The ed-tree: An Index for Large DNA Sequence Databases

Zhengiang Tan Xia Cao Beng Chin Ooi Anthony K. H. Tung

Department of Computer Science
National University of Singapore
Email: {tanzhenq, caoxia, ooibc, atup@comp.nus.edu.sg

Abstract guences ofp such that each subsequer@éin the set is
highly similar to some subsequentéof T. The similarity
The growing interest in genomic research has caused between))’ andT” is computed as a function of tleglit dis-
an explosive growth in the size of DNA databases mak-tance edit(Q’, T"), which is defined as the minimum num-
ing it increasely challenging to perform searches on them. ber of edit operations (insert, delete, replace) that transform
In this paper, we proposed an index structure called the @’ into 77. While the actual similarity function can vary
ed-tree for supporting fast and effective homology searches depending on a biologist’s preference model, if resemble to
on DNA databases. Thel-tree is developed to enable the simple one that we will use in this paper. In short, it
probe-based homology search algorithms like Blastn which means that our proposed algorithm and index structure will
generate short probe strings from the query sequence andbe robust with respect to changes in similarity function, de-
then match them against the sequence database in order tdined as:
identify potential regions of high similarity to the query se- L o
quence. Unlike Blastn however, the homology search algo-Definition 1.1 ED-Similarity(Q',T") o
rithm we developed fard-tr-ee supports more flexible probe ~ Given two sequence’ and7”, we measure the similarity
model with longer probes and more relaxed matching. As a Petween the two sequencesas
consequence, thel-tree is not only more effective and ef- ED-Similarity(Q’, T'):Wﬁ#
ficient than the latest Blastn(NCBI Blast2) when supporting
homology search but also takes up moderate storage com
pared to existing data structures like the suffix tree. To index
a DNA database of 2 giga base pairs(Gbpsj;tree only
takes less than 3Gb of secondary storage which is easily
handled by a desktop PC. Experiments will be shown in this
paper to support our claim.

Intuitively, the measure defined above tries to estimate the
maximum number of matches that occur betwé€éandT”
as|T’| — edit(Q’, T") and then normalizes the measure by
dividing this difference byT”|.

Our paper focuses on probe-based algorithms like the
Blastn[9] which is arguably the most popular homology
search tool. The latest version of Blastn works in two
phases. Firstly, Blastn moves a sliding window of size
along thequery sequence) one letter at a time, generating
|Q|—w+1 probes. Secondly, a sequential scan is performed
, . on the sequence ddtato identify any portion that matches

Homology search on DNA sequence databases is an im-ny one of the probesompletely. These portions are then
portant function in genomic research. The result of search-oytended in a greedy fashion in both directions to identify
ing homologous sequences can help biologists to do furtherQ/ and7” that have a high similarity score. There are two
analysis and detection on the protein structure and fU”Ction-problems with such an approach. The first and more obvi-
According to a survey of the of the task; ip b.ioinformatics, ous is that the whole sequence database must be scanned
35.2% [4] of the tasks are sequence similarity search, andyhich js unacceptable for very large databases. The second
33.3% of them are related to DNA sequence search. Theg in the choice of the probe length;, which is the ma-
size of DNA sequence databases is growing exponentiallyjor tactor that affects the tradeoff between sensitivity and
in the past few years. As many existing search methods ar&peeq. The root of the problem here is the requirement for
based on a sequential scanning of the databases, this growtg, 5t probe match which is too rigid for homology search.

will adversely affect the efficiency. This motivates to de- 14 fing alternative way of probing, we define a model of
velop new and more efficient search methods or to enhanceprobing as follow:

existing methods for more scalability in terms of database
size. Definition 1.2 Probe Modelpmodel(w, s,)
The problem of homology search on DNA databases canGiven a target sequendg let T'[i] denote itsi” letter and
be described in a nutshell as follow. Given a query sequencel’[i,i + w — 1] denote a substring of length located at
Q and a target sequence databdsefind a set of subse- its i letter. We say that a homology search of sequence

1 Introduction

Q is done on a target sequenc&susing probe model, : : : :

pmodel(w, s,r) with skip interval, s and edit distance L
range, r if we have the following three conditions:
08 -
1. the length of the probe is g 06 L
2. each probe is compared again all subsequencéds of ; 04 g Blamil ——
that are of the fornT’[as, as + w — 1}, N 32) o
i pmodel(18,2,3) -
acIt 7 | pmodd(1833) ——-
005 0.6 0.7 0.8 0.9 1
3. all subsequences of the forfas, as + w — 1] are ED-Similarity
extended ifedit(T[as,as +w —1],Q") <,
()’ being any one of the probes generated f@m Figure 1. Sensitivity(64 bps)
As an example, the default probe model for Blastn will
be pmodel(11,1,0) since it uses probes of length 11 by ' ' ' '
default and extends all substrings of length 117iif they
match any of the probes exactly. i
To investigate the querying effectiveness for varying g
configuration of the probe model, we randomly select g]
120,000 sequence pairs of equal length and with more than Blastn-11 -
50% E D-Similarity from esthuman genome. Given each e e
sequence pai andT’, we use? as the query sequence and o it S
perform a homology search dh for each probe model to by 016 0} 078 0'_9 1
see whether at least one subsequencE isfextended (we ED-Similarity
will refer to this as a hit). Based on the result from the se-
quence pairs, we can now compute the probability of gen- Figure 2. Sensitivity(128 bps)

