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ABSTRACT
This paper introduces a new definition of dense subgraph
pattern, the DN-graph. DN-graph considers both the size
of the sub-structure and the minimum level of interactions
between any pair of the vertices.

The mining of DN-graphs inherits the difficulty of find-
ing clique, the fully-connected subgraphs. We thus opt for
approximately locating the DN-graphs using the state-of-
the-art graph triangulation methods. Our solution consists
of a family of algorithms, each of which targets a different
problem setting. These algorithms are iterative, and utilize
repeated scans through the triangles in the graph to ap-
proximately locate the DN-graphs. Each scan on the graph
triangles improves the results. Since the triangles are not
physically materialized, the algorithms have small memory
footprint.

With our solution, the users can adopt a “pay as you
go” approach. They have the flexibility to terminate the
mining process once they are satisfied with the quality of
the results. As a result, our algorithms can cope with semi-
streaming environment where the graph edges cannot be
fitted into main memory. Results of extensive performance
study confirmed our claims.

1. INTRODUCTION
Graphs are the most pervasive model of entity interac-

tions as it concisely captures the interactions among entities.
However, for large graphs (which are becoming increasingly
common in many applications), it becomes too complicated
for human beings to find key information without the help
of suitable graph mining technology. Graph mining refers
to the process of discovering designated subgraphs from a
target graph, in the hope of uncovering unknown knowl-
edge about the graph. When facing unsolvable resource
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constraint, how to answer the mining question to the best,
becomes more challenging.

Most recent works on graph mining [4, 2, 3, 6, 10] believe
that dense patterns are prominent. They capture the most
active involvement of entity interactions. Subsequently, re-
searchers propose various definitions of dense substructures.
In section 2, we review some of these cliques/quasi-cliques,
high degree patterns, dense bipartite patterns and heavy
patterns respectively.

Intuitively, a dense pattern contains a set of highly rel-
evant vertices. They usually share large number of com-
mon neighbors (two vertices are neighbors if they connect to
each other by an edge). The definition of DN-graph (a.k.a.
Dense Neighborhood graph) follows this intuition.

This paper provides a set of algorithms to mine DN-
graphs from large scaled graphs. The problem of mining
DN-graphs is an NP-complete problem (due to the close re-
lationship between DN-graphs and cliques, lemma 3.1 will
cover this in detail). As such, in this paper, we opt to design
approximate solutions. In our solutions, the local neighbor-
hood size is the most important, but difficult, quantity to
be computed. We associate this quantity with local triangle
counting in order to approximate it efficiently.

Graph triangulation refers to the process of generating
all triangles in a graph. Our approach locates DN-graph
by using the state-of-the-art triangulation algorithm [13, 5].
As the storage of triangles can be expensive, we thus do not
store these triangles. Instead, we design our approach to
operate iteratively. In each iteration, our scheme dynami-
cally regenerates all triangles and improve the connectivity
estimation between vertices in each round.

Such an iterative, triangulation-based approach has three
advantages. First, most of the details involved in efficient
processing, such as minimizing I/Os, are abstracted within
the triangulation algorithm. The abstraction ensures our ap-
proach’s extensibility to different input settings, e.g. when
the target graph is too large to fit into memory, our ap-
proach only needs to change the access method of the graph
links. In addition, the estimation of the local neighborhood
is encapsulated within the triangulation algorithm. Second,
as the estimation of the local density value improves with
each additional iteration, users can adopt a “pay as you go”
approach and obtain the most updated results on demand.
Finally, when the graph is too large to fit into the main
memory, we can collect statistics in the first iteration to
support effective buffer management should there be a need
to store the local density value on a disk, since the triangles
are generated in the same ordering in every iteration
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TriDN
Yes O(klog|V ||E|

3

2 )
O(|V |log|V |

+|E|)

BiTriDN
Yes O(klog|V ||E|

3

2 )
O(|V |log|V |

(Binary Bounding) +|E|)

StreamDN
No O(k|E|) O(|V |)

(Semi-Stream)

Table 1: A Family of DN-graph Mining Algorithms

In this paper, we present triangulation based dense graph
mining algorithm and its variances. Together they form an
algorithm family.Their key features are compared in Table
1. For brevity, we name them respectively as 1) TriDN , 2)
BiTriDN and 3) StreamDN .

Algorithms TriDN and BiTriDN are two variances that
handle in-memory graphs. As explained previously, the al-
gorithms iteratively generate triangles to refine the λ value.
These two processes reach convergence when all λ values
remain the same as previous iteration.

The third algorithm, StreamDN , is for semi-streaming
graph setting. In section 4.2, we introduce the model of
semi-streaming graph. To mine semi-streaming graphs, al-
gorithm StreamDN applies the min-wise independent set
property, which provides an approximation for triangulation
using sequentially scan of graph edges, with bounded error.

The rest of the paper is organized as follows: In Section
2, we review related works. The definition of DN-graph is
formally presented in Section 3. We present algorithms for
finding DN graphs in Section 4. Experimental studies are
then described in Section 5. Section 6 concludes our work.

2. RELATED WORK
A dense graph pattern is a connected subgraph that has

significant more internal connections with respect to the sur-
rounding vertices. Depending on the semantic meanings of
the graph data, various forms of dense patterns have been
investigated in the literature.

(1) Clique/Quasi-Clique. A clique represents the high-
est level of internal interactions. In graph theory, a clique is
a fully connected subgraph. Each pair of vertices are con-
nected by an edge. A quasi-clique, on the other hand, is
an “almost” clique with a few missing edges. If a clique
is not a proper subgraph of any larger clique, we call it a
“closed” clique. (2) High Degree Patterns. This pat-
tern requires the average vertex degree to be above certain
level or outstanding among surrounding vertices. Here a ver-
tex’s degree is the number of edges intercepting the vertex.
Unlike cliques, a high degree pattern do not require high in-
terconnection within the pattern [8]. (3) Dense Bipartite
Patterns. If the involved entities belong to two distinctive
classes, and only entities from different classes have associa-
tions, the dense bipartite patterns are bipartite graphs with
outstandingly many edges. (4) Heavy Patterns. Previous
patterns emphasize on the topological features. The heavy
patterns, however, aim at maximizing edge weights [9]. If
the weights on the edges of a weighted graph follow the tri-
angle inequality, the heavy pattern is also a dense pattern

in the un-weighted graph. Even though this type of pattern
is not our preliminary target for this paper, it is presented
here for completeness purpose.

