
Kernel-Based Skyline Cardinality Estimation
Zhenjie Zhang1, Yin Yang2, Ruichu Cai3, Dimitris Papadias2, Anthony Tung1

1Department of Computer Science
National University of Singapore
Computing 1, Singapore, 117590

{zhenjie, atung}@comp.nus.edu.sg

2Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong
{yini, dimitris}@cse.ust.hk

3School of Computer Science and Engineering
South China University of Technology

Guangzhou, China
cairuichu@scut.edu.cn

ABSTRACT
The skyline of a d-dimensional dataset consists of all points not
dominated by others. The incorporation of the skyline operator
into practical database systems necessitates an efficient and
effective cardinality estimation module. However, existing
theoretical work on this problem is limited to the case where all d
dimensions are independent of each other, which rarely holds for
real datasets. The state of the art Log Sampling (LS) technique
simply applies theoretical results for independent dimensions to
non-independent data anyway, sometimes leading to large
estimation errors. To solve this problem, we propose a novel
Kernel-Based (KB) approach that approximates the skyline
cardinality with nonparametric methods. Extensive experiments
with various real datasets demonstrate that KB achieves high
accuracy, even in cases where LS fails. At the same time, despite
its numerical nature, the efficiency of KB is comparable to that of
LS. Furthermore, we extend both LS and KB to the k-dominant
skyline, which is commonly used instead of the conventional
skyline for high-dimensional data.

Categories and Subject Descriptors
H.2 DATABASE MANAGEMENT, H.2.4 Systems—Query
processing, H.2.8 Database applications

General Terms
Algorithms, Performance, Experimentation, Theory

Keywords
Skyline, Cardinality Estimation, Kernel, Non-Parametric Methods

1. INTRODUCTION
Given a d-dimensional dataset DS, we say that a point p ∈ DS
dominates another q ∈ DS, if and only if p is better than q on at
least one dimension, and no worse on any of the remaining d−1

dimensions. The skyline SKYDS ⊆ DS is the set of points not
dominated by others in DS. Skyline queries are particularly useful
for selecting records according to multiple, sometimes
contradicting, criteria [10][15]. Consider the MobilePhone table
shown in Figure 1 containing 5 records m1-m5. Each phone is
associated with a price and standby time attribute, and can be
thought of as a point in the 2-dimensional (price-standby) space.
Clearly a low price and long standby time are desirable properties
for any user. Given these preferences, the skyline contains m1, m3,
and m5; m2 is dominated by m3 since it is more expensive and has
shorter standby life. Similarly, m4 is dominated by m5. Note that
although m5 has neither the longest standby time nor the lowest
price, it is in the skyline as a more balanced choice. In general,
the skyline consists of all records that are potentially the best
choice for any user, regardless of the relative weight of different
attributes.

In practical applications, a skyline query often involves other
relational operators, e.g., selection conditions on the records to be
retrieved [27], and projections that focus on a subspace of all
attributes [38]. Moreover, complex queries may combine skylines
with joins. Assume, for instance, that the shop owner wants to
identify the customer IDs who purchased models that belong to
the skyline of MobilePhone. In the example database of Figure 1,
customers c1, c3 satisfy the requirement as they bought skyline
models m1 and m3. Processing such a query involves computing
the skyline of MobilePhone, as well as joining MobilePhone with
Purchase. An execution plan could perform the join before the
skyline, while another could reverse the order of the two
operators. To choose the most efficient plan in an educated
manner, the DBMS should effectively estimate the output size of
the skyline. This paper focuses on the problem of skyline
cardinality estimation (SCE), which also plays a pivotal role in
the cost analysis of the skyline operator [9][15].

MobilePhone

mid standby price
m1 200 200
m2 300 400
m3 400 350
m4 250 320
m5 300 300

cid name
c1 James
c2 Lily
c3 George

Customer

oid mid cid date
o1 m3 c1 5/21/08
o2 m2 c2 5/21/08
o3 m1 c1 5/22/08
o4 m4 c2 5/22/08
o5 m3 c3 5/22/08

Purchase

Figure 1 Example skyline application

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD’09, June 29–July 2, 2009, Providence, RI, USA.
Copyright 2009 ACM 978-1-60558-551-2/09/06...$5.00.

The current state-of-the-art for SCE is Log Sampling (LS) [9],
implemented in Microsoft SQL Server. LS assumes that the
skyline cardinality m, of an arbitrary dataset of size n, follows the
model m = AlogB n for some constants A, B. Although this
property holds for data with independent dimensions, it is not true
in many practical situations. In particular, we show analytically
and experimentally that two large classes of datasets violate the
property. The first involves anti-correlated attributes, i.e., if a
record has a good value in one attribute (e.g., long standby life), it
is likely to have a “bad” value on the remaining ones (e.g., have a
high price). The second type of datasets that lead to failure of LS
are those consisting of multiple clusters (e.g., MobilePhone may
contain two clusters in the price-standby plane corresponding to
PDAs and music phones).

We solve these problems through a novel Kernel-Based
approach (KB). Unlike LS, KB is nonparametric, meaning that it
does not rely on any assumptions about the relationship between
the skyline cardinality m and the dataset size n, and, thus, is
generally more robust. Extensive experiments confirm that KB
achieves low estimation error in a variety of real and synthetic
datasets, and is significantly more accurate than LS. Moreover,
the efficiency of KB is comparable to that of LS. As a second
step, we extend both LS and KB to the k-dominant skyline [8],
which is more meaningful than the conventional skyline for high-
dimensional datasets.

The rest of the paper is organized as follows. Section 2
surveys related work and necessary background for kernel-based
statistics. Section 3 describes the theoretical foundations and the
algorithmic framework of KB. Section 4 adapts LS and KB to k-
dominant skylines. Section 5 contains an extensive experimental
evaluation. Finally, Section 6 concludes the paper with directions
for future work.

2. RELATED WORK
Section 2.1 overviews the literature on the skyline query and its
variants. Section 2.2 surveys skyline cardinality estimation,
focusing on LS. Section 2.3 presents kernel-based methods.

2.1 The Skyline Query
The skyline query, also known as the Maximal Vector Problem
[3], was first studied in the computational geometry literature.
Early work focuses on main-memory solutions. The Double
Divide-and-Conquer (DD&C) algorithm [23] achieves the lowest
worst-case cost among all known methods. In particular, DD&C
answers a skyline query in O(nlogd-2 n) time, where n is the data
cardinality and d≥2 the dimensionality. Subsequent work, such as
Linear Divide-and-Conquer [3] and Fast Linear Expected-Time
[2], use DD&C as a sub-routine and, thus, preserve its worst-case
bound, while improving its average-case performance. As pointed
out in [15], these solutions are highly theoretical in nature, and
commonly incur practical drawbacks, such as large constants,
poor scalability for large d, and considerable implementation
overhead.