erating at least one hit frorp to 7' given a certain probe
model. This probability will be used to evaluate the sensi-
tivity of a probe model. Since typical homologous search is Periments, we see that adopting a probe model with longer
of length 20 to 200 bases [8], we select 64 and 128 as theProbe length and more relaxed matching can result in higher
fixed homology length. sensitivity. Our aim in this paper is to develop an index
Because Blastn has a probe length of 11 by default, westructure which will support such probe models efficiently.
adopted it as a benchmark and will denote it as Blastn- Contribution:
11. Figure 1 and 2 illustrate the sensitivity for detect- In this paper, we propose an index structure called the
ing 64-bases homologous sequence pair and 128-bases he«-tree which performs probe-based homology search on
mologous sequence pair in different modéls For the DNA databases with a longer probe length but more relaxed
sequences of 64 bases, we can see from Figure 1 thamatching. Thed-tree has the following strengths:
adoptingpmodel (18,2, 3), pmodel(18,3,3) will find all Scalablity. As we will see in the next section, previous
sequences that have ED-Similarity of 0.7 and above. Thiswork on indexing DNA sequences often results in an in-
compares very well against Blastn-11 which only detects dex that is much larger than the original sequence database.
80% of such sequences. Althoughnodel(18,2,2) and One contributing factor to this is that there is usually a need
pmodel(18,3,2) are not as sensitive as Blastn-11 when to store pointers into every position of the DNA sequences.
detecting sequences with low ED-Similarity, their perfor- For example, given a DNA sequence of 2 billion base pairs
mance also becomes slightly better than Blastn-11 when we(i.e characters), each pointer will require around 4 bytes
consider sequences with ED-Similarity of 0.75 and above. and the total size of the pointers alone will be 8GB. With
For sequences with 128 base pairs, Figure 2 essentially tellshe probe model adopted ley-tree, this requirement is re-
the same story. The only difference is that the curves levelduced by 2 to 3 times since not every position in the se-
off when ED-Similarity is from 0.65 to 0.7 instead of from quences needs to be indexed. Combined with some com-
0.75 onwards. This is due to the longer length of the se- pression techniques which we will describe later, the index
qguences which make it less likely for Blastn to miss se- for 2 billion base pairs is around 2.28 to 2.97 GB which
guences that have higher ED-Similarity. =~ From the ex- is acceptable consisting that the whole human genome is

-) .. about 3 billion base pairs.
INote that while we have analyzed many pmodels for their sensitivity,
we only show the more relevant ones here to avoid affecting the clarity of Efficiency. Un“_ke Blastn or other algorithms which per-
the graphs. form a sequential scan on the databaseethérece allows

us to directly access portions of the targets which are hit by Hunter is still essentially a sequential scan method which

probes. Thexd-tree is a multi-layer index and the firsttwo may not scale up for very large sequence databases.

layers of the index are sufficiently small for storage in the ~ SENSEI [10] is another sequential scanning method

main memory. This enables us to quickly prune off disk ac- which selects hits by exact match. It outperforms Blastn

cesses in memory. As mentioned earlier, the disk-residentby using compactly encoded scoring tableskfdgtples, en-

portion of the index is also smaller than other sequence in-coding bases with single bits, removing the simple sequence

dexes and this reduces 1/Os. The use of a large skip intervatepeats, and masking the some known repeats in the query

also means that there are fewer comparisons to be made isequence.

the search. In [1], Buhler proposed a method, LSH-ALL-PAIRS, for

Sensitivity. The sensitivity of theed-tree does not short- finding longer seeds to improve efficiency, while maintain-

change the scalability and efficiency. The probe model of ing sensitivity for weak similarity by using the technique of

ed-tree is more flexible and sensitive than Blastn since we locality-sensitive hashing(LSH). However false drops and

allow certain mismatches between the target sequence anéhlse hits cannot be completely avoided because the result

the probe. Experiments shown earlier have already illus-is sensitive to the hashing functions being used. Further-

trated this point. more, it may miss some short alignments in a collection of
The remainder of this paper as follow. In Section 2 some sequences.

background knowledge and related work are introduced.

In Section 3 theed-tree is proposed as an index structure 2.2 Index Based Homology Search

for searching a DNA sequence database. In Section 4 we

present an algorithm for performing homology search on There exist DNA sequence searching methods which
DNA sequences based on thétree. The performance of 0 pyyild indexes for searching the sequence database.

theed-tree will be evaluated in Section 5 and we will con- In SST[3], each sequence is partitioned into fragments
clude our paper in Section 6. according to the window size, and each window is mapped

into a vector. Tree structured vector quantization is used
2 Related Work to create its tree-structured index by:aneans clustering

technique. SST is much faster than Blastn when search-
With the increasing interest on genomic research, vari- ing for highly similar sequences. Unfortunately, since the
ous DNA sequence searching systems have been developedistance between sequences in vector space does not cor-
to support different objectives. Some methods locate sim-respond well with the actual edit distance, larger number
ilar regions in the sequence database by sequential scanf false dismissals may occur if the similarity between the
while others index the databases by using novel data struc-query sequence and the target sequence is not sufficiently
tures which can speed up homology searching processes. high.
Suffix tree is a well-studied data structure for handling
2.1 Homology Search based on Sequential Scan string. QUASAR [2] applies a modification gftuple fil-
tering implemented on top of suffix array. However, the
There have been many proposals on performing a full performance deteriorates dramatically if the compared se-
scan on the sequence database for homology search. Thguences are only distantly homologous since QUASAR
most fundamental method is the Smith-Waterman algorithm does not consider regions that spanned across two consec-
[11], which performs sequence alignment between query utive blocks. A disk based suffix tree[5] and an in-memory
sequence and target sequence using a dynamic programcompressed suffix array [7] are also used as the index struc-
ming algorithm inO(mn) time with m andn being the ture for sequence similarity search. For a very large DNA

