
1

ICLP'02 Tutorial - Copenhagen 1

Program Transformations for
Automated Verification

Abhik Roychoudhury
(National University of Singapore)

I.V. Ramakrishnan
(State University of New York at Stony Brook)

ICLP'02 Tutorial - Copenhagen 2

An Example
even(0). even(s(s(X))) :- even(X).

odd(s(0)). odd(s(s(X))) :- odd(X).

strange(X) :- even(X), odd(X).

strange(s(s(X))) :- strange(X).

even(0). even(s(s(X))) :- even(X).

odd(s(0)). odd(s(s(X))) :- odd(X).

Transform

ICLP'02 Tutorial - Copenhagen 3

Proof by transformations

n We can run a routine syntactic check on the
transformed definition of strange/1 to prove
∀X ¬ strange(X)

n Tabled evaluation of the query strange(X) is
one such check.

ICLP'02 Tutorial - Copenhagen 4

Transformation: Unfolding

B :- G, A, G’

A1 :- Bd1

…

An :- Bdn

(B :- G, Bd1, G’)σ1

…

(B :- G, Bdn, G’)σn

A1 :- Bd1

…

An :- Bdn

σ i = mgu(A, A i)

Clauses defining A

Unf

2

ICLP'02 Tutorial - Copenhagen 5

Transformation: Folding

A1 :- Bd1

….

An :- Bdn

*
B :- G, Bd1 θ1 , G’

….

B :- G, Bdn θn , G’

B :- G, A, G

FoldA1 θ1 = … = An θn = A

Clauses defining A

ICLP'02 Tutorial - Copenhagen 6

In slow motion …

strange(0) :- odd(0).

strange(s(s(Y))) :- even(Y), odd(s(s(Y))).

strange(X) :- even(X) , odd(X).

strange(s(s(X))) :- even(X), odd(s(s(X))).

Unf(resolution step)

Unfold

even(0).

even(s(s(Y))) :- even(Y).

odd(s(0)).

odd(s(s(Y))) :- …

ICLP'02 Tutorial - Copenhagen 7

In slow motion…

strange(s(s(X))) :- even(X), odd(s(s(X))).

strange(s(s(X))) :- even(X), odd(X).

strange(s(s(X))) :- strange(X).

Fold using

Unfold

odd(s(0)).

odd(s(s(Y))) :- odd(Y)

strange(X) :- even(X),odd(X).

ICLP'02 Tutorial - Copenhagen 8

Salient points

n We consider only definite logic programs.
n Semantics considered is the Least Herbrand Model.

n Unfolding corresponds to one step of resolution.
n Folding corresponds to

n Remembering definitions from previous programs.

n Recognizing instances of such definitions

3

ICLP'02 Tutorial - Copenhagen 9

Organization

n Traditional issues in transformations
n Transformations for deduction – Basics
n Features of Transformation proofs
n Verifying infinite state reactive systems
n Experimental work
n Ongoing research directions

ICLP'02 Tutorial - Copenhagen 10

Transform for efficiency

da(X, Y, Z, R) :- append(X,Y,I), append(I,Z,R).

da([], Y, Z, R) :- append(Y, Z, R).

da([H|X1], Y, Z, [H|R1]) :- da(X1, Y, Z, R1).

(Unfold|fold) *

Avoids construction/traversing of list I.

ICLP'02 Tutorial - Copenhagen 11

Transform for efficiency
n Application of unfold/fold transformations leads to:

n Deforestation (removal of intermediate data-
structures)

n Tupling (Avoiding multiple traversals of same data
structure)

n Unfold/fold rules form heart of program specialization
techniques: Conjunctive partial deduction.

n Extensive literature on this topic, outside our scope.

ICLP'02 Tutorial - Copenhagen 12

Folding is reversible ?

p :- r, s

q :- u,v, r,s

p :- r, s

q :- u,v, p

p :- r, s

q :- u,v,r,s

Only if all clauses participating in folding appear in
the same program.

⇓

Least Herbrand Model preserved by any
interleaving of unfolding and (reversible) folding.

4

ICLP'02 Tutorial - Copenhagen 13

Need irreversible folding

da(X,Y,Z,R) :- append(X,Y,I), append(I,Z,R).

da([],Y,Z,R) :- append(Y,Z,R).

da([H|X1],Y,Z,[H|R1]) :- append(X1,Y,I1), append(I1,Z,R1).

da([],Y,Z,R) :- append(Y, Z, R).

da([H|X1],Y,Z,[H|R1]) :- da(X1, Y, Z, R1).