Börzsönyi et al. [5] introduced the skyline problem to the
database community proposing two disk-based solutions, based
on the divide-and-conquer (D&C) and block-nested loop (BNL)
paradigms. SFS [11] improves BNL by sorting all tuples on one
of the d dimensions in a pre-processing step. The pre-sorting idea
is enhanced in LESS [15], ZSearch [24] and SaLSa [1]. When the
data dimensionality is relatively low, a multi-dimensional index
can speed up processing [22][27][34]. Several papers study

incremental maintenance of skylines in the presence of frequent
updates, common in data stream environments [25][35][37].

Another line of research deals with alternative forms of
skyline processing. Chan et al. [7] and Sacharidis et al. [32] study
skylines in partially-ordered domains (e.g., a user may prefer
“Nokia” to “Motorola”, but considers “Nokia” and “LG”
incomparable). Pei et al. [28] compute probabilistic skylines in
uncertain datasets (e.g., a model may have 300 hours stand-by
time with probability 80%, and 200 hours with probability 20%).
Given that the skyline of high-dimensional data is usually very
large, the k-dominant skyline [8] and approximately-dominating
skyline [21] relax the definition of dominance to obtain more
meaningful results. SubSky [36] returns the skyline in a subspace
containing only selected attributes. SkyCube [38] pre-computes
the skyline in all subspaces, and BestView [29] finds the skyline
in the subspaces that are most meaningful semantically. Finally,
[26] accelerates skyline processing in low-cardinality domains,
e.g., MobilePhone may include a binary attribute indicating
whether or not the model has Bluetooth capabilities.

2.2 Skyline Cardinality Estimation
Most selectivity estimation work focuses on conventional queries
such as ranges and joins. Common techniques include sampling
(e.g., [17]), histograms (e.g., [16][20][30]), kernels (e.g., [4][16]),
etc. However, it is hard to apply these methods to skyline
cardinality estimation (SCE), due to the special characteristics of
the skyline operator. First, the geometric shape of the skyline,
which is required in many histogram and kernel based methods, is
not known in advance without fully computing it. Second, the
skyline cardinality does not grow linearly with the sample size,
and it is non-trivial to compute it from the local skyline of the
sample set. Furthermore, skyline cardinality varies significantly
depending on the data distribution. Figure 2 illustrates four typical
2D distributions: independent, correlated, anti-correlated, and
clustered. Correlated (resp. anti-correlated) datasets have fewer
(resp. more) skyline points than independent ones1 . Clustered
datasets require complex models that aggregate the cardinality in
individual clusters.

x

y

 x

y

a. Independent b. Correlated

x

y

 x

y

c. Anti-Correlated d. Clustered

Figure 2 Four common data distributions

1 For this example and the rest of the presentation, we assume that

smaller values are preferable (i.e., the skyline points have a small
distance to the beginning of the axes).

Given the dataset cardinality n, Bentley et al. [3] prove that when
all d dimensions are independent, the expected skyline cardinality
m equals the (d−1)-th order harmonic Hd-1,n of n, defined
recursively as follows:

0,

1,
,

1

1

1 1

n
n

j i
j n

i

H
H

H j d
i
−

=

=

= ≤ ≤ −∑ (1)

The original proof is limited to the case where no two points share
the same value on any dimension. Godfrey [14] removes this
restriction and shows that for sufficiently large n: m = Hd-1,n ≈
lnd-1 n / d!, where d! denotes the factorial of d. Chaudhuri et al. [9]
generalize the formula lnd-1 n / d! to AlogB n (where A, B are
constants) in order to capture other (than independent) datasets.
The main justification is that for datasets (e.g., anti-correlated),
whose skyline cardinality grows faster than independent ones, B
is set to a value larger than d−1, and vice versa. Based on this
model, Log Sampling (LS) draws a random sample S from the
dataset DS, splits it into two parts S1 and S2 containing |S1|, |S2|
points respectively, and computes their skyline cardinalities
|SKYS1|, |SKYS2|. Since S1, S2 have the same distribution as DS,
their skyline cardinalities are expected to follow the same model
as that of DS. Therefore, from equations |SKYS1| = AlogB |S1| and
|SKYS2| = AlogB |S2|, LS solves constants A and B as follows:

() ()
2 1 1

12 1

log log
,

loglog log log log

S S S

B

SKY SKY SKY
B A

SS S

−
= =

−
 (2)

AlogB n is used as an estimate for the global skyline cardinality m.
Although LS is rather accurate on small, synthetic datasets [9], we
argue that it has two fundamental shortcomings. First, many
datasets simply do not follow the AlogB n model, independently of
the values of A and B. For example, in anti-correlated data (Figure
2c), it is common that m grows linearly with n, i.e., m=Cn for a
constant C. No matter how large B is, Cn always grows faster
than AlogB n. Consequently, the error of LS increases with n, and
can be arbitrarily large, according to the following equation:

(), lim logB

n
A B Cn A n

→∞
∀ ∀ − = +∞ (3)

The second problem is that even for datasets whose skyline
cardinality does follow the AlogB n model, the sample size of LS
may have to be unrealistically large to capture the correct value
for B. Consider that the local skyline cardinalities of the two
clusters in Figure 2d follow models A1logB1 n and A2logB2 n
respectively, with B1 ≠ B2. Since points from different clusters do
not dominate each other, the global skyline contains m =
A1logB1 n1 + A2logB2 n2 points. Without loss of generality, assume
B1 > B2; then, the first term gradually dominates with increasing n
leading to m = Θ(logB1 n). Yet, the influence of the second term
diminishes only when n is sufficiently large, as A1logB1 n grows
sub-linearly. Using a smaller sample set, Equation (2) is likely to
yield a value for B that is between B1 and B2, and hence, leads to
unbounded error when applied to estimate the global skyline
cardinality.

2.3 Kernel Density Estimation
Nonparametric methods, such as kernels [18], radial basis
function [19] and exploratory projection pursuit [13], are widely
used to estimate the probability density function (PDF) of a
dataset from a random sample. Their main advantage is that they
are not based on any assumptions on the underlying data, and,

thus, are generally more robust than parametric techniques such
as LS. We focus on kernel methods as they are most commonly
used in practice. Figure 3 illustrates 2D kernel density estimation
(KDE) with a sample set of 3 points (−2, 0), (0, 1) and (3, 2).
KDE initializes the PDF for the positions holding sample points to
1, and the remaining ones to 0. Then, it associates a kernel with
each of the three samples, which spreads the unit PDF of the
sample to the entire domain according to a specific kernel
function.