length of two sequences. sequence database, the index techniques using suffix tree or
Blastn [9] is the most widely used biological homology suffix array have two drawbacks. First, the index size can be
search system since 1990. It regards exact matehadn- much larger than the original sequence database. For exam-

tiguous bases as candidates which are extended greedily tople, the latest work[5] shows that the index of a 263Mbps
wards both its’s left and right side to obtain the final align- DNA is about 18GB. Second, they are more suitable for
ments. However, Blastn faces a difficulty in the choicevof dealing with precise matches, while awkward for handling
since increasing decreases sensitivity whereas decreasing mismatches.
w slows down computation. Williams et al. [12] proposed a searching algorithm in a
Pattern Hunter [8] is an improvement on Blast both in research prototype system, CAFE. CAFE uses an inverted
speed and sensitivity by using non-consecutivetters as index to select a subset of sequences that display broad sim-
model, wherek is the weight of model. This model can ilarity to the query sequence. The inverted index not only
achieve better sensitivity since it can better detect replace-stores the number of sequences that contain the intervals,
ments in the sequences than Blastn. Unfortunately, Patterrk-tuple subsequences, but also keeps the offset information

of the intervals. The experiments in [12] show that CAFE is e the leaf node,, at the end of the patf¢,, ¢, } con-
in fact less sensitive than Blastn when searching for similar sists of the pointers to all subsequencesirwhich
sequences. match S exactly with the formT[as, as + w — 1],

In [6], a wavelet-based method is proposed to map the aelt.
subsequence of the database intaradinensional integer
vectors where is the alphabet size of the sequences. The For example, Figure 3 illustrates ad-tree(18,2,[6,6,6])
coefficients of the integer vector are then indexed b3 R, for a length 42 target sequen@ebelow:
an index structure storing a grid of trees. Range queries and T=AGGTAGGTAGGTAGGTAGGTAGGTAGGGCTTACATTCAGTAC
nearest-neighbor queries are performed based on the indegince we havav = 18 ands = 2 in this case, all sub-
structure. Though this method avoids false dismissals, theresequences ifi" of length 18 and located at even positions
are lots of false hits since the approximation of edit distance are indexed by thed-tree. As such, there are a total of
is not sufficiently tight. This increases the cost for refining |(42 — 18)/2| positions being indexed (In Fig 3, we be-
the final result. In addition, this method tries to find the re- gin indexing from the second letter). The subsequences
gions of the target sequence which are similar tovthele which start at location 2, 6, 10, 14, 18 and 22 share the
query sequence ambt part of the query sequence. This common prefix of “GGTAGG” which are represented by
is thus different from what we are trying to achieve in this the same level 1 node. At level 2 however, the subse-

paper. guence is separated into 3 portions depending on which of
the subsequences “TAGGGC”, “GCTTAC” or “TAGGTA’
3 Theed-tree they match for their second segment. Finally, if we follow
any path from the root to a leaf node, the leaf node con-
In this section, we present the structure of Haetree tains the pointers to all SUbSEQUGnCG@imhat match the
and relevant concepts. subsequence represented by the path.

Definition 3.1 Segment Length Vector,H = [hq, ..., hy]
A segment length vectdf = [hq, ..., h¢] iS an integer vec- ?T
tor in which eachh; is a positive integer. We say thata
sequenceS is segmented according to a segment length

vector H (denoted asSH) if we partition S into ¢ seg-] AL Leet
ments SH[1],...,.57[t] such that each segmewst’’[i] =
S[L+ Y3207 by, Y220 hy] with kg = 0 by default.

For example, if H = [6,6,6] and
S=AAAATTCGCGATAAGTAG, then we say that we
segmentS according toH by partitioning S into 3 parts,
SH[1]=AAAATT, S [2]=CGCGAT andS*![3|=AAGTAG.
As we can see, a sequenfecan only be segmented by
a segment length vectdd = [hy,..., hs] if and only if T AGGTAGGTAGC AGGT/\CGTAGGGCTIACATTCAGTAC

Definition 3.2 ed-tree(w, s, H), H = [hq, ..., h¢]
The structure ofed-tree(w, s, H) defined on a target

sequence databasé,, will be a tree witht + 1 levels?
described as follow:

TAGGGGH GCTTAC GGGCTTy TTACAT GGTAGG

p23

Level 2

Figure 3. An example of ed-tree

Because the size of the leaf nodes could be rather huge for

large sequence databases, to reduce this storage requirement

e it contains a virtual root node at level 0 which repre- we sort the pointers in each leaf node in increasing order
sents a null sequence (recall thiaf = 0 by definition); and apply the frame-of-reference compression method to

e each nodé;, at leveli represents a sequence of length e_ach set of pointers in the leaf nodes._ we ?‘Ch‘e"e a reduc-
. tion in storage of around0% to 50% with this approach.

v Considering the memory of our targeting hardware plat-

e apathfromtherootto aleaft:,,t,} (notethatwe form, normal PC, and the four major different nucleic acids,
leave outty, which represents a null sequence) repre- we setw = 18 and H = [6, 6, 6] for the DNA sequences
sents a sequencethat is segmented based éhwith such that its efficiency and effectiveness are good in prac-

eacht; representingS*[i]; tice. Figure 4 gives the general algorithm for building
ith ti i D]
2For convenience of description, we consider the root of the tree to be f"m ed-tree(w, s, H) with t!me complexity OfO(Tt)v D
at level 0. Thus we now have level O to level t for tétree. is the sequence size ands the number of the tree levels.