Unf*

Fold

ICLP'02 Tutorial - Copenhagen 14

Correctness Issues

p:- r

q :- r.

r.

p :- q.

q :- r.

r.

p :- q.

q :- p.

r.

fold fold

Irreversible folding does not preserve semantics.

Circularities introduced; reduces Least Herbrand Model.

ICLP'02 Tutorial - Copenhagen 15

Correctness issues

p :- Bd1, Bd2 p :- q, Bd2

fold

1. Show α(q) < α(p) for a measure α and wfo <

2. Can be achieved if α(q) < α(Bd1) < α(p)

3. α(q) < α(Bd1) is typically ensured by

- Restricting syntax of q, and book-keeping during txf.

4. Restrictions on syntax are in fact unnecessary.

q:- Bd1

p :- … *

ICLP'02 Tutorial - Copenhagen 16

Organization

n Some traditional issues in transformations

n Transformations for deduction – Basics

n Distinctive Features of Transformation proofs
n Verifying infinite state reactive systems

n Experimental work
n Ongoing research directions

5

ICLP'02 Tutorial - Copenhagen 17

Recap of Example
even(0). even(s(s(X))) :- even(X).

odd(s(0)). odd(s(s(X))) :- odd(X).

strange(X) :- even(X), odd(X).

strange(s(s(X))) :- strange(X).

Transform

Proves ∀X ¬ strange(X)

ICLP'02 Tutorial - Copenhagen 18

Uncovering schema

strange(X) :- even(X) , odd(X).

strange(0) :- odd(0).

strange(s(s(Y))) :- even(Y), odd(s(s(Y))).

Prove by inducting on the scheme of even/2

Unfold

even(0).

even(s(s(Y))) :- even(Y).

ICLP'02 Tutorial - Copenhagen 19

Base case of proof
strange(0) :- odd(0).

strange(s(s(X))) :- even(X), odd(s(s(X))).

strange(0) :- fail.

strange(s(s(X))) :- even(X), odd(s(s(X))).

Prove ¬ strange(0)

Unfold

odd(s(0)).

odd(s(s(Y))) :- …

ICLP'02 Tutorial - Copenhagen 20

Initiating induction step

strange(0) :- fail.

strange(s(s(Y))) :- even(Y), odd(s(s(Y))).

strange(s(s(Y))) :- even(Y), odd(Y).

The inductive step: X = s(s(Y))

Unfold

odd(s(0)). odd(s(s(Y))):- odd(Y).

6

ICLP'02 Tutorial - Copenhagen 21

Recognize Induction Hyp.

strange(s(s(Y))) :- even(Y), odd(Y).

strange(s(s(Y))) :- strange(Y).

Recall strange(X) :- even(X), odd(X) in P init

Finally, run a syntactic check on strange/1

Fold using strange(X) :- even(X),odd(X).

ICLP'02 Tutorial - Copenhagen 22

Unfold/fold for deduction
n Transform p and q s.t. p ≡ q can be inferred by a

computational induction of their definitions.
n Unfolding : Base case and finite part of induction step

n Folding: Recognize induction hypothesis.
n Infer p ≡ q based on syntax, if after transformation:

n p(0). q(0).
n p(s(X)) :- p(X). q(s(X)) : - q(X).

n Can define a testable notion of syntactic equivalence
based on this idea.

ICLP'02 Tutorial - Copenhagen 23

Organization

n Some traditional issues in transformations

n Transformations for deduction – Basics

n Features of Transformation proofs
n Verifying infinite state reactive systems

n Experimental work
n Ongoing research directions

ICLP'02 Tutorial - Copenhagen 24

A generate-test program

gen([1|_]). gen([H|X]) :- gen(X).

test([]). test([0|X]) :- test(X).

gentest(X) :- gen(X), test(X).

gen: Generates strings with 1

test : Tests for 0*

Prove ∀X ¬ gentest(X)

7

ICLP'02 Tutorial - Copenhagen 25

A look at induction schemes

ACL2 (first-order theorem prover) produces the
schema obtained from gen/1

nX = []

nX = [H|T] ∧ H =1
nX = [H|T] ∧ H ≠ 1 ∧ ¬ gen(T)

nX = [H|T] ∧ H ≠ 1 ∧ ¬ test(T)

Merge ?