In this paper, we view a dense subgraph as a set of
vertices sharing many common neighbors. If two connected
vertices share one common neighbor, they form a triangle
together with their common neighbor. In view of the as-
sociation between dense patterns and triangles, we further
study the problem of triangle counting.

Triangle counting and listing have been well studied in
the literature. Given a graph G with |V | vertices and |E|
edges, [13] proposed a triangle-listing algorithm with time

complexity O(|E|
3

2 ) and with O(3|E| + 3|V |) space. Fur-
ther work [12] improves the performance of the algorithm
by separating the vertices into two types, dense and sparse.
The improved technique has the same time complexity as
the work in [13] while it reduces the space complexity to
O(|E| + |V |). The above ideas count triangles by scanning
graph edges, and join adjacency list of the two vertices. The
scanning of graphs makes these techniques highly adaptable
to streaming environment (In section 4.2, we discuss the
graph streaming model.).

Other research works on mining dense subgraphs can be
classified according to their counterparts in item-set mining
approaches. The most relevant work is the density based
solution [14]. This work provides not only a way to find the
closed cliques (biggest clique among the neighborhood) but
to order all graph vertices into a linear fashion for visualiza-
tion purpose. One of the leading approaches in [8] adopts
two-level-shingling method. Although the work only demon-
strates its power in collecting statistics from extremely large
graph, its performance is impressive and this approach can
be employed into graph mining domain to handle large scale
graphs.

3. DN-GRAPH AS A DENSITY INDICATOR
A graph G(V,E) consists of a set of vertices V and set of

interactions E over V ×V . The size of G, denoted as |V |, is
the number of vertices in V . The neighborhood of a graph
vertex v, is the set of vertices directly connecting to v. We
use N(v) to represent it. If vertex u and v share some com-
mon neighbors, we use N∩(u, v) to represent the joint neigh-
borhood. The neighborhood of e is the joint neighborhood
of its two end vertices. We denote the joint neighborhood as
Ne. For a subgraph G′ of G, the neighborhood of G′, N(G′),
is the set of vertices u ∈ G \G′, which immediately connect
with vertices in G′. Inside a graph, the measurement of min-
imal joint neighborhood size between any connected vertex
pair is denoted as λ. We use the notation λ(G)/λ(V ) to re-
fer to the measurement of a graph G with vertex set V . For
brevity, we omit the content inside bracket and use λ when
the context is clear. We also use ã to represent an upper-
bound of quantity a. The upperbound of λ is thus written
as λ̃.

In this paper, a clique is a fully connected graph, in which
every pair of vertices are connected by an edge. If the size
of a clique is c, we call the clique a c-clique. When com-
pared with clique of the same size, a quasi-clique has only
a fraction (say δ) of edges in the graph, it is a δ quasi-
clique.Conventionally δ is in the interval (0.5, 1].

Definition 1. DN-Graph
A DN-graph with parameter λ, denoted G′(V ′, E′, λ), is a



connected subgraph G′(V ′, E′) of graph G(V,E) that satisfies
the following conditions: (1) Every connected pair of vertices
in G′ share at least λ common neighbors.
(2) for any v ∈ V \V ′, λ(V ′∪{v}) < λ; and for any v ∈ V ′,
λ(V ′ − {v}) ≤ λ.

As the definition states, a DN-graph should be a con-
nected subgraph in which the lower bound of shared neigh-
borhood between any connected vertices, λ, is locally maxi-
mized. Being a DN-graph, it has local maximal λ value and
the size of the DN-graph is maximized. This ensures that
the DN-graph has more distinguishing power and maximal
coverage. Similar with the graph’s diameter and minimum
cut, λ is an indicator of the graphs’ underlying density. As
proven in the appendix (Proposition 8.4), it is a local maxi-
mum graph. For example, in figure 1, subgraph ABCDEF

is a DN-graph of λ value 3. If we include one more vertex
A′, the λ value of the graph A′ABCDEF ’s drops signifi-
cantly to 0. Similarly, taking away any vertex, say A, leads
to a lower value λ.

DN-graph is designed to represent dense patterns, as it
captures subgraphs with more internal associations. Ap-
pendix 8.2 depicts the relationship between λ and the clique
size using a dynamically changing graph.

Besides the level of connectivity, aDN-graph also imposes
restrictions on the minimal size of the shared neighborhood.
This restriction is especially useful when predicting protein
complexes via densely connected proteins within a protein-
protein interaction (PPI) graph. A protein complex’s for-
mation often serves to activate or inhibit one or more of the
complex members[15]. In a PPI network, we can observe
the phenomenon that members of a protein complex share
(significantly many) neighbors. The DN-graph definition
reconciles the sharing of neighborhood.

A 

F 

B

D 

C 

E A’ 

Figure 1: A DN-graph

Based on DN-graph, this paper provides effective solu-
tions towards mining DN-graphs within a massive graph,
Formally:

Definition 2. DN-graph mining problem
Given a graph G(V,E), we want to find all DN-graphs g(v, e, λ)
in G.

Generally speaking, the level of interactions among enti-
ties determine the density of the substructures. From this
point of view, it is not surprising to see that some patterns
are transformable to others. For example, a DN-graph is a
more general case of a closed clique (Recall that a clique is
a fully connected graph, while the closed clique is the local
maximal clique). In fact, a DN-graph is a relaxation of a
clique, with less rigid size constraints. Lemma 3.1 states the
relationship formally:

Lemma 3.1. DN-graph and Closed Clique
A graph contains a closed clique of size d if and only if the
graph contains a DN-graph g with λ = d− 2 and |g| = d.

The proof of above lemma is explained in detail in ap-
pendix 8.3. Here we omit it for brevity. Using Lemma
3.1, we are able to reduce the close clique mining problem
to DN-graph mining problem. The reduction signifies that
DN-graph mining is NP-complete (detail please refer to ap-
pendix 8.5). Prompted by this result, we seek to develop
heuristical solutions instead.

Like the closed clique mining problem, the computational
bottleneck forDN-graph mining is on counting degrees within
a subgraph. In fact, the counting of local degrees relies
heavily on the multiple joins of neighbors, which are com-
putationally expensive. To avoid the complexity of multiple
joins, we next introduce the concept of λ(e).

3.1 DN-Graph and λ(e)

As discussed previously, the bottleneck of DN-graph min-
ing is excessive number of neighborhood joins required. This
is because we have to test combinatorial number of sub-
graphs for their λ value and most subgraphs tested are not
DN-graphs.