Level] ——»

Level 3

There are two points to highlight for the actual implementa-
tion. First, for the values off, level 1 and 2 of thed-tree
usually have a node that represents each possible sequence
of lengthh; or hy. As such, these two layers of the tree
are implemented as a two-dimensional lookup table where
the values along each dimension represent sequences and
each element of the table is a pointer to the third level. To
find the locations of a sequencg Q*[1] and Q*[2] will

be used to map into a particular element in the lookup table
and the third level of the tree can then be accessed. Sec-
ond, for the last level of the tree, the pointers in the node
are in factphysically separatedfrom the node itself. This

is because the pointers will only be accessed if the node is
a matching one and we thus can avoid large amount of 1/0

Level 2

Figure 5. The 3-level ed-tree index

by storing them separately. Figure 5 illustrates the physica
implementation of a three leveti-tree.

Algorithm 1 Algorithm Builded-tree

input: Parameteraw, s, H = [h1, ..., h] and the target sequence
databasel’

output: ed-tree(w, s, H) for T’

method:

1. EDT — EmptyNode ; /* root of the tree */

| |P| = w) that is generated froif, we want to find the loca-

tions of all subsequencesinthat are within a distance of
from P. In other words, we want to look at how thé-tree
can be used to support a probe mogetodel (w, s, r).

To compareP efficiently against the segmented se-
guences in thed-tree, we introducematching segment
andlength difference vectoras follow.

Definition 4.1 Matching Segmenf\/ S(P, S [i])

2. Based onw ands, slide alongT” and for each generated probe

Let S and P be two sequences of length and H

p‘,jos based orfl into o 11 oo [h1,...,h] be a segment length vector. Assume that
:I igregnlﬁ;Tése ond into p™ [1],.....p" [t]; edit(P,S) is computed based on alignmefitand that we
i ip: o: ' segmentS based on. We say thatV/ S(P, S#[i]) is the
i, while (i < t) matching segment aP to SH[i] iff MS(P, SH[i]) is the
If pt has a child,ch, which represents™ [i + 1] then portion of P that can be transformed ®/ [4] in the align-
{ pt — ch; mentL.
i=1+1;}
Else Definition 4.2 Length Difference Vectorj(P, S, H)

{ Add a child which sequengg’[i + 1] to pt;
pt «— the new child;}
iv. Add a pointer to location g in pt

[01, ..y Ot

Let S and P be two sequences of length and H
[h1,..., h:] be a segment length vector. We define
length difference vector betweenS and P based onH
as an integer vecta¥(P, S, H) = [0y, ..., 0:] whered; =
|MS(P, SH[i])| — h;.

the

Figure 4. Building an ed-tree

Example 1 Let us consider the two sequences
P=GGTAGCGGCTTACTTCAG and
S=GGTAGGGCTTACATTCAG .

Assume thafd = [6, 6, 6] is the segment length vector for
sequences. The alignment of sequence P and S is as fol-

4 Homologous Sequence Search Using ed-
tree

Our algorithm consists of two phases. The first phase ileW
to search for candidate region in the target sequence whictb.ggTAGCG GCTTAC
match the probes and the second phase is to extend thes§.ccTAG -G GCTTAC
matching regions. Since the second phase is essentially the
same as the other probe-based algorithms like Blastn, weBased on the alignment of and P and the seg-

focus our discussion on the first phase. ment length vectorH, P can be partitioned into 3
parts, M S(P, SH[1]) = GGTAGCG, MS(P, S*[2])
GCTTAC, MS(P,S*[3]) = TTCAG. Thus the cor-
responding length difference vectordéP, S, H) = [7 —
6,6 —6,5—6] = [1,0, —1].

-TTCAG
ATTCAG

With a query sequenag, a target sequence databdsand
the ed-tree(w, s, H) built on T, given a probe P (Note:

Lemma 4.1 LetS and P be two sequences of lengthand Cafdi"a'“}',_,__...---I-————__..._ oz

H be a segment length vector. édit(S, P) < r, we have 20 o o3
the following properties fod(P, S, H) = [d1, ..., 0¢]: 200 =4
t .
1. 2%21 0 =0; 150
2.3 16l <7 100
Proof: SinceP is transformed int&5 which is of the same 50
length, the total change in length f&f must be zero which o 4
implies that the sum of the elementsdP, S, H) must be 5 359mm
zero. For the second property, we note that each edit op- Edit Distance Range (1) 5 g Number {t)
eration increases or decreases the length of a sequence at
most by 1. Since it takes operations to transforn® into Figure 6. Cardinality of Cover Generator
S, this means that the absolute change in length of each seg-
ment which is computed aEle |0;| should be lessthanor [[(3., 52, 5a] I, P[] P[] PR3]
equa| tor. 1 —-1,0,1 5,6,7 GGTAG CGGCTT ACTTCAG
2 -1,1,0 5,7,6 GGTAG CGGCTTA CTTCAG
3 0,—1,1 6,5,7 GGTAGC GGCTT | ACTTCAG
Theorem 4.1 Let S and P be two sequences of length | 4 [0,0,0] 6,6,6 GGTAGC | GGCTTA | CATTCAG
wandH = [h,...,h] be a segment length vector. If |2 Yol | e e | ST | s
edit(S, P) < r, then there exists another segment length| 7 | [1,-1,0 7,5,6] | GGTAGCG | GCTTA | CTTCAG

vectorH' = [hy + [, ..., ht + B:] such all the followings) .
Figure 7. Segmenting P=GGTAGCGGCTTACTTCAG

are true:

1.3 B =0;

2. 22:1 |ﬂz| <r,

3.3 edit(PH'[i), S [i]) < r; with segment length vectorH=[6,6,6]. When
Proof: Letd(P, S, H) = [61,...,0:]. We set each valug; r=2, searching the ed-tree will result in a
to bed; which means thaP?'[i] is in fact MS(P, SH i]). cover generator, cov_gen(2,3)={|-1,0,1], [~1,1,0],

From Lemma 4.1, we will immediately know that the first [0, —1,1],[0,0,0],[0,1, —1],[1,0,—1],[1,—1,0]} . By adding
two properties will be satisfied. For the third property, we each element in the cover generatoffpwe will generate
should observe that;_, edit(P"'[i], S”[i]) isin factthe 7 different segment vectordly, ..., H» which will be
edit distance of? andS which is known to be less than used to generate 7 ways of segmentifigior searching
in the ed-tree. Figure 4 shows howP is segmented

Based on Theorem 4.1, we derive a method for finding based on the different elements dov_gen. Let us now

all the substrings of lengtlr that are within an edit distance . .
of r from a sequence given ed-tree(w, s, H). Our ap- illustrate Theorem 4.1 by assuming that a sequence,

proach is to generate all possible values@?, S, H) such S=GGTAGGGCTTACATTCAG is indexed by thel-tree.

that the first two properties in Theorem 4.1 are satisfied and!" this case, sincedit(P, 5)=2, readers can verify thaf
then use these values to Segmé)ntor Comparison to the will be able to SegmenP such that all the three conditions

subsequences indexed in thétree. We call the set of in Theorem 4.1 are satisfigd
all such possible values tlwver generatorand denote it

as cover_gen(r,t). Note that the size ofover_gen(r,t) Figure 8 presents the homology search algo-
is only dependent on, the edit distance range amgdthe rithm. For example, for a given input probe,
number of segments. Combinatorial analysis shows the carP=GGTAGCGGCTTACTTCAG, we are going to find
dinality of the cover generator is: all the locations of the subsequencés indexed by
5] 11 'ed-g%(lg;’gz, [6,(?], 6r]]) (Zif t(r;ge Stf)arget seguenif, _s_hﬁwn
_ t\[(j—1 Jj+1 in Figure 3, such thatd:it(P, < 2. Step 1 initializes
jeover-gen(r,)] =1+ Z Z (z> (z - 1> (7, —J+ 1) a set, PSet, to store the information ofctive nodes

j=1 i=1 .
— In ed-tree, active nodesare nodes not pruned off based

Figure 6 shows how the cardinality of the cover generator on the search condition. Each tuple ®Set includes 4
varies withr and¢. We note that the cardinality increases elements,< v, 3,1,d >, wherev denotes an active node
quickly with increasing but only moderately for increasing in the tree,3 is a memberover_gen(r,t), | denotes the
r. For example, it, the number of the segments is set to 3, level of the active node, and d is the sum of the edit
then|cover_gen| = 7 for both the cases where= 2 and distances from the root to the leviebf the active nodes
r=3. (e Y'_, edit(ali], PH+P[i]) whereali] is the ith level

Example 2 Consider a sequence 3edit(GGTAGCG,GGTAGG) + edit(GCTTAC,GCTTAC) +
P=GGTAGCGGCTTACTTCAG and an ed-tree edit(TTCAG,ATTCAG) = 2

Algorithm 2 Algorithm Probe_Search

input: probe P, edit distance r, target sequenceT,
ed-tree(w, s, H = [ha, ..., h¢]) builtonT

output: All locations of the subsequenceS indexed by
ed-tree(w, s, H) such thatedit(P, S) <r

method:

1. PSet < 0; /* a set for storing active nodes */
2. For eachg € cover_gen(r,t)
PSet «— PSet + {< €DT,3,0,0 >}; I* £DT is the root
of the inputed-tree */
3. ResultSet « ();
4. while(PSet #)
i.Select the first tuple< v, 3,1, d > from PSet;
ii.QSet — {< v, I',d > v =v)\
<, B, l',d > PSet};
iii. PSet « PSet — QSet:;
iv. for each child nodeg of v
for each tuple< v', 8,1, d’ > in QSet
if edit(y.sequence, PPHP (I + 1)) +d' +
|3y o Bil <rthen
if ' +1 < tthen
PSet «— PSet+
{<y, B, +1,d + edit(y.sequence, pHHA [+1) >}
else
for each pointept in y /*y is t-th level node */
ResultSet «— ResultSet + {pt};
5. ReturnResultSet;

Figure 8. Homology search in ed-tree(w, s, H)

ancestor ob).