Redundant

gen([1|_]).

gen([H|T]) :- gen(T).

ICLP'02 Tutorial - Copenhagen 26

Proof by transformations

gentest([1|X]) :- test([1|X]).

gentest([H|X]) :- gen(X), test([H|X]).

gentest(X) :- gen(X), test(X).

gentest([1|X]) :- false.

gentest([H|X]) :- gen(X), test([H|X]).

ICLP'02 Tutorial - Copenhagen 27

Proof by Transformations

gentest([1|X]) :- false.

gentest([H|X]) :- gen(X), test([H|X]).

gentest([1|X]) :- false.

gentest([0|X]) :- gen(X), test(X).

…
ICLP'02 Tutorial - Copenhagen 28

Unfold/fold induction schemes
n In any unfold/fold based proof of p ≡ q

n Schema to induct is created gradually by
unfolding.

n Inbuilt Unification, spurious cases ignored (X = [])
n Since the schema is gradually constructed,

unnecessary case splits may be avoided

n Scheme is still obtained from program predicates.
Idea traces back to recursion analysis used in Boyer-
Moore prover to generate schemes.

8

ICLP'02 Tutorial - Copenhagen 29

Not so Inductionless
n Induction scheme in an unfold/fold proof is not given

a-priori. It is constructed :
n From recursive definition of program predicates

n Gradually via unfolding
n Contrast with inductive techniques which do not

require any scheme (Inductionless Induction)

n Given axioms P (our pgm) and first-order
axiomatization A of the minimal Herbrand model
of P, property Ψ holds iff Ψ ∪ A ∪ P is consistent.

ICLP'02 Tutorial - Copenhagen 30

Other techniques - Tabling
Folding is achieved by remembering formulae.

p :- q.

p :- r, s.

w:- …

w:- Bd, q.

w:- Bd, r,s.* w:- Bd, p

1. Tabled evaluation of logic programs combines
unfolding with tabulation of atoms.

2. Detection of tabled atom succeeded not by
folding, but feeding existing answers. (Answer
clause Resolution)

ICLP'02 Tutorial - Copenhagen 31

Other techniques - Rippling
n Takes in induction schema and rewrites induction

conclusion.
n Rewrite induction conclusion to obtain complete

copies of the induction hypothesis. Restricts rewrite
rules for this purpose.

n Unfold/fold proofs do not input explicit schema.
n The strategies for guiding unfolding are not

necessarily similar to rippling. The purpose is
however similar: create opportunities for folding.

ICLP'02 Tutorial - Copenhagen 32

Organization

n Some traditional issues in transformations

n Transformations for deduction – Basics

n Distinctive Features of Transformation proofs
n Verifying infinite state reactive systems

n Experimental work
n Ongoing research directions

9

ICLP'02 Tutorial - Copenhagen 33

Overall perspective
n Transition relation of finite/infinite state system

captured as (constraint) logic program.
n Temporal properties captured as logic program preds

n Checking of temporal properties of finite state
systems then proceeds by query evaluation.

n Due to loops in the state transition graph of the
systems being verified
n Memoized query evaluation is needed.

n Ensures termination

ICLP'02 Tutorial - Copenhagen 34

Overall perspective
n Classes of infinite state systems can be verified by

query evaluation of constraint logic programs
n Real-time systems

n Systems with integer data and finitely many
control locations

n What about infinite families of finite state systems
(parameterized systems) ?

ICLP'02 Tutorial - Copenhagen 35

Model Checking …

efp(S) :- p(S).

efp(S) :- trans(S,T), efp(T).

trans(s0,s1).

trans(s0,s2).

trans(s2,s1).

p(s1).

p

s0

s1

s2

s0 = EF p

ICLP'02 Tutorial - Copenhagen 36

… by Query Evaluation
Check s0 = EF p by evaluating query efp(s0)

:- efp(s0)

:- trans(s0,X), efp(X):- p(s0)

:- fail :- efp(s1)

:- p(s1)

Explicit state Model Checking

efp(S) :- p(S).

efp(S) :- trans(S,T), efp(T).

trans(s0,s1).

trans(s0,s2).

trans(s2,s1).

p(s1).

