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Examples

decision treeclustersassociation rulesstructure of the model 
or pattern

Our focus in the next two 
lectures

data management 
technique

greedygradient 
descent

breadth first with 
pruning

search /optimization 
method

accuracy, 
information gain

square errorsupport, confidencescore function

classificationclusteringrule pattern discoverytask

ID3K-meansApriori
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Tree-Structured Indexing

Tree-structured indexing techniques support 
both range searches and equality searches

index file may still be quite large.  But we 
can apply the idea repeatedly! 

Data 
pages
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B+ Tree:  The Most Widely Used Index

Height-balanced. 
Insert/delete at log F N cost (F = fanout, N = # 
leaf pages); 

Grow and shrink dynamically.
Minimum 50% occupancy (except for root).  

Each node contains d <=  m <= 2d entries.  The 
parameter d is called the order of the tree.

`next-leaf-pointer’ to chain up the leaf nodes.
Data entries at leaf are sorted.
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Example B+ Tree

Each node can hold 4 entries (order = 2)

2 3

Root

17

24 30

14 16 19 20 22 24 27 29 33 34 38 39

135

75 8
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Node structure

P0 K 1 P 1 K 2 P 2 K m P m

index entry
Non-leaf nodes

Leaf nodes

P0 K 1 P 1 K 2 P 2 K m P m Next leaf 
node
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Searching in B+ Tree

Search begins at root, and key comparisons 
direct it to a leaf 
Search for 5, 15, all data entries >= 24 ...

Based on the search for 15*, we know it is not in the tree!

Root

17 24 30

2 3 5 14 16 19 20 22 24 27 29 33 34 38 39

13
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Inserting a Data Entry into a B+ Tree
Find correct leaf L.
Put data entry onto L.

If L has enough space, done!
Else, must split L (into L and a new node L2)

Redistribute entries evenly, copy up middle key.
Insert index entry pointing to L2 into parent of L.

This can happen recursively
To split index node, redistribute entries evenly, but 
push up middle key.  (Contrast with leaf splits.)

Splits “grow” tree; root split increases height.  
Tree growth: gets wider or one level taller at top.
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Inserting 7 & 8 into Example B+ Tree
Root

2 3 5 7 14 16 19 20 22 24 27 29 33 34 38 39

2 3 5 7 8

5

(Note that 5 is copied up and

continues to appear in the leaf.)

17 24 3013

17 24 3013

Observe how minimum 
occupancy is 
guaranteed in both leaf 
and index pg splits.
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R-Tree Index Structure

A spatial database consists of a collection 
of objects representing spatial objects, 
where each object has a unique identifier, 
which can be used to retrieve it.
An R-tree is a height-balanced tree similar 
to a B-tree, with index records in its leaf 
nodes containing pointers to data objects.
Nodes correspond to disk pages if the 
index is disk-resident.
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We will transverse 
through the R-Tree 
to give some idea of 
its structure

R-tree:Structure(I)
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R1

We first move to the 
first layer of the R-
tree which consist of 
the two nodes R1
and R2.

R2

R-tree:Structure(II)
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R1

Then we move to 
the second layer 
under node R1 which 
consist of node R3, 
R4 and R5

R2

R3
R4

R5

R-tree:Structure(III)
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R1

Then we move to 
the third layer under 
node R3 which 
consist of node R8, 
R9 and R10

R2

R3
R4

R5

R-tree:Structure(III)
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Assuming we want 
to find all objects 
lying within the 
yellow query box Q1

R-tree:Searching(I)

Q1
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R1

We first move to the 
first layer of the R-
tree and observe 
that the Q1 intercept 
both R1 and R2.

R2

R-tree:Search(II)

Q1
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R1

Then we move to 
the second layer of 
both R1 and R2 and 
observe that the 
query box only 
intercept node R3, 
R4 and R5. Thus we 
will not access the 
children of R6 and 
R7.

R2

R3
R4

R5

R-tree:Search(III)

Q1
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R1

Then we move to 
the third layer under 
R3, R4, R5 and find 
the only R10,R11, 
R12, R13 and R14
intercept Q1. Thus 
we will only 
access the data 
objects under 
these five nodes

R2

R3
R4

R5

R-tree:Search(IV)

Q1
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Maintenance of R-tree
Very much like the maintenance of B+ Tree. 
Take average O(log n) to search, insert and 
delete.
Concern when splitting nodes: Need to 
ensure that the bounding box have the 
smallest area
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NN Search Problem

Given a point p，find its nearest neighbor 
from all points of database.
Eg：

Find the nearest hotel to some theater
Find the nearest star to some space point
Find the most similar picture to some given 
picture
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Naïve Algorithm
Compare point by point

min = ∞
Pick a random point q from the data set,
return the distance between them
If the distance is less than min, update min

Obviously, not efficient
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Improved algorithm

Construct a index such as R-tree for the 
data
To prune off those MBRs which can never 
contain a nearest neighbor.
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R-tree: Finding Nearest Neighbor
First problem to be solve:

Given a query point p and a 
minimum bounding rectangle 
(MBR), find an upper bound
and lower bound for the 
distance r such that there 
exists at least one point in 
the MBR that is within a 
distance of r from p.

