
The ed-tree: An Index for Large DNA Sequence Databases

Zhenqiang Tan Xia Cao Beng Chin Ooi Anthony K. H. Tung

Department of Computer Science
National University of Singapore

Email: {tanzhenq, caoxia, ooibc, atung}@comp.nus.edu.sg

Abstract

The growing interest in genomic research has caused
an explosive growth in the size of DNA databases mak-
ing it increasely challenging to perform searches on them.
In this paper, we proposed an index structure called the
ed-tree for supporting fast and effective homology searches
on DNA databases. Theed-tree is developed to enable
probe-based homology search algorithms like Blastn which
generate short probe strings from the query sequence and
then match them against the sequence database in order to
identify potential regions of high similarity to the query se-
quence. Unlike Blastn however, the homology search algo-
rithm we developed fored-tree supports more flexible probe
model with longer probes and more relaxed matching. As a
consequence, theed-tree is not only more effective and ef-
ficient than the latest Blastn(NCBI Blast2) when supporting
homology search but also takes up moderate storage com-
pared to existing data structures like the suffix tree. To index
a DNA database of 2 giga base pairs(Gbps),ed-tree only
takes less than 3Gb of secondary storage which is easily
handled by a desktop PC. Experiments will be shown in this
paper to support our claim.

1 Introduction

Homology search on DNA sequence databases is an im-
portant function in genomic research. The result of search-
ing homologous sequences can help biologists to do further
analysis and detection on the protein structure and function.
According to a survey of the of the tasks in bioinformatics,
35.2% [4] of the tasks are sequence similarity search, and
33.3% of them are related to DNA sequence search. The
size of DNA sequence databases is growing exponentially
in the past few years. As many existing search methods are
based on a sequential scanning of the databases, this growth
will adversely affect the efficiency. This motivates to de-
velop new and more efficient search methods or to enhance
existing methods for more scalability in terms of database
size.

The problem of homology search on DNA databases can
be described in a nutshell as follow. Given a query sequence
Q and a target sequence databaseT , find a set of subse-

quences ofQ such that each subsequenceQ′ in the set is
highly similar to some subsequenceT ′ of T . The similarity
betweenQ′ andT ′ is computed as a function of theedit dis-
tance, edit(Q′, T ′), which is defined as the minimum num-
ber of edit operations (insert, delete, replace) that transform
Q′ into T ′. While the actual similarity function can vary
depending on a biologist’s preference model, if resemble to
the simple one that we will use in this paper. In short, it
means that our proposed algorithm and index structure will
be robust with respect to changes in similarity function, de-
fined as:

Definition 1.1 ED-Similarity(Q′, T ′)
Given two sequencesQ′ andT ′, we measure the similarity
between the two sequences as

ED-Similarity(Q′, T ′)= |T
′|−edit(Q′,T ′)

|T ′|

Intuitively, the measure defined above tries to estimate the
maximum number of matches that occur betweenQ′ andT ′

as|T ′| − edit(Q′, T ′) and then normalizes the measure by
dividing this difference by|T ′|.

Our paper focuses on probe-based algorithms like the
Blastn[9] which is arguably the most popular homology
search tool. The latest version of Blastn works in two
phases. Firstly, Blastn moves a sliding window of sizew
along thequery sequenceQ one letter at a time, generating
|Q|−w+1 probes. Secondly, a sequential scan is performed
on the sequence dataT to identify any portion that matches
any one of the probescompletely. These portions are then
extended in a greedy fashion in both directions to identify
Q′ andT ′ that have a high similarity score. There are two
problems with such an approach. The first and more obvi-
ous is that the whole sequence database must be scanned
which is unacceptable for very large databases. The second
is in the choice of the probe length,w, which is the ma-
jor factor that affects the tradeoff between sensitivity and
speed. The root of the problem here is the requirement for
exact probe match which is too rigid for homology search.
To find alternative way of probing, we define a model of
probing as follow:

Definition 1.2 Probe Model,pmodel(w, s, r)
Given a target sequenceT , let T [i] denote itsith letter and
T [i, i + w − 1] denote a substring of lengthw located at
its ith letter. We say that a homology search of sequence

Q is done on a target sequencesT using probe model,
pmodel(w, s, r) with skip interval, s and edit distance
range,r if we have the following three conditions:

1. the length of the probe isw

2. each probe is compared again all subsequences ofT
that are of the formT [αs, αs + w − 1],
α ∈ I+

3. all subsequences of the formT [αs, αs + w − 1] are
extended ifedit(T [αs, αs + w − 1], Q′) ≤ r,
Q′ being any one of the probes generated fromQ

As an example, the default probe model for Blastn will
be pmodel(11, 1, 0) since it uses probes of length 11 by
default and extends all substrings of length 11 inT if they
match any of the probes exactly.

To investigate the querying effectiveness for varying
configuration of the probe model, we randomly select
120,000 sequence pairs of equal length and with more than
50%ED-Similarity from esthuman genome. Given each
sequence pairQ andT , we useQ as the query sequence and
perform a homology search onT for each probe model to
see whether at least one subsequence ofT is extended (we
will refer to this as a hit). Based on the result from the se-
quence pairs, we can now compute the probability of gen-
erating at least one hit fromQ to T given a certain probe
model. This probability will be used to evaluate the sensi-
tivity of a probe model. Since typical homologous search is
of length 20 to 200 bases [8], we select 64 and 128 as the
fixed homology length.