In Step 2, a tupldEDT, 3,0,0) is inserted intoPSet
for eachg € cover_gen(r,t)}. Here EDT is the root
of the input ed-tree. In the example,PSet becomes
{(¢DPT,[-1,0,1],0,0), (§DT,[-1,1,0],0,0), (€DT,][0,—-1,1],0,0),
(€DT,0,0,0],0,0), (£DT,[0,1,-1],0,0), (£DT,[1,0,—1],0,0),
(DT, [1,—-1,0],0,0)} after Step 2.

Step 3 initializes theResuitSet which will contain the
final output.

Step 4 iteratively goes through the following four sub-
steps untilPSet becomes empty. In each iteration, the next
available tuple< v, 3,1,d > € PSet is retrieved in Step
4(i) and all tuples of the form< v, 3',1’,d" > PSet are
moved fromPSet into QSet from Step 4(ii) to 4(iii). In
step 4(iv), each chilgd/ of the nodev is compared against
each tuple< v, 3,1, d" > in QSet to determine whether
y will lead to a leaf in the solution set with respect to
<, l',d >. This is done by checking whether the total

sum of the edit distance between the sequence represente‘ﬁhere”0

by y and PH+A'[I" 4 1], i.e. edit(y.sequence, PE+E (I +
1]), d’ and| ZE:HQ B;| is less than or equal to. If the
condition fails, then the leaf nodes undgrs not a active
node with respect te< v,5’,1’,d" > and the next pair

of node-tuple comparison will be processed. If the con-

dition holds andy is a leaf node, then all the pointers at
y will be added to the result set. Otherwise, a new tuple
<y, 3,1 +1,d + edit(y.sequence, PTF[I" +1]) >
will be inserted in the front of?Set for the next round of
processing where the children g@fwill be searched for the
next level of active nodes. Figure 9 depicts the iterations in
step 4 of the example. In iteration 1, nogleis pruned and
there exist 7 values gf which can make»1 a active node.
In iteration 2, the only active node jsl .2 while p1.1 and
pl.3 are pruned. This is because we can see that for node
pl.2,

edit(pl.2.sequence, pH+A 2) +d + 85

= edit(GCTTAC,GCTTAQ) + edit(pl.sequence, PE+A'[1]) + 1

= edit(GCTTAC,GCTTAQ) + edit(GGTAGCG,GGTAGG) + 1

=04+1+1=2
In iteration 3,p1.2.1 is again verified to be a active node
and the result leaf containing a pointer to locatih of
the sequence is appendedResultSet. Finally, in Step
5, ResultSet which contains all the valid locations will be
returned.

Level | ed-tree(18,*,(6,6,6)) r=3 ed-tree(18,*,(6,6,6)) r=2
1 63.5082% 90.8696%
2 99.4152% 99.7760%
3 99.8828% 99.7555%

Note: skip interval does not influence the experiment result here.

Figure 10. Pruning Rate

We carry out an experiment to analyze the effect of the se-
guence pruning in each level of thé-iree. 2,000,000 se-
guences pairs with the length of 18 are randomly selected
from the esthuman.z database. In the pruning of |5\es-
guence pair §1, S2) will be remained only if there exists

8 = [B1, ..., 3] to satisfy>"!_ | edit(S, [i], Sy P[i)) <

r. For levell, 1 < [< 3, the pruning ratey,;, can be
formalized as follow:

_ the number of the sequence pairs remained in level |
the number of the sequence pairs checked in level |

i

Figure 10 shows the pruning rates in the different levels.
After the processing of the first two levels, 1-1)*(1-u2)

of sequence pairs are pruned. For example, we consider
the pruning rate after the first two levels. Only fewer than
0.03%(0.22%) sequence pairs needed to be checked in the
level 3 forr = 2(r = 3). It greatly speeds up the homology
searching. The time complexity @&(>"7_ [T, _qu; - 4%+1)

=1.

5 Performance Analysis

We implemented thed-tree in C. All our experiments
are done on a PC with a Pentium 4 1.6Ghz CPU, 256MB

Iteration PSet QSet ResultSet
(¢p71,]-1,0,1],0,0), (DT, [-1,1,0],0,0)
0 (¢pT,]0,-1,1],0,0), (EDT,]0,0,0],0,0) 0 0
(¢€DT,0,1,-1],0,0), (£DT, [1,0,-1],0,0)
(€DT,[1,-1,0],0,0)

(p1,[-1,0,1],1,1), (p1,[-1,1,0],1,1) (¢D7,[-1,0,1],0,0),(6D7,[-1,1,0],0,0)
1 (p1,1[0,-1,1],1,1), (p1,[0,0,0],1,1) (D7, [0, -1,1],0,0), (€DPT,[0,0,0],0,0) 0
(p1,[0,1,-1],1,1), (p1,[1,0, —1],1,1) (6D7,10,1,-1],0,0), (€DT, (1,0, -1],0,0)
(pi,[1,—1,0],1,1) (EDT,[1,-1,0],0,0)
(p1,[-1,0,1],1,1), (p1,[-1,1,0],1,1)
2 (p1.2,[1,0, —1],2,1) (p1,[0,—1,1],1,1), (p1,[0,0,0],1,1) 0

(p1,00,1,-1],1,1), (p1,[1,0,-1],1,1)
(p1,[1,-1,0],1,1)
3] (»1.2,[1,0,—1],2,1) 122}