Why ?
To facilitate some form of 
ranking to prune off 
uninteresting MBRs
Eg. we can prune off MBR3 and  
MBR4.

MBRp

r

distance

MBR1 MBR3MBR2 MBR4
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R-tree: Finding Lower Bound(MINDIST)

MBR(R)

p

mindist

p mindist

p

mindist

∑
=

−=
n

i
ii rpRpMINDIST

1

2||),(

=ir {
;iii spifs <

;iii tpift >

;otherwisepi

t1s1

s2

t2

Note: p is located at 
(p1,p2) i.e p1 and p2 are 
the x-y coordinates!
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R-tree: Finding Upper Bound(I)

Most trivial solution: Find 
the point in MBR which is 
furthest away
But we can do better 
with a certain 
observation!

MBR(R)

p

maxdist

t1s1

s2

t2
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R-tree: Finding Upper Bound(II)

Important observation: Every face of any 
MBR should contains at least one point in 
the DB. 

MBR(R)

assuming this is the 
leftmost point

then left border can 
be shifted here
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R-tree: Finding Upper Bound(II)

Important observation: Every face of any 
MBR should contains at least one point in 
the DB. 

MBR(R)

assuming this is the 
leftmost point
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R-tree: Finding Upper Bound(III)

We can now find a better upper 
bound based on this property.

MBR(R)

p

t1s1

We know that there 
is at least one point, 
q, along this face. 
How do we obtain 
the maximum 
distance between p
and q ? 

s2

t2

Answer: Assume q is 
here

q
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R-tree: Finding Upper Bound(IV)

Find the upper bound MINMAXDIST by 
performing the following steps:

For each face of the MBR, pick the location q
that is furthest away from p and insert 
dist(p,q) into a set QSET
Pick the minimum out of QSET to be 
MINMAXDIST, the upper bound for r such 
that there exist at least one point q from the 
MBR such that dist(p,q)<=r
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Actual Calculation of MINMAXDIST
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1
min

MBR(R)

p

t1s1

s2

t2

minimum of this 
two distance

(t1+s1)/2

(t2+s2)/2

i
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R-tree: Example
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Search ordering:
MINDIST: optimistic
MINMAXDIST: pessimistic.

Search pruning:
Downward pruning: An MBR R is discarded if there exists 
another R’ such that 

MINDIST(P,R) > MINMAXDIST(P,R’)

Downward pruning: An object O is discarded if there exists an R 
such that 

ACTUAL-DIST(P,O) > MINIMAXDIST(P,R)

Upward pruning: An MBR R is discarded if an object O is found 
such that 

MINDIST(P,R)>ACTUAL_DIST(P,O)

1-NN Algorithm for R-tree(I)
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1-NN Algorithm for R-tree(II)
best first traversal of the nodes in the 
R-tree. 
A heap is maintained for storing every 
MBR
The algorithm maintains a variable Best
which is initially set to ∞ and are updated 
later
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k-Nearest Neighbors

Definition: Given a query point p, and a distance 
function dist(), let qk be a point in the database 
such that 

count( {q| dist(p,q) < dist(p,qk), q ∈D} ) = k-1

The k-nearest neighbors of p are all points q such 
that dist(p,q) <= dist(p,qk)

p

qk

k=10
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R-tree: Finding k-Nearest Neighbors
First problem to be solve:

Given a query point p and a 
minimum bounding rectangle 
(MBR), find an upper bound
and lower bound for the 
distance r such that there 
exists at least one point in 
the MBR that is within a 
distance of r from p.

Why ?
To facilitate some form of 
ranking to prune off 
uninteresting MBRs
Eg. if k=2, we can prune off 
MBR4.