Because Blastn has a probe length of 11 by default, we
adopted it as a benchmark and will denote it as Blastn-
11. Figure 1 and 2 illustrate the sensitivity for detect-
ing 64-bases homologous sequence pair and 128-bases ho-
mologous sequence pair in different models1. For the
sequences of 64 bases, we can see from Figure 1 that
adoptingpmodel(18, 2, 3), pmodel(18, 3, 3) will find all
sequences that have ED-Similarity of 0.7 and above. This
compares very well against Blastn-11 which only detects
80% of such sequences. Although,pmodel(18, 2, 2) and
pmodel(18, 3, 2) are not as sensitive as Blastn-11 when
detecting sequences with low ED-Similarity, their perfor-
mance also becomes slightly better than Blastn-11 when we
consider sequences with ED-Similarity of 0.75 and above.
For sequences with 128 base pairs, Figure 2 essentially tells
the same story. The only difference is that the curves level
off when ED-Similarity is from 0.65 to 0.7 instead of from
0.75 onwards. This is due to the longer length of the se-
quences which make it less likely for Blastn to miss se-
quences that have higher ED-Similarity. From the ex-

1Note that while we have analyzed many pmodels for their sensitivity,
we only show the more relevant ones here to avoid affecting the clarity of
the graphs.

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9 1

Se
ns

iti
vi

ty

ED-Similarity

Blastn-11
pmodel(18,2,2)
pmodel(18,3,2)
pmodel(18,2,3)
pmodel(18,3,3)

Figure 1. Sensitivity(64 bps)

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9 1
Se

ns
iti

vi
ty

ED-Similarity

Blastn-11
pmodel(18,2,2)
pmodel(18,3,2)
pmodel(18,2,3)
pmodel(18,3,3)

Figure 2. Sensitivity(128 bps)

periments, we see that adopting a probe model with longer
probe length and more relaxed matching can result in higher
sensitivity. Our aim in this paper is to develop an index
structure which will support such probe models efficiently.
Contribution:
In this paper, we propose an index structure called the
ed-tree which performs probe-based homology search on
DNA databases with a longer probe length but more relaxed
matching. Theed-tree has the following strengths:
Scalablity. As we will see in the next section, previous
work on indexing DNA sequences often results in an in-
dex that is much larger than the original sequence database.
One contributing factor to this is that there is usually a need
to store pointers into every position of the DNA sequences.
For example, given a DNA sequence of 2 billion base pairs
(i.e characters), each pointer will require around 4 bytes
and the total size of the pointers alone will be 8GB. With
the probe model adopted byed-tree, this requirement is re-
duced by 2 to 3 times since not every position in the se-
quences needs to be indexed. Combined with some com-
pression techniques which we will describe later, the index
for 2 billion base pairs is around 2.28 to 2.97 GB which
is acceptable consisting that the whole human genome is
about 3 billion base pairs.
Efficiency. Unlike Blastn or other algorithms which per-
form a sequential scan on the database, theed-tree allows

2

us to directly access portions of the targets which are hit by
probes. Theed-tree is a multi-layer index and the first two
layers of the index are sufficiently small for storage in the
main memory. This enables us to quickly prune off disk ac-
cesses in memory. As mentioned earlier, the disk-resident
portion of the index is also smaller than other sequence in-
dexes and this reduces I/Os. The use of a large skip interval
also means that there are fewer comparisons to be made in
the search.
Sensitivity. The sensitivity of theed-tree does not short-
change the scalability and efficiency. The probe model of
ed-tree is more flexible and sensitive than Blastn since we
allow certain mismatches between the target sequence and
the probe. Experiments shown earlier have already illus-
trated this point.

The remainder of this paper as follow. In Section 2 some
background knowledge and related work are introduced.
In Section 3 theed-tree is proposed as an index structure
for searching a DNA sequence database. In Section 4 we
present an algorithm for performing homology search on
DNA sequences based on theed-tree. The performance of
theed-tree will be evaluated in Section 5 and we will con-
clude our paper in Section 6.

2 Related Work

With the increasing interest on genomic research, vari-
ous DNA sequence searching systems have been developed
to support different objectives. Some methods locate sim-
ilar regions in the sequence database by sequential scan
while others index the databases by using novel data struc-
tures which can speed up homology searching processes.

2.1 Homology Search based on Sequential Scan

There have been many proposals on performing a full
scan on the sequence database for homology search. The
most fundamental method is the Smith-Waterman algorithm
[11], which performs sequence alignment between query
sequence and target sequence using a dynamic program-
ming algorithm inO(mn) time with m and n being the
length of two sequences.

Blastn [9] is the most widely used biological homology
search system since 1990. It regards exact match ofw con-
tiguous bases as candidates which are extended greedily to-
wards both its’s left and right side to obtain the final align-
ments. However, Blastn faces a difficulty in the choice ofw
since increasingw decreases sensitivity whereas decreasing
w slows down computation.

Pattern Hunter [8] is an improvement on Blast both in
speed and sensitivity by using non-consecutivek letters as
model, wherek is the weight of model. This model can
achieve better sensitivity since it can better detect replace-
ments in the sequences than Blastn. Unfortunately, Pattern

Hunter is still essentially a sequential scan method which
may not scale up for very large sequence databases.

SENSEI [10] is another sequential scanning method
which selects hits by exact match. It outperforms Blastn
by using compactly encoded scoring tables fork-tuples, en-
coding bases with single bits, removing the simple sequence
repeats, and masking the some known repeats in the query
sequence.

In [1], Buhler proposed a method, LSH-ALL-PAIRS, for
finding longer seeds to improve efficiency, while maintain-
ing sensitivity for weak similarity by using the technique of
locality-sensitive hashing(LSH). However false drops and
false hits cannot be completely avoided because the result
is sensitive to the hashing functions being used. Further-
more, it may miss some short alignments in a collection of
sequences.

2.2 Index Based Homology Search

There exist DNA sequence searching methods which
pre-build indexes for searching the sequence database.