Figure 9. Processing for the example in step 4

of SDRAM and a 7200rpm 20GB harddisk running Win- while the third is a ‘hybrid” dataset containing 2.3G bases,
dows XP. Two databases are used for our experiments, eswhich is created by combining the whole esthuman.z and
thuman.z and estother.z which were both downloaded froma part of estother.z. 1000 query subsequences, each with
the NCBI website. The databases are composed from thdength of 250 bases, are randomly selected from the DNA
alphabets A,C,G,T,N with N representing a wildcard i.e. N of yeast(Saccharomyces cerevisiae) and the average time
can be any one of the four alphabets. After removing the for answering the query is taken. As shown in Figure 12,
wildcard character, the estother.z database contains 2.07@he increase in query time for Blastn is much more signifi-
bases while the esthuman.z database contains 1.55G basesant than the:d-tree algorithms as Blastn suffers from its
Figure 11 shows the sizes of variowé-trees that are high I/O cost in large sequence databases. rFer 2, the
built on the two databases with the different parameters. Weed-tree can be faster than Blastn by a factor of up to 6.
note that the first two levels of thel-tree take up at most Forr = 3, theed-tree still outperforms Blastn when the
96MB of storage and could easily be stored in the main database size increased. We believe thatethéree will
memory. The third level of thed-tree on the other hand be much more capable in handling large DNA sequence

will require storage of up 3GB. databases than Blastn.

S H Dataset Level-1,2(MB) | Level-3(MB)

2 | [6,6,6] | esthuman 96 2720 500 T - T T

2 | [6,6,6] | estother 96 3036 450 - Blaan 1 i

2 [6,5,7] | esthuman 24 2713 400 -

2 | [657] estother 24 3003 250

3 | [6,6,6] | esthuman 96 2075 B 7]

3 | [6,6,6] | estother 96 2317 @ 300 -]

3 | [6,5,7] | esthuman 24 2068 T 20 | .

3 [6,5,7] estother 24 2304 = 200 - -

150 [E

. . lm B T

Figure 11. ed-tree Index Sizes, w = 18 50 |- -

o

DB Size(Gbps)

5.1 Comparison of ed-tree and Blastn
Our focus here is to compare the efficiencyedftree Eg;{ﬁzzég) Speed vs DB Size (Query
against the latest version of Blastn(NCBI Blastn2) which
is available from the NCBI website. The sensitivity of the
probe models that are supported by Hiktree is in fact Another set of the experiments is carried out to investi-
comparable to Blastn as demonstrated in an earlier sectiongate how the query length influences the efficiency of the
We conducted two sets of experiments to compare the effi-ed-tree compared to Blastn. We randomly select 1000 sub-
ciency of theed-tree against Blastn by varying the database sequences with length varying from 30 to 250 bases from
size and the query length. In the experiments, the length ofthe yeast DNA. For each query length, we take the average
probe sequence is set tol8 and H is set to[6, 6, 6]. query time and plot them against the query length. Figure
The first set of experiments is designed to evaluate how13 and 14 depict the relationship between the query time
the performance of Blastn aned-iree varies with the of the various algorithms versus the query length for the
database size. Three databases of varying sizes are usetlvo databases. The query time @f-tree increases lin-
The first two are the esthuman.z and estother.z databasesarly with the query length since the number of probes in

T T T . r = 3, we can tell that a difference of one edit opera-

350 lastnell —+— . . .
w00 ccHree(18.2[668) 12 - tion can change the size of the result set substantially
prtibont gy o causing a significant increase in 1/Os.
250 | ed-ree(18,3,(6,6,6)) r=3 —@--
Fawob 2. Query time ofed-tree decreases with increasing
1< . . . P
E 150 b i Since increasing the skip intervatlecreases the num-
100 b g rE ber of subsequences being indexed in the database, the
RN T . .
ok . i,.v—;ii/"i' % - number of I/Os operations for the search will also de-
o Qé—‘*/"‘*,”*’f@f"'% , , crease. The effect of varyingis however less signifi-
0 50 100 150 200 250 cant than- as it can be seen from Figure 13 and 14.
Query Length

. 5.2 Effect of Parameters
Figure 13. DB:est _human 1.55Gbps

T T T T
500 Blastn-11 —+— T - =2 —+
450 - adiree(18,2[666]) =2 —~*— eiaatee iz
[SRS L <L SrEads
350 edtree(183[6:6.6) =3 — @ oL edtrec182[657) =8 B
@ 300 4 o | IS i
2 omof g g 2 o
T 00 - . For i
150 - T b i
100 g g . o %’fﬁ]
50 gl W e R O]
0 g”fxﬂ * * | | | 0 D - ¥
0 50 100 150 200 250 155 2.07 2.35
Query Length DB Size(Gbps)
Figure 14. DB:est _other 2.07Gbps Figure 15. Level 1,2 Pruning time vs DB Size

the ed-tree grows linearly. As such, there are likely to be

more hits on different parts of the databases which will in- ed-tree(182,6,6,6]) =2 —+—
. . ed-tree(18,2,[6,5,7]) r=2 —->¢ -

cur more 1/Os for the search. We note that in general, in- ed-tree(18,2,[6.6,6]) =3 -- - - -

. . 120 - =3 - -

dexes will not be useful if most parts of the database have sted1B2[657) =3 e
.. . . 200 e e o
to be accessed and this is also applicable in the case of the N * i
ed-tree. E oL i
Blastn’s performance is not significantly affected by the w0l)

length of the query since its running time is dominated
by the I/O time of its sequential scan which will not in-
crease substantially for the longer queries. Notwithstand- 155 207 235
ing, Blastn’s performance is typically an order of magnitude DB Size(Gbps)

slower than thed-tree’s.