Most of λ value testings however are unnecessary. Due to
the local maximality feature of a DN-graph, it is impossi-
ble for any two different DN-graphs to share any common
vertices or edges. Once we verify that a graph, gdn is a DN-
graph, we need not consider other subgraphs that intercept
with gdn. In fact, by computing the λ value of edges, we
can locate DN-graphs. If we assign the λ value of gdn as
the density value of its edges, a DN-graph becomes a set of
edges with local maximal λ.

Before explaining the process of locating DN-graph using
edge density, let us first define edge density, λ(e), formally:

Definition 3. λ(e)
Given a graph G(V,E) and an edge e ∈ E, λ(e) is the max-
imal λ(G′) value where e ∈ E(G′) and G′ ⊆ (G).

The value λ(e) indicates quantitatively, the most promi-
nent relationships between two linked vertices. With the
definition of local density, we next prove that using λ(e), we
are able to find all DN-graphs.

Theorem 3.1. Locating DN-graph using λ(e)
A graph G′ is a DN-graph if and only if

• all edges e within G′ have equal λ(e) value, represented
as λmax and,

• for all u ∈ N(G′) and v ∈ G′, λ(u, v) ≤ λmax.

For a proof of Theorem 3.1, readers are referred to Ap-
pendix 8.4. Based on Theorem 3.1,we can locate the DN-
graph by connecting edges with local maximal λ(e).

Computing λ(e) for all edges is however computationally
prohibitive, as discussed in section 3. To facilitate approx-
imation efficiently, we first find an upper bound value for
λ(e), the λ̃(e), and then iteratively refine λ̃(e) to capture
the actual λ(e) as accurately as possible.

The approximation is based on the fact that for an edge
e, its λ(e) value is upper bounded by the joint neighborhood
size of the end vertics of e. This joint neighborhood size is in
fact the number of triangles e participates in a graph. Thus
we are inspired to use triangulation to approximate λ(e) for
every graph edge.



4. LOCAL TRIANGULATION AND ITS AP-
PLICATION IN DN-GRAPH MINING

A triangle consists of a vertex triple (u, v, w) and three
edges (u, v), (v, w) and (u,w). The problem of counting
or listing all triangles within a graph is referred as Graph
Triangulation in this paper:

Definition 4. Graph Triangulation
Given a graph G(V,E), Graph Triangulation finds all vertex
triples (u, v, w), where every vertex pair inside the triple are
connected by an edge, denoted as e(u, v), e(v,w) and e(u,w)
respectively.

The joint neighborhood of an edge e(u, v) upper-bounds
λ(e), while the number of triangles e(u, v) participates in
is equal to the joint neighborhood size. This indicates that
graph triangulation provides an upper bound λ(e) for every

edge e. Here we use λ̃(u, v) to represent the current upper
bound of edge (u, v). What’s more, given a graph triangle,

the λ̃(u, v) can tighten the other two edges’ density upper
bound. The following proposition gives the relationship be-
tween an edge e’s (λ̃(e)) and its neighbors’:

Proposition 4.1. Neighbor Bounding of λ̃(e)

Inside a triangle (u, v, w), if λ̃(u, v) ≤ min(λ̃(u,w), λ̃(v, w)),

we say w supports λ̃(u, v). λ̃(u, v) is valid if and only if

|{w|w supports λ̃(u, v)}| ≥ λ̃(u, v)

Proof. The proof of necessary condition for proposition
4.1 follows the definition of the λ̃ value and is omitted for
brevity. Now we prove the sufficient condition: If the num-
ber of supporting vertices is greater or equal to λ̃(e), then

λ̃(e) is an upper bound for λ(e). We prove this by contradic-

tion. Suppose there are fewer than λ̃(e) supporting vertices

for λ̃(e), according to the definition of λ(e), λ(e) < λ̃(e),

which means λ̃(e) is larger than λ(e). In that case, λ̃(e) is
not a valid upper bound of λ(e) This contradicts with ear-
lier assumption. With the above reasoning, we complete the
proof of proposition 4.1.

4.1 Triangulation BasedDN-Graph Mining
The elementary operation behind local triangulation is

the joining of vertex neighborhoods. As studied in [12], the
performance of a local triangulation algorithm heavily de-
pends on the order of those join operations. In fact, it is
a necessary preprocessing step to sort vertices according to
their degrees for effective triangulation (Appendix 8.6 will
explains the algorithm in detail).

4.1.1 Generate Triangles to Refine Local Density
We adopt the graph triangulation algorithm in [12]. The

algorithm generates triangles systematically for each edge of
the graph. The generation of the triangles is a sequence of
join operations between the neighbors of two connected ver-
tices. Based on a special order of joining operations, the tri-
angles are generated in a streaming fashion. The DN-graph
mining algorithm thus obtains the local density information
gradually along the triangle streams. Based on proposition
4.1, we can use the number of triangles an edge participates
in (TC(e)) as the initial upper bound of the λ(e), the λ̃(e).
To give an even more accurate bound for λ(e), the algo-
rithm uses the density value of e’s neighbors’ to validate the
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Figure 2: Use Triangle to Refine λ̃(e)

current upper bound λ(e). Figure 2 shows how this process
works graphically.

In the first round of graph triangulation, we are aware of
the triangular count of e(a, b) (which is in fact λ̃(e)), and
nothing about its neighbors. However, the triangular counts
of the neighbors (a.k.a local density estimation) are available
once the first round of graph triangulation is completed. To
compute a more accurate λ̃(e) for each edge, we will simply
go through more rounds of triangulation and make use of
the density information of the neighbors to further validate
a new estimation of λ̃(e) for each edge.

For a triangle (a, b, n1), the algorithm checks whether the
triangles (a, b, n1) can possibly be a supporting evidence

that edge e(a, b) are in a DN-graph, with λ̃(e). This is
done by checking whether both the other two edges of tri-
angle (a, b, n1) (i.e. e(a, n1) and e(b, n1)) have λ̃ greater or

equal to λ̃(e). If this is the case, this means that n1 is such
a supporting vertex.

The triangle is then represented as a solid line indicating
that e(a, b) finds a new supporting vertex n1 in DN-graph

with λ̃(e). As new triangles approach, the algorithm counts
the number of supporting vertices for edge (a, b) to form

DN-graph, with current value of λ̃(e). After one pass of all
triangles, the number of vertices that support each edge’s
density upper bound λ̃(e) are available for further compu-
tation.