MBRp

r

distance

MBR1 MBR3MBR2 MBR4
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k-NN Algorithm
Keep a sorted buffer of at most k current 
nearest neighbors
Pruning is done according to the distance 
of the furthest nearest neighbor in this 
buffer
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Reverse Nearest Neighbors
The reverse nearest neighbors of a point p, RNN(p) are 
those points which have p as their 1-nearest neighbor
Example: RNN(p)={r,t}, RNN(s)={p} i.e. s is the 
nearest neighbor of p, RNN(u)={s}

pr
s

t

u
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RNN: Potential Applications
FedEx Drop-off Points: Who are the customers who 
have a particular FedEx drop-off point as their 
nearest drop-off point.
Competitors Analysis: Does my video shop have a 
lot of reverse neighbors ?
Data Mining: Spatial reasoning

Which location in the data space have the most RNN ? 
=> most dense point
What does it mean if NN(p) is not in RNN(p) ? What 
does it mean if NN(p) is in RNN(p) ?
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Introduction(I)
On-line text searching(=sequential 
searching)

involves finding the occurrences of a pattern 
in a text when the text is not preprocessed.
is appropriate when the text is small
is the only choice if the text collection is very 
volatile  (i.e. undergoes modifications very 
frequently), or the index space overhead 
cannot be afforded.
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Introduction(II)
Indexed searching

builds data structures over the text(called indices) to 
speed up the search.
is appropriate when the text collection is large and 
semi-static

Semi-static collection : is updated at reasonably regular 
intervals but are not deemed to support thousands of 
insertion of single words per second.

Indexing techniques
inverted files, suffix arrays, and signature files
Consider search cost, space overhead, and cost of 
building and updating indexing structures
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Introduction(III)
Indexing technique

Inverted files
Word oriented mechanism for indexing a text collection
Composed of vocabulary and occurrences
are currently the best choice for most application.

Suffix arrays
are faster for phrase searches and other less common 
queries.
are harder to build and maintain.

Signature files
Word oriented index structures based on hashing
were popular in the 1980s



47

Introduction(IV)
Indexed structure

Trie
sorted arrays, binary search tree, B-tree, hash table, etc.

Notations
n: the size of the text database
m: pattern length
M: amount of main memory available

Stop Words
a list of words considered to have no indexing value 
Ex.  a, an, any, the, to , with , from , for , of , that, who
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Trie
The term trie comes from the word "retrieval". 
Is pronounced, "tree." 

Tries were introduced in the 1960's by Fredkin.
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Structure of a trie
A trie is a k-ary position tree.
It is constructed from input strings, i.e. the input is a 
set of n strings called S1,S2,...,Sn, where each Si
consists of symbols from a finite alphabet and has a 
unique terminal symbol which we call $.
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Kinds of tries 
1 Non compact tries. 
2 Compact tries. 
3 "PATRICIA" Tries: even more compact. 
4 Suffix tries. 
5 Suffix trees. 
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Non compact tries
every edge of the underlying 
tree represents a symbol  
construct the trie
from: the 
following 5 
strings: 

BIG, 
BIGGER, 
BILL, 
GOOD, 
GOSH. 

Look for:
GOOD
BAD 
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Compact tries 
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Compact tries
Non compact trie compact trie
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Inverted Files(I)
Definition

A word-oriented mechanism for indexing a  
text collection in order to speed up the 
searching task.

Two elements 
Vocabulary

The set of all different words in the text.
Occurrence

For each word a list of all the text positions where 
the word appears.
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Inverted Files(II)
A sample text and an inverted index built 
on it

This  is  a  text.  A  text  has  many  words.  Words  are  made from  letters 
1       6   9 11     17 19    24   28       33         40       46   50       55      60       

letters
made
many
text
words

60…
50…
28…
11, 19…
33, 40…

Vocabulary Occurrence

inverted index

text
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Inverted Files(III)
Required space 

The space required for the vocabulary is rather small.
The occurrences demand much more space.
Block addressing 

reduces space requirements.
The text is divided in blocks, and the occurrences point to 
the blocks where the word appears(instead of the exact 
position).
Block division 

The division into blocks of fixed size improves efficiency at 
retrieval time.
The division using natural cuts(files, documents, web pages) 
may eliminate the need for online traversal.
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Inverted Files(IV)
The sample text split into four blocks

This  is  a  text.  A  text  has  many  words.  Words  are  made from  letters 
block 1               block 2                   block3          block 4                   

letters
made
many
text
words

4…
4…
2…
1, 2…
3…

Vocabulary Occurrence

inverted index

text
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Inverted Files(V)
Sizes of an inverted file: 

Addressing
256 blocks

Addressing 
64K blocks

Addressing
documents

Addressing
words

Index

18%

27%

19%

45%

Small collection
(1 Mb)

Large collection
(2 Gb)

Medium collection
(200 Mb)

0.7%0.5%2.4%1.7%25%

9%5%32%18%41%

47%26%32%18%26%

63%35%64%36%73%
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Searching(I)
Three General search steps

Vocabulary search
The words and patterns present in the query are isolated 
and searched in the vocabulary.

Retrieval of occurrences
The lists of the occurrences of all the words found are 
retrieved.