-4
-3

-2
-1

 0
 1

 2
 3

 4-4
-3

-2
-1

 0
 1

 2
 3

 4

 0

 0.1

 0.2

0.3

 0

 0.1

 0.2

 0.3
(-2,0) (0,1)

(3,2)

Figure 3 KDE with three sample points

In the following, we use the terms “sample” and “kernel”
interchangeably. Most kernel functions assign positions closer to
the sample point a higher portion of the unit PDF. Intuitively, one
can imagine each kernel as a “light source”, illuminating the
initially “dark” domain space. The final PDF value for each
position is calculated by summing up the influence of all kernels
upon it. For example, in Figure 3, the PDF of positions lying
between (−2, 0) and (0, 1) are boosted by both kernels, and, thus,
is higher compared to that of other points close to only one kernel,
e.g., those around (3, 2). Formally, let S, |S|, d be a random
sample set, its cardinality, and dimensionality respectively. The
PDF of an arbitrary position q is given by the following equation:

()
()

(),1
d

s S

dist q s
PDF q K

hS h det

Σ

∈

⎛ ⎞⎛ ⎞⎜ ⎟= ⎜ ⎟⎜ ⎟Σ ⎝ ⎠⎝ ⎠
∑ (4)

where h (a real value) and Σ (a d×d matrix) are tunable
parameters, called the kernel bandwidth and kernel orientation
respectively; det(Σ) denotes the determinant of matrix Σ; distΣ(p,
s) signifies the Mahalanobis distance [18] between q and s. As a
special case, when Σ is an identity matrix, distΣ(q, s) equals the
Euclidean distance between q and s. Note that Equation (4) uses
the same value of h and Σ for all kernels (referred to as fixed
kernels in the literature). Another option is to have individual
values hs and Σs for each kernel s (called adaptive kernels), which
replace all occurrences of h and Σ in the above formula. K is the
kernel function; a popular choice for K is the Gaussian Kernel
[18], defined by the following equation:

()
2

2
1

2

x

K x e
π

−
= (5)

Figure 4 visualizes the kernel bandwidth and orientation with
three Gaussian kernels s1-s3. Both s1 and s2 use the identity matrix
for the orientation Σ, with s1 having a larger bandwidth than s2.
Intuitively, the unit PDF of s1 is more evenly spread out over the
entire space, while that of s2 is more concentrated around the
sample point. Kernel s3 has a different orientation; its shape

resembles a rotated oval rather than a circle, reflecting the
distortion Σ imposes on the distance function distΣ.

s1

s3s2

Figure 4 Kernels with different bandwidths and orientations

3. KB SKYLINE CARDINALITY
ESTIMATION
Section 3.1 discusses the scaling invariance property of skylines.
Section 3.2 describes the main concepts of KB, and Section 3.3
focuses on the computation of the kernel bandwidth. Section 3.4
presents an alternative implementation of KB based on adaptive
kernels. Table 1 summarizes frequent symbols used throughout
the section.

Table 1 Frequent symbols
Symbol Meaning

DS Input dataset for skyline cardinality estimation
d Number of dimensions of DS
n Number of points in DS
m Estimated number of skyline points in DS
S Random sample set of DS

SKYS Sample skyline set of S
IDR(p) Inverse dominance region of point p
PDF(p) Probability density function at position p
Ωp Cumulated probability density for IDRp

h, Σ Kernel bandwidth and orientation (for fixed kernels)
erf(x) Error function [31] (defined in Equation 10)
pLB[i] Lower bound of dimension i of the domain
pUB[i] Upper bound of dimension i of the domain

Sp Subset of samples in S within distance 2h from point p

3.1 Scaling-Invariance of the Skyline
A very important property of the skyline is scaling invariance.
Specifically, any dataset DS has the same skyline cardinality as its
discretized counterpart DS′, obtained as follows. Let p[i], 1≤i≤d
be the value of point p on the i-th dimension. Each p ∈ DS is
mapped to a point p′ ∈ DS′, such that p′[i] (1≤i≤d) is the rank of
p[i] when all points in DS are sorted in increasing order of their i-
th dimension. For example, if DS = {p1=(−2, 0), p2=(0, 1), p3=(3,
2)}, we have p′1 = (1, 1), since p1 has the smallest co-ordinates on
both dimensions. Similarly, p′2 = (2, 2), and p′3 = (3, 3). It can be
proven [15] that if p is in the skyline of DS, then p′ is in the
skyline of DS′, and vice versa.

Scaling invariance leads to the equivalence of datasets with
very different distributions, with respect to the skyline cardinality.
Consider the three 2D datasets DS1, DS2 and DS3 shown in Figure
5. In DS1, values are uniformly distributed in the range (0, 1). DS2
is obtained by applying the following transformation on DS1: for
each point (x, y) ∈ DS1, there is a corresponding one (x′, y′) ∈
DS2, such that x′ = x and y′ = log y. Similarly, DS3 is generated by
creating for each (x, y) ∈ DS1, its counterpart (x′′, y′′) ∈ DS2,
satisfying x′′ = x and y′′ = −log (1−y). Since both transformations

are order-preserving, the results of discretization for all three
datasets are the same, and, thus, they have identical skyline
cardinality. On the other hand, their PDF functions are entirely
different. This leads to the conclusion that SCE and density
estimation are distinct problems. This issue is further discussed in
Section 3.3.

a. Dataset DS1 b. Dataset DS2 c. Dataset DS3
Figure 5 Datasets with identical skyline cardinality

3.2 Main Concepts of KB
Given a dataset DS, KB first draws a random sample S and
computes the skyline SKYS of S. To distinguish the skyline sets
SKYS and SKYDS of the sample S and the entire dataset DS
respectively, we refer to the former as the sample skyline, and the
latter as the global skyline. The cardinality of DS, SKYDS, S and
SKYS are denoted as n, m, |S| and |SKYS|, respectively. Let ΨDS be
the actual probability that a random data point in DS belongs to
the global skyline; the expected value for m can be obtained as:

DSm n= ⋅ Ψ (6)

Accordingly, SCE reduces to the problem of estimating ΨDS. It is
worth clarifying that Equation (6) does not imply a linear
relationship between m and n. In particular, ΨDS is strictly
associated with the global skyline, and the probability ΨS for a
sample point in S to lie on the sample skyline can differ from ΨDS,
i.e., ΨDS≠ΨS, where ΨS=|SKYS|/|S|. Figure 6 illustrates a sample S
of 5 points p1-p5, whose sample skyline SKYS consists of p1, p4
and p5. Clearly, the probability for a sample point to lie on SKYS
is 3/5 = 0.6. On the other hand, regarding the global skyline, p2
and p3 are definitely not in SKYDS, while p1, p4, p5 may be in
SKYDS, if they are not dominated by other data points not in S.
The example shows that the estimation of ΨDS entails assessing
the probability for each sample skyline point to be dominated by a
tuple in DS−S.