Algorithm 1 Triangulation based DN-graph mining

Require: Graph G(V,E)
1: Triangles = Triangulation(G), k(e)=Triangle count(e)
2: while converge AND iteration!=MAX ITR do
3: sc = 0, converge=TRUE
4: for all Triangles (a, b, c) ∈ G do
5: Increment corresponding sc(e) if e is supported
6: end for
7: for all edges e ∈ G do
8: if (sc(e) < λ̃(e)) then

9: Find next possible value λ̃(e) for e

10: converge = FALSE
11: end if
12: end for
13: Increment iteration by 1
14: end while
15: return λ̃(e) for each e ∈ E

With the supporting neighbors’ information, the algorithm
is able to determine the upper bound of λ for each graph
edge (the upper bound is denoted as λ̃(e)). If sufficient sup-

porting vertices are found for λ̃(e) for an edge e(a, b), λ̃(e)
is a valid upper bound of e(a, b)’s λ value. If there is not
enough supporting vertices for e(a, b), the algorithm finds

the next possible λ̃(e) value and tests it in the next round



of triangulation. The algorithmic description is given in Al-
gorithm 1. Within the algorithm, sc(e) records the number

of vertices supporting current λ̃(e) value.

4.1.2 λ(e) Bounding Choice
We can derive two variants of DN-graph mining algo-

rithms from Algorithm 1, namely algorithms TriDN and
BiTriDN . The two algorithms have different ways to de-
cide the next possible λ̃(e) value. The first variant, called

TriDN , decreases λ̃(e) by one (Line 9 in Algorithm 1 be-

comes λ̃(e) = λ̃(e)− 1 ), if current λ̃(e) cannot obtain suffi-
cient supporting vertices count. This strategy is useful when
the triangle counts are close to the actual λ(e) values (qual-
itatively, when |TC(e) + 2− λ(e)| ≤ logλ(e) ).

When the triangulation results are far above the actual
λ(e) value, we can employ the second variant, calledBiTriDN ,
which adopts a binary search strategy for the next possible
value of DN(e). BiTriDN requires additional information
of possible DN(e)’s range. We use two numbers lbk(e) and

λ̃(e) to record the lower bound and upper bound of λ(e)

value, and mk(e) denotes the medium of range [lbk(e), λ̃(e)
]. For completeness, we rewrite Line 7 onwards in Algo-
rithm 1. BiTriDN has the advantage of fast convergence if
the graph to be mined has many high degree vertices (qual-
itatively, when |TC(e)+ 2−λ(e)| ≥ logλ(e)). Appendix 8.8
gives the proof of the correctness for both bounding choices.
Interested readers are referred to Appendix 8.9 for the com-
plexity analysis of both algorithms.

Algorithm 2 Binary DN-Graph Mining Variance
“BiTriDN”
Require: Graph G(V,E)
1: mk(e) = k(e) = TC(e) + 2, lbk(e) = 2

2: Get support count scmk(e) for all edges’ λ̃(e) {This part
is the same as in Algorithm 1}

3: for all edge e ∈ G do
4: if (scmk(e) < mk(e) AND lbk(e) < λ̃(e)) then

5: λ̃(e) = mk(e)− 1, converge = FALSE
6: else
7: lbk(e) = mk(e)
8: end if
9: mk(e) = λ̃(e)+lbk(e)

2
10: end for
11: return λ̃(e) for each e ∈ E

4.2 Extension ofDN-Graph Mining to Semi-
Streaming Graph

The semi-streaming graph model assumes the vertices of
the graph can be fitted into main memory, and the interac-
tions among vertices are stored in an ordered manner within
the secondary storage. While this assumption may not hold
for arbitrarily large graphs, we can still handle up to Giga
scale vertices (assume |V | vertices require |V |log|V | bits
storage) with today’s main memory capacities. Following
the nature of physical storage devices, our streaming model
assumes random access in primary storage (i.e. memory)
and only sequential access in secondary storage. In the sec-
ondary storage, graph interactions are stored in the form
of adjacency list. As a feasible solution towards a stream-
ing graph G(V,E), it should not exceed log|V | scans of G’s
adjacency list.

In the semi-streaming graph setting, the exact triangula-
tion algorithm proposed in [12] cannot be directly applied
in the DN-graph mining solutions. The information of the
neighbors are stored in secondary storage and may not be
immediately available when the algorithm retrieves it.

In view of above difficulty, our streaming solution first per-
forms a semi-streaming triangulation, followed by the com-
plete DN-graph mining solution in semi-streaming setting.

The neighborhoods join operations are in fact the pro-
cess of determine the similarity between two sets. The most
well-adapted measurement for set similarity is Jaccard co-
efficient. For two sets A and B, Jaccard coefficient is calcu-

lated as J(A,B) = |A∩B|
A∪B

.
In the semi-streaming graph setting, it is however expen-

sive to calculated Jaccard coefficient between two neighbor-
hoods. Since the operation of set joining requires expensive
pre-processing of sets such as sorting or heap building.

In view of above difficulty, we use the property of min-wise
independent set to approximate Jaccard coefficient. When
dealing with large sets, min-wise independent property ap-
proximate set intersection size using sequential scan only.

Suppose A and B are defined on the set universe X, and
π is a permutation over universe X, the min-wise indepen-
dent property states: If π[X] is a uniformly chosen random
permutation over X, and W ⊂ [X] is any subset over the
universe, and π[W ] is the projection of W by permutation
π, then the probability that two subsets’ minimal projected
images are equal is the same as the Jaccard coefficient. For-
mally, P [min(π[A]) == min(π[B])] = J(A,B). [5] proposes
a streaming local triangle counting algorithm based on min-
wise independent property(Appendix 8.7 outlines the tech-
nique).

The algorithm proposed in [5] estimates local triangula-
tion using edge scans. It forms the first step of algorithm
StreamDN . The next step is to calculate each edge’s λ

value using only edge scans 1. StreamDN , as presented
in Algorithm 3, adopts the bounding process as algorithm
BiTriDN . That is:

Algorithm 3 Streaming DN-Graph Mining Algorithm
“StreamDN”
Require: Graph G(V,E), r : # of scans of graph links k : #

of bits for hash values
1: mk(e) = λ̃(e) = TC(e), lbk(e) = 0
2: Triangulation and store triangle count TC(v, u) for all

e ∈ E as in algorithm 5 in appendix.
3: while !converge AND iteration!=MAX ITR do
4: sck = 0 ubk(e) = λ̃(e) = TC(e), lbk(e) = 0
5: for all edge (u, v) ∈ G do

6: sck(u, v)=number of u’s neighbor with λ̃(u, v)

7: Bound λ̃(u, v) using ubk(u, v)/lbk(u, v)/sck(u, v)
{the same as Algorithm 2}

8: end for
9: end while
10: return λ̃(e) value for every graph edge e

The only difference between the streaming version of the
algorithm and BiTriDN is when counting the supporting
vertices. In StreamDN , we can only access the graph edges

1For brevity, in following parts of the paper, we use stream-
ing DN-graph mining algorithm instead of explicitly stating
“semi-streaming”



sequentially. In view of the restriction, proposition 4.1 is
relaxed to as follows:

Proposition 4.2. Relaxed Neighbor Bounding of λ(e)
Given a graph edge e(u, v) and the joint neighbor set N∩(u, v),

we say a vertex w ∈ N∩(u, v) is a supporting vertex of λ̃(e)

if λ(u,w) ≥ λ̃(e). An integer k is a valid upper bound of

λ̃(e) if and only if there are at least k of such supporting
vertices in N∩(u, v)

The proof for proposition 4.2 is omitted for brevity.

