Generating Protocol Converters from
jL§cenario—baseo|8pecifications

P.S. Thiagarajan

Tuan-Anh Tran

National Univ. of Singapore

and Vera A. Zvereva

State Univ. of St. Petersburg,

Russia

A typical desired situation

ConTrol

Achieved by ...

Or, even better if ...

Seamless

Communication

The problem

= Re-use of existing components for large scale system
level design.

= Enabling communication among components a must

= Components supplied by different vendors
— Interface behavior is documented in some form.
— Interfaces of different components may not be suitable
for plug-and-play !

= Need to synthesize interconnect fabric.

The actual situation

Da'ra
Con'rr‘ol Con'rr'ol

Sender Receiver

Converter

Interface Interface

Known approach

= Describe behaviors of interface of each component
as an FSM.

= Construct product of interface FSMs to get protocol
converter as an FSM where

— Action names in product FSM replaced by dual
— ?a never precedes !a [Passerone et. al DAC98]

= Powerful enough to take care of
— Disparate component alphabets
— Incompatible action sequences
= Storage capability of the converter plays a role.




An Example

:D> i
ok D

What are the tasks of the converter here ?

A converter

2D

Sender Receiver
Interface Interface

A converter

?ready

2D
O

Sender Receiver
Interface Interface

A converter

2D

Sender Receiver

Interface
Interface

A converter

2D

Sender Receiver
Interface Interface

A converter

2D

Sender Receiver
Interface Interface

Allowing this behavior may require storing D




Is this enough ?

= The example protocols refer to only one “episode”
between two components

— Transfer of data D

= Extensions:
— Protocols among multiple components
= Take the product of all the interface FSMs
— Protocols spanning several episodes
= Runs of infinite length in each native
= All episodes combined in FSM [Pas

= Can we think about the problem per-episode ?

Describing an episode

D

Collection of Message Sequence Charts (MSCs)

Converter for an episode

= Produce output signals

e

M
request

Protocol conversion, but
= ... an episode at a time.

— Getting a per-episode inter-component description
from the interface of each component

= Flow between episodes captured as a graph
— Using the inter-component description for

= Protocol conversion of a single episode

= Protocol conversion for a graph of episodes

= In this paper
— The protocol conversion problem.

Converter for an episode

= Consume input signals

Converter for an episode

= Receive and Forward Shared signals

Additional capabilities exist, more on this later




One possible converter

?ready States of converter >

Progress in MSCs of individual
processes

But isn't this similar to the intra-component approach?

More on protocol description

= Definition of Edge N1 — N2 in the transition sys.

— Asynchronous concatenation

— One process may enter episode N2 even when other
processes are still executing N1.

— Only bounded overtaking enforced in our descriptions.

= Bounded by loop sizes
= A process cannot enter an episode N if a previous copy
of N is still active.

= Alternative notion: Synchronous Concatenation
— All processes synchronize after each episode.

Converter for episodes

Is it now any easier to link up the converters for
each episode ?

Protocol description
- Each node is an episode,
involving several components

After N1, all processes make a consistent choice.
simply construct product of projections

Converter for Episodes
= Converter for each episode
— Can be viewed as an FSM
— Soups up communication of the converter with

different processes
= Bit messy to link up converters for episode sequences in
presence of asynchronous concatenation

= Alternative view for an episode’s converter
— Multi-threaded program with threads T,,..., T,
= One thread for each component in the protocol
— Thread T; communicates with component P;
— Do the converter threads need to communicate ?
= For the shared signals, such as ...

Converter for Episode Graph
= Linking up converters of nodes of G, by
— Preserving the structure of G.

m Sequence N1 >N2
— Link up converter threads of N1 with converter
threads of N2
— Allows asynchronous concatenation

= Branching: Consistent choice by all processes
— Choice can be resolved at run-time.

= Loops
— Bounded overtaking among converter threads




Implementation Example : Split Transfers

Episode graph
structure

Converter Path thru Episode
Generator graph

Component Views (SystemC)

Convenér (SystemC) sYSTemC
Simulation kernel

Simulation run

Sample simulation trace Our work

= How to describe
— Inter-component interactions and their episodes

How to synthesize

— Component interfaces/converters
= Interface for one episode
= Interface for entire episode graph

— Clock sensitivities and timers (handle timeouts etc)
= Brings in synchronicity into our asynch. description

Modeling and converter synthesis for various
features of System-on-Chip Bus protocols.

More aggressive converters Future Work

= Extensions to converter capabilities
— Data formatting (chopping/merging packets)

= Synthesizing the episodes and episode graph from
the SystemC description of component interface

— SystemC — Inter-component models — SystemC

— Currently looking at conformity of a given episode
graph with SystemC description of interfaces .

Speculatively generate shared signals even before
they are received - integrated into our impl.

But, cannot speculate on data values
s, t could be data signals




