
Minimizing the Communication Cost for Continuous
Skyline Maintenance

Zhenjie Zhang1, Reynold Cheng2, Dimitris Papadias3, Anthony K.H. Tung1

1School of Computing
National University of Singapore

{zhenjie,atung}@comp.nus.edu.sg
2Department of Computer Science

Hong Kong University
ckcheng@cs.hku.hk

3Department of Computer Science & Engineering
Hong Kong University of Science and Technology

dimitris@cse.ust.hk

ABSTRACT
Existing work in the skyline literature focuses on optimiz-
ing the processing cost. This paper aims at minimization of
the communication overhead in client-server architectures,
where a server continuously maintains the skyline of dy-
namic objects. Our first contribution is a Filter method
that avoids transmission of updates from objects that can-
not influence the skyline. Specifically, each object is as-
signed a filter so that it needs to issue an update only if
it violates its filter. Filter achieves significant savings over
the naive approach of transmitting all updates. Going one
step further, we introduce the concept of frequent skyline
query over a sliding window (FSQW). The motivation is
that snapshot skylines are not very useful in streaming en-
vironments because they keep changing over time. Instead,
FSQW reports the objects that appear in the skylines of at
least θ ·s of the s most recent timestamps (0 < θ ≤ 1). Filter
can be easily adapted to FSQW processing, however, with
potentially high overhead for large and frequently updated
datasets. To further reduce the communication cost, we pro-
pose a Sampling method, which returns approximate FSQW
results without computing each snapshot skyline. Finally,
we integrate Filter and Sampling in a Hybrid approach that
combines their individual advantages.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications

General Terms
Algorithm, Performance

Keywords
Skyline Query, Continuous Query, Communication

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’09, June 29–July 2, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-551-2/09/06 ...$5.00.

1. INTRODUCTION
Skyline computation has received considerable attention

in both conventional databases and stream environments.
While the existing approaches focus exclusively on the mini-
mization of the processing cost, in many applications the real
bottleneck is the network overhead due to update transmis-
sions. Assume, for instance, a server that receives readings
(e.g., temperature, humidity, pollution level) from various
sensors and continuously maintains the skyline of these read-
ings in order to identify potentially problematic situations
(e.g., the most extreme combinations of values). The server
has substantial resources so that optimization of its com-
putational overhead is not critical. On the other hand, the
sensor devices are usually battery-powered and should con-
serve energy. Usually, uplink messages, sent to the server
for updates, constitute the most important factor for en-
ergy consumption [8] and should be minimized. As another
example, consider a system that monitors network traffic
such as Cisco NetFlow. The server usually collects detailed
traffic logs on a per flow granularity, which account for hun-
dreds of GBytes of data per day. Skyline monitoring can
be used to detect potential traffic congestions, or attacks on
the network. In this case, minimization of update frequency
is important for reducing the amount of network traffic to
the server.

Our setting is a client-server architecture, where the server
receives records from various sources/clients1. A record ri

has d (d > 1) attributes, each taking values from a to-
tally ordered domain. Therefore, it can be represented as
a point pi in d-dimensional space, and in the sequel we use
the terms record/tuple/point/object interchangeably. The
server receives updates from the sources on their correspond-
ing records at discrete timestamps. An update alters the
value of at least one attribute, and it corresponds to a move-
ment of the respective point to a new position. Records can
be inserted and deleted at any timestamp. Insertions and
deletions can be thought of as movements from/to a non-
existent position. We use pt

i to denote the status of point
pi (record ri) at time t: pt

i = (pt
i[1], pt

i[2], . . . , pt
i[d]), for each

1 ≤ k ≤ d. A snapshot St = {pt
1, p

t
2, . . . , p

t
n} at timestamp t

contains all points alive at t, i.e., all records that have been

1For simplicity, we assume that each record originates from
a unique source, but the proposed techniques are applicable
if the same client transmits multiple records.

p

1

x

y

F
1

p

2

F
2

p

3

F
3

p

4

F
4

p

5

F
5
 p

6
 F
6

p

7

F
7

Figure 1: Example of skyline filters

inserted before t, but have not been deleted at t. We say
that pt

i dominates pt
j , if pt

i[k] is at least as good as pt
j [k] for

all k, and there is an attribute l such that pt
i[l] is better than

pt
j [l]. The skyline Sky(St) of a snapshot St is the subset of

the records not dominated by any other point in St.
Our first contribution is a Filter method that continu-

ously maintains the skyline, while avoiding transmission of
updates from objects that cannot influence it. Specifically,
the server computes, for each record, a hyper-rectangle that
bounds the value of every attribute. These rectangles are
transmitted through downlink messages to the correspond-
ing clients (e.g., sensors). A client needs to issue an update
only if the point has moved out of its filter (i.e., some at-
tribute has exceeded the range imposed by the server), or
if the server explicitly asks for the current attribute values.
Figure 1 illustrates a snapshot skyline (p1 to p4) over seven
records, assuming that lower values are preferable on each
axis. Every point pi is associated with a filter Fi. In order
for the skyline to change at some subsequent timestamp, at
least one point must exit its current filter; as long as the
records remain within their respective filters, all location
updates can be avoided.

Filter can capture the exact skyline at each timestamp,
and in most settings achieves significant savings in terms of
network overhead. However, in several applications, snap-
shot skylines may not be important because they change too
fast to be meaningful. Furthermore, in the presence of com-
munication errors and outliers in the data, it is more inter-
esting to identify the records that consistently appear in the
skyline over several timestamps. Motivated by this observa-
tion, we introduce the concept of frequent skyline query over
a sliding window (FSQW). A window W s

t is as a set of s con-
secutive snapshots ending at t, i.e. W s

t = {St+1−s, . . . , St}.
A record constitutes a θ-frequent skyline point in W s

t if it
appears in at least θ · s snapshot skylines within the window
(0 < θ ≤ 1). A FSQW continuously reports the frequent
skyline points as the sliding window moves along the time
dimension.

Filter can be trivially adapted for exact processing of
FSQW. However, despite its savings with respect to the
naive method of transmitting all updates, it may still require
a large number of update messages. To alleviate this prob-
lem, we propose a Sampling method, in which updates are
transmitted at certain instances, depending on the desired
trade-off between accuracy and message overhead. Finally,
we integrate Filter and Sampling in a Hybrid approach,
which differentiates three modes for each record: filter, sam-
pling, or mixed mode. Hybrid has a balanced behavior even
under extreme settings, where the performance of Filter and
Sampling deteriorates.

The rest of the paper is organized as follows. Section 2
reviews related work on skylines and minimization of the
network overhead in other query types. Section 3 presents
the necessary definitions and discusses some interesting sky-
line properties in our setting. Section 4 introduces Filter and
analyzes its performance. Section 5 presents Sampling and
provides guidelines for setting the sampling rate. Section 6
describes Hybrid and switching to different modes. Section
7 evaluates our methods through extensive experiments, and
Section 8 concludes the paper.

2. RELATED WORK
The skyline operator was first introduced to the database

community in [3]. Since then a large number of algorithms
have been proposed for conventional databases. These meth-
ods can be classified in two general categories depending on
whether they use indexes (e.g., Index [26], Nearest Neigh-
bor [15], Branch and Bound Skyline [22]) or not (e.g., ,
Divide and Conquer, Block Nested Loop[3], Sort First Sky-
line[7, 10]). Furthermore, skylines have been studied in the
context of mobile devices [13], distributed systems [2], and
unstructured [30] as well as structured networks [28].

In addition, several papers focus on skyline computation
when the dataset has some specific properties. [4] extends
Branch and Bound Skyline for the case where some attributes
take values from partially-ordered domains. [19] focuses on
skyline processing for domains with low cardinality. [5] deals
with high dimensional skylines. Finally, a number of inter-
esting variants of the basic definition have been proposed.
Skyline cubes [32, 31] compute the skylines in a subset or
all subspaces. Probabilistic skylines [23] assume that each
record has several instances, in which case the dominance
relationship is probabilistic. Spatial skylines [25] return the
set of data points that can be the nearest neighbors of any
point in a given query set. A reverse skyline [9] outputs the
records whose dynamic skyline contains a query point.