In SST[3], each sequence is partitioned into fragments
according to the window size, and each window is mapped
into a vector. Tree structured vector quantization is used
to create its tree-structured index by ak-means clustering
technique. SST is much faster than Blastn when search-
ing for highly similar sequences. Unfortunately, since the
distance between sequences in vector space does not cor-
respond well with the actual edit distance, larger number
of false dismissals may occur if the similarity between the
query sequence and the target sequence is not sufficiently
high.

Suffix tree is a well-studied data structure for handling
string. QUASAR [2] applies a modification ofq-tuple fil-
tering implemented on top of suffix array. However, the
performance deteriorates dramatically if the compared se-
quences are only distantly homologous since QUASAR
does not consider regions that spanned across two consec-
utive blocks. A disk based suffix tree[5] and an in-memory
compressed suffix array [7] are also used as the index struc-
ture for sequence similarity search. For a very large DNA
sequence database, the index techniques using suffix tree or
suffix array have two drawbacks. First, the index size can be
much larger than the original sequence database. For exam-
ple, the latest work[5] shows that the index of a 263Mbps
DNA is about 18GB. Second, they are more suitable for
dealing with precise matches, while awkward for handling
mismatches.

Williams et al. [12] proposed a searching algorithm in a
research prototype system, CAFE. CAFE uses an inverted
index to select a subset of sequences that display broad sim-
ilarity to the query sequence. The inverted index not only
stores the number of sequences that contain the intervals,
k-tuple subsequences, but also keeps the offset information

3

of the intervals. The experiments in [12] show that CAFE is
in fact less sensitive than Blastn when searching for similar
sequences.

In [6], a wavelet-based method is proposed to map the
subsequence of the database into a 2σ dimensional integer
vectors whereσ is the alphabet size of the sequences. The
coefficients of the integer vector are then indexed byMBR,
an index structure storing a grid of trees. Range queries and
nearest-neighbor queries are performed based on the index
structure. Though this method avoids false dismissals, there
are lots of false hits since the approximation of edit distance
is not sufficiently tight. This increases the cost for refining
the final result. In addition, this method tries to find the re-
gions of the target sequence which are similar to thewhole
query sequence andnot part of the query sequence. This
is thus different from what we are trying to achieve in this
paper.

3 The ed-tree

In this section, we present the structure of theed-tree
and relevant concepts.

Definition 3.1 Segment Length Vector,H = [h1, ..., ht]
A segment length vectorH = [h1, ..., ht] is an integer vec-
tor in which eachhi is a positive integer. We say that a
sequenceS is segmented according to a segment length
vector H (denoted asSH) if we partition S into t seg-
mentsSH [1],...,SH [t] such that each segmentSH [i] =
S[1 +

∑j=i−1
j=0 hj ,

∑j=i
j=0 hj] with h0 = 0 by default.

For example, if H = [6, 6, 6] and
S=AAAATTCGCGATAAGTAG, then we say that we
segmentS according toH by partitioningS into 3 parts,
SH [1]=AAAATT, SH [2]=CGCGAT andSH [3]=AAGTAG.
As we can see, a sequenceS can only be segmented by
a segment length vectorH = [h1, ..., ht] if and only if
|S| = ∑t

j=1 hj .

Definition 3.2 ed-tree(w, s, H),H = [h1, ..., ht]
The structure ofed-tree(w, s, H) defined on a target
sequence database,T , will be a tree witht + 1 levels 2

described as follow:

• it contains a virtual root node at level 0 which repre-
sents a null sequence (recall thath0 = 0 by definition);

• each nodeti, at leveli represents a sequence of length
hi;

• a path from the root to a leaf,{t1,, tn} (note that we
leave outt0 which represents a null sequence) repre-
sents a sequenceS that is segmented based onH with
eachti representingSH [i];

2For convenience of description, we consider the root of the tree to be
at level 0. Thus we now have level 0 to level t for theed-tree.

• the leaf nodetn at the end of the path{t1,, tn} con-
sists of the pointers to all subsequences inT which
matchS exactly with the formT [αs, αs + w − 1],
α ∈ I+.

For example, Figure 3 illustrates aned-tree(18, 2, [6, 6, 6])
for a length 42 target sequenceT below:

T=AGGTAGGTAGGTAGGTAGGTAGGTAGGGCTTACATTCAGTAC

Since we havew = 18 and s = 2 in this case, all sub-
sequences inT of length 18 and located at even positions
are indexed by theed-tree. As such, there are a total of
b(42 − 18)/2c positions being indexed (In Fig 3, we be-
gin indexing from the second letter). The subsequences
which start at location 2, 6, 10, 14, 18 and 22 share the
common prefix of “GGTAGG” which are represented by
the same level 1 node. At level 2 however, the subse-
quence is separated into 3 portions depending on which of
the subsequences “TAGGGC”, “GCTTAC” or “TAGGTA”
they match for their second segment. Finally, if we follow
any path from the root to a leaf node, the leaf node con-
tains the pointers to all subsequences inT that match the
subsequence represented by the path.

 18

TTACAT
 p1.1.1

 p1.1
TAGGGC

ATTCAG
 p1.2.1

GCTTAC
 p1.2

 22 14

 p1
GGTAGG

TAGGTA
 p1.3

GGGCTT GGTAGG
 p1.3.1 p1.3.2

 2 6 10

T
Level 0

Level 1

Level 2

Level 3
 20

ACATTC
 p2.1.1

 p2.1
GGGCTT

TCAGTA
 p2.2.1

TTACAT
 p2.2

 24

 p2
TAGGTA

GGTAGG
 p2.3

TAGGTA
 p2.3.1

 4 8 12 16

T: AGGTAGGTAGGTAGGTAGGTAGGTAGGGCTTACATTCAGTAC
 1 10 20 30

Figure 3. An example of ed-tree

Because the size of the leaf nodes could be rather huge for
large sequence databases, to reduce this storage requirement
we sort the pointers in each leaf node in increasing order
and apply the frame-of-reference compression method to
each set of pointers in the leaf nodes. We achieve a reduc-
tion in storage of around40% to 50% with this approach.
Considering the memory of our targeting hardware plat-
form, normal PC, and the four major different nucleic acids,
we setw = 18 andH = [6, 6, 6] for the DNA sequences
such that its efficiency and effectiveness are good in prac-
tice. Figure 4 gives the general algorithm for building
aned-tree(w, s, H) with time complexity ofO(|D|s t), |D|
is the sequence size andt is the number of the tree levels.