4.2.1 Error-Bound on StreamingDN-Graph Mining
As mentioned in the previous subsections, the number of

permutations adopted determines the estimation accuracy
of min-wise independent property. The error, however, is
bounded. If we denote the joint size as X = |A∩B| and the
estimated value X = TC(A,B), the error bound is:

P [|X −X| > ǫX] ≥ 2e−
ǫ
2

3
rJ(A,B) +

m|A ∪B|

2k − 1
[5]

The complexity analysis for streaming DN-graph mining
is presented in the appendix. In fact, the triangle based
approach algorithm can also be applied to dynamic graphs
and we attach the adapted algorithm for dynamic setting in
Appendix 8.10.

5. EXPERIMENTAL STUDY
In this section, we study the performance of theDN-graph

mining algorithms. Experimental data come from both the-
oretically proven data generators ([7]), as well as domain
datasets. All the experiments are conducted on a worksta-
tion with a Quad-Core AMD Opteron(tm) processor 8356,
128GB RAM and 700GB hard disk. The operating system
is Windows server 2003, Enterprize x64 edition.

Synthetic Graph Generators (GEC). We use the clique
hiding graph generator developed by M. Brockington and
J. Culberson [7]. This graph generator randomly embeds a
fixed size clique (c) into a graph of (|V |) vertices. The graph

density, p, is calculated as p = 2|E|
|V |(|V |−1)

. The resulting

graphs are random graphs with one known fixed size clique
embedded. Table 2 summarizes the key parameters, with
the default values highlighted in bold.

Parameters Experimental Range

c: clique size [20, 40, 60, 80, 100]

|V |: # of vertices [1000,2000, 3000, 4000, 5000]

p: edge density(%) [4, 8, 12, 16, 20]

Table 2: Parameter Table

Domain Graph Datasets We also employ 3 real life
datasets in our study. These datasets are either collected by
domain experts or extracted from well-known public databases.
1) Protein Protein Interaction (PPI) dataset: This dataset[16]
contains 17203 interactions among 4930 proteins.2) Netflix
dataset: It is compiled from Netflix raw data consisting
of 480,000 customers and 17,000 movies records [1]. 3)
Flickr dataset: This dataset is derived from the well-known
photo sharing network Flickr with 1,715,255 vertices and
22,613,982 edges. Each vertex represents a person.

5.1 Performance Evaluation
DN-Graph Mining Accuracy

The first set of experiments evaluate the accuracy of the
family of DN-Graph algorithms on the synthetic data gen-
erated by GEC . We focused on two algorithms - TriDN and
BiTriDN . We compared the results and observed similar
behaviors between the two algorithms. Due to space limita-
tion, we only present the results of algorithm BiTriDN .
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Figure 3: λ Value For fixed |V | = 3000

There are three groups of experiments, each of which fixes
a GEC parameter to the default value. Group 1: When we
fixed |V | = 300, Figure 3(a) and figure 3(a) show the cal-
culated λ values of different datasets. From figure 3(a), the
algorithm accurately reports the DN-graph size as c, when
the embedded clique is in fact the dense area of the dataset.
When the graph is denser (p ≥ 0.12), the clique becomes a
less dense area. In these datasets, BiTriDN reports higher
λ̃ value (up to λ̃ = 90). We examined the dataset and ver-

ified that BiTriDN did find DN-graph with higher λ̃ value
(> c), and confirmed the correctness of BiTriDN ’s results.

Similarly, the results in figure 3(b) shows the λ̃ value over
different densities, which once more confirms BiTriDN ’s ac-
curacy. Group 2: When we fixed p = 12%, the results in
figures 4(a) and 4(b) show that BiTriDN identifies the λ

value accurately. Similar observations are made for experi-
ments in Group 3 when we fixed c = 40 (see figures 5(a) and
5(b)).
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Convergence of DN-Graph Mining Algorithms



In this set of experiments, we compare the pace of conver-
gence between two algorithms: TriDN and BiTriDN . The
synthetic datasets are generated from GEC as well. The
maximal iteration is set to be 40 rounds to avoid pro-long
running of the experiments. Plots in figure 6(a) and 6(b)
show the number of iterations to reach convergence with
different graph density p and graph size |V |. The results
from both plots show that algorithm BiTriDN can converge
within 10 to 25 rounds on most parameter settings. How-
ever, in most of the experiments, TriDN has not reached
convergence after the preset maximal iteration. This pro-
vides strong support on the claim that BiTriDN converges
significantly faster than TriDN .
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Time Performance in Memory

In this study, we evaluate the efficiency (i.e., running time)
of the two algorithms TriDN and BiTriDN over the syn-
thetic data generated by GEC . For a fixed parameter set-
ting, the two algorithms converge at different iteration. To
remove the effect of different convergence speed towards time
performance, all time are measured for only 1 iteration in
this study. Both algorithms have almost same behavior for
1 iteration. Figure 7(a) and 7(b) show the running time
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Figure 7: BiTriDN 1 Iteration Running Time |V | =
3000

when |V | is fixed. The results match the complexity anal-
ysis in section 4.1. The effects of edges distribution change
are shown in figure 7(a) and 7(b). The synthetic graph gen-
erator GEC varies the edge distribution by varying the em-
bedded clique size c. Experiments on these data always
indicate that only |V | and p affect the running time. Figure
8(a) and 8(b) present the effect of different graph size |E|
over the running time. The trend over time roughly follows

complexity O(E
3

2 ).
Memory Usage

We also monitor the peak memory usage of both TriDN

and BiTriDN on the synthetic data. Figure 9 shows that
both algorithms increase their memory usage when the graph
size/density increase. Meanwhile, the results tell us that the
memory usage of TriDN is always slightly less than that of
BiTriDN under the same parameter setting. This is because
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in BiTriDN , additional memory are need to store both the
upper bound and lower bound of the λ value.
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Test on Very Large Graph