The above methods deal with snapshot query processing
and do not include mechanisms for maintaining the skyline
in the presence of updates. On the other hand, [29] proposes
a space decomposition for re-computing the skyline when a
record is deleted. [16] applies z-ordering to achieve efficient
insertion as well as deletion. [17] and [27] study skyline
maintenance over sliding windows, utilizing some interest-
ing properties to expunge records (before their expiration)
that cannot become part of the skyline. Morse et al. [18]
assume streams, where the records are explicitly deleted or
modified independently of their arrival order. In all cases,
the assumption is that the server receives all updates, and
the goal is to minimize its processing cost. Thus, these tech-
niques are orthogonal to ours in the sense that they can be
integrated within a system that optimizes both the process-
ing and the transmission cost during skyline maintenance.

Although minimization of the communication overhead in
client-server architectures is new to the skyline literature, it
has been applied before to monitoring of spatial queries. Q-
index [24] assumes a central server that receives the positions
of objects, while maintaining the results of continuous range
queries. In order to reduce the number of location updates,
the server transmits to each object a rectangular or circular
safe region, such that the object does not need to issue an
update as long as it remains within its region. Figure 2
illustrates the safe regions of two points p1 and p2, given
six running range queries q1 to q6. While p2 is in its safe

p
1

q
5

q
6

safe rectangle

safe circle

p
2

q
3

q
1

q
4

dist
(
p
1
,
q
1
)

q
2

dist
(
p
2
,
q
3
)

range query

Figure 2: Example of safe regions

rectangle or circle, it belongs to the result of q4. As soon at
it exits the safe region, it may stop being in the result of q4

and/or start being in the range of q3. Similarly, p1 cannot
influence any query while it remains within its safe region.
Analogous concepts have also been applied to continuous
nearest neighbors in [12, 20].

In Data Stream Management Systems (DSMS), stream
filters have been used to offload some processing from the
server [21, 14, 6]. In particular, each stream source is in-
stalled with a simple filter, so that a data item is sent to
the central server only if its value satisfies the conditions
defined in the filters. For instance, Babcock and Olston [1]
consider a scenario where a central server continuously re-
ports the largest k values obtained from distributed data
streams. Their method maintains arithmetic constraints at
the sources to ensure that the most recently reported an-
swers remain valid. Up-to-date information is obtained only
when some constraint is violated, thus reducing the commu-
nication overhead.

These concepts are similar in principle to the proposed
Filter method, with however an important difference. For
spatial ranges, a safe region is based on the object’s location
with respect to each query range, independently of the other
objects in the dataset. For nearest neighbors, safe region
computation takes into account just a few objects around
the queries (typically, only the NNs). Similarly, the filters
used in DSMS can be easily computed using the conditions
imposed by the query. On the other hand, for the skyline
there are no queries; instead, the filter of a record depends
on the attribute values (or the filters) of numerous other tu-
ples. Therefore, as we show in the subsequent sections, filter
computation in our context is more complex and expensive.

3. DEFINITIONS AND PRELIMINARIES
We assume a time-slotted system, where each client no-

tifies the server about updates at discrete timestamps, i.e.,
there is a minimum interval dt between two consecutive up-
dates of the same record, such that the round-trip time of
a message between the server and any client is negligible
compared to dt. An uplink message refers to a transmis-
sion from a client to the server, and a downlink message to
the opposite direction. If cu, Nu (resp. cd, Nd) is the cost
and cardinality of uplink (resp. downlink) messages, the to-
tal transmission overhead of the system can be measured as
cuNu + cdNd. The problem we intend to solve in this pa-
per is to minimize this cost, while maintaining the exact or
approximate skyline over time.

The status of record ri at time t corresponds to a point
in the d-dimensional unit space pt

i = (pt
i[1], pt

i[2], . . . , pt
i[d]),

where 0 ≤ pt
i[k] ≤ 1 for each 1 ≤ k ≤ d. Records can be up-

dated or deleted at any timestamp after their insertion (i.e.,
there is no particular order depending on their arrival, as in
the sliding window model). A snapshot St at time t contains
all records alive at time t. A window W s

t contains s consec-
utive snapshots ending at St, i.e., W s

t = {St+1−s, . . . , St}.
To simplify notation, we omit the timestamp, when it is
clear from the context or not important for the discussion.
Without loss of generality, in order to determine dominance
relationships, we assume that smaller attribute values are
preferable over larger ones.

Definition 1. Point Dominance

A point pi dominates another pj at time t, if pt
i[k] ≤ pt

j [k]
for all k, and pt

i[l] < pt
j [l] for at least one attribute l.

A filter F t
i is a hyper-rectangle that covers point pt

i at time
t. F t

i is defined by d pairs of boundaries (F t
i .l[1], F t

i .u[1]),
, . . . , (F t

i .l[d], F t
i .u[d]), where each pair (F t

i .l[k], F t
i .u[k]) is

the lower and the upper bound of the filter on dimension k.
F t

i .l and F t
i .u denote the lower-left and upper-right corner

of the filter, respectively. Since every point pi is associated
with at most one filter at any timestamp, we misuse Fi as
replacement of F t

i when no ambiguity occurs. Intuitively,
a filter constrains a point whose exact location is unknown.
A client needs to issue an update to the central server in
two different situations: filter failure and probe request. A
failure occurs when a record ri moves out of its filter Fi;
otherwise, we say that Fi is valid. A probe request happens
when the central server asks for the exact value of a record.
For instance, in Figure 1, if p1 causes a filter failure, the
corresponding client has to issue an update. Upon receiving
the update, the server may probe for the current status of
other records (e.g., p2) in order to determine if there is a
change in the dominance relationships. Note that in the
example of Figure 2 the violation of a spatial filter does not
involve any probe because a range filter is computed solely
on the position of the object with respect to the queries.
Next, we generalize the definition of dominance to capture
the case where a record ri is represented either by a point
pi, or a filter Fi.

Definition 2. Certain Dominance

A record ri certainly dominates another rj at timestamp t,
if at least one of the following conditions holds: (1) pt

i dom-
inates pt

j; (2) F t
i .u dominates pt

j; (3) pt
i dominates F t

j .l;
(4) F t

i .u dominates F t
j .l, where point dominance is based on

Definition 1.

Definition 3. Possible Dominance

A record ri possibly dominates another rj at timestamp t,
if at least one of the following conditions holds: (1) F t

i .l
dominates pt

j; (2) pt
i dominates F t

j .u; (3) F t
i .l dominates

F t
j .u, where point dominance is based on Definition 1.

Clearly, if ri certainly dominates rj , it also possibly dom-
inates rj , but the opposite is not true. The concept of pos-
sible dominance is only applicable when at least one of the
two records is represented by a filter and certain dominance
cannot be established. When there is no ambiguity, we use
the term dominance to also refer to certain dominance. In
Figure 1, F2.u dominates F6.l; consequently r2 dominates
r6, even if the exact attribute values of both records are un-
known (provided that their filters are valid). On the other

hand, assuming that r5 and r6 are represented by F5 and
F6, they both possibly dominate each other (note that F5.l
dominates F6.u and F6.l dominates F5.u).

Definition 4. Snapshot Skyline Sky(St)
A skyline Sky(St) over snapshot St is the set of all alive
records that are not dominated at timestamp t.

Definition 5. Frequent Skyline Point

A record ri is a θ-frequent skyline point in the window W s
t ,

if ri appears in at least θ · s skylines within W s
t .

Definition 6. Frequent Skyline Query over Sliding

Window FSQW (θ, W s
t)

Given a threshold θ (0 < θ ≤ 1), FSQW (θ, W s
t) returns the

set of all θ-frequent skyline points over W s
t .

Note that the snapshot skyline constitutes a special case
of FSQW, where both s and θ equal 1. Figure 3 includes
three consecutive snapshots over 7 records. At St, the sky-
line is Sky(St) = {p1, p2, p3, p4}. At St+1, p7 replaces p1

in Sky(St+1). At St+2, Sky(St+2) = {p2, p4, p7}. Assuming
θ = 0.5 and considering the window W 3

t+2, FSQW (0.5, W 3
t+2)

= {p2, p3, p4, p7}. If the threshold θ is raised to 0.7, the re-
sult contains only two records, {p2, p4}. Given the skyline at
each snapshot in W s

t , the server can calculate FSQW (θ, W s
t)

by simply counting the frequency of each record. A more
interesting question is whether the server can obtain the ex-
act FSQW results without computing the skyline at each
timestamp.

Theorem 3.1. Every algorithm that returns exact FSQW
results must compute the exact snapshot skyline at each times-
tamp.

Proof. Let A be an algorithm for FSQW processing that
does not compute the skyline for some timestamp t. We can
always construct a data set that leads A to erroneous results
as follows.