4

There are two points to highlight for the actual implementa-
tion. First, for the values ofH, level 1 and 2 of theed-tree
usually have a node that represents each possible sequence
of lengthh1 or h2. As such, these two layers of the tree
are implemented as a two-dimensional lookup table where
the values along each dimension represent sequences and
each element of the table is a pointer to the third level. To
find the locations of a sequenceQ, QH [1] andQH [2] will
be used to map into a particular element in the lookup table
and the third level of the tree can then be accessed. Sec-
ond, for the last level of the tree, the pointers in the node
are in factphysically separatedfrom the node itself. This
is because the pointers will only be accessed if the node is
a matching one and we thus can avoid large amount of I/O
by storing them separately. Figure 5 illustrates the physical
implementation of a three leveled-tree.

Algorithm 1 Algorithm Builded-tree
input: Parametersw, s, H = [h1, ..., ht] and the target sequence
databaseT
output: ed-tree(w, s, H) for T
method:
1. EDT ← EmptyNode ; /* root of the tree */
2. Based onw ands, slide alongT and for each generated probe
p do

i. Segmentp based onH into pH [1],....,pH [t];
ii. pt ← EDT ;
ii. i = 0;
iii. while (i ≤ t)

If pt has a child,ch, which representspH [i + 1] then
{ pt ← ch;
i = i + 1 ;}

Else
{ Add a child which sequencepH [i + 1] to pt;
pt ← the new child;}

iv. Add a pointer to location ofp in pt

Figure 4. Building an ed-tree

4 Homologous Sequence Search Using ed-
tree

Our algorithm consists of two phases. The first phase is
to search for candidate region in the target sequence which
match the probes and the second phase is to extend these
matching regions. Since the second phase is essentially the
same as the other probe-based algorithms like Blastn, we
focus our discussion on the first phase.

With a query sequenceQ, a target sequence databaseT and
the ed-tree(w, s, H) built on T , given a probe,P (Note:

Figure 5. The 3-level ed-tree index

|P | = w) that is generated fromQ, we want to find the loca-
tions of all subsequences inT that are within a distance ofr
from P . In other words, we want to look at how theed-tree
can be used to support a probe model,pmodel(w, s, r).

To compareP efficiently against the segmented se-
quences in theed-tree, we introducematching segment
andlength difference vectoras follow.

Definition 4.1 Matching Segment,MS(P, SH [i])
Let S and P be two sequences of lengthw and H =
[h1, ..., ht] be a segment length vector. Assume that
edit(P, S) is computed based on alignmentL and that we
segmentS based onH. We say thatMS(P, SH [i]) is the
matching segment ofP to SH [i] iff MS(P, SH [i]) is the
portion ofP that can be transformed toSH [i] in the align-
mentL.

Definition 4.2 Length Difference Vector,δ(P, S,H) =
[δ1, ..., δt]
Let S and P be two sequences of lengthw and H =
[h1, ..., ht] be a segment length vector. We define the
length difference vector betweenS and P based onH
as an integer vectorδ(P, S, H) = [δ1, ..., δt] whereδi =
|MS(P, SH [i])| − hi.

Example 1 Let us consider the two sequences
P=GGTAGCGGCTTACTTCAG and
S=GGTAGGGCTTACATTCAG .
Assume thatH = [6, 6, 6] is the segment length vector for
sequenceS. The alignment of sequence P and S is as fol-
low:

P:GGTAGCG GCTTAC - TTCAG
S:GGTAG -G GCTTAC ATTCAG

Based on the alignment ofS and P and the seg-
ment length vectorH, P can be partitioned into 3
parts,MS(P, SH [1]) = GGTAGCG, MS(P, SH [2]) =
GCTTAC, MS(P, SH [3]) = TTCAG. Thus the cor-
responding length difference vector isδ(P, S, H) = [7 −
6, 6− 6, 5− 6] = [1, 0,−1].

5

Lemma 4.1 LetS andP be two sequences of lengthw and
H be a segment length vector. Ifedit(S, P) ≤ r, we have
the following properties forδ(P, S, H) = [δ1, ..., δt]:

1.
∑t

i=1 δi = 0;
2.

∑t
i=1 |δi| ≤ r;

Proof: SinceP is transformed intoS which is of the same
length, the total change in length forP must be zero which
implies that the sum of the elements inδ(P, S, H) must be
zero. For the second property, we note that each edit op-
eration increases or decreases the length of a sequence at
most by 1. Since it takesr operations to transformP into
S, this means that the absolute change in length of each seg-
ment which is computed as

∑t
i=1 |δi| should be less than or

equal tor.

Theorem 4.1 Let S and P be two sequences of length
w and H = [h1, ..., ht] be a segment length vector. If
edit(S, P) ≤ r, then there exists another segment length
vectorH ′ = [h1 + β1, ..., ht + βt] such all the followings
are true:

1.
∑t

i=1 βi = 0;
2.