kernels

y

x

sample skyline

IDR()p 4
p 4

p 3

p 2
p 1

p 5

grid index

Figure 6 Kernels and local skyline points

We define the inverse dominance region (IDR) of a point p as:

() { | [] [], 1 }IDR p q q i p i i d= ≤ ∀ ≤ ≤ (7)

where p[i], q[i] denote the value on the i-th dimension of points p
and q, respectively. Observe that q is not restricted to be a point in
DS. In the example of Figure 6, the IDR of p4 is the shaded area.
Let Ωp be the probability that a random point of DS falls in
IDR(p); the probability for a sample skyline point p ∈ SKYS to
reside on the global skyline is thus (1−Ωp)

n−|S|. Accordingly, ΨDS
is estimated as:

()1
1

S

n SEST
DS DS p

p SKYS

−

∈

Ψ ≈ Ψ = − Ω∑ (8)

KB approximates Ωp with kernels. Specifically, it associates each
sample point in S with a kernel. These kernels are used to evaluate
the probability density function (PDF) for all positions in the d-
dimensional space. We apply kernels with fixed bandwidth h and
identity matrix for the orientation Σ (alternative models are
discussed in Section 3.4). Note that although each such kernel
models the local data assuming independent and symmetric
dimensions, the combination of multiple kernels can capture
arbitrary data distributions 2 . Figure 7 illustrates examples of
multiple symmetric kernels. The kernels in Figure 7a (resp. Figure
7b) correspond to correlated (resp. clustered) data. Symmetric
kernels are commonly used in practice [12] because more
complicated kernels do not necessarily lead to better results, while
the may incur additional performance overhead [18].

a. Correlated b. Clustered

Figure 7 Combination of symmetric kernels

Replacing the kernel function K and distance dist with their
respective definitions, we transform Equation (4) as follows:

()
()2 2

1

[] [] 21 1

2

d

i

s i q i h

d
s S

PDF q e
S h π

=

− −

∈

∑
= ∑ (9)

Ωp is then calculated by the cumulated probability of IDR(p), i.e.,
the integration of PDF(q) over all positions in IDR(p). Formally:

()
()

()

()

()

2 2

1

2 2

[] [] 2

[]
[] [] 2

1

1

1 1

2

1 1
[]

2

1 [] []
1

2 2

d

i

p IDR p

s i q i h

d IDR p
s S

p id
s i q i h

d
s S i

d

d
s S i

PDF q dq

e dq
S h

e dq i
S h

s i p i
erf

S h h

π

π

=

− −

∈

− −

∈ = −∞

∈ =

Ω =

∑
=

=

⎛ ⎞−⎛ ⎞= +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∫

∑∫

∑∏ ∫

∑∏

where
2

0

2
()

x
terf x e dt

π
−= ∫

(10)

The first step in the above derivation simply replaces PDF(q)
with its concrete definition of Equation (9). The second step
exploits the facts that (i) IDR(p) is an axis-parallel hyper-
rectangle and (ii) PDF(q) is symmetric for all d dimensions, and,
thus, the integral is independent in all d dimensions. The function
erf in the last step is the error function [31]. Although erf does not
have a closed form solution, it can be approximated very

2 Likewise, histograms summarize arbitrary distributions, even

though they assume uniform distribution within each bucket.

accurately (within error 10-12 for any input) and efficiently
(involving only one exponential evaluation and a small number of
multiplications) with Chebyshev fitting [31], which is
implemented in most scientific libraries, e.g., GSL
(www.gnu.org/software/gsl/). Equations (6)-(10) then jointly
estimate the global skyline cardinality m.

KB applies two additional optimizations in the computation of
Ωp, which significantly boost accuracy and efficiency,
respectively. The first one addresses the issue that data points in
DS are usually restricted in a finite domain D, defined by a pair of
points (pLB, pUB) such that for each dimension i (1≤i≤d), the value
p[i] of every point p∈DS is bounded by pLB[i] and pUB[i], i.e.,
pLB[i]≤ p[i] ≤pUB[i]. In this situation we need to apply two changes
to the computation of Ωp. First, the inverse dominance region
(IDR) is redefined to take D into account, as follows:

() { | [] [] [], 1 }D LBIDR p q p i q i p i i d= ≤ ≤ ∀ ≤ ≤ (11)

Correspondingly, Ωp is computed by integrating the PDF over
IDRD(p) instead of IDR(p). Furthermore, we need to address the
boundary effect [4] of the kernels. Simply stated, the problem is
that since a kernel stretches throughout the unbounded d-
dimensional data space, some of its influence is outside the
domain D. Consequently, the PDF values for positions inside D
are smaller than what they should be. We use a simple remedy
that normalizes the total PDF in D to 1 for each kernel [4]. The
resulting Ωp is presented in Equation (12). We omit a detailed
derivation due to space limitations.

()
()1

() ()1

2 () ()

[] []
where () 1

2

d
LB

p d
s S i UB LB

p p

S h p p

s i p i
p erf

h

ϕ ϕ
ϕ ϕ

ϕ

∈ =

−
Ω =

−
−⎛ ⎞= + ⎜ ⎟

⎝ ⎠

∑∏
 (12)

The second optimization exploits the fact that when a kernel s is
sufficiently far away from a sample skyline p, the influence of s
on p is negligible. Specifically, for Gaussian kernels, 95% of a
kernel’s unit PDF is distributed to points within distance 2h from
its center. Accordingly, KB uses 2h as a threshold, and reduces
unnecessary computations by only considering the subset Sp of
kernels whose minimum distance (denoted by MinDist) to IDR(p)
is no larger than 2h. In the example of Figure 6, if p1, p2, p5 are
farther away than 2h from IDR(p4), then Sp

4
 = {p3, p4}. Applying

this idea, Equation (12) is transformed to:

()
()1

() ()1

2 () ()
where { | (, ()) 2 }

[] []
and () 1

2

p

d
LB

p d
s S i UB LB

p

p p

S h p p
S s s S MinDist s IDR p h

s i p i
p erf

h

ϕ ϕ
ϕ ϕ

ϕ

∈ =

−
Ω =

−
= ∈ ∧ ≤

−⎛ ⎞= + ⎜ ⎟
⎝ ⎠

∑ ∏
 (13)