If A misses a skyline point pi in Sky(St), we generate a
data set with pi in exactly θs − 1 skylines at the following
s − 1 timestamps. At time t + s − 1, algorithm A will omit
pi from FSQW (θ, W s

t+s−1), although it should be reported.
If algorithm A wrongly includes pi in Sky(St), we also

construct a data set with pi in exactly θs− 1 skylines at the
following s−1 timestamps. At time t+s−1, A will report pi

in FSQW (θ, W s
t+s−1), although it should be excluded.

The implication of the theorem is that the skyline com-
putation at each timestamp is unavoidable for any exact
FSQW algorithm. In the next section, we utilize filters to
reduce the communication cost. The proposed method is ap-
plicable to both snapshot skylines and, consequently FSQW
processing.

4. FILTER METHOD
Section 4.1 introduces the general algorithmic framework

of Filter. Section 4.2 proposes a model for the update cost,
and utilizes this model to provide algorithms for filter gen-
eration.

4.1 Filter Framework
Filter follows the framework summarized in Algorithm 1.

For generality, we present the version for FSQW process-
ing since it subsumes snapshot skyline computation. The

Algorithm 1 Filter (window size s, threshold θ)

1: Get the initial status of the records {r0
1, . . . , r0

n}
2: Sky(S0) =ComputeSkyline(S0)
3: FilterConstruction(S0)
4: Send filters to the clients
5: for each timestamp t do
6: Receive updates due to filter violations
7: Sky(St) =ComputeSkyline(St)
8: for each ri in St and each FSQW (θ, W s

t) do
9: if ri is a θ-frequent skyline point in W s

t then
10: Output ri as part of FSQW result
11: FilterConstruction(St)
12: Send updates to objects with new filter

server first receives the initial status of all objects, generates
the skyline, computes the filters, and transmits them to the
clients. At every subsequent timestamp t, it re-computes
the current skyline and the result of each FSQW (θ, W s

t)
installed in the system2. Finally, the server updates the
filters of the objects (if necessary), and sends them to the
affected clients. Following the literature of DSMS, we as-
sume that processing takes place entirely in main memory.
In the following, we cover the details of ComputeSkyline
and FilterConstruction invoked in Algorithm 1.

Algorithm 2 illustrates skyline computation on the current
snapshot St. If a record ri is certainly dominated by another
rj according to Definition 2, it is discarded immediately. If
rj possibly dominates ri by Definition 3, rj is inserted into
a candidate dominator list H. After this round, if H is not
empty, we need to continue in order to determine whether
ri is in skyline. If the server has not received an update
for ri at the current timestamp (because Fi is still valid), it
sends a probe request to obtain its current status pt

i. If after
the probe, any object in H dominates pt

i, ri is discarded.
Otherwise, the server probes the up-to-date versions for all
records in the candidate list. If no point dominates pt

i, pt
i is

inserted into the skyline.
Note that Algorithm 2 minimizes the number of probes,

by first resolving dominance relationships that do not re-
quire any probes. Then, it obtains the current status of ri

with a single probe. Only if ri remains a skyline candidate
after the above tests, the server probes records in H. Given
a set of properly generated filters, it is easy to verify the
correctness of the algorithm since each record is compared
against every other record, unless it is dominated. All am-
biguities regarding dominance relationships are resolved by
probes. Therefore, the skyline contains all non-dominated
records and no false hits.

4.2 Filter Construction
In Algorithm 1, the function FilterConstruction gen-

erates a filter Fi for each record ri without a valid filter.
Before proceeding to its description, we study some filter re-
quirements. Recall that filter failures trigger updates, which
in turn determine the skyline. To detect all skyline updates,
the filters should be constructed in some way that guar-
antees that as long as there is no failure, there cannot be
any changes in the skyline. The following lemmas, following

2Depending on the application, there may be multiple
FSQW with different threshold θ and window size s param-
eters.

p

1

x

y

p

2

p

3

p

4

p

5

p

6

p

7

(a) At time t

p

1

x

y

p

2

p

3
 p

4

p

5

p

6

p

7

(b) At time t + 1

p

1

x

y

p

2

p

3
 p

4

p

5

p

6

p

7

(c) At time t + 2

Figure 3: Examples of snapshot skylines and FSQW

Algorithm 2 ComputeSkyline (snapshot St)

1: Construct skyline buffer S
2: Construct a candidate dominator list H
3: for each record ri do
4: Clear H
5: for each record rj (j 6= i) do
6: if rj certainly dominates ri then
7: Discard ri and go to (3)
8: if rj possibly dominates ri then
9: Append rj to H

10: if H is not empty then
11: if filter Fi is still valid then
12: pt

i =Probe(ri)
13: if any object in H certainly dominates pt

i then
14: Discard ri and go to (3)
15: for each rj ∈ H with valid filter Fj do
16: pt

j =Probe(rj)
17: if pt

j dominates pt
i then

18: Discard ri and go to (3)
19: Append ri into skyline
20: Return S

from Definitions 2 and 3, provide sufficient conditions for
the above requirements.

Lemma 4.1. A record ri is in the skyline, if no filter Fj

(j 6= i) possibly dominates Fi.

Lemma 4.2. A record ri is not in the skyline, if there is
at least one filter Fj (j 6= i) that certainly dominates Fi.

If Fj certainly dominates Fi, we say that (Fj , Fi) is a
filter dominance pair, or Fj is the dominator of Fi. A filter
set {F1, F2, . . . , Fn} is robust, if each skyline record satisfies
Lemma 4.1 and each non-skyline record satisfies Lemma 4.2.
The filter set of Figure 1 is robust because (i) none of F1,
F2, F3, F4 is possibly dominated and (ii) all non-skyline
filters are certainly dominated by a skyline filter (F2 is the
dominator of F5, F6, and F3 is the dominator for F7). Next,
we qualitatively analyze the update cost of a filter-based
method through the following theorem.

Theorem 4.1. Any method following the framework of
Algorithm 1 incurs update cost cu(X + Y) + cd(X + 2Y),
where X is the number of filter failures, Y the number of
probe requests and cu (resp. cd) is the cost of an uplink
(resp. downlink) message.

p

1

x

y

F
1

p

2

F
2

p

3

F
3

p

4

F
4

p

5

F
5

p

6

F
6

p

7

F
7

Figure 4: Alternative filter set

Proof. For each filter failure, the server receives one up-
link message from a client and responds with a downlink
message for a filter update. For each probe, the server sends
a request, receives a response, and transmits back a new fil-
ter (i.e., two downlink and one uplink messages). Therefore,
if there are X filter failures and Y probe requests, the up-
date cost is at least cu(X + Y) + cd(X + 2Y). Since there is
no additional communication overhead in the system, this is
also the total cost.

According to the previous theorem, in order to minimize
the update cost, we have to reduce the number of filter fail-
ures and probe requests. However, these tasks are contra-
dictory and difficult to optimize. For instance, Figure 4
illustrates an alternative filter set for the records of Figure
1, where the size of F2, F4 has increased, while that of F1,
F3 has decreased. The enlargement of F2 and F4 delays
their violations, but the reduction of F1 and F3 may cause
their earlier failures, leading to probes on r2 and r4 for re-
solving uncertain dominance. A good filter should balance
the probabilities of failure and probe requests. If Pf (Fi) is
the probability of filter failure and Pr(Fi) is the probability
of probe request on Fi, the expected update cost of Fi is
C(Fi) = cu(Pf (Fi) + Pr(Fi)) + cd(Pf (Fi) + 2Pr(Fi)). The
optimal filter set {F1, . . . , Fn} should minimize

∑

i

C(Fi) =
∑

i

((cu + cd)Pf (Fi) + (cu + 2cd)Pr(Fi))

The next step concerns the derivation of Pf (Fi) and Pr(Fi).
The probability of filter failure Pf (Fi) can be estimated
based on the shortest time that a violation can occur in
Fi. Given a record ri with filter Fi and maximum rate of

x

y

p

2

F
1

p

1

l

1

l

2

l

3

l

4

distances between

p

2
and bound of
 F

1

UDR
(
)

F
3
UDR
(
)

F

3

F

1

Figure 5: Examples of probe requests

change3 Ci, the shortest time that ri can reach the lower
bound on dimension k is (ri[k] − Fi.l[k])/Ci. Similarly, the
shortest time to reach the upper bound on dimension k is
(Fi.u[k]−ri[k])/Ci. Since the failure happens only when the
point hits one of the boundaries, the average probability of
a failure on Fi is upper bounded by

Pf (Fi) =
1

2d

∑

k

(

Ci

Fi.u[k] − ri[k]
+

Ci

ri[k] − Fi.l[k]