In this experiment, we applied BiTriDN on the Flickr dataset.
The running time per iteration is between 55 minutes to 1
hour. The stable memory usage is less than 1G. The pro-
gram converges after 66 iterations. Each iteration’s λ val-
ues are recorded for each vertex. In the final iteration, the
largest DN-graph have a λ value of 278. We note that at
the 35th iteration, the largest λ value already reaches 279.
Figure 10(a) plots the trend of maximal vertex λ value’s
change. From this experiment, we confirm that algorithm
BiTriDN has fast running time and low memory usage. Be-
side that, the DN-graph mining results have high availabil-
ity as the results are updated at every iteration. What’s
more, if allowing permissible errors, the program converges
very fast. These fast convergence feature is observed for all
real datasets we tested on. We did not reports all results
due to space limitation.
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Figure 10: Performance on Flickr Dataset

StreamDN Performance on Flickr Dataset

In this set of experiments, the StreamDN algorithm is ran
on the Flickr dataset. The implementation mimics the be-
havior of disk scan on main memory as our experiment ma-
chine has large enough memory. The results in figure 10(b)
shows StreamDN over-estimates with respect to BiTriDN

algorithm’s results by 72% during the first 66 scans of the



whole Flickr dataset. With the analysis of StreamDN ’s run-
ning time complexity, we confirmed that the triangulation
based DN-graph mining algorithms can handle streaming
setting with reasonable accuracy.

DN-graph Semantics in Various Domain

In the movie co-comments network, two movies are con-
nected by a weighted edge if these two movies share enough
commenters such that the Jaccard Coefficient of the two
movies’ commenters sets is above a certain threshold. Fig-
ure 11 shows a set of movies and their interactions found
in 100 movies co-comments network with a threshold of 0.5.
These movies are reported with λ = 9. All of the 9 movies
have exceptional high IMDB scores (> 8 out of 10, which
means they are exceptionally popular). Besides the popular-
ity, we found 7 of them are from USA, while the remaining
2 are from France and Japan respectively. The 9 movies all
belongs to genre Violence/Fantasy.
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Figure 11: Patterns Discovered in NetFlix
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Figure 12: A 20-protein complex in form of DN-
graph

Many proteins are functional only when they are assem-
bled into a protein complex. Our DN-Graph mining algo-
rithm can detect important protein complexes out of large
amount of protein-protein interaction (PPI) data. For exam-
ple, mRNA CF Complex in figure 12 is a 20 protein com-
plex confirmed by the benchmark. The red colored nodes
are active proteins that functionally interact with other pro-
teins within the complex. These proteins can be successfully
detected as an DN-Graph by our algorithm, while others
(blue-colored nodes) are missed out in our results. The rea-
son for missing out those proteins is because these proteins
have fewer interactions with the rest of the proteins. Even
with those missing points, our results are already a signif-
icant improvement over known results (For further results,
please refer to Appendix 8.11).

6. CONCLUSION
In this paper, we present a new graph dense structure

DN-graph. TheDN-graph complements popular dense struc-
tures by imposing both size and degree constraints. We then
discuss the graph local triangulation problem and its con-
nection with DN-graph mining problem. Based on that, we
propose solutions to effectively locate DN-graphs. The so-
lutions are set of algorithms catering for different problem
settings from in memory to streaming. The iterative, trian-
gulation based solution has the advantages that the details
can be abstracted within the triangulation algorithm. Since
the algorithm improves the result at every iteration, users
can stop the algorithm at any time and get the best results
within the time limit. Our experimental study shows our
solutions are both time and space efficient.
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8. APPENDIX

8.1 An Illustrative example on different den-
sity patterns

C4

T(14,4)

(a) C4,T(14,4)

C4

T(14,4)

(b) δ Quasi clique

C4

T(14,4)

(c) Max Clique

Figure 13: Comparison between Different Dense
Sub-structures

Figure 13(a) to 13(c) present the mining results of two dif-
ferent density criteria on an illustrative graph. The graph
in Figure 13(a) contains a 4-clique loosely attached to a Tu-
ran’s graph. A Turan’s graph T (M,N) is a special class
of graph, in which N graph vertices are divided equally (or
as equal as possible) into N groups. Every pair of vertices
from two different groups has edge connecting them, while
members in the same group are not connected. In fact,
Figure 13(a) embeds a Turan’s graph T (14, 4). Judging by
the interactions, there are two interesting substructures in

Figure 13(a). One is the 4-clique and the other is the Tu-
ran’s graph. If we apply δ quasi-clique mining, when setting
δ = 0.8, the mining result includes the whole example graph
(figure 13(b)). The mining results are so relaxed that two
dense substructures cannot be distinguished. If we insist on
regularity of the pattern (e.g. a clique), we can only find
subgraphs of size 4 (as indicated in 13(c)) while missing the
Turan’s graph.

8.2 Relationship Betweenλ and the maximum
clique size within a dynamic graph
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Figure 14: The growth in λ value of a 20-vertex
dynamic graph

Figure 14 illustrates the relationship between λ and the
size of the maximum clique within a dynamic graph. The
graph consists of 20 separated vertices and initially has no
edges. The topology of the dynamic graph is varied by
adding edge to the graph one at a time. For comparison pur-
pose, the vertices are deliberately separated into two groups.
Each group consists of 10 vertices. One group (“dense”) has
much higher probability of being connected to each other
with a new edge. The probability of new edge appearing be-
tween the vertices of the other group is significantly lower.
As the edges are added, the whole graph becomes a 20-
clique. Unsurprisingly, the “dense” group becomes a 10-
clique much faster compared with the “sparse” subgraph.
Correspondingly, the λ value of the “dense” group grows
substantially faster than the “sparse” one. From this exam-
ple, we can see that the growth in λ is a good indication
that a subgraph will eventually form a dense clique.

8.3 Proof of Lemma 3.1
First we prove the necessary condition. If a graph contains

a DN-graph g with λ = d− 2 and |g| = d, according to the
definition ofDN-graph, g has d vertices, which shares (d−2)
common neighbors with every connected vertices in g. For
any two distinct vertices v and u in g, if they are connected,
they Both connect to every other vertices inside g. This
holds for every vertex pair, which indicates that if g has an
edge, it is a clique. While g is a DN-graph, it does not
contain a proper super graph which is also a DN-graph, it



thus does not have a proper super graph with λ = d−1 and
|g| = d+ 1. It does not contain a clique of size d+ 1.