To accelerate the retrieval of Sp for each sample skyline point p,
KB pre-processes the sample points with a d-dimensional grid.
Each cell has length 2h on every dimension, which ensures that
only those cells that intersect with, or are adjacent to, IDR(p) may
possibly contain kernels with minimum distance 2h to IDR(p),
and, thus, have non-negligible influence on Ωp. Note that since p
is in the local skyline, cells fully contained in IDR(p) must be
empty. In the example of Figure 6, IDR(p4) intersects with 3 cells
(excluding the covered cell at the low-left corner), and is adjacent
to another 5. From these cells, KB only retrieves p3 and p4, and
avoids checking other sample points, which are guaranteed not to

be in Sp. The grid index is effective when the dimensionality d is
relatively low. Its effect gradually decreases as d grows due to the
curse of dimensionality. Figure 8 summarizes KB. The bandwidth
h controls the scope of each kernel and its setting affects
significantly the accuracy of KB. Next, we focus on the
computation of h.

KB(DS, S, SKYS, h)
// INPUT = DS: the entire dataset
// S, SKYS: a random sample of DS, and the skyline of S
// h: the fixed kernel bandwidth
// OUTPUT = m: estimated global skyline cardinality
1. Organize all sample points in a grid index of cell length 2h
2. For each point p in SKYS
3. Initialize Sp to empty set
4. For each cell C that intersects with, or is adjacent to IDR(p)
5. For each sample point s ∈ C
6. If MinDist(s, IDR(p))≤2h, add s to Sp
7. Compute Ωp according to Equation (13)
8. Compute m according to Equations (6) and (8), and return m

Figure 8 KB algorithm

3.3 Kernel Bandwidth Computation
In the kernel density estimation literature, a popular choice for
kernel bandwidth is the optimal value hMISE that minimizes the
mean integrated squared error (MISE) [18]. Specifically, for
Gaussian kernels, hMISE is calculated as follows:

()

1

44

2 1

d

MISEh
d S

+⎛ ⎞
= ⎜ ⎟⎜ ⎟+⎝ ⎠

 (14)

In SCE, however, there does not exist a single best value for h
based on d and |S| alone. This is due to the scaling-invariance
property of skylines, which imposes equivalence for datasets with
completely different distributions. We illustrate this fact with the
example of Figure 5. Recall that all three datasets share exactly
the same skyline cardinality. If we draw sample sets from DS2 and
DS3, their skyline cardinalities are also expected to be the same,
assuming that samples follow their respective global distributions.
However, in DS2 the skyline points generally fall into sparse
regions, while those in DS3 are in dense areas. Therefore, if KB
uses the same kernel bandwidth (e.g., hMISE) for both datasets, the
IDR of a sample skyline in DS2 (resp. DS3) which lies in a sparse
(resp. dense) region, is far away from (resp. closer to) its
surrounding kernels, and, thus receives rather weak (resp. strong)
influence from them. Consequently, the calculated probability Ωp
for a sample skyline point to be dominated by others is far smaller
in DS2 than in DS3. Therefore, KB would produce a much larger
estimate for DS2 than for DS3. Since the two datasets have the
same skyline cardinality, at least one of the estimates incurs high
error.

Without a universal formula, KB resorts to a validation based
approach to compute the appropriate kernel bandwidth.
Specifically, it draws two random sample sets S and S′, referred to
as the training set and validation set respectively, such that S ∩
S′= ∅. Then, it computes the local skyline SKYS′ of S′, and obtains
its cardinality |SKYS′|. With the training set S and a given value
for the bandwidth h (but without S′), KB is able to compute an
estimate |SKYS′|

EST, as described below. The goal of tuning h is
that the difference between |SKYS′| and |SKYS′|

EST is no larger than
θ⋅|S′|, where |S′| is the cardinality of S′, and θ is a pre-defined

threshold. Specifically, let ΨS′ = |SKYS′| / |S′| denote the
probability for a random point in S′ to be in the skyline of S′. Its
estimation from the training set is:

()1
1

S

SEST
S S p

p SKYS

′

′ ′
∈

Ψ ≈ Ψ = − Ω∑ (15)

Comparing Equations (8) and (15), the latter simply substitutes n-
|S| with |S′|. The target h must satisfy |ΨS′−ΨEST

S′ |≤θ. To compute it,
KB initially sets h to hMISE defined in Equation (14), and
calculates ΨEST

S′ with the procedure described in Section 3.2. If the
goal is achieved, h is considered satisfactory and the estimated
value for the global skyline cardinality is returned; otherwise, h
has to be tuned further.

The tuning of h follows the Newton-Raphson framework, an
iterative process that usually converges very fast: if the final value
for h has b bits, the expected number of iterations is O(log b) [31].
In addition, Newton-Raphson is robust, in the sense that even if it
does not reach the best h, it still converges to a local minimum.
Specifically, let hold (hnew) be the bandwidth value before (after)
tuning, respectively; hnew is calculated with the following
equation:

()

EST
S S

new old EST
S

old

h h
d

h
dh

′ ′

′

Ψ − Ψ
= −

Ψ

(16)

where dΨEST
S′ /dh is the first-order derivative of ΨEST

S′ as a function
of h. We next compute this derivative, assuming that KB uses
Equation (10) to obtain Ωp. The case in which KB applies
Equations (12) or (13) leads to longer formulae for dΨEST

S′ /dh, but
the computations are based on the same principles. In preparation
of deriving dΨ EST

S′ /dh, we first obtain dPDF(q)/dh, which is
straightforward following the definition of PDF(q) and basic rules
of derivatives:

()

() ()

()

() ()

2 2

2 2

1

(,) 2

2 2
(,) 2

33

,1
()

, ,1

, 1
where

2
2 , ,

2 2

d
s S

d d
s S

dist q s h

dist q s h

dist q s
dPDF q dh d K dh

S h h

dist q s dist q sd
K dK dh

hS h h S h

dist q s
dK dh d e dh

h

dist q s dist q s dist
e K

hh

π

π

∈

+
∈

−

−

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞−
= +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

= =

∑

∑

(),q s

h

⎛ ⎞
⎜ ⎟
⎝ ⎠

(17)

Then, we apply the results of Equation (17) in (18):

()

()

() ()
() () ()

()

1

() ()

2

1 3()

2

1
1

1

where

() ()