)

As for the probability of a probe request, we note that
there are two types of probes. The first happens when
the previous dominator rj ceases to dominate a non-skyline
record ri. The server needs the current status of ri in order
to determine if it becomes part of the skyline. Similar to the
case of filter failure, we can estimate the probability using
the distances from the dominator rj to the lower bounds of
Fi on all dimensions. Figure 5 shows the distances between
the current location of dominator p2 and the lower bounds
of F1. Based on these distances, the average probability for
the first type of probes on a filter Fi can be estimated as

P 1
r (Fi) =

1

d

∑

k

(

Cj

Fi.l[k] − rj [k]

)

The second type of probe request occurs to Fi when ri pos-
sibly dominates another record rj , in which case the server
needs to determine whether rj is in skyline. The status of
rj is recorded as a probe source. The server stores the most
recent M probe sources in an array L = {l1, l2, . . . , lM} to
approximate their distribution. Given a filter Fi, the prob-
ability of second type probe requests on Fi is estimated by
the ratio of recorded probes covered by UDR(Fi) over their
total number. UDR(Fi) is the area dominated by Fi.l, but
not dominated by Fi.u. Any point in UDR(Fi) is possibly,
but not certainly, dominated by Fi. We have

P 2
r (Fi) =

|{li ∈ L | li ∈ UDR(Fi)}|

M

In Figure 5, the probe source log contains four locations,
i.e. L = {l1, l2, l3, l4}. Two out of the four probe sources,
l2 and l3, are in UDR(F1), while only l1 is in UDR(F3).
According to the previous definition, P 2

r (F1) = 1/2 and
P 2

r (F3) = 1/4. Intuitively, P 2
r (Fi) uses the past L probes to

estimate the likelihood that a further probe will come from
some point within UDR(Fi), invalidating Fi. The first type
of probes only happens to non-skyline records, while the
second one can occur to all records. Therefore, the overall
probability of a probe request can be summarized as:

3Ci can be visualized as the maximum distance that pi can
move between two consecutive timestamps.

1

r
P

f
P
P

2

r
P

]
1
[

1

t

p
]
1
[

2

t
p
]
1
[

1

l
]
1
[

3

l

Figure 6: Probability functions on boundary value

Pr(Fi) =

{

P 2
r (Fi) , if pt

i ∈ Sky(St)
P 1

r (Fi) + P 2
r (Fi), if pt

i 6∈ Sky(St)

Based on the above model, we first study the boundary
optimization problem between two points on a single dimen-
sion. Specifically, we aim at the best lower (or upper) bound
x on dimension k for filter F1 with all other bounds on each
dimension remaining unchanged. The probabilities Pf (F1),
P 1

r (F1) and P 2
r (F1) can all be expressed as a function with

a single variable x. Given p1 and p2 in Figure 5, Figure
6 presents the probability functions of Pf , P 1

r and P 2
r on

x = F1.l[k]. Since p2 is the dominator for p1, the valid
range of x = F1.l[1] is in the interval [pt

2[1], pt
1[1]]; otherwise

there will be a violation of Lemma 4.2. Pf (F1) is a mono-
tonically increasing function on x, since the increase of the
lower bound will decrease the distance from pt

1 to the bound-
ary. P 1

r (F1) is a monotonically decreasing function because
a smaller lower bound allows the dominator to move away
more easily. P 2

r (F1) is a step-wise constant function on dif-
ferent intervals, depending on the content of L. Since the
update cost C(F1) is a weighted sum of the three differ-
ent probabilities, it must be represented by a complicated
function on x, where the optimal x is the global minimum.
However, if we split the interval [pt

2[1], pt
1[1]] into three sub-

intervals, [pt
2[1], l1[1]], [l1[1], l3[1]] and [l3[1], pt

1[1]], then on
each sub-interval, the second-order derivative on the cost
function is always positive. This implies that the local min-
imum in each interval can be found efficiently.

Algorithm 3 utilizes the above models for the construction
of a robust filter set. The lower and upper bounds of each
new filter are initialized to 0 and 1, respectively. Then, the
server gradually shrinks the filters, following different meth-
ods for skyline and non-skyline records. Specifically, if ri is
in the skyline (Lines 4 to 10), two values V and Q (V < Q)
are selected between ri and every other record rj on a chosen
dimension k. V and Q are used to update the upper bound
of F t

i and lower bound of F t
j respectively, to enforce Lemma

4.1. If ri is not in the skyline (Lines 11 to 18), the server
selects a dominator rj for ri and performs similar split op-
erations on every dimension, enforcing Lemma 4.2. For sim-
plicity, the pseudo-code does not distinguish whether rj has
a valid filter or not. In the former case, the algorithm uses
F t

j [k] instead of pt
j [k] without affecting correctness. Note

that filter construction is identical for both the initial and
subsequent timestamps. The difference is that in the former
case none of the records has a valid filter.

We clarify the selection of the splitting dimension k, and
the values of V and Q in Lines 6 and 14 of Algorithm 3. Al-
gorithm 4 iterates over every dimension, estimates the cost,

Algorithm 3 FilterConstruction (snapshot St)

1: Retrieve the recent probe history log L
2: for each record ri ∈ St without valid filter do
3: Initialize F t

i with F t
i .l[k] = 0 and F t

i .u[k] = 1 for all k
4: for each record ri ∈ Sky(St) without valid filter do
5: for each record rj ∈ St (j 6= i) do
6: (k, V, Q) = SelectDimension(ri, rj , L)
7: if F t

i .u[k] > V then
8: F t

i .u[k] = V
9: if rj has no valid filter AND F t

j .l[k] < Q then
10: F t

j .l[k] = Q
11: for each record ri 6∈ Sky(St) without valid filter do
12: Choose a dominator rj for ri

13: for each dimension k do
14: (V, Q) = SelectBoundary(ri, rj , k, L)
15: if F t

i .l[k] < V then
16: F t

i .l[k] = V
17: if rj has no valid filter AND F t

j .u[k] > Q then
18: F t

j .u[k] = Q
19: Return the filter set

Algorithm 4 SelectDimension (pair {ri, rj}, probe his-
tory log L = {l1, l2, . . . , lM})

1: Set the current best cost C∗ at infinity
2: Clear optimal dimension k∗, optimal upper bound V ∗

and optimal lower bound Q∗

3: for each dimension k do
4: (C, V, Q) =SelectBoundary(ri, rj , k, L)
5: if C < C∗ then
6: Set C∗ = C, k∗ = k, V ∗ = V and Q∗ = Q
7: Return (k∗, V ∗, Q∗)

and selects the one with the minimum cost. The details of
the cost estimation and boundary selection on dimension k
are summarized in Algorithm 5, which utilizes the observa-
tions of Figure 6. Given the set L of previous probe locations
in UDR(ri), k is split into intervals based on the values of
these probe sources on k. In each interval, the best bound-
ary is computed using the monotonic derivative property.
A greedy search strategy first decides the upper bound for
Fi, while the new lower bound for Fj is selected later if rj

currently does not possess a valid filter Fj .
The filter set returned by Algorithm 3 is robust, but sub-

optimal. Next, we prove that optimal filter generation is in-
tractable. Let r0 be a skyline point, and R = {r1, r2, . . . , rn}
(n > 1) be a set of records. For each ri ∈ R there should
exist at least a dimension k (1 ≤ k ≤ d) such that(F0.u[k] <
ri[k]). This requirement is necessary for enforcing Lemma
4.1 independent of the filter construction algorithm4. Con-
sider, for simplicity, that (i) R contains only non-skyline
records, (ii) the co-ordinates of r0 are 0 on each dimension,
(iii) the value of each ri[k] is either 0 or 1 (since ri is not
in the skyline, at least one dimension should be 1), and (iv)
if F0 is bounded on a dimension k, then its extent on k is
0.5. SF (r0, R) denotes the problem of selecting the opti-
mal F0 in this setting. Figure 7 illustrates an example of
SF (r0, {r1, r2, r3}), assuming d=3. The first filter is invalid
because it covers p1. Between the valid filters, the one in
Figure 7(b) is better because it is unbounded on the third

4In Algorithm 3, this is implemented by Lines 2-10.