The sufficient conditions proof is: if a graph contains a
closed clique of size d (*), this clique has d vertices and each
pair of vertices share d− 2 common neighbors. λ = d− 2 in
this case according to λ definition. Being a closed clique, it
does not have a proper super graph which is also a clique.
This indicates that it does not have a proper super graph
with .λ ≥ d− 1 and size = λ+ 2. Suppose there is a super
graph with lambda = d − 2 + δ and size = d + ǫ, there
must be some vertices which are not inside g connecting to
at least d−2+ ǫ− δ d-clique vertices, while d−2+ ǫ− δ ≤ d,
indicating ǫ − δ ≤ 2, which means size ≤ λ. This is either
impossible or the super graph is a clique, which contradicts
with the assumption (*). So there is not possible such super
graph exist. So the d-clique is an DN-graph. This complete
the proof.

8.4 Proof of Theorem 3.1

V_max

G’

v_max

Figure 15: Proof of Theorem 3.1

To prove the correctness of theorem 3.1, we use the ab-
stract graph in figure 15. The complete proof consists of
two steps. Firstly, G′ must exist. Secondly, G′ must con-
tain some max-min DN graph. To prove the existence of
G′, we construct G′ using graph vertices/edges and their
λ values. First pick a vertex v with λ(v) ≥ λ(u) for all
(u ∈ N(v)). Denote λ(v) as λmax. By the definition of lo-
cal λ value, λ(v) participates in a connected graph G′ with
λ(G′) = λmax. From v, we find all its immediately con-
nected neighbors that have λ(u) = λmax. From each u, we
find u’s immediately connected neighbors with local λ value
λmax. This process propagates until no such neighbor ex-
ists. The collection of discovered vertices form a connected
subgraph G′ with λ value λmax.

Next, we show that G′ contains a DN-graph. By first
part of the proof, G′ contains all vertices and edges with λ

value λmax. For a vertex v′ ∈ G′, it only can form DN-
graph of λ = λmax with vertices inside G′. If denoting the
minimal set of vertices from G′ that form an DN-graph with
v′ as Vmin, the subgraph Vmin∪v′ is also a DN-graph. This
proves that a graph G′ containing the set of vertices with
λ(v) = λmax > λ(u) where u ∈ N(G′) must participate in
a DN-graph. The condition that λ(v) = λmax and λmax >

λ(u), where u is the neighbor vertices of G′, means the graph
G′ contains vertices with local maximal λ value. Since graph
G′ is always a super graph of some DN-graph, If a solution
can find G′, the DN graph can be located within G′.

With above two steps, we prove the correctness of theorem
3.1.

8.5 Closed Clique Finding is NP-Complete
A closed clique is the local maximal clique, where no

proper super graph of it is also a clique. The problem of de-
tecting cliques is a well known NP-complete problem, which
is first discussed in the landmark paper [11]. As a clique pos-
sessing certain property (here, local maximality), a closed
clique detection problem is also an NP problem.

8.6 Graph Triangulation Algorithms
The exact graph triangulation algorithm was first pro-

posed in [12].

Algorithm 4 Local Triangulation Algorithm

Require: Graph G(V,E)
1: mk(e) = k(e) = TC(e) + 2, lbk(e) = 2
2: Order vertices and edges according to degrees
3: for all dense vertex v ∈ G do
4: Retrieve all v’s dense neighbors u
5: Joint v and u’s neighborhoods to find triangle ¡v, u, w¿
6: end for
7: for all sparse vertex e(v, u) ∈ G do
8: Join v and u’s neighbor lists to find triangles contain-

ing edge triangle < v, u, w >

9: end for
10: return All triangles in G

Algorithm 4 separates the vertices in G(V, E) into two
classes: dense and sparse. Vertices with degree greater or
equal to

√

|V | are dense vertices, the remaining are sparse
vertices. A edge with both end vertices being sparse vertices
is a sparse edge. For a dense vertex v, the local triangulation
algorithm perform a join on v’s immediate neighbors and the
neighborhood list v’s neighbor, u. The size of the join set is
the triangle count of edge (v, u). Similarly, for sparse edge
(v′, u′), algorithm join the neighborhood list of v′ and u′.

8.7 Approximate Graph Triangulation
The approximate graph triangulation algorithm was first

proposed in [5].
The basic idea of the streaming triangulation algorithm

in Figure 5[5] is to generate r times permutation over ver-
tices set V . For each permutation, algorithm records every
vertex’ minimal neighbors within the permutation. After
obtaining the minimal neighbors for each vertex, the algo-
rithm scan the graph once to check whether the minimal
neighbors of two connected vertices are equal. If they are
equal, algorithm increments count Y for the connected ver-
tices. The estimator for vertex triangle count is

∑

u∈N(v)

Y (v, u)

Y (v, u) + r
(|N(v)|+ |N(u)|)[5]

. This estimator is derived from min-wise independent prop-
erty. We use small number of permutation to estimate all
permutations over graph vertices.

8.8 Correctness ofλ Bounding
Let us denote the actual λ value for an edge as λ(e), and

the exact supporting neighbor count as sc. The upper bound
of λ value is denoted as k(e) and the supporting neighbor



Algorithm 5 Streaming Triangulation Algorithm

Require: Graph G(V,E), r : # of scans of graph links,
k : # of bits for hash values

1: mk(e) = k(e) = TC(e) + 2, lbk(e) = 2
2: Y = 0, min(V ) = 0
3: for s = 1 TO r do
4: Hash every vertex label hs(v) to any random k bits
5: for all vertex v ∈ V and its neighbor u do
6: min(v) = min( min(v),hs(u) )
7: end for
8: for all vertex v ∈ V and its neighbor u do
9: if (min(u)==min(v)) then
10: Increment Y (u, v) by 1
11: end if
12: end for
13: end for
14: for all every vertex v in G do

15: TC(v) =
∑

u∈N(v)
Y (v,u)

Y (v,u)+r
(|N(v)|+ |N(u)|)

16: end for
17: return All triangles in G

count of k(e) is denoted as sck(e). To prove the correctness
of Algorithm 1, we need to show that 1) k(e) is always an
upper bound of λ(e). 2) k(e) converges.