, , ,

,

S

S

SEST
S p

p SKY

S

p p
p SKY

p IDR p IDR p

d dIDR p
s S

p

d dh d dh
S

S
d dh

S

d dh d PDF q dq dh dPDF q dh dq

dist q s dist q s dist q sd
K K dq

S h h S h h

dist q sd

h S

′

′
∈

′ −

∈

+ +
∈

⎛ ⎞
Ψ = − Ω⎜ ⎟⎜ ⎟

⎝ ⎠
′−

= − Ω × Ω

Ω = =

⎛ ⎞⎛ ⎞ ⎛ ⎞−
= +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

−
= Ω +

∑

∑

∫ ∫

∑∫
()

3()

,
dIDR p

s S

dist q s
K dq

h h+
∈

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑∫

(18)

Finally, using Yi = −(s[i]−q[i])2/2h2, we obtain:

() ()

()

()()

1

2
1

3() ()

1 1
[] []

1 1,

3
2

1 1,

2, ,

2
2

2

2
[] []

2
1 [] []1 γ , 1

22

d
jj

i

ji

d
Yii

IDR p IDR p

dd
Y

iIDR p
i j

p i p jdd
YY

i
i j j i

dd

i
i j j i

Ydist q s dist q s
K dq e dq

h h h

Y e dq
h

Y e dq i e dq j
h

s i p iY erf
hh

π

π

π

ππ

==

= =

= = ≠−∞ −∞

= = ≠

−⎛ ⎞ ∑=⎜ ⎟
⎝ ⎠

−
=

−
=

− ⎛ ⎞⎛ ⎞−= + + ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑
∫ ∫

∑ ∏∫

∑ ∏∫ ∫

∏
21

0 0

2
where γ(,) , ()

x x
a t ta x t e dt erf x e dt

π
− − −= =

∑

∫ ∫

(19)

Similar to Equation (10), the derivation in Equation (19) exploits
the fact that the integrand can be decomposed into the product of
d independent components, and that the region IDR(p) is an axis-
parallel hyper-rectangle. In the last step of Equation (19), γ(a, x)
is the incomplete gamma function [31], which, like erf, can be
approximated accurately and efficiently. We summarize the
bandwidth computation algorithm in Figure 9.

Compute_Bandwidth (DS, S, SKYS, θ)
// INPUT = DS: the entire dataset
// S, SKYS: a random sample of DS, and the skyline of S
// τ: pre-defined thresholds controlling output accuracy
// OUTPUT = h: kernel bandwidth
1. Initialize h to hMISE, defined by Equation (14)
2. Draw a sample S′ from the DS, such that S ∩ S′= ∅
3. Compute the local skyline SKYS′ of S′, and ΨS′ = |SKYS′|/|S′|
4. Repeat
5. Compute ΨEST

S′ with Equation (15) and the KB algorithm

6. If |ΨS′−Ψ
EST
S′ |>θ, replace h with hnew computed from

 Equations (16)-(19)
7. Until |ΨS′−Ψ

EST
S′ |≤θ

8. Return h

Figure 9 Bandwidth computation algorithm

3.4 Discussion
So far we have used kernels with fixed bandwidth h and identify-
matrix orientation Σ in KB. In the sequel, we first address
adaptive bandwidth, and then complex orientations. Consider that
each kernel s has a distinct hs. Besides replacing h with hs in all
formulae, we also need to calculate |S| different bandwidths.
Toward this, KB first computes the initial values hs,0 for each s
using local statistics surrounding s, following the standard
procedure described in [18]. Then, we assume that there exists a
constant δ such that the best value hs

* of hs for every s satisfies
hs

*= δhs,0, and apply the Newton-Raphson procedure to find δ. In
our experiments, the accuracy gains brought by adaptive
bandwidths are usually rather small, if not negligible. Similar
observations have been made in traditional kernel density
estimation [18].

KB can also be easily extended to diagonal (but not
necessarily identity) orientation matrices Σ. In this case, the
distance can be decomposed into the weighted sum of individual
dimensions, i.e., dist2

∑(q,s) = ∑
d
i=1wi(q[i]-s[i])2, where the weights

are determined by the diagonal values. Such an orientation Σ is
calculated with the global data variations on each dimension [18].

Furthermore, similar to the bandwidth, the orientation can also be
adaptive, i.e., each kernel s may use a distinct Σs, computed based
on local statistics around s. In our experiments, we found that
diagonal-matrix orientations indeed improve accuracy for
specially designed datasets. For real data, however, they do not
have a clear advantage.

Using more complex (i.e., non-diagonal) orientations in KB is
much harder. Intuitively, such kernels (e.g., s3 in Figure 4) can be
thought of as “rotated” counterparts of those with diagonal-matrix
orientations. Hence, the distance function distΣ(q, s) can no longer
be decomposed into the product of d independent, axis-parallel
components, invalidating the derivations in Equations (10) and
(19). Consequently, the evaluation of the probability Ωp and its
derivative can no longer be performed using special functions
such as erf. Instead, KB must resort to general-purpose, multi-
variant integration approximation techniques (e.g., Monte-Carlo
[31]). Such methods are usually expensive or inaccurate,
defeating the purpose of using complex orientations.

4. CARDINALITY ESTIMATION FOR K-
DOMINANT SKYLINES
Besides conventional SCE, the proposed KB framework can be
adapted to handle other skyline variants. We focus on the k-
dominant skyline [8], which is particularly useful for high-
dimensional data. According to the definition of the conventional
skyline, as d grows, it becomes increasingly difficult for a point to
dominate another on all dimensions. Consequently, for high
dimensional data, the skyline includes a considerable portion of
the entire dataset, and may become meaningless. The k-dominant
skyline avoids this problem by altering the definition of
dominance, as follows: a d-dimensional point p is said to k-
dominate another q, if and only if p is better than q on at least one
dimension and not worse on at least k (k < d) dimensions. Clearly,
if p dominates q, p also k-dominates q for any k, but the reverse
does not hold. Revisiting the example of Figure 1, records m1 and
m2 in the MobilePhone table are incomparable according to the
conventional dominance definition, since m1 has a lower price
than m2, while the latter has longer standby time. With respect to
1-dominance, however, the two models dominate each other,
since each is preferable on one attribute. In general, transitivity
does not hold, and mutual or circular k-dominance is common,
e.g., between m1 and m2.

The set of points not k-dominated by others form the k-
dominant skyline. The k-dominant skyline is always a subset of
the conventional skyline, usually containing the most meaningful
points. However, as there is no direct relationship between the
cardinality of the conventional and k-dominant skylines, the
problem of k-dominant skyline cardinality estimation (k-SCE) is
non-trivial. In Section 4.1, we adapt LS for k-SCE. Then, in
Section 4.2, we propose k-KB, which is based on kernels.