10

ICLP'02 Tutorial - Copenhagen 37

Parameterized systems

……

p

p

p

0

1 0

n
n-1

0

Verify EFp in start state of each member of the family

Infinite family of finite state systems e.g. occur
widely in distributed algorithms

ICLP'02 Tutorial - Copenhagen 38

Query Eval is not enough

Verify EFp in start state of each member of the family

efp(X) :- p(X).

efp(X) :- trans(X, Y), efp(Y).
Deduce ∀X nat(X)⇒efp(X)

Model Checking by Query Evaluation

nProves property for individual members
:- efp(1).

nEnumerates members for which property holds
:- efp(X).

ICLP'02 Tutorial - Copenhagen 39

Verify via Transformations
n Prove ∀ X nat(X) ⇒ efp(X) by induction on the

structure of nat/1. (computational induction)
n nat/1 defined as

n nat(0). nat(s(X)) :- nat(X).
n efp/1 should include the clauses

n efp(0). efp(s(X)) :- efp(X).

n Achieved by transforming efp/1.

ICLP'02 Tutorial - Copenhagen 40

Recap on induction
n Unfolding

n Base case (Model Checking)
n Initiating induction step

n Folding
n Recognizing instance of induction hypothesis

n Use structural induction on transformed def.

11

ICLP'02 Tutorial - Copenhagen 41

Verify parameterized systems
n Encode temporal property/ parameterized system as

a logic program P0

n Convert verification proof obligation to a predicate
equivalence proof obligation p ≡ q in P0

n Construct a transformation sequence P0,…,Pk

n Semantics of P0 = Semantics of Pk

n Can infer p ≡ q in Pk via a syntactic check.

ICLP'02 Tutorial - Copenhagen 42

Is it any different ?
n Prove temporal property EF p about inf. family st

n Encode property EFp as predicate efp

n Induction step is efp(st(N)) ⇒ efp(st(N+1))

n Temporal property EFp (denoting reachability) is
encoded by efp/1 predicate
n efp(X) :- p(X). efp(X) :- trans(X,Y), efp(Y).

n Recognizing induction hypothesis efp(st(N)) may
involve folding using the predicate efp

n Such a folding is semantics preserving ? NOT known

ICLP'02 Tutorial - Copenhagen 43

Correctness of folding
n Irreversible folding reduces Least Herbrand model

n p :- q → p :- p

n q. q.

n Preservation of Least Herbrand Model proved by
induction on some measure of ground atoms.

n To let this induction go through
n Unexpected restrictions imposed on syntax of clauses

participating in folding.

n Book-keeping maintained at each unfold/fold step.
Restrictions on book-keeping of transformed clauses.

ICLP'02 Tutorial - Copenhagen 44

Restrictions on syntax
p :- Body

q :- G, Body, G’ q :- G, p, G’→

1. Can introduce circularity if p = q

2. Prevented by demanding p < q in a measure α

3. Show α(p) < α(Body) < α(q)

4. Places syntactic restrictions on Body

12

ICLP'02 Tutorial - Copenhagen 45

Remove such restrictions
n Attach measures to both clauses and atoms

n Atom measure denotes proof size.
n Relate atom and clause measures. For a clause

A :- Body with integer annotations (γ, γ’)
n γ, γ’ bound α(A) – α(Body)
n Clause measures are updated in every step.
n Conditions on α now ensured by imposing

restrictions on clause measures γ
n No restriction on syntax. More general rules.

ICLP'02 Tutorial - Copenhagen 46

Organization

n Some traditional issues in transformations

n Transformations for deduction – Basics

n Distinctive Features of Transformation proofs
n Verifying infinite state reactive systems

n Automation and Experimental work
n Summary and Ongoing Research

ICLP'02 Tutorial - Copenhagen 47

Verifying Invariants
n Verify an invariant � ¬ bad in a parameterized

system (Initial states: init/1, Transitions: trans/2)
n None of the initial states satisfy bad/1

n Also, ¬bad
bad

Both proved by induction on term (process) structure

∀X (init(X) ∧ bad(X) ⇒⇒ false)

∀X,Y (trans(X,Y) ∧ bad(Y) ⇒⇒ trans(X,Y) ∧ bad(X))

ICLP'02 Tutorial - Copenhagen 48

Mutex in token ring

init([0,1). init([0|X]) :- init(X). // initial states

trans(X, Y) :- t1(X,Y). // pass token along chain

trans([1|X],[0|Y]) :- t2(X,Y). // pass token along the end

t1([0,1|T], [1,0|T]). t1([H|T], [H|T1]):- t1(T,T1).

t2([0], [1]). t2([H|X], [H|Y]) :- t2(X,Y).

bad([1|X]) :- one_more(X). bad([0|X]) :- bad(X).

one_more([1|_]). one_more([0|X]):- one_more(X).

bad_dest(X, Y) :- trans(X, Y), bad(Y).

bad_src(X, Y) :- trans(X, Y), bad(X).