Proof. 1) For the first bounding choice, At the begin-
ning of the algorithm 1, k(e) is equal to triangle count for e,
TC(e). since k(e) ≥ λ(e). If the algorithm stops, the upper
bound invariance holds. Suppose the invariance holds for it-
eration i > 0, k(e) ≥ λ(e), at iteration i+1, k(e) is updated
to k(e)− 1 when this condition holds: the number of neigh-
bors having λ values greater or equal to k(e) is less than
k(e). This condition uses the value of k from the neighbor-
hood vertices to verify whether the current iteration’s k(e)
value is valid. Since the neighbor’s k values are the upper
bounds their actual λ values, the number of qualified can-
didates sc(e) ≥ sck(e). Thus when sck(e) is less than k(e),
k(e) is definitely greater than the real λ(e) value (as in 4.1).
In that case, k(e) is reduced by 1. And the new k(e) value
is still an upper bound. The upper bounds invariance is
proven to hold. 2) For the second bounding choice (as in
algorithm 2), the proof of upper bound invariance follows
with the exceptions that this bounding choices test on the
median of possible λ range instead of k(e)− 1.

The convergence of k(e) is due to the monotonic decreas-
ing of k(e). The algorithm initializes k(e) as triangle counts.
This is an upper bound of λ(e). After that, algorithm only
decreases k(e). As λa(e) is always an upper bounds of the
actual value λ(e), λa(e) value will converge.

8.9 Complexity Analysis
The triangulation algorithm (in Appendix 8.6) sorts ver-

tex and adjacency list into descending order of degrees. The
operations requireO(|V |log|V |) time complexity. After that,
it counts triangles within the graphs for each vertex. To
count triangles, the algorithm separates vertices into dense
vertices and sparse ones according to vertices’ degrees. For
dense vertex, the algorithm lists the number of triangles
|V | participating in O(|E|) time. The total complexity for
counting dense vertices is O(|V ||E|). For sparse vertices,
the algorithm counts sparse edges that intersects with sparse
vertices. For a sparse vertex/edge, its neighborhood size is

at most constant (say S). The counting over sparse edges

requires O(S|E|) time. If setting S =
√

|E|, taking into
consideration of the complexity of counting on dense ver-
tices, The time complexity for triangle counting procedure

is O(|E|
3

2 ).
TriDN in Algorithm 1 iterates on all triangles that form

the graph. Each iteration also requires O(|E|
3

2 ) time. For a

fixed number of iteration k, the algorithm needs O(k|E|
3

2 )
time in total. If insisting on convergence, the algorithm

may need up to O(k|V ||E|
3

2 ). As we may need to test local
λ value λ(e) from v − 2 down to 3. The iterative version
of the algorithm for λ mining reduces time complexity to

O(klog|V ||E|
3

2 ) since it employs the binary search paradigm
to test possible λ(e) for every e. The space complexity of
both DN graph mining algorithms are similar. The triangu-
lation stage requires O(|V |log|V | + |E|) while the iteration
process requires O(|E|).

For streaming DN graph mining, Algorithm 3 first per-
forms semi-streaming triangulation following the idea pro-
posed in [5]. While the semi-streaming triangulation scans
the graph r passes to apply min-wise independent set prin-
ciple and an additional set to calculate the estimator of tri-
angle counts, its complexity is of O(r|E|). The remaining
steps of streaming DN graph mining requires O(|E|) time
for every iteration. For a fixed number of iteration w, the
algorithm needs O(w|E|) time. In summary, the time com-
plexity of streaming DN graph mining is of O(k|E|), where
k is a constant.

8.10 DynamicDN-Graph Mining
We have discussed solution for finding handling static

graphs. This solution can be extended to graphs with dy-
namic topology with minimal modification.

Recall that the triangulation based DN-graph mining so-
lution consists of two stages. In the first stage, algorithm
in figure 1 performs local triangulation on the whole graph.
The next step is to iterate on each discovered triangle. For
each triangle, the algorithm uses it to verify whether it can
support its edges’ λa(e) value. After scanning all triangle
once, the λa(e) value for each edge are updated accordingly.

A dynamic graph G(V, E) = {Gt(V t, Et)} changes its
topology over time. Such dynamics can also be modelled
as the emerging and disappearing of triangles inside G. At
each discrete time t, the instance of a streamed graph is the
set of vertices and edges presented at t, we use Gt(V t, Et)
to represent it. Without loss of generally, this chapter only
concerns the addition of edges. When a new edge e appears
between vertex a and b, this edge’s initial λa(e) is set to be
the size of N(a)∩N(b), while edge λa(a, n) and λa(b, n) in-
crease by 1 if they share neighbor vertex n before new edge
comes. After the process of adjusting λa(e) values for dy-
namically affected edges, we then iterate on the new set of
triangles following the same way as in algorithm in Figure 1.

Complexity of Dynamic DN-Graph Mining
Denoting the total number of edges of a dynamic graph G
as |E∗|. Followed previous discussion, we only process each
edge when it first appears in the dynamic graph or its neigh-
borhood information changes. If the graph is a sparse graph,
the neighborhood size of any vertex can be treated as a con-
stant. Thus in sparse graph, the complexity for dynamic
DN-graph mining is of O(k|E∗|) where k is the number of



iterations. Later in experimental section, we use real data
to evaluate the performance of the dynamic version of the
algorithm and the empirical time efficiency is always much
smaller than the theoretical bound. The space complexity
is O(E∗) as we need to store DN information for each edge
appeared.

8.11 More Semantic Findings
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Figure 16: Additional Interesting Subgraphs

Figure 16(a) and figure 16(b) shows two additional DN

graphs identified by our mining algorithm. Figure 16(a)
is an exact 9-protein complex matched by our algorithm
from PPI dataset. Besides identifying known protein com-
plex, DN-graph mining results can also predict unknown
proteins’ functionality. These proteins are not included in
the existing protein complexes benchmark due to system-
atic experimental constraints. However, by constructing the
PPI across different experimental sources, this unknown pro-
tein may be included into a synergetic DN graph. In fig-
ure 16(b), protein YJL124C was predicted to have the same
functionality as the rest of the proteins inside the graph. We
could not find supporting evidence in the existing snRNP
protein complex benchmark. However, by checking with
other domain experts, we confirmed the correctness of our
finding. Note that some protein (such as YMR268C) could

not be detected due to low connectivity with other member
proteins within the complex. However, with the observa-
tion of high connectivity among the rest of the proteins,
we strongly urge biologists to experimentally search for the
“missing“connections between missed proteins and the rest
of the protein members. (For clarity, matches are marked
red; missing proteins are marked as blue points. Proteins
that are not present in known benchmark pattern but dis-
covered as members of an DN graph are marked as yellow.)