Algorithm 5 SelectBoundary (pair {ri, rj}, dimension k,
probe history L = {l1, l2, . . . , lM})

1: Construct Li = {lm[k] | lm ∈ L && lm ∈ UDR(Fi)}
2: Split the interval [pt

i[k], Fj .l[k]] into at most |Li|+1 sub-
intervals, {I1, . . . , I|Li|+1}, with splits at each lm[k] ∈ Li

3: Set C∗ = C(Fi), V ∗ = Fi.u[k]
4: for each interval Im do
5: let V be the best dimension k value within Im

6: Construct F ′
i by using V instead of Fi.u[k]

7: if C(F ′
i) < C∗ then

8: C∗ = C(F ′
i) and V ∗ = V

9: if Fj has no valid filter then
10: Split the interval [V ∗, pt

j [k]] into sub-intervals,
{J1, . . . , J|Li|+1} with splitting locations at lm[k] ∈ Li

11: Set C∗ = C(F ′
j) and Q∗ = Fj .l[k]

12: for each interval Jm do
13: Let Q be the best dimension k value in Jm

14: Construct F ′
j by using Q instead of Fj .l[k]

15: if C(F ′
j) < C∗ then

16: C∗ = C(F ′
j) and Q∗ = Q

17: Return (C(F ′
j) + C(F ′

i), V
∗, Q∗)

18: else
19: Return (C(Fj) + C(F ′

i), V
∗, Fj .l[k])

dimension, and, therefore larger than that in Figure 7(c). In
general, SF (r0, R) is equivalent to the problem of bounding
F0 on the minimum number of dimensions.

Theorem 4.2. SF (r0, R) is NP-hard.

Proof. We construct a polynomial reduction from the
NP-Hard hitting set problem HS(X, S), which is a variant
of set cover. Given a set of items X = {x1, x2, . . . , xd}
and a collection S = {S1, S2, . . . , Sn} of subsets of X, a
hitting set H ⊆ X contains at least one item from each
Si. The goal of HS(X, S) is to find the hitting set with
the minimum cardinality. From an instance of HS(X, S),
we generate an instance of SF (r0, R) by converting each Si

to a record ri, such that ri[k]=1, if Si contains item xk;
otherwise, ri[k]=0. Given the optimal filter F0, we obtain
the minimal H by including only items that correspond to
the bounded dimensions of the filter.

For example, if X = {x1, x2, x3}, S1 = {x1}, S2 = {x1, x2},
S3 = {x2, x3}, then S1, S2, S3 map to points p1, p2, p3 in
Figure 7. The optimal filter of Figure 7(b) is bounded on
dimensions 1 and 2; therefore the corresponding minimal
hitting set is H = {x1, x2}.

5. SAMPLING METHOD
By Theorem 3.1, any exact algorithm for FSQW must

compute the skyline at each snapshot, potentially leading to
high update cost. In this section, we introduce Sampling,
which outputs approximate results of FSQW. In Sampling,
at any time t, all clients collectively report their current sta-
tus with some global probability R. In order to achieve this,
the server initially sends the same message to each client.
This message contains a random seed S and the sampling
probability R. All clients run the same deterministic random
number generator using S, and generate the same sequence
{x1, x2, . . . , xt, . . .} (0 ≤ xi ≤ 1) with uniform distribution
between 0 and 1. Each client will issue an update to the

p

1

2

p

2

p

3

p

0

3

(1,0,0)

1

(0,1,1)
 F

0

(1,1,0)

(a) Invalid filter F0

p

1

2

p

2

p

3

p

0

3

(1,0,0)

1

(0,1,1)
 F

0

(1,1,0)

(b) Optimal filter F0

p

1

2

p

2

p

3

p

0

3

(1,0,0)

1

(0,1,1)
 F

0

(1,1,0)

(c) Sub-optimal filter F0

Figure 7: Example of dimension selection during filter construction

Algorithm 6 Sampling(window size s, threshold θ)

1: Calculate the sampling probability R
2: Send probability R and random seed S to all clients
3: for each record ri do
4: Clear the skyline counter Ci = 0
5: for each timestamp t do
6: if sampling snapshot St is scheduled then
7: Receive updates from all clients
8: Increase sample counter T = T + 1
9: Sky(St) =ComputeSkyline(St)

10: for each ri ∈ Sky(St) do
11: Increase skyline counter Ci = Ci + 1
12: if snapshot St−s was previously sampled then
13: Decrease sample counter T = T − 1
14: for each ri ∈ Sky(St−s) do
15: Decrease skyline counter Ci = Ci − 1
16: Output all records with Ci ≥ θ · T

server at timestamp t, if xt ≤ R. Clients entering the sys-
tem at later times can synchronize5 with the rest by obtain-
ing (from the server) the number of timestamps that have
elapsed since initialization.

Algorithm 6 summarizes FSQW processing at the server.
The number of sampled snapshots in the current window is
stored in the sample counter T . Each record ri in the sys-
tem has a skyline counter Ci that keeps the skyline frequency
of ri on the sampled snapshots. The server also maintains
buffers with the skyline set on each sampled snapshot. At
time t, if the current snapshot St is scheduled to be sam-
pled, the algorithm computes the skyline and increments
the counter Ci of each skyline record ri, as well as T . Lines
12-15 expunge the expiring timestamp St−s (recall that the
current window W s

t contains timestamps t − s + 1 to t).
Specifically, if St−s was previously sampled in the system,
the server decrements T and the counters for skyline records
in Sky(St−s). Finally, records with skyline counter exceed-
ing θ · T are reported as results of FSQW (θ, W s

t).
The sampling probability R determines the trade-off be-

tween accuracy and communication overhead. Given pre-
defined values for the error tolerance ε and confidence δ, we
provide guidelines for the choice of R values.

5In general, Sampling requires a synchronous communi-
cation protocol, whereas in Filter clients can issue asyn-
chronous updates (i.e., whenever there are filter violations).

Lemma 5.1. If we have 2 ln(1/δ)

ε2θ
sampled snapshots in the

current window W s
t , any point reported by Algorithm 6 at

timestamp t has skyline frequency larger than (θ − ε)s with
probability 1 − δ.

This lemma is an easy extension of the Chernoff bound
[11] and implies that the FSQW result is robust, if we can
guarantee that the number of sampled snapshots in every

sliding window exceeds 2 ln(1/δ)

ε2θ
.

Theorem 5.1. When R ≥
√

ln(1/δ)
2s

+ 2 ln(1/δ)

ε2θs
, any point

reported by Algorithm 6 at any time has skyline frequency
larger than (θ − ε)s with probability 1 − 2δ

Proof. In the first part of the proof, we want to show

that the probability of having more than 2 ln(1/δ)

ε2θ
sampled

snapshots is larger than 1− δ in any sliding window. This is
proven by using Chebychev’s inequality of binomial distri-
bution. If X is the number of sampled snapshots, we have

Pr(X ≤ x) ≤ exp
(

− 2(sR−x)2

s

)

By replacing x with 2 ln(1/δ)

ε2θ
and R with

√

ln(1/δ)
2s

+ 2 ln(1/δ)

ε2θs
,

the probability is less than δ. Thus, there is 1−δ probability
to get enough samples.

The second part of the proof is based on the correctness
of the frequent skyline points. By applying Lemma 5.1, the
probability of outputting true frequent skyline point is at
least 1 − δ. Therefore, the probability of both above events
happening at the same time is (1 − δ) ∗ (1 − δ) ≥ 1 − 2δ.
This completes the proof of the theorem.

Given the input requirements on the error rate ε and the
confidence δ, the minimum acceptable sampling rate can be
calculated using Theorem 5.1. The sampling algorithm thus
employs this sampling rate to guarantee the accuracy of the
continuous skyline results.

6. HYBRID METHOD
Filter exploits the fact that often updates are gradual and

infrequent. Subsequently, it achieves significant savings for
records that exhibit these properties. However, highly dy-
namic objects, involving abrupt and/or very frequent up-
dates, incur a large number of filter failures, which may can-
cel its advantage. Sampling, on the other hand, is oblivious
to the update characteristics, implying that it may incur un-
necessary uplink messages for records that are rather stable.

Motivated by these observations, we propose Hybrid, an ap-
proximate algorithm integrating filtering and sampling in a
common framework.

In Hybrid, each record is in one of the following modes: fil-
ter mode (FM), sampling mode (SM) or mixed mode (MM).
For records in FM or MM, filters are constructed and main-
tained according to Filter, i.e., at each timestamp the server
receives failure messages and transmits probe requests. For
records in SM or MM, snapshots are sampled according
to Sampling. The motivation behind MM is that skyline
records are important for the accuracy of FSQW results.
Thus, MM ensures that they are regularly sampled, even if
they are in FM mode6. Non-skyline records are either in
FM or SM, depending on their estimated update cost to be
discussed shortly.