13

ICLP'02 Tutorial - Copenhagen 49

Verifying Invariants

n ∀X (init(X) ∧ bad(X) ⇒⇒ false)
n Define bad_init(X) :- bad(X), init(X).

n Transform bad_init/1 to show bad_init ⇒ false

n ∀X,Y (trans(X,Y) ∧ bad(Y) ⇒⇒ trans(X,Y) ∧ bad(X))
n Define bad_dest(X, Y) :- trans(X, Y), bad(Y).

n Define bad_src(X, Y) :- trans(X, Y), bad(X).

n Transform bad_dest/2 and bad_src/2 to show
bad_dest ⇒ bad_src

ICLP'02 Tutorial - Copenhagen 50

The proof structure

p(X,Y):- trans(X,Y), bad(Y). q(X,Y):- trans(X,Y), bad(X).⇒

p([a|X], [b|Y]) :- p(X, Y).

p([b|X], [a|Y]) :- p1(X, Y).

p([a|X], [a|X]) :- bad(X).

⇒
q([a|X], [b|Y]) :- q(X, Y).

q([b|X], [a|Y]) :- q1(X, Y).

q([a|X], [a|X]) :- bad(X).

p1 ⇒ q1 proved by transformations

Transform

ICLP'02 Tutorial - Copenhagen 51

Nested induction
n Nested induction proofs simulated by nesting

predicate equivalence proof obligations.
n A proof of p ≡ q needs lemma p1 ≡ q1. This lemma

is again proved by unfold/fold.
n Proof of top-level obligation terminates when all such

encountered lemma are proved.
n Geared to automate

n Nested induction proofs, where

n Each induction needs no hypothesis strengthening.

ICLP'02 Tutorial - Copenhagen 52

Proof search skeleton
p ⇒ q

Unfold* Unfold*

Fold* Fold*

Transformed p, q

………..

p1⇒q1

Nested Induction

p2⇒q2
pk⇒ qk

14

ICLP'02 Tutorial - Copenhagen 53

Unfold-fold-unfold ….
n Nesting of proofs leads to

n Interleaving of unfolding and folding steps
n Unfolding – Algorithmic verification steps
n Folding – Deductive Verification steps

n Compare to theorem prover invoking model checker
as decision procedure : Tighter Integration.

n Opposite approach. Extends the evaluation technique
of a model checker with limited deduction.

ICLP'02 Tutorial - Copenhagen 54

State-of-the art
n Model Checker invoked by Theorem Prover.

n Current model checkers check M |= Φ and return
n Yes if M |= Φ

n Counterexample trace/tree otherwise

n Instead, we let our logic programming based model
checker return a full-fledged justification [PPDP 00]

n Recent efforts in verification community to let a
model checker return proof/disproof. [CAV, FST&TCS 01]

Proof/disproof manipulated by Theorem Prover. But !

ICLP'02 Tutorial - Copenhagen 55

More on integration
n Feeding model checking proof/disproof into provers

n Advances state-of-the art in integration

n Coarser integration than ours: TP/MC steps not interleaved

n LP forms uniform representation which both model
checking and deductive proof steps can manipulate.

n Deductive steps (folding etc.) can be applied lazily
n Reduces to model checking for finite state systems

n No additional overhead for theorem proving

ICLP'02 Tutorial - Copenhagen 56

Guiding unfolding
n To prove p ⇒ q, unfold before fold. Many issues in

guiding the unfolding search itself.
n Criteria for guiding unfolding

n Termination (Memoization based techniques)

n Convergence (Excessive unfolding should not disable
deductive steps)

n Selection order (Left-to-right)

n Recall, deductive steps applied only on-demand.
n Need to avoid unfolding steps which disable folding.