4.1 k-LS
To relate the problems of SCE and k-SCE, we observe that any
point p in the k-dominant skyline kSKYDS must be a conventional
skyline point in every k-dimensional subspace DS|k, constructed
by projecting the entire dataset DS onto k out of the d attributes.
Conversely, if p belongs to the skyline of all k-dimensional
subspaces, it is in kSKYDS as well. Therefore, the k-dominant
skyline is equivalent to the intersection of conventional skylines
in all k-dimensional subspaces. Formally:

|
|

where | is any -dimensional projection of

k

k

DS DS
DS

k

kSKY SKY

DS k DS
∀

= ∩
 (20)

For instance, consider 1-dominance in the MobilePhone table.
The 1D skyline on attributes standby and price is {m3} and {m1}
respectively. Since these two sets do not overlap, the 1-dominant
skyline is empty. As another example, the 2-dominant skyline of a
4-dimensional (say, x, y, z, w) dataset is the intersection of the
skylines in the 6 subspaces xy, xz, xw, yz, yw, zw.

Based on the LS methodology, the skyline cardinality of each
k-dimensional subspace follows the m=AlogB n model, with
distinct values for A and B in different subspaces. Let B* be the
minimum value of B among all such subspaces, DS* be the
particular subspace having B*, and A* be the corresponding value
for constant A. Following Equation 20, we have:

*

*

* logB
DS DS

kSKY SKY A n≤ = (21)

The equality in the above formula holds when all points on
SKYDS* are simultaneously skyline points in every other k-
dimensional subspace. On the other hand, |kSKYDS| can be as low
as zero, e.g., for the 1-dominant skyline in the example of Figure
1. We thus hypothesize that there exists a constant A′ (0≤A′≤A*)
such that |kSKYDS|= A′logB* n, and use this assumption in kLS.
This choice is based on our experimental evaluation, which
indicates that LS usually underestimates the true cardinality of
conventional skylines. Thus, using the upper-bound for |kSKYDS|
compensates for this bias. The computation of A′ and B* can be
performed in two different ways, both using two disjoint random
sample sets S1 and S2 of DS. The first estimates the value of B for
every k-dimensional subspace, takes their minimum as B*, and
solves A′ from equations |kSKYS1

|= A′logB* |S1| and |kSKYS2
|=

A′logB* |S2|. The second approach directly solves A′, B* from these
two equations. While the second method is faster, it carries the
risk of underestimating B*, and, consequently, may yield larger
error for |kSKYDS|.

4.2 k-KB
Similar to KB, k-KB draws a random sample S ⊂ DS, and
computes the sample k-dominant skyline kSKYS. Again we reduce
the estimation of the cardinality of the global k-dominant skyline
kSKYDS to that of PrkSKY, i.e., the probability for a random data
point to lie in kSKYDS. PrkSKY is in turn reduced to the computation
of Ωp for each sample k-dominant skyline point p∈kSKYS. The
first significant difference between KB and k-KB concerns the
definition of inverse dominance region (Equation 7 for KB). The
corresponding concept used in k-KB is the k-dominant IDR
(kIDR), defined as follows.

1 2() { | 1 ... , [] [],1 }k j jkIDR p q i i i d q i p i j k= ∃ ≤ < < < ≤ ≤ ≤ ≤ (22)

We elaborate on the shape of kIDR (k=2) for a 3D point p. Let px,
py, pz be the value of p on the x, y, z axes respectively. Figure 10
illustrates three axis-parallel hyper rectangles: {q|qy<py, qz<pz},
{q|qx<px, qz<pz}, {q|qx<px, qy<py}. Each rectangle is bounded in
two dimensions by the respective projection of p, and spans over
the entire domain in the remaining one. For instance, the leftmost
rectangle in Figure 10 is bounded by (py, pz) on y, z axes, and
covers the whole x dimension. Any point inside {q|qy<py, qz<pz}
dominates p in the subspace consisting of the y and z axes.
Similarly, a point in {q|qx<px, qz<pz} (middle rectangle in Figure
10) dominates p in the subspace consisting of x and z dimensions.

Point p is not 2-dominated, and therefore, it belongs to 2-SKYDS, if
all three rectangles are empty. Consequently, 2-IDR(p) is the
union of the three rectangles.

x

y

z

p

x

y

z

p

x

y

z

p

Figure 10 2-IDR of a 3D point p

In general, the kIDR of a d-dimensional point p is the union of (d
k)

hyper-rectangles, each bounded in k dimensions and unbounded
in (d−k) dimensions. Since kIDR(p) has a complex shape, the
derivation in Equation (10) is not directly applicable. In order to
obtain Ωp, k-KB (i) decomposes kIDR(p) into (d

k) disjoint
partitions, (ii) evaluates the integration of PDF(q) over all
positions q in each partition separately, and (iii) sums up the
results. Figure 11 shows the decomposition of 2-IDR(p) in Figure
10. The first partition is P1={q|qy<py, qz<pz}, i.e., the entire hyper-
rectangle bounded on y and z, and unbounded on x. The second
one is P2={q|qx<px, qz<pz}−P1, i.e., the hyper-rectangle bounded
on x and z and unbounded on y, except for the part already
contained in P1 (to render the two partitions disjoint). The third
partition is P3={q|qx<px, qy<py}−P1−P2.

x

y

z

p

x

y

z

p

x

y

z

p

Figure 11 Decomposition of 2-IDR(p)

Figure 12 describes the general algorithm for decomposing a
kIDR. The ith partition is obtained by taking the ith hyper-
rectangle forming kIDR(p), and removing parts already covered
by previous partitions (Lines 4-6). Because in every dimension,
each hyper-rectangle is either unbounded, or bounded at one end
by the corresponding value of p, a partition Pi (1≤i≤(d

k)) returned
by Decompose is also a d-dimensional, axis-parallel hyper-
rectangle. Thus, the derivation of Equation (10) applies to the
integration of PDF(p) over every partition Pi (1≤i≤(d

k)).

Decompose (kIDR(p))
// INPUT = the kIDR of a point p
// OUTPUT = (d

k) disjoint partitions of kIDR(p)
1. Initialize the set P to empty
2. Let kIDR(p) be the union of a set R of (d

k) hyper-rectangles

3. For i = 1 To (d
k)

4. Initialize Pi = Ri, where Ri is the ith hyper-rectangle in R
5. For j = 1 To i−1
6. Pi = Pi − Pj
7. Add Pi to P
8. Return P

Figure 12 Algorithm for decomposing kIDR(p)

If P = {Pi|1≤i≤(d
k)}, Ωp is computed using Equation (23):

()
()

()p PkIDR p P
PDF q dq PDF q dq

∈
Ω = = ∑∫ ∫P

 (23)

The calculation of the best bandwidth h is performed in a similar
fashion as in KB, with the additional complication that Ωp now is
the sum of (d

k) integrals. When the dimensionality d is high, the

number of partitions (d
k) may become very large. Consequently,

the evaluation of Equation (23) can be very expensive. For such
cases, we propose adjustable k-KB (Ak-KB), which provides a
tradeoff between efficiency and accuracy. Specifically, Ak-KB
lets the user specify a parameter τ (0≤τ≤1), and estimates Ωp as
follows.