∑t
i=1 |βi| ≤ r;

3.
∑t

i=1 edit(PH′
[i], SH [i]) ≤ r;

Proof: Letδ(P, S, H) = [δ1, ..., δt]. We set each valueβi

to beδi which means thatPH′
[i] is in factMS(P, SH [i]).

From Lemma 4.1, we will immediately know that the first
two properties will be satisfied. For the third property, we
should observe that

∑t
i=1 edit(PH′

[i], SH [i]) is in fact the
edit distance ofP andS which is known to be less thanr.

Based on Theorem 4.1, we derive a method for finding
all the substrings of lengthw that are within an edit distance
of r from a sequenceP given ed-tree(w, s,H). Our ap-
proach is to generate all possible values ofδ(P, S, H) such
that the first two properties in Theorem 4.1 are satisfied and
then use these values to segmentP for comparison to the
subsequences indexed in theed-tree. We call the set of
all such possible values thecover generatorand denote it
as cover gen(r, t). Note that the size ofcover gen(r, t)
is only dependent onr, the edit distance range andt, the
number of segments. Combinatorial analysis shows the car-
dinality of the cover generator is:

|cover gen(r, t)| = 1 +

b r
2 c∑

j=1

t−1∑
i=1

(
t

i

)(
j − 1

i− 1

)(
j + 1

i− j + 1

)

Figure 6 shows how the cardinality of the cover generator
varies withr andt. We note that the cardinality increases
quickly with increasingt but only moderately for increasing
r. For example, ift, the number of the segments is set to 3,
then|cover gen| = 7 for both the cases wherer = 2 and
r = 3.

Example 2 Consider a sequence
P=GGTAGCGGCTTACTTCAG and an ed-tree

Figure 6. Cardinality of Cover Generator

i [β1, β2, β3] Hi P Hi [1] P Hi [2] P Hi [3]
1 [−1, 0, 1] [5, 6, 7] GGTAG CGGCTT ACTTCAG
2 [−1, 1, 0] [5, 7, 6] GGTAG CGGCTTA CTTCAG
3 [0,−1, 1] [6, 5, 7] GGTAGC GGCTT ACTTCAG
4 [0, 0, 0] [6, 6, 6] GGTAGC GGCTTA CATTCAG
5 [0, 1,−1] [6, 7, 5] GGTAGC GGCTTAC TTCAG
6 [1, 0,−1] [7, 6, 5] GGTAGCG GCTTAC TTCAG
7 [1,−1, 0] [7, 5, 6] GGTAGCG GCTTA CTTCAG

Figure 7. Segmenting P=GGTAGCGGCTTACTTCAG

with segment length vectorH=[6, 6, 6]. When
r=2, searching the ed-tree will result in a
cover generator, cov gen(2, 3)={[−1, 0, 1], [−1, 1, 0],
[0,−1, 1],[0, 0, 0],[0, 1,−1],[1, 0,−1],[1,−1, 0]} . By adding
each element in the cover generator toH, we will generate
7 different segment vectorsH1, ..., H7 which will be
used to generate 7 ways of segmentingP for searching
in the ed-tree. Figure 4 shows howP is segmented
based on the different elements incov gen. Let us now
illustrate Theorem 4.1 by assuming that a sequence,
S=GGTAGGGCTTACATTCAG is indexed by theed-tree.
In this case, sinceedit(P, S)=2, readers can verify thatH6

will be able to segmentP such that all the three conditions
in Theorem 4.1 are satisfied3.

Figure 8 presents the homology search algo-
rithm. For example, for a given input probe,
P=GGTAGCGGCTTACTTCAG, we are going to find
all the locations of the subsequencesS indexed by
ed-tree(18, 2, [6, 6, 6]) of the target sequenceT , shown
in Figure 3, such thatedit(P, S) ≤ 2. Step 1 initializes
a set, PSet, to store the information ofactive nodes.
In ed-tree, active nodesare nodes not pruned off based
on the search condition. Each tuple inPSet includes 4
elements,< v, β, l, d >, wherev denotes an active node
in the tree,β is a membercover gen(r, t), l denotes the
level of the active nodev, and d is the sum of the edit
distances from the root to the levell of the active nodev
(i.e

∑l
i=1 edit(a[i], PH+β [i]) where a[i] is the ith level

3edit(GGTAGCG,GGTAGG) + edit(GCTTAC,GCTTAC) +
edit(TTCAG,ATTCAG) = 2

6

Algorithm 2 AlgorithmProbe Search
input: probe P , edit distance r, target sequenceT ,
ed-tree(w, s, H = [h1, ..., ht]) built onT
output: All locations of the subsequencesS indexed by
ed-tree(w, s, H) such thatedit(P, S) ≤ r
method:

1. PSet ← ∅; /* a set for storing active nodes */
2. For eachβ ∈ cover gen(r, t)

PSet ← PSet + {< EDT , β, 0, 0 >}; /* EDT is the root
of the inputed-tree */
3. ResultSet ← ∅;
4. while(PSet 6= ∅)

i.Select the first tuple< v, β, l, d > fromPSet;
ii.QSet ← {< v′, β′, l′, d′ > |v′ = v

∧
< v′, β′, l′, d′ >∈ PSet};

iii. PSet ← PSet−QSet;
iv. for each child nodey of v

for each tuple< v′, β′, l′, d′ > in QSet
if edit(y.sequence, P H+β′ [l′ + 1]) +d′+
|∑t

i=l′+2
βi| ≤ r then

if l′ + 1 < t then
PSet ← PSet+

{< y, β′, l′ + 1, d′ + edit(y.sequence, P H+β′ [l′ + 1]) >};
else

for each pointerpt in y /*y is t-th level node */
ResultSet ← ResultSet + {pt};

