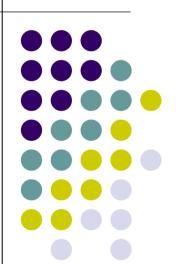
Similarity Search: A Matching Based Approach

Anthony Kum Hoe Tung National University of Singapore atung@comp.nus.edu.sg



Joint Work with

Rui Zhang

Nick Koudas

Beng Chin Ooi

University of Melbourne

University of Toronto

National University of Singapore

About my research interest

Techniques

- Association rules discovery
- Sequential Pattern Discovery
- Cluster analysis
- Outlier Detection
- Classifier Building
- Data Cube/Data Warehouse Construction
- Visualization ...

Applications

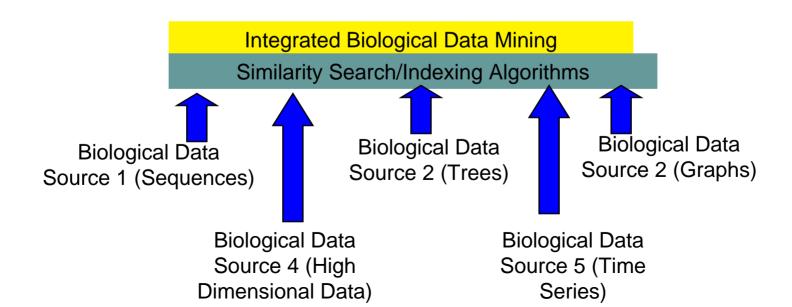
- Spatial Data Mining
- Biological Data Mining
- Personal Information Management

Principles/ Foundation

- Database Technology:
 - Indexing, Compression, Data Structure
- Al/ Machine Learning
- Statistics
- Information Theory
- •Theoretical CS:
 - Approximate, Random, Online Algorithms
- Mathematical Programming
- Computational Geometry ...

About My Research (II)

- Why similarity search?
 - Distance function is a core issue in data mining. Without a good way
 to judge what is similar/dissimilar, no effective mining can be done
- As such, my research focus for the past few years have been focus on similarity search for high dimensional data, sequences, trees and graphs
- Eventually, mining algorithms can be developed on top of them for application such as integrated mining of biological data, personal information management etc



About My Research (III)

- Sequences
 - "Indexing DNA Sequences Using q-grams". Best Paper Award. DASFAA 2005
 - Indexing Mixed Types for Approximate Retrieval, VLDB'06
- Trees
 - "Similarity Evaluation on Tree-structured Data". SIGMOD'05
- Graphs
 - On going!
- Time Series
 - SpADe: On Shape-based Pattern Detection in Streaming Time Series." ICDE'07
- High Dimensional Data
 - LDC: Enabling Search By Partial Distance In A Hyper-Dimensional Space.ICDE'2004
 - Similarity Search: A Matching Based Approach, VLDB'06
 - Finding k-Dominant Skylines in High Dimensional Space, SIGMOD'06

About My Research(IV)

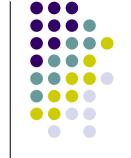
- Research mentality very much affect by the following two quotes
- "We can't choose reviewers but we can choose to write good papers"
 - Raymond Ng, UBC
- "If you think your idea is going to be easily published by someone else tomorrow, then probably it is not too innovative"
 - Philip Long, Google

Outline

- Traditional approach to similarity search
- Deficiencies of the traditional approach
- Our proposal: the n-match query
- Algorithms to process the n-match query
- Experimental results
- Future work and Conclusion

Similarity Search: Traditional Approach

Objects represented by multidimensional vectors



Elevation	Aspect	Slope	Hillshade (9am)	Hillshade (noon)	Hillshade (3pm)	
2596	51	3	221	232	148	

The traditional approach to similarity search: kNN query

$$Q = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)$$

ID	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10	Dist
P1	1.1	1	1.2	1.6	1.1	1.6	1.2	1.2	1	1	0.93
P2	1.4	1.4	1.4	1.5	1.4	1	1.2	1.2	1	1	0.98
P3	1	1	1	1	1	1	2	1	2	2	1.73
P4	20	20	21	20	22	20	20	19	20	20	57.7
P5	19	21	20	20	20	21	18	20	22	20	60.5
P6	21	21	18	19	20	19	21	20	20	20	59.8

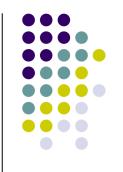
Deficiencies of the Traditional Approach

Deficiencies

- Distance is affected by a few dimensions with high dissimilarity
- Partial similarities can not be discovered
- The traditional approach to similarity search: kNN query
 Q = (1, 1, 1, 1, 1, 1, 1, 1, 1)

ID	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10	Dist
P1	1.1	100	1.2	1.6	1.1	1.6	1.2	1.2	1	1	99.0
P2	1.4	1.4	1.4	1.5	1.4	100	1.2	1.2	1	1	99.0
P3	1	1	1	1	1	1	2	100	2	2	99.0
P4	20	20	21	20	22	20	20	19	20	20	57.7
P5	19	21	20	20	20	21	18	20	22	20	60.5
P6	21	21	18	19	20	19	21	20	20	20	59.8

Thoughts



- Aggregating too many dimensional differences into a single value result in too much information loss. Can we try to reduce that loss?
- While high dimensional data typically give us problem when in come to similarity search, can we turn what is against us into advantage?
- Our approach: Since we have so many dimensions, we can compute more complex statistics over these dimensions to overcome some of the "noise" introduce due to scaling of dimensions, outliers etc.

The N-Match Query: Warm-Up