Hybrid switches frequently updated non-skyline records
to SM so that they issue updates only at the sampled times-
tamps (instead of every filter violation). On the other hand,
relatively stable points remain in FM, so that they are not
regularly sampled before they can influence the skyline. Next,
we discuss the transition from FM to SM. The server keeps
the number of messages related to each record ri in FM.
When this number exceeds the sampling rate R by a pre-
defined factor (in our implementation we use 2R), ri is
switched to SM, in order to reduce the transmissions. The
corresponding client will receive the random seed sent by
the server to start the synchronized sampling process.

If ri is in SM, the server needs to estimate the transmission
cost if ri were in FM. This is accomplished by simulating a
virtual filter over ri, which is updated at every sampling
timestamp according to the current locations of the objects
in FM. If the filter does not need any update after a number
of consecutive sampling timestamps (in our implementation
we use 2), the server switches ri to FM.

Algorithm 7 presents the general framework of Hybrid for
processing FSQW (θ, W s

t). Hybrid outputs approximate re-
sults based on the sampled snapshots, following the ran-
domized strategy of Sampling. However, the filters for the
set P of records in FM and MM must be updated at every
timestamp, in order to set the appropriate mode for each
record. This update follows Algorithm 1, which requires the
computation of the partial skyline on P . Figure 8 shows an
example where r6 is in FM, r2, r5 and r7 are in SM, while
r1, r3 and r4 are in MM. Given the current setting of the
modes, the filters are constructed based only on r1, r3, r4

and r6. Compared to Figure 1, the filters are enlarged. On
the other hand, since r2 is in sampling mode, there is no
filter update, even if r2 moves into filters F1 or F3.

Lemma 6.1. Algorithm 7 outputs the correct skyline set
at each sampling snapshot.

Proof. Any record in FM cannot be in the skyline be-
cause there must be some skyline point in MM dominating it
and bounding its filter. On the other hand, all tuples not in
FM must issue updates at each sampling timestamp. Thus,
the skyline of records in MM and SM is the correct skyline
for the entire snapshot.

Since the records in MM and SM are regularly sampled,
the above theorem implies that the results of FSQW re-
ported by Hybrid must be the same as that of Sampling,
leading to the following corollary of Theorem 5.1.
6Note that a skyline record in SM does not have to be in
FM.

Algorithm 7 Hybrid (window size s, threshold θ)

1: Calculate the sampling probability R
2: Send probability R and random seed S to all clients
3: for each record ri do
4: Clear skyline counter Ci = 0
5: Set ri in FM
6: for each timestamp t do
7: Receive updates from clients in FM or MM due to

filter violations
8: if sampling snapshot St is scheduled then
9: Receive updates from clients in SM

10: Increase sample counter T = T + 1
11: Sky(St) =ComputeSkyline(St)
12: for each pi ∈ Sky(St) do
13: Increase skyline counter Ci = Ci + 1
14: Construct a set P with all records in FM or MM
15: Sky(P) =ComputeSkyline(P)
16: FilterConstruction(Sky(P))
17: if snapshot St−s was previously sampled then
18: Decrease the sample counter T = T − 1
19: for each ri ∈ Sky(St−s) do
20: Decrease the skyline counter Ci = Ci − 1
21: Switch the modes of the clients if necessary
22: Output all records with Ci ≥ θT

p

1

x

y

F
1

p

2

p

3

F
3

p

4

F
4

p

5

p

6

F
6

p

7

MM

MM

MM

SM

SM

SM

FM

Figure 8: Example of Hybrid

Corollary 1. If the sampling rate R ≥
√

ln(1/δ)
2s

+ 2 ln(1/δ)

ε2θs
,

any frequent skyline point reported by Hybrid is in the skyline
for at least (θ − ε)s snapshots with confidence 1 − 2δ.

7. EXPERIMENTS
This section evaluates experimentally the proposed meth-

ods and compares them against Naive, a baseline algorithm
that transmits all updates to the server without incurring
downlink messages. We only include FSQW queries because,
as discussed in Section 3, snapshot skylines constitute a spe-
cial case of FSQW where s and θ equal 1. All experiments
are executed on a PIII 1.8GHz CPU, with 1GB main mem-
ory. The programs are compiled by GCC 3.4.3 in Linux.
Section 7.1 compares the algorithms on synthetic data, and
Section 7.2 on real data sets.

7.1 Synthetic Data
The synthetic data sets are created using the standard

generator [3] with three common distributions: indepen-
dent(I), correlated(C) and anti-correlated(A). Every attribute
on each dimension is a real number between 0 and 1. We
introduce updates on the generated data set by applying an
uncertainty parameter u. Specifically, an object is allowed
to move within the space defined by a rectangle with edge

Parameter Range

Dimensionality 2,3,4,5,6
Distribution C,I,A

Data Size (K) 2.5,5,10,20
Threshold θ 0.6,0.7,0.8,0.9
Error rate ε 0.1,0.2,0.3,0.4
Confidence δ 0.05,0.1,0.15,0.2
Uncertainty u 0.01,0.02,0.04,0.08,0.16

Table 1: Experimental parameters

extent 2u and center at the original position. At each times-
tamp t, the locations of the objects follow uniform distribu-
tion in their corresponding rectangles. Table 1 illustrates
the range and default values (in bold) of the parameters in-
volved in our experiments. In each experiment, we vary a
single parameter, while setting the rest to their default val-
ues. Recall that ε, δ are used to tune the sampling rate,
and are applicable only to Sampling and Hybrid. For all ex-
periments, we set the window size of FSQW queries to 1000
(i.e., a query returns the frequent skyline points in the last
1000 timestamps).

We evaluate the performance of the algorithms on six mea-
sures. The first three refer to the number of uplink, down-
link, and total messages. Assuming that the uplink (cu) and
downlink (cd) costs are equal, the total number of messages
reflects the overall transmission cost. The fourth measure
is the CPU time. The above measures assess the efficiency
of the algorithms. The last two measures, recall and preci-
sion, assess the quality of the query results, averaged over
all timestamps. Specifically, if At is the result of algorithm
A and FSt is the correct result at time t, recall is defined as
the ratio |At ∩ FSt|/|FSt| and precision as |At ∩ FSt|/|At|.
Precision and recall are only measured for Sampling and
Hybrid because Filter produces the exact results.

Figure 9 presents the efficiency measures as a function of
dimensionality for the independent distribution. We use the
acronym FBM for Filter, SBM for Sampling and HM for
Hybrid. In 2D space, FBM outperforms the other methods
in terms of transmission cost due to its advantage on the
number of uplink messages. However, its overhead increases
dramatically with the dimensionality, and when d reaches 6,
it is outperformed even by Naive. SBM has the best over-
all behavior (in terms of both communication overhead and
CPU cost) since it is independent of the dimensionality. HM
requires fewer messages than SBM in the 2D dataset, but in
general its performance lies between that of SBM and FBM.
Although Naive does not incur any downlink messages, it
is the worst method for the communication overhead in all
but one settings.

Figure 10 tests the algorithms on different types of dis-
tributions. FBM has a clear advantage when the records
are positively correlated and the skyline cardinality is small.
However, if the distribution is anti-correlated, most of the
object are in skyline. Consequently, the filter updates are
so frequent that (almost) each record incurs one uplink mes-
sage due to filter failure and one downlink message for the
new filter per timestamp. The update cost of HM is stable
even on anti-correlated distributions, in which case most of
the objects are in sampling mode, instead of filter or mixed
mode. SBM has again good overall performance in terms of
both network and CPU overhead.

 0

 20

 40

 60

 80

 100

 120

 140

65432

nu
m

be
r

of
 m

es
sa

ge
s

(1
e+

5)

dimensionality

Naive
FBM
SBM

HM

(a) Uplink messages

 0

 10

 20

 30

 40

 50

 60

65432

nu
m

be
r

of
 m

es
sa

ge
s

(1
e+

5)

dimensionality

Naive
FBM
SBM

HM

(b) Downlink messages

 0

 20

 40

 60

 80

 100

 120

 140

65432

nu
m

be
r

of
 m

es
sa

ge
s

(1
e+

5)

dimensionality

Naive
FBM
SBM

HM

(c) All messages

 0

 500

 1000

 1500

 2000

 2500

65432

C
P

U
 ti

m
e

(s
ec

)

dimensionality

Naive
FBM
SBM

HM

(d) CPU time

Figure 9: Efficiency vs. dimensionality (ind.)