5. ReturnResultSet;

Figure 8. Homology search in ed-tree(w, s, H)

ancestor ofv).
In Step 2, a tuple(EDT , β, 0, 0) is inserted intoPSet

for eachβ ∈ cover gen(r, t)}. Here EDT is the root
of the input ed-tree. In the example,PSet becomes
{(EDT , [−1, 0, 1], 0, 0), (EDT , [−1, 1, 0], 0, 0), (EDT , [0,−1, 1], 0, 0),

(EDT , [0, 0, 0], 0, 0), (EDT , [0, 1,−1], 0, 0), (EDT , [1, 0,−1], 0, 0),

(EDT , [1,−1, 0], 0, 0)} after Step 2.
Step 3 initializes theResultSet which will contain the

final output.
Step 4 iteratively goes through the following four sub-

steps untilPSet becomes empty. In each iteration, the next
available tuple< v, β, l, d > ∈ PSet is retrieved in Step
4(i) and all tuples of the form< v, β′, l′, d′ >∈ PSet are
moved fromPSet into QSet from Step 4(ii) to 4(iii). In
step 4(iv), each childy of the nodev is compared against
each tuple< v, β′, l′, d′ > in QSet to determine whether
y will lead to a leaf in the solution set with respect to
< v, β′, l′, d′ >. This is done by checking whether the total
sum of the edit distance between the sequence represented
by y andPH+β′ [l′ + 1], i.e. edit(y.sequence, PH+β′ [l′ +
1]), d′ and |∑t

i=l′+2 βi| is less than or equal tor. If the
condition fails, then the leaf nodes undery is not a active
node with respect to< v, β′, l′, d′ > and the next pair
of node-tuple comparison will be processed. If the con-

dition holds andy is a leaf node, then all the pointers at
y will be added to the result set. Otherwise, a new tuple
< y, β′, l′ + 1, d′ + edit(y.sequence, PH+β′ [l′ + 1]) >
will be inserted in the front ofPSet for the next round of
processing where the children ofy will be searched for the
next level of active nodes. Figure 9 depicts the iterations in
step 4 of the example. In iteration 1, nodep2 is pruned and
there exist 7 values ofβ which can makep1 a active node.
In iteration 2, the only active node isp1.2 while p1.1 and
p1.3 are pruned. This is because we can see that for node
p1.2,

edit(p1.2.sequence, P H+β′ [2]) + d′ + |β′3|
= edit(GCTTAC,GCTTAC) + edit(p1.sequence, P H+β′ [1]) + 1

= edit(GCTTAC,GCTTAC) + edit(GGTAGCG,GGTAGG)) + 1

= 0 + 1 + 1 = 2

In iteration 3,p1.2.1 is again verified to be a active node
and the result leaf containing a pointer to location22 of
the sequence is appended toResultSet. Finally, in Step
5, ResultSet which contains all the valid locations will be
returned.

Level ed-tree(18,*,(6,6,6)) r=3 ed-tree(18,*,(6,6,6)) r=2
1 63.5082% 90.8696%
2 99.4152% 99.7760%
3 99.8828% 99.7555%

Note: skip interval does not influence the experiment result here.

Figure 10. Pruning Rate

We carry out an experiment to analyze the effect of the se-
quence pruning in each level of theed-tree. 2,000,000 se-
quences pairs with the length of 18 are randomly selected
from the esthuman.z database. In the pruning of levell, se-
quence pair (S1, S2) will be remained only if there exists
β = [β1, ..., βt] to satisfy

∑l
i=1 edit(S1

H [i], S2
H+β [i]) ≤

r. For level l, 1 ≤ l ≤ 3, the pruning rate,µl, can be
formalized as follow:

µl = the number of the sequence pairs remained in level l
the number of the sequence pairs checked in level l

Figure 10 shows the pruning rates in the different levels.
After the processing of the first two levels, 1-(1-µ1)*(1-µ2)
of sequence pairs are pruned. For example, we consider
the pruning rate after the first two levels. Only fewer than
0.03%(0.22%) sequence pairs needed to be checked in the
level 3 forr = 2(r = 3). It greatly speeds up the homology
searching. The time complexity isO(

∑3

i=1

∏i−1

j=0
µj · 4βj+1)

whereµ0 = 1.

5 Performance Analysis

We implemented theed-tree in C. All our experiments
are done on a PC with a Pentium 4 1.6Ghz CPU, 256MB

7

Iteration PSet QSet ResultSet
(EDT , [−1, 0, 1], 0, 0), (EDT , [−1, 1, 0], 0, 0)

0 (EDT , [0,−1, 1], 0, 0), (EDT , [0, 0, 0], 0, 0) ∅ ∅
(EDT , [0, 1,−1], 0, 0), (EDT , [1, 0,−1], 0, 0)

(EDT , [1,−1, 0], 0, 0)
(p1, [−1, 0, 1], 1, 1), (p1, [−1, 1, 0], 1, 1) (EDT , [−1, 0, 1], 0, 0), (EDT , [−1, 1, 0], 0, 0)

1 (p1, [0,−1, 1], 1, 1), (p1, [0, 0, 0], 1, 1) (EDT , [0,−1, 1], 0, 0), (EDT , [0, 0, 0], 0, 0) ∅
(p1, [0, 1,−1], 1, 1), (p1, [1, 0,−1], 1, 1) (EDT , [0, 1,−1], 0, 0), (EDT , [1, 0,−1], 0, 0)

(p1, [1,−1, 0], 1, 1) (EDT , [1,−1, 0], 0, 0)
(p1, [−1, 0, 1], 1, 1), (p1, [−1, 1, 0], 1, 1)

2 (p1.2, [1, 0,−1], 2, 1) (p1, [0,−1, 1], 1, 1), (p1, [0, 0, 0], 1, 1) ∅
(p1, [0, 1,−1], 1, 1), (p1, [1, 0,−1], 1, 1)

(p1, [1,−1, 0], 1, 1)
3 ∅ (p1.2, [1, 0,−1], 2, 1) {22}

Figure 9. Processing for the example in step 4

of SDRAM and a 7200rpm 20GB harddisk running Win-
dows XP. Two databases are used for our experiments, es-
thuman.z and estother.z which were both downloaded from
the NCBI website. The databases are composed from the
alphabets A,C,G,T,N with N representing a wildcard i.e. N
can be any one of the four alphabets. After removing the
wildcard character, the estother.z database contains 2.07G
bases while the esthuman.z database contains 1.55G bases.

