Symbolic Execution of
Behavioral Requirements

Tao Wang, Abhik Roychoudhury,
Roland Yap, S.C. Choudhary

National University of Singapore

PADL 2004, Dallas, USA _

Message Sequence Charts

P
Controller Resource

request

status

PADL 2004, Dallas, USA

Live Sequence Charts

user host display
Pre-chart<_

Legal exec of Body
green I green
lyellow
Body Chart ? yellow

Ired
?green

2red

PADL 2004, Dallas, USA -

Visual Requirements

» Constructed prior to system
implementation
— Early stages of system design
— Suitable for reactive systems
Possible scenarios in system execution
— Message Sequence Charts or
— Sequence Diagrams (UML)

PADL 2004, Dallas, USA

Problem with MSCs

» Weak form of requirement

— System components typically known, but their
interaction is understood during design

— Describes possible behaviors in the early
stages of design, but

— Does not restrict problematic behaviors.

 Live Sequence Charts

— Damm and Harel 2001.

PADL 2004, Dallas, USA

Live Sequence Charts

Universal Charts (NEW !)

—1In system behavior ...

— ... an exec. of the pre-chart must be
eventually followed by an exec. of body chart

Existential Charts (not discussed here!)

— There exists system behavior ...

— ... an execution of pre-chart followed by body
chart occurs

PADL 2004, Dallas, USA _

Requirements Spec. A Violation !

* A collection of Universal Charts
— Temporal properties
A pre-defined alphabet E of events
Represents

— Any sequence of events drawn from E which
does not violate any universal chart.

Checking requirements
— Inconsistencies among temporal properties
— Called in LSC literature.

PADL 2004, Dallas, USA -

PADL 2004, Dallas, USA

Contributions Search

» A symbolic simulation engine for detecting
violations in LSC specifications

— Constraint Logic Programming

» Detecting violations amounts to search.
— Trigger a user-provided event and search
through the possible enabled events.
« Allow for simulation of LSC spec. with —Exec. of a universal chart can spawn other
variables with instantiating them (B A SanE) U EEE, Grat.
— Data variables (exchanged values) * Given a collection of Univ. Charts

— Control variables (process instances) — All possible execution sequences may not
. . . . violate any chart.
— Timer variables (timing constraints)

PADL 2004, Dallas, USA - PADL 2004, Dallas, USA _

No Violation Violation !

PADL 2004, Dallas, USA PADL 2004, Dall

Key Observation Data variables
 Existing LSC engine (Harel & Marelly)
— Allows variables in spec. (data, control, timer)
— Variables forcibly instantiated to concrete
values during simulation.

CLP based exec. engine

Any one can occur first.

No need for X to be ground

. when these events occur.
— Variables instantiated during simulation only if
so required by specification.

— Potentially unbounded number of scenarios
simulated in one go.

PADL 2004, Dallas, USA _

PADL 2004, Dallas, USA

Data Variables Collections of processes
 Existing LSC play engine —— _ 4
— Fix one of the occurrences of X as “first”) “ft(_x) S lelts
occurrence (even if no unique “first”). >

— First occurrence provides concrete value
which is then propagated.

req(D), X > 2
Using CLP
— No need to fix a “first” occurrence.

— Un-instantiated variables allowed.

PADL 2004, Dallas, USA PADL 2004, Dallas, USA

Control Variables Simulation — (1)
« Parameterized process lift(X) e R
— Denotes many process instances [
 Existing LSC play engine
— Concretely generate all possible process
instances for universally quantified X
— Many copies of the same active LSC.
* Our approach

— Maintain finitely many partitions of X based on
behaviors.

PADL 2004, Dallas, USA !

Simulation — (2) Basic Idea

user e Symbolic exec of parameterized process
rea(up) <= classes
— Constraints symbolically represent partition.
user controller 100, X2 — Interval constraints used in implementation
() “ — All instances of the same partition have
exhibited the same behavior so far.
— Each partition gets split further as exec.
progresses.

» Do not realize concrete processes !
And soon ...

req(up), X>2

PADL 2004, PADL 2004, Dal

Timing Constraints Test based approach

switch light .. .
& » Reduce timing constraints to tests
— User triggers execution (Time= 0 and frozen)
— Minimal enabled events exec. repeatedly.
» Events may get stuck due to timing constraints
{ TiMe=T+1) — Progress time after system response.
« Example: Light waits at least 1 time unit
— Events stuck earlier become enabled
- » Check whether timing constraint is now satisfied.
{\Tlme >[T+2

* Instead use separate variables for snapshots ...

PADL 2004, Dallas, USA PADL 2004, Dallas, USA _

Symbolic Exec. approach Advantages

light

light
Constraint store:

Time0 =0 A
Timel > TimeO /A

How do we
T=Timel A == simulate this LSC
with the test based
approach ?
Time2> T+1 A

Time2 >Timel A\

PADL 2004, Dallas, USA

PADL 2004, Dallas, USA

For more ..

Summary

» Check out the web-site mentioned in the » Behavioral Requirements
paper.

— MSCs and related diagram types
Symbolic simulation tool implemented in — Most suitable for reactive systems
ECL”,D,SE,' — Need simulation tools to play out
— Verification not supported.

. .) — Symbolic simulation (CLP) allows playing out
» Experiments using published benchmarks many diagrams in one shot.
— Railcar example, Netphone example

: — Also, allows simulation of specifications not
— 0.1 second on 750 MHz Ultrasparc lll to find allowed by non-symbolic techniques.
one violation free path.

PADL 2004, Dallas, USA ! PADL 2004, Dallas, USA _