 0

 20

 40

 60

 80

 100

 120

 140

AIC

nu
m

be
r

of
 m

es
sa

ge
s

(1
e+

5)

distribution

100 100 100

3
13

85

17 17 17
27 30 33

Naive
FBM
SBM

HM

(a) Uplink messages

 0

 20

 40

 60

 80

 100

AIC

nu
m

be
r

of
 m

es
sa

ge
s

(1
e+

5)

distribution

0 0 03

14

92

0 0 0

26
30

34

Naive
FBM
SBM

HM

(b) Downlink messages

 0

 50

 100

 150

 200

AIC

nu
m

be
r

of
 m

es
sa

ge
s

(1
e+

5)

distribution

100 100 100

7

27

178

17 17 17

53 60
68

Naive
FBM
SBM

HM

(c) All messages

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

AIC

cp
u

tim
e

(s
ec

)

distribution

87
229

987

299

1075

3121

65 88
220

516

1089
848

Naive
FBM
SBM

HM

(d) CPU time

Figure 10: Efficiency vs. distribution (4D)

In Figure 11, we vary the uncertainty parameter u on
the synthetic data sets. For low values of u, objects move
within a small range of the underlying space. FBM and HM
take advantage of the locality property, since the records are
usually bounded by a stable filter. The update cost of HM
is sometimes lower than that of FBM when the uncertainty
is below 0.2, as it switches the more uncertain objects to
sampling mode. However, the CPU costs of FBM and HM
are still much worse than that of SBM.

Figure 12 evaluates the efficiency measures as a function
of the number of records in the system. Our methods scale
better than Naive, whose transmission overhead is linear to
the data cardinality. The CPU cost has quadratic complex-
ity because of the dominance checks (in all algorithms) and
the filter computations (in FM, HM).

Next, we focus on the recall and precision of SBM and
HM. By Theorem 5.1 and Corollary 1, the sampling rate of
SBM and HM is decided by the error rate ε and the con-

 1

 10

 100

 1000

0.160.080.040.020.01

nu
m

be
r

of
 m

es
sa

ge
s

(1
e+

5)

uncertainty

Naive
FBM
SBM

HM

(a) Uplink messages

 0

 10

 20

 30

 40

 50

0.160.0840.020.01

nu
m

be
r

of
 m

es
sa

ge
s

(1
e+

5)

uncertainty

Naive
FBM
SBM

HM

(b) Downlink messages

 1

 10

 100

 1000

0.160.080.040.020.01

nu
m

be
r

of
 m

es
sa

ge
s

(1
e+

5)

uncertainty

Naive
FBM
SBM

HM

(c) All messages

 10

 100

 1000

 10000

 100000

0.160.080.040.020.01

cp
u

tim
e

(s
ec

)

uncertainty

Naive
FBM
SBM

HM

(d) CPU time

Figure 11: Efficiency vs. uncertainty (ind. 4D)

 0

 50

 100

 150

 200

 250

 300

 350

 400

201052.5

nu
m

be
r

of
 m

es
sa

ge
s

(1
e+

5)

number of objects (1000)

Naive
FBM
SBM

HM

(a) Uplink messages

 0

 20

 40

 60

 80

 100

 120

201052.5

nu
m

be
r

of
 m

es
sa

ge
s

(1
e+

5)

number of objects (1000)

Naive
FBM
SBM

HM

(b) Downlink messages

 0

 50

 100

 150

 200

 250

 300

 350

 400

201052.5

nu
m

be
r

of
 m

es
sa

ge
s

(1
e+

5)

number of objects (1000)

Naive
FBM
SBM

HM

(c) All messages

 0

 2000

 4000

 6000

 8000

 10000

 12000

201052.5

cp
u

tim
e

(s
ec

)

number of objects (1000)

Naive
FBM
SBM

HM

(d) CPU time

Figure 12: Efficiency vs. data cardinality (ind. 4D)

fidence δ. Furthermore, the desired frequency θ of points
in the FSQW result is related to the sampling rate. Thus,
we test the impact of these parameters on the recall and
precision. Due to the random nature of the output, we per-
form each experiment three times and report the average
measurements.

Figure 13 shows the effect of the error rate ε on the quality
measures. When ε is up to 0.2 (the default value), the recall
and precision of both methods exceed 0.9. Even when ε
reaches 0.4, the quality of the result is still acceptable with
recall and precision above 0.8. As shown in Figure 14, the
impact of δ on the result quality is not as large as that of
ε. SBM and HM have similar behavior in all cases because
they apply the same values of ε and δ.

Figure 15 evaluates the effect of the query threshold θ,
which bounds the frequency of the points to be included
in FSQW. When θ = 0.7, the quality of the query output
is much worse than other values because there are many

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0.40.30.20.1

re
ca

ll

epsilon

SBM
HM

(a) Recall

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0.40.30.20.1

pr
ec

is
io

n

epsilon

SBM
HM

(b) Precision

Figure 13: Quality vs. error rate (ind. 4D)

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0.20.150.10.05

re
ca

ll

delta

SBM
HM

(a) Recall

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0.20.150.10.05

pr
ec

is
io

n

delta

SBM
HM

(b) Precision

Figure 14: Quality vs. confidence (ind. 4D)

objects in the system with skyline frequency around 0.7 over
the sliding windows. The sampling rate fails to distinguish
the actual results leading to larger error.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0.90.80.70.6

re
ca

ll

threshold

SBM
HM

(a) Recall

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0.90.80.70.6

pr
ec

is
io

n

threshold

SBM
HM

(b) Precision

Figure 15: Quality vs. threshold (ind. 4D)

7.2 Real Data
The real data were collected by Lawrence Berkeley Lab-

oratory, and contain a 30-day trace of the TCP connec-
tions between their local network and the internet7. The re-
mote IP addresses in all connections are divided into groups,
according to the first 24 bits of their IPs. For example,
“172.18.179.20” and “172.18.179.38” are in the same group,
while “172.18.180.22” is not. The connections are classified
into four categories based on their protocol type: NNTP,
TCP-DATA, SMTP and OTHERS. By taking the snapshot
every 100 seconds, an address group Gi dominates another
group Gj at time t, if Gi has no fewer connections than Gj

on all four types in the last 1000 seconds and more on at
least one category. The skyline contains the non-dominated
groups. Given the original data set with 782281 connec-
tions recorded in 2591987 seconds, we transform it into a
new 4-dimensional data set with 25920 snapshots and 7776
address groups. Since the data characteristics are fixed, we

7http://ita.ee.lbl.gov/html/contrib/LBL-CONN-7.html

 1

 10

 100

 1000

 10000

 100000

0.40.30.20.1

nu
m

be
r

of
 m

es
sa

ge
s

(1
e+

5)

epsilon

Naive
FBM
SBM

HM

(a) Uplink messages

 0

 2

 4

 6

 8

 10

 12

0.40.30.20.1

nu
m

be
r

of
 m

es
sa

ge
s

(1
e+

5)

epsilon

Naive
FBM
SBM

HM

(b) Downlink messages

 1

 10

 100

 1000

 10000

 100000

0.40.30.20.1

nu
m

be
r

of
 m

es
sa

ge
s

(1
e+

5)

epsilon

Naive
FBM
SBM

HM

(c) All messages

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0.40.30.20.1

cp
u

tim
e

(s
ec

epsilon

Naive
FBM
SBM

HM

(d) CPU time

Figure 16: Efficiency vs. error rate (TCP)

 1

 10

 100

 1000

 10000

 100000

0.90.80.70.6

nu
m

be
r

of
 m

es
sa

ge
s

(1
e+

5)

threshold

Naive
FBM
SBM

HM

(a) Uplink messages

 0

 2

 4

 6

 8

 10

 12

0.90.80.70.6

nu
m

be
r

of
 m

es
sa

ge
s

(1
e+

5)

threshold

Naive
FBM
SBM

HM

(b) Downlink messages

 1

 10

 100

 1000

 10000

 100000

0.90.80.70.6

nu
m

be
r

of
 m

es
sa

ge
s

(1
e+

5)

threshold

Naive
FBM
SBM

HM

(c) All messages

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

0.90.80.70.6

cp
u

tim
e

(s
ec

)

threshold

Naive
FBM
SBM

HM

(d) CPU time

Figure 17: Efficiency vs. threshold (TCP)

cannot evaluate factors such as distribution, dimensionality
and cardinality.

Figure 16 measures efficiency as a function of the error
rate. FBM and HM incur less communication cost than
Naive and SBM. When ε = 0.1, the overhead of SBM is
almost equal to that of Naive, suggesting that it samples
each record almost on a per-timestamp basis. FBM and
HM are better by about two orders of magnitude. However,
they incur significantly higher CPU cost due to the heavy
computation on filter updates.

