-of-order exec

Manage this within a model checker.
Split execution of a bytecode into issuing
and completing stages

Issuing bytecode in-order
Completing bytecode may not be in-order
Maintain a list of incomplete bytecodes
Use re-ordering matrix to check which incomplete
bytecode can be completed at the current state.

MSR Visit, Jan 4 2007 22

Example

Write a; Read b;
Possible Execution

Schedule write to a
• Incomplete actions: [wr a]

Schedule read of b
• Incomplete actions: [wr a, rd b]

Can complete rd now, if wr -> rd re-ordering OK.

MSR Visit, Jan 4 2007 23

States

One state consists of
Image of the heap
Threads’ local variables, stacks
Threads’ program counter
Threads’ incomplete actions

Each transition is either issuing a
bytecode or complete an incomplete one

MSR Visit, Jan 4 2007 24

Transitions

Executing a bytecode
Completes immediately

• (branching/arithmetic/comparison/synchronization)

Schedule an incomplete action
• (read/write/lock/unlock)

Complete an incomplete action

Explicit-state bytecode level reachability analysis

5

MSR Visit, Jan 4 2007 25

(Lot of) Search Optimizations

Avoid re-ordering of thread local transitions
within a thread, for example.
What is thread-local ?

The transition operates on data not
accessible by other threads

Local data of a thread
Heap data only reachable by the thread

• Use program analysis methods – “Escape Analysis”

MSR Visit, Jan 4 2007 26

Using the checker

Given an inv. (should hold for all reachable
states)

Find all violating states reached under SC
(without re-orderings)

Suppose, none.
Find all violating states reached using re-
orderings

Suppose, VS = { s1, …, sk}
Disable minimal # of transitions to prevent
executions from reaching VS

MSR Visit, Jan 4 2007 27

From error detection to correction

C# memory model allows
more states than S.C.
Only a subset of states
violate a property
Enforcing S.C. is too
inefficient
We should disallow the
trace to go to the shaded
states only.

Sequentially
Consistent

C#
Memory
Model

Set of states that violate the
user’s invariant property

MSR Visit, Jan 4 2007 28

Error Correction: Memory barriers

Processor 1 Processor 2

A = 1; while (flag == 0) NOP;
BARRIER (W↑)
flag = 1; print A; [A = 1]

How to avoid a particular re-ordering
Barriers between two operations
enforce program order

Non-intuitive to manually insert these.

MSR Visit, Jan 4 2007 29

Disabling unwanted states

Initial state

•White states are only reachable under sequential consistency.
•Black states can be reached under C#/.NET memory model.
•Disable minimal re-orderings to avoid reaching violating states.
•Achieved by maxflow-mincut algorithm

•Weight of solid edges = infinity
•Weight of dashed edges = 1

Violates
invariant}

MSR Visit, Jan 4 2007 30

Sample Programs

Benchmark Description # bytecode
peterson Peterson's Mutual exclusion algorithm 120
tbarrier Tournament barrier algorithm 153
dc Double-checked locking pattern 77
rw-vol Read-after-Write Java volatile semantic test 92
rowo Multiprocessor diagnostic tests ARCHTEST (ROWO) 87
po Multiprocessor diagnostic tests ARCHTEST (PO) 132
iw1 Independent workers problem 1 102
iw2 Independent workers problem 2 105
rw Two readers-single writer lock algorithm 161
bb Bounded buffer/Producer-consumer problem 252

6

MSR Visit, Jan 4 2007 31

Experimental results

Benchmark #states #transitions time(s) #states #transitions time(s) #Barriers
peterson 903 2794 0.91 881 2697 0.9 3
tbarrier 1579 5812 1.51 801 2641 1.5 3
dc 228 479 0.31 150 272 0.36 1
rw-vol 1646 5616 2.02 1613 5458 2.06 4
rowo 1831 4413 1.41 1776 4231 1.36 2
po 6143 22875 7.71 6091 22595 7.64 6
iw1 14886 67589 22.81 246 557 0.59 0
iw2 92613 285430 86.53 353 560 0.63 0
rw 7762 28310 8.82 6851 22119 7.48 0
bb 16072 51447 25.11 1704 4048 2.08 0

Normal With POR

MSR Visit, Jan 4 2007 32

Summary

Memory Models for Prog. Languages
Traditionally not considered in MC

Capture re-orderings at bytecode level.
Specifying them as a re-ordering matrix

Look-up matrix during explicit-state MC
Use MC to find “violating” states which would
not be reached under SC

Repair concurrency bugs using mincut algorithm

Bytecode level MM sensitive verification

MSR Visit, Jan 4 2007 33

References

A Memory Model Sensitive Checker for C#,
T.Q. Huynh and A. Roychoudhury, FM 2006.

http://www.comp.nus.edu.sg/~release/mmchecker

Impact of Java Memory Model on Out-of-order Multiprocessors,
T. Mitra, A. Roychoudhury, Q. Shen, PACT 2004.
Specifying Multithreaded Java Semantics for Program
Verification,
A. Roychoudhury and T. Mitra, ICSE 2002.
Reasoning about Hardware and Software Memory Models
A. Roychoudhury, ICFEM 2002.