Figure 11 shows the sizes of varioused-trees that are
built on the two databases with the different parameters. We
note that the first two levels of theed-tree take up at most
96MB of storage and could easily be stored in the main
memory. The third level of theed-tree on the other hand
will require storage of up 3GB.

s H Dataset Level-1,2(MB) Level-3(MB)
2 [6,6,6] esthuman 96 2720
2 [6,6,6] estother 96 3036
2 [6,5,7] esthuman 24 2713
2 [6,5,7] estother 24 3003
3 [6,6,6] esthuman 96 2075
3 [6,6,6] estother 96 2317
3 [6,5,7] esthuman 24 2068
3 [6,5,7] estother 24 2304

Figure 11. ed-tree Index Sizes, w = 18

5.1 Comparison of ed-tree and Blastn

Our focus here is to compare the efficiency ofed-tree
against the latest version of Blastn(NCBI Blastn2) which
is available from the NCBI website. The sensitivity of the
probe models that are supported by theed-tree is in fact
comparable to Blastn as demonstrated in an earlier section.
We conducted two sets of experiments to compare the effi-
ciency of theed-tree against Blastn by varying the database
size and the query length. In the experiments, the length of
probe sequencew is set to18 andH is set to[6, 6, 6].

The first set of experiments is designed to evaluate how
the performance of Blastn anded-tree varies with the
database size. Three databases of varying sizes are used.
The first two are the esthuman.z and estother.z databases

while the third is a ‘hybrid” dataset containing 2.3G bases,
which is created by combining the whole esthuman.z and
a part of estother.z. 1000 query subsequences, each with
length of 250 bases, are randomly selected from the DNA
of yeast(Saccharomyces cerevisiae) and the average time
for answering the query is taken. As shown in Figure 12,
the increase in query time for Blastn is much more signifi-
cant than theed-tree algorithms as Blastn suffers from its
high I/O cost in large sequence databases. Forr = 2, the
ed-tree can be faster than Blastn by a factor of up to 6.
For r = 3, the ed-tree still outperforms Blastn when the
database size increased. We believe that theed-tree will
be much more capable in handling large DNA sequence
databases than Blastn.

0

50

100

150

200

250

300

350

400

450

500

1.55 2.07 2.35

T
im

e(
s)

DB Size(Gbps)

Blastn-11
ed-tree(18,2,[6,6,6]) r=2
ed-tree(18,3,[6,6,6]) r=2
ed-tree(18,2,[6,6,6]) r=3
ed-tree(18,3,[6,6,6]) r=3

Figure 12. Speed vs DB Size (Query
length=250)

Another set of the experiments is carried out to investi-
gate how the query length influences the efficiency of the
ed-tree compared to Blastn. We randomly select 1000 sub-
sequences with length varying from 30 to 250 bases from
the yeast DNA. For each query length, we take the average
query time and plot them against the query length. Figure
13 and 14 depict the relationship between the query time
of the various algorithms versus the query length for the
two databases. The query time ofed-tree increases lin-
early with the query length since the number of probes in

8

0

50

100

150

200

250

300

350

0 50 100 150 200 250

T
im

e(
s)

Query Length

Blastn-11
ed-tree(18,2,[6,6,6]) r=2
ed-tree(18,3,[6,6,6]) r=2
ed-tree(18,2,(6,6,6)) r=3
ed-tree(18,3,(6,6,6)) r=3

Figure 13. DB:est human 1.55Gbps

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250

T
im

e(
s)

Query Length

Blastn-11
ed-tree(18,2,[6,6,6]) r=2
ed-tree(18,3,[6,6,6]) r=2
ed-tree(18,2,[6,6,6]) r=3
ed-tree(18,3,[6,6,6]) r=3

Figure 14. DB:est other 2.07Gbps

the ed-tree grows linearly. As such, there are likely to be
more hits on different parts of the databases which will in-
cur more I/Os for the search. We note that in general, in-
dexes will not be useful if most parts of the database have
to be accessed and this is also applicable in the case of the
ed-tree.

Blastn’s performance is not significantly affected by the
length of the query since its running time is dominated
by the I/O time of its sequential scan which will not in-
crease substantially for the longer queries. Notwithstand-
ing, Blastn’s performance is typically an order of magnitude
slower than theed-tree’s.

We will next look at the effect of parameter settings on the
ed-tree ’s performance. Since there exist a large number of
combinations for the parameter values of theed-tree, we
can only provide more insight for the more important ones.

From Figure 13 and 14 which are shown earlier, we make
the following observations on the effect ofr ands:

1. Query time of theed-tree increases with increasingr
Increasingr, the edit distance range means that a more
relaxed query constraint is being specified. Naturally,
this means that a larger result set will be returned.
From the difference between the result ofr = 2 and

r = 3, we can tell that a difference of one edit opera-
tion can change the size of the result set substantially
causing a significant increase in I/Os.

2. Query time ofed-tree decreases with increasings
Since increasing the skip intervals decreases the num-
ber of subsequences being indexed in the database, the
number of I/Os operations for the search will also de-
crease. The effect of varyings is however less signifi-
cant thanr as it can be seen from Figure 13 and 14.