Figure 17 summarizes the efficiency results for varying the
frequency threshold θ over TCP. The impact of θ on the per-
formance of the algorithms is negligible. This phenomenon
stems from the properties of the TCP data. Specifically, a
selective set of IP address groups have very high skyline fre-
quencies, while the rest rarely appear in the skyline. Thus,
the change on the threshold hardly affects the query result
of FSQW and the performance of all methods.

Figures 18 and 19 display the recall/precision as functions
of the error rate ε and the confidence δ. As in the synthetic
data sets, the quality of SBM and HM is high and both
algorithms achieve values above 0.9.

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

0.40.30.20.1

re
ca

ll

epsilon

SBM
HM

(a) Recall

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

0.40.30.20.1

pr
ec

is
io

n

epsilon

SBM
HM

(b) Precision

Figure 18: Quality vs. error rate

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

0.20.150.10.05

re
ca

ll

delta

SBM
HM

(a) Recall

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

0.20.150.10.05

pr
ec

is
io

n

delta

SBM
HM

(b) Precision

Figure 19: Quality vs. confidence

Summarizing the experimental evaluation, FBM is the
best method for lower dimensionality and correlated data
sets. On the other hand, SBM is usually the method of
choice for high dimensions and anti-correlated data. HM
has a balanced behavior in between FBM and SBM. All
algorithms outperform Naive, usually by large margins. Fi-
nally, SBM and HM provide high-quality results and are
rather insensitive to the choices of ε and δ. IN addition, the
sampling rate provides a mechanism for tuning the trade-off
between accuracy and overhead; e.g, a low sampling rate can
be used for applications that need to minimize the cost at
the expense of result quality.

8. CONCLUSION
Snapshot skylines change too fast to be meaningful in

streaming environments. Instead, it is more interesting to
identify the records that consistently appear in the skyline
over several timestamps. Motivated by this observation, we
introduce the concept of frequent skyline query over a slid-
ing window. The output of FSQW is the set of records that
appear in the skylines of at least θ of the s most recent
timestamps. We propose three algorithms for minimizing
the communication overhead of FSQW processing: Filter,
Sampling and Hybrid.

Filter avoids transmission of updates from objects that
cannot influence the skyline. Specifically, the server com-
putes, for each record, a hyper-rectangle that bounds the
value of each attribute. The corresponding client needs to
issue an update only if the record violates its filter, or if
the server explicitly asks for the current attribute values. In
Sampling the clients transmit updates at a rate that depends
on the desired trade-off between accuracy and overhead (but

is independent of the dataset). Hybrid integrates Filter and
Sampling, allowing records to switch among three different
modes depending on their properties.

9. ACKNOWLEDGEMENT
Zhenjie Zhang and Dimitris Papadias were supported by

grant 6184/06 from Hong Kong RGC. Reynold Cheng was
supported by grants 5135/08 and 5133/07 by Hong Kong
RGC, the Germany/HK Joint Research Scheme (Project
G HK013/06), and the University of Hong Kong (Project
200808159002). Zhenjie Zhang and Anthony K.H. Tung
were supported by Singapore ARF grant R-252-000-268-112.
We thank the reviewers for their insightful comments.

10. REFERENCES
[1] B. Babcock and C. Olston. Distributed top-k

monitoring. In SIGMOD Conference, pages 28–39,
2003.

[2] W.-T. Balke, U. Güntzer, and J. X. Zheng. Efficient
distributed skylining for web information systems. In
EDBT, pages 256–273, 2004.

[3] S. Börzsönyi, D. Kossmann, and K. Stocker. The
skyline operator. In ICDE, pages 421–430, 2001.

[4] C.-Y. Chan, P.-K. Eng, and K.-L. Tan. Stratified
computation of skylines with partially-ordered
domains. In SIGMOD, pages 203–214, 2005.

[5] C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H.
Tung, and Z. Zhang. Finding k-dominant skylines in
high dimensional space. In SIGMOD Conference,
pages 503–514, 2006.

[6] R. Cheng, B. Kao, S. Prabhakar, A. Kwan, and Y.-C.
Tu. Adaptive stream filters for entity-based queries
with non-value tolerance. In VLDB, pages 37–48, 2005.

[7] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang.
Skyline with presorting. In ICDE, pages 717–719,
2003.

[8] A. Datta, D. E. VanderMeer, A. Celik, and V. Kumar.
Broadcast protocols to support efficient retrieval from
databases by mobile users. ACM Trans. Database
Syst., 24(1):1–79, 1999.

[9] E. Dellis and B. Seeger. Efficient computation of
reverse skyline queries. In VLDB, pages 291–302, 2007.

[10] P. Godfrey, R. Shipley, and J. Gryz. Maximal vector
computation in large data sets. In VLDB, pages
229–240, 2005.

[11] T. Hagerup and C. Rüb. A guided tour of chernoff
bounds. Inf. Process. Lett., 33(6):305–308, 1990.

[12] H. Hu, J. Xu, and D. L. Lee. A generic framework for
monitoring continuous spatial queries over moving
objects. In SIGMOD Conference, pages 479–490, 2005.

[13] Z. Huang, C. S. Jensen, H. Lu, and B. C. Ooi. Skyline
queries against mobile lightweight devices in manets.
In ICDE, page 66, 2006.

[14] A. Jain, E. Y. Chang, and Y.-F. Wang. Adaptive
stream resource management using kalman filters. In
SIGMOD Conference, pages 11–22, 2004.

[15] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars
in the sky: an online algorithm for skyline queries. In
VLDB, pages 275–286, 2002.

[16] K. Lee, B. Zheng, H. Li, and W.-C. Lee. Approaching
the skyline in z order. In VLDB, pages 279–290, 2007.

[17] X. Lin, Y. Yuan, W. Wang, and H. Lu. Stabbing the
sky: Efficient skyline computation over sliding
windows. In ICDE, pages 502–513, 2005.

[18] M. D. Morse, J. M. Patel, and W. I. Grosky. Efficient
continuous skyline computation. In ICDE, page 108,
2006.

[19] M. D. Morse, J. M. Patel, and H. V. Jagadish.
Efficient skyline computation over low-cardinality
domains. In VLDB, pages 267–278, 2007.

[20] K. Mouratidis, D. Papadias, S. Bakiras, and Y. Tao. A
threshold-based algorithm for continuous monitoring
of k nearest neighbors. IEEE Trans. Knowl. Data
Eng., 17(11):1451–1464, 2005.

[21] C. Olston, J. Jiang, and J. Widom. Adaptive filters for
continuous queries over distributed data streams. In
SIGMOD Conference, pages 563–574, 2003.

[22] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An
optimal and progressive algorithm for skyline queries.
In SIGMOD, pages 467–478, 2003.

[23] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic
skylines on uncertain data. In VLDB, pages 15–26,
2007.

[24] S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref,
and S. E. Hambrusch. Query indexing and velocity
constrained indexing: Scalable techniques for
continuous queries on moving objects. IEEE Trans.
Computers, 51(10):1124–1140, 2002.

[25] M. Sharifzadeh and C. Shahabi. The spatial skyline
queries. In VLDB, pages 751–762, 2006.

[26] K. L. Tan, P. K. Eng, and B. C. Ooi. Efficient
progressive skyline computation. In VLDB, pages
301–310, 2001.

[27] Y. Tao and D. Papadias. Maintaining sliding window
skylines on data streams. TKDE, 18(3):377–391, 2006.

[28] S. Wang, B. C. Ooi, A. K. H. Tung, and L. Xu.
Efficient skyline query processing on peer-to-peer
networks. In ICDE, pages 1126–1135, 2007.

[29] P. Wu, D. Agrawal, Ö. Egecioglu, and A. E. Abbadi.
Deltasky: Optimal maintenance of skyline deletions
without exclusive dominance region generation. In
ICDE, pages 486–495, 2007.

[30] P. Wu, C. Zhang, Y. Feng, B. Y. Zhao, D. Agrawal,
and A. E. Abbadi. Parallelizing skyline queries for
scalable distribution. In EDBT, pages 112–130, 2006.

[31] T. Xia and D. Zhang. Refreshing the sky: the
compressed skycube with efficient support for frequent
updates. In SIGMOD, pages 491–502, 2006.

[32] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and
Q. Zhang. Efficient computation of the skyline cube.
In VLDB, pages 241–252, 2005.