15

ICLP'02 Tutorial - Copenhagen 57

Need more than termination

thm(X) :- state(X), prop(X).

thm(f(X)) :- state(X), prop(f(X)).

thm(f(X)) :- state(X), prop(X).Folding enabled

1. Termination guided unfolding does not detect this.

2. Costly to check for applicable folding in each step.

……….

ICLP'02 Tutorial - Copenhagen 58

Under the carpet
n Heuristics to identify unfolding steps which are likely

to disable opportunities for folding.
n Verify � ¬ bad of (init/1, trans/2) by transformations:

n Exploit generate-test nature of predicates to be transformed

n ∀X,Y (trans(X,Y) ∧ bad(Y) ⇒⇒ trans(X,Y) ∧ bad(X))

n bad_dest(X, Y) :- trans(X, Y), bad(Y).

n bad_src(X, Y) :- trans(X, Y), bad(X).

TEST: Unfolding cannot
generate instantiationsGENERATE

ICLP'02 Tutorial - Copenhagen 59

Implementation of prover
n A program transformation based prover

implemented on top of XSB tabled LP system.
n Good for inductive proofs without strengthening.

n Used for inductive verification of invariants for
parameterized networks.

n In these proofs, domain knowledge exploited as:
n Generate-test nature of the problem helps identify

redundant unfolding steps

n Topology of the parameterized network (Linear, Tree etc)
used to choose nested proof obligations after transformation

ICLP'02 Tutorial - Copenhagen 60

Case Studies
n Parameterized versions of multiprocessor cache

coherence protocols
n Berkeley-RISC, MESI, Illinois (bus based protocols)

n Also studied before by other verification techniques

n A multi-bus hierarchical tree network of cache agents

n Client-server protocol by Steve German
n Well-studied benchmark in last 2 years : 2001-2002

n Java Meta-Locking Algorithm (Sun Microsystems)
n Ensures mutual exclusion of object access by Java threads

16

ICLP'02 Tutorial - Copenhagen 61

Some numbers

Protocol Invariant Time #unf #ded

Mesi

Berkeley

Illinois

Java
Metalock

Client-
server

Reader-writer excl.

<2 dirty cache lines

<2 dirty cache lines

Mutual exclusion in
object access

<2 exclusive clients

2.9

6.8

35.7

129.8

308 63

503 146
2501 137

1981 311

8.8 404 204

ICLP'02 Tutorial - Copenhagen 62

Organization

n Some traditional issues in transformations

n Transformations for deduction – Basics

n Distinctive Features of Transformation proofs
n Verifying infinite state reactive systems

n Automation and Experimental work
n Summary and Ongoing Research

ICLP'02 Tutorial - Copenhagen 63

Summary
n Predicate equivalences can be proved by induction on

recursive structure (computational induction).
n Unfold/fold transformations make the applicability of

such inductive arguments explicit.
n Verification problem for infinite state reactive systems

can be turned into showing predicate equivalences…
n … hence solved by unfold/fold transformations.
n Different from the traditional usage of

transformations in improving program efficiency.

ICLP'02 Tutorial - Copenhagen 64

Related work
n Hsiang-Srivas [1985]

n The need to suspend Prolog evaluation
n Extend Prolog evaluation with “forward chaining

using certain clauses” (limited folding)
n Kanamori-Fujita [1986]

n Use of computational induction schemes to prove
universal formulae about Least Herbrand Model.

n Uses transformations s.t. suggested computational
induction schemes are easily proved.

17

ICLP'02 Tutorial - Copenhagen 65

Related work
n Pettorossi-Proietti [1993]

n Unfold/fold transformations to prove equivalence
of atoms/predicates

n Applications in program synthesis
n Our work [1999]

n Use transformations for inductively proving
properties of infinite state reactive systems.

n Cleaner, more general folding rule
n Tightly integrates model checking and induction

ICLP'02 Tutorial - Copenhagen 66

Ongoing Work
n Extend the transformation rules and strategies to

constraint logic programs

n Enables verification of larger class of reactive
systems – parameterized real-time systems

n Combine limited hypothesis strengthening with the
inductive proofs of invariants based on unfold/fold
n Generate strengthened hypothesis from the failure

of a unfold/fold based inductive proof
n Corresponds to top-down invariant strengthening

ICLP'02 Tutorial - Copenhagen 67

???