Figure 16. Level 3 Pruning time vs DB Size

We will next look at the effect of parameter settings on the

ed-tree’s performance. Since there exist a large number of We look at how the segment length vectér affects the

combinations for the parameter values of tiaktree, we performance okd-tree, more specifically the pruning pro-

can only provide more insight for the more important ones. cesses at the first and second level of thletree. Fig-
From Figure 13 and 14 which are shown earlier, we make Ureé 15 shows that the pruning time at the first two lev-

the following observations on the effectofinds: els grows moderately with the database size for a query
length of 250. One interesting observation here is that
1. Query time of theed-tree increases with increasing theed-tree(18, 2, [6, 6, 6]) took more time for pruning than

Increasing-, the edit distance range means that a more ed-tree(18, 2, [6, 5, 7]) regardless of the value of This
relaxed query constraint is being specified. Naturally, is because there are significantly less nodes in the sec-
this means that a larger result set will be returned. ond level whenH is set to[6,5,7]. For H = [6,6,6],
From the difference between the resultrof= 2 and there are45+6(=16, 777, 216) nodes in level 2, compared

to 45+5(=4,194, 304) nodes forH = [6,5,7]. At the third database with the skip interval In each window, the sub-

level however,; plays a more important role as shown in sequences are segmented based on a segment length vector,

Figure 16 where the search time for= 3 is always sig- H.

nificantly higher than that for = 2. In this case, the I/Os According to our experimental results, the query time

required for retrieving a larger result set dominate the cost. usinged-tree is up to 6 times lower than Blastn for large
Likewise, Figure 17 and 18 confirm thaf has a more DNA sequence databases and this performance gap grows

significant effect on the first two level of pruning white with the size of the DNA sequence database. Unlike previ-

has more effect on the third level pruning. Overall, since ous sequence indexes, the size ofdtigree is at most 3Gb

the I/Os at the third level dominate the total pruning time for for a sequence database of 2 billion base pairs. Considering

the three levels, it makes sense to try to adfiistuch thata that the mapped human genome contains around 3 billion

small increase in pruning time at the first two levels causesbase pairs, we believe that thé-tree is well positioned

a substantial decrease in the 1/O time at the third level. Infor searching large DNA sequence database on a desktop

fact, this is the main principle we adopted in fine tuniig ~ computer.

to achieve the best performance.

References

2 —— [1] J. Buhler. Efficient large-scale sequence comparison by
locality-sensitive hashing. Bioinformatics 17:419-428,
2001.

[2] S. Burkhardt, A. Crauser, P. Ferragina, H. P. Lenhof, and
X M. Vingron. g-gram based database searching using a suffix
array (quasar). lint. Conf. RECOMBLyon, April 1999.

i [3] E. Giladi, M. Walker, J. Wang, and W. Volkmuth. Sst: An
algorithm for searching sequence databases in time propor-
tional to the logarithm of the database size. Imh. Conf.

Query length RECOMB Japan, 2000.

]]] [4] R.S. C. Goble, P. Baker, and A. Brass. A classification of
Figure 17. Level 1,2 Pruning time vs Query tasks in bioinformaticsBioinformatics 17:180-188, 2001.

Length [5] E.Hunt, M. P. Atkinson, and R. W. Irving. A database index
to large biological sequences. International Journal on
VLDB, pages 139-148, Roma, Italy, September 2001.

o) =2 —+— [6] T. Kahveci and A. Singh. An efficient index structure for
Q; Eg TR string databases. Imt. Conf. VLDB Roma, Italy, 2001.
7

[
35 - ed-tree(18,2

ed-tree(18,2[
30 - ed-tree(18,2[

Time(s)
8
T
x*
1

2[

120 ed-tree(18,2,
- 2. [

2[

100 1= srel1s [7] K.Sadakane and T.Shibuya. Indexing huge genome se-

80 - Pt - quences for solving various problenGenome Informatics

60 | i pages 175-183, 2001.

40 - % B [8] B. Ma, J. Tromp, and M. Li. Patternhunter: faster and
more sensitive homology searctBioinformatics 18:440—

445, 2002.

0 50 100 150 200 250 [9] S.F.Altschul, W.Gish, W.Miller, E.W.Myers, and
Query length D.J.Lipman. Basic local alignment search totolecular
Biology, 215:403-410, 1990.

Figure 18. Level 3 Pruning time vs Query [10] D.J. States and P. Agarwal. Compact encoding strategies for
Length dna sequence similarity search.I8MB, 1996.

[11] T.F.Smith and M.S.Waterman. Identification of common
molecular subsequenceblolecular Biology 147:195-197,
1981.

6 Conclusion [12] H.E. Williams and J.Zobel. Indexing and retrieval for ge-
nomic databases.l[EEE Transactions on Knowledge and
In this paper, we proposed thé-tree(w, s, H), a new Data Engineering14:63—78, 2002.
tree-structured index, for searching meaningful alignments
in large DNA sequence databases. The index structure is
constructed by sliding a window on the target sequence

Time(s)
]
X0

10