Manipulation of occurrences
The occurrences are processed to solve phrases, proximity, 
or Boolean operations.
If block addressing is used, it may be necessary to directly 
search the text to find the information missing from the 
occurrences.



61

Searching(II)
Single-word queries

Be searched using any suitable data structure to 
speed up the search, such as hashing, tries O(m), or 
B-trees.

Prefix and range queries can be solved with binary search, 
tries, or B-trees, but not with hashing.

Context queries
Each element of query must be searched separately 
and a list generated for each one.
The lists of all elements are traversed to find places 
where all the words appear in sequence(for a 
phrase) or appear close enough(for proximity).



62

Searching(III)
Block addressing

It is necessary to traverse the blocks for 
these queries, since the position information 
is needed.
It is better to intersect the lists to obtain the 
blocks which contain all the searched words 
and then sequentially search the context 
query in those blocks.
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Construction(I)
Building an inverted index for the sample 
text (Fig 8.3)

This  is  a  text.  A  text  has  many  words.  Words  are  made from  letters 
1       6   9 11     17 19    24   28       33         40       46   50       55      60       

letters: 60
made: 50

many: 28
text: 11,19

words: 33,40

‘l’
‘m’ ‘a’

‘d’

‘n’‘t’

‘w’
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Construction(II)
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Other Indices for Text
Suffix trees and suffix arrays

Suffix tree is a trie data structure built over all the 
suffixes of the text (a string that goes from one text 
position to the end of the text)
Suffix arrays are a space efficient implementation of 
suffix trees

Signature file
Word-oriented index structures based on hashing
Low space overhead, search complexity is linear
Problem: false drop
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Suffix Trees and Suffix Arrays
Suffix 

Each position in the text is considered as a text suffix.
A string that does from that text position to the end to the 
text
Each suffix is uniquely identified by its position

Advantage
They answer efficiently more complex queries.

Drawback
Costly construction process
The text must be readily available at query time
The results are not delivered in text position order, 
but in a lexicographical order



68

Suffix tree
Structure
– The suffix tree is a trie structure built over all the 
suffixes of the text 

• Points to text are stored at the leaf nodes
– The suffix tree is implemented as a Patricia tree (or 
PAT tree), i.e., a compact suffix tree

• Unary paths (where each node has just one child) 
are compressed
• An indication of next character (or bit) position to check are 
stored at the internal nodes

– Each node takes 12 to 24 bytes
– A space overhead of 120%~240% over the text size
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Tries called "PATRICIA"
The compact trie can be even more compacted. 

Tries called "PATRICIA" 
"PATRICIA" stands for "practical algorithm to 
retrieve information coded in alphanumeric". 
different from the previous trie, an edge can 
be labeled with more than one character. 

Hence, all the unary nodes will be collapsed.
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Tries called "PATRICIA"
Collapsing process
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Tries called "PATRICIA"
compact trie PATRICIA trie
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Suffix trie
The idea behind suffix 
TRIE is:

assign to each symbol in a 
text an index 
corresponding to its 
position in the text. 
For example:

TEXT: G O O G O L $
POSITION: 1  2 3  4 5 6 7

To build the suffix TRIE we 
use these indices instead 
of the actual object. 
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Suffix tree
The suffix tree is created by TRIMMING (compacting + 
collapsing every unary node) of the suffix TRIE 

Suffix trie Suffix tree

search "GO“, return: GOOGOL$,GOL$
Search “OR”, return NIL
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Suffix tree
The suffix trie and suffix tree for the 
sample text

This  is  a  text.  A  text  has  many  words.  Words  are  made from  letters 
1       6   9 11     17 19    24   28       33         40       46   50       55      60       

60

50

28
19

11
40

33

‘l
’ ‘m

’

‘a’
‘d
’
‘n
’‘t’

‘e’ ‘x
’

‘t’
‘’

‘.’‘w
’ ‘o

’
‘r’ ‘d

’
‘s’

‘’

‘.’

suffix trie

1 3

5

6

60
50

28
19

11
40

33

suffix tree
‘l
’ ‘m

’
‘t’

‘w
’

‘d
’‘n
’

‘’
‘.’

‘’
‘.’

position of the next
character to check

one pointer stored for 
each indexed suffix
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Suffix array

Search lgorithm can use a log2n, to find 
word place in the table. 
For example, if "GOOD" is in the text then it 
is between 4 and 1. Looking up the string 
corresponding to suffixes 4 and 1 in the text 
we see that "GOOD" is not in it. 
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Suffix Arrays
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Suffix Arrays: Supra indices
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Suffix Arrays: Supra indices
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Signature files(I)



81

Signature files(II)
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Signature files(III)
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Signature files(IV)
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Signature files(V)
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