5.2 Effect of Parameters

0

5

10

15

20

25

30

35

1.55 2.07 2.35
T

im
e(

s)

DB Size(Gbps)

ed-tree(18,2,[6,6,6]) r=2
ed-tree(18,2,[6,5,7]) r=2
ed-tree(18,2,[6,6,6]) r=3
ed-tree(18,2,[6,5,7]) r=3

Figure 15. Level 1,2 Pruning time vs DB Size

0

20

40

60

80

100

120

1.55 2.07 2.35

T
im

e(
s)

DB Size(Gbps)

ed-tree(18,2,[6,6,6]) r=2
ed-tree(18,2,[6,5,7]) r=2
ed-tree(18,2,[6,6,6]) r=3
ed-tree(18,2,[6,5,7]) r=3

Figure 16. Level 3 Pruning time vs DB Size

We look at how the segment length vectorH affects the
performance ofed-tree, more specifically the pruning pro-
cesses at the first and second level of theed-tree. Fig-
ure 15 shows that the pruning time at the first two lev-
els grows moderately with the database size for a query
length of 250. One interesting observation here is that
theed-tree(18, 2, [6, 6, 6]) took more time for pruning than
ed-tree(18, 2, [6, 5, 7]) regardless of the value ofr. This
is because there are significantly less nodes in the sec-
ond level whenH is set to[6, 5, 7]. For H = [6, 6, 6],
there are46+6(=16, 777, 216) nodes in level 2, compared

9

to 46+5(=4, 194, 304) nodes forH = [6, 5, 7]. At the third
level however,r plays a more important role as shown in
Figure 16 where the search time forr = 3 is always sig-
nificantly higher than that forr = 2. In this case, the I/Os
required for retrieving a larger result set dominate the cost.

Likewise, Figure 17 and 18 confirm thatH has a more
significant effect on the first two level of pruning whiler
has more effect on the third level pruning. Overall, since
the I/Os at the third level dominate the total pruning time for
the three levels, it makes sense to try to adjustH such that a
small increase in pruning time at the first two levels causes
a substantial decrease in the I/O time at the third level. In
fact, this is the main principle we adopted in fine tuningH
to achieve the best performance.

0

5

10

15

20

25

30

35

0 50 100 150 200 250

T
im

e(
s)

Query length

ed-tree(18,2,[6,6,6]) r=2
ed-tree(18,2,[6,5,7]) r=2
ed-tree(18,2,[6,6,6]) r=3
ed-tree(18,2,[6,5,7]) r=3

Figure 17. Level 1,2 Pruning time vs Query
Length

0

20

40

60

80

100

120

0 50 100 150 200 250

T
im

e(
s)

Query length

ed-tree(18,2,[6,6,6]) r=2
ed-tree(18,2,[6,5,7]) r=2
ed-tree(18,2,[6,6,6]) r=3
ed-tree(18,2,[6,5,7]) r=3

Figure 18. Level 3 Pruning time vs Query
Length

6 Conclusion

In this paper, we proposed theed-tree(w, s,H), a new
tree-structured index, for searching meaningful alignments
in large DNA sequence databases. The index structure is
constructed by sliding a windoww on the target sequence

database with the skip intervals. In each window, the sub-
sequences are segmented based on a segment length vector,
H.

According to our experimental results, the query time
usinged-tree is up to 6 times lower than Blastn for large
DNA sequence databases and this performance gap grows
with the size of the DNA sequence database. Unlike previ-
ous sequence indexes, the size of theed-tree is at most 3Gb
for a sequence database of 2 billion base pairs. Considering
that the mapped human genome contains around 3 billion
base pairs, we believe that theed-tree is well positioned
for searching large DNA sequence database on a desktop
computer.

References

[1] J. Buhler. Efficient large-scale sequence comparison by
locality-sensitive hashing. Bioinformatics, 17:419–428,
2001.

[2] S. Burkhardt, A. Crauser, P. Ferragina, H. P. Lenhof, and
M. Vingron. q-gram based database searching using a suffix
array (quasar). InInt. Conf. RECOMB, Lyon, April 1999.

[3] E. Giladi, M. Walker, J. Wang, and W. Volkmuth. Sst: An
algorithm for searching sequence databases in time propor-
tional to the logarithm of the database size. InInt. Conf.
RECOMB, Japan, 2000.

[4] R. S. C. Goble, P. Baker, and A. Brass. A classification of
tasks in bioinformatics.Bioinformatics, 17:180–188, 2001.

[5] E. Hunt, M. P. Atkinson, and R. W. Irving. A database index
to large biological sequences. InInternational Journal on
VLDB, pages 139–148, Roma, Italy, September 2001.

[6] T. Kahveci and A. Singh. An efficient index structure for
string databases. InInt. Conf. VLDB, Roma, Italy, 2001.

[7] K.Sadakane and T.Shibuya. Indexing huge genome se-
quences for solving various problems.Genome Informatics,
pages 175–183, 2001.

[8] B. Ma, J. Tromp, and M. Li. Patternhunter: faster and
more sensitive homology search.Bioinformatics, 18:440–
445, 2002.

[9] S.F.Altschul, W.Gish, W.Miller, E.W.Myers, and
D.J.Lipman. Basic local alignment search tool.Molecular
Biology, 215:403–410, 1990.

[10] D. J. States and P. Agarwal. Compact encoding strategies for
dna sequence similarity search. InISMB, 1996.

[11] T.F.Smith and M.S.Waterman. Identification of common
molecular subsequences.Molecular Biology, 147:195–197,
1981.

[12] H.E. Williams and J.Zobel. Indexing and retrieval for ge-
nomic databases.IEEE Transactions on Knowledge and
Data Engineering, 14:63–78, 2002.

10