()
() ()

() ()where ,

R
p R R

P

R P

volume R
PDF q dq

volume P
volume R volume Pτ

∈
∈

∈

∈ ∈

Ω =

⊂ ≥

∑ ∑ ∫∑
∑ ∑

R
R

P

R P
R P

 (24)

Intuitively, Equation (24) considers only a subset R of the
partitions P, whose combined volume in the d-dimensional space
is no smaller than τ times the total volume of all partitions in P,
and extrapolates the result obtained from R. To minimize the
number of partitions evaluated, Ak-KB sorts the partitions of P in
decreasing order of their volumes, and selects the first |R|
partitions that satisfy the above condition. Clearly, a smaller value
of τ leads to a faster estimate, while a larger τ achieves higher
accuracy and stability.

Finally, KB can be used for cardinality estimation in other
types of queries related to skylines. For instance, given a set of
points Q, the spatial skyline retrieves the objects that are the
nearest neighbors of any point in Q [33]. In this case, a data point
p dominates another p', if p is closer than p' to every query point.
Although spatial skylines necessitate specialized query processing
algorithms, in terms of SCE the problem can be thought of as |Q|-
dimensional skyline, where each dimension corresponds to the
distance from a query point. Thus, KB is directly applicable, and
as evaluated in our experiments, rather accurate.

5. EXPERIMENTAL EVALUATION
We implemented LS and KB, as well as their adaptations for the
k-dominant skyline, in C++. LS is based exactly on the
description of [9]. KB uses fixed-bandwidth kernels with identity
orientation. All experiments are performed on a Pentium 4 2.4G
CPU, using the following datasets:
• Household (available at www.ipums.org) contains 127K

tuples. Each record has 6 attributes that store the percentage
of an American family’s annual income spent on: gas,
electricity, water, heating, insurance, and property tax.
Smaller values are considered better for the skyline query.

• Corel (available at kdd.ics.uci.edu) includes data about 68K
images. Each image is encoded in the HSV (i.e., hue,
saturation and value) space, and the 9 dimensions correspond
to the mean, standard deviation and skewness of the image’s
pixels in the H, S, V channels. The skyline prefers lower
values for the mean, and standard deviation, and higher values
for skewness.

• NBA (available at www.basketballreference.com) contains
data about 20K basketball players in 300K matches. Each
player is associated with 16 different statistics, e.g., number
of games played, minutes played, total points, etc. Larger
values are preferred for all attributes. Following most

previous work (e.g., [28]), we consider appearances of the
same player in different matches as distinct records. The
skyline contains the set of outstanding (i.e., not dominated)
performance records over all matches.

• Spatial skyline (available at www.rtreeportal.org) has the 2D
co-ordinates of 1.25 million points in Los Angeles. A set Q of
query points are randomly chosen from this set. For every
remaining point, we measure its distance to each query point
as the |Q| dimensions to be considered in the skyline query,
preferring smaller values. According to [33], only query
points that reside on the convex hull of Q affect the result of
the skyline query. Hence, we manually ensure that all points
in Q are on the convex hull to eliminate this effect.

• Synthetic datasets, with independent (abbreviated as IND),
correlated (COR) and anti-correlated (ANT) dimensions,
created3 with the dataset generator of [5].

In experiments where we need to alter the cardinality n of a real
dataset, we randomly select a fraction of the records. The
maximum value of n corresponds to the (original) cardinality of
the dataset. Section 5.1 reports the results for conventional SCE.
Section 5.2 deals with k-dominant skylines.

5.1 Conventional Skyline
The initial set of experiments evaluates the accuracy of SCE as a
function of the dataset cardinality n. For each setting, we execute
KB and LS with 10 different random sample sets (i.e., obtained
with different random seeds), and report the median results.
Because KB involves more complex computations, and, thus,
higher running time, we compensate LS by giving it a larger
sample size. Specifically, in all experiments involving n, KB uses
two disjoint sample sets S and S′ (see Section 3), whose sizes are
fixed to 500 and 1000, whereas LS uses 3000 samples for S1 and
another 6000 for S2 (Section 2.2). As we show later, with these
sample sizes, KB and LS have comparable CPU overhead.

We first evaluate KB and LS on the household dataset. Figure
13a plots the absolute values of the actual skyline cardinality m,
as well as the estimates mKB and mLS produced by KB and LS.
Figure 13b shows the relative error rates εKB and εLS of the two
methods, calculated as εKB = |mKB −m| / m and εLS = |mLS −m| / m,
respectively. In all settings, LS leads to higher error despite its
larger sample size. Notably, when n = 40000, LS samples over
20% of the entire dataset, and yet incurs a considerable error of
23%. Furthermore, εLS increases with n, whereas εKB is affected
mainly by random fluctuations. An interesting observation is that
KB and LS are complementary, in the sense that mKB tends to
overestimate m, while mLS usually underestimates it.

0

1000

2000

3000

4000

5000

6000

7000

40000 60000 80000 100000 120000 n

skyline cardinality

Actual KB estimate LS estimate

0

0.1

0.2

0.3
KB relative error LS relative error

n
40000 60000 80000 100000 120000

a. Cardinality estimations b. Error rates
Figure 13 Accuracy vs. dataset cardinality (household)

Figure 14 repeats the same experiments on the Corel dataset.
Corel differs from household in that the former has a much larger

3 Correlated and anti-correlated datasets are produced by rotating

independent ones.

skyline, containing a considerable fraction of the whole dataset.
Nevertheless, the observations that (i) KB consistently
outperforms LS, and (ii) the relative error rate of LS steadily
increases with n, still hold. Moreover, εKB is more stable in Corel
than in household, indicating that Corel contains fewer outliers,
leading to better density estimates using kernels.

0

10000

20000

30000

40000

50000

60000

70000

45000 50000 55000 60000 65000 n

skyline cardinality
Actual KB estimate LS estimate

0

0.05

0.1

0.15

0.2

0.25

0.3

n
45000 50000 55000 60000 65000

KB relative error LS relative error

a. Cardinality estimations b. Error rates
Figure 14 Accuracy vs. dataset size n (Corel)

Figure 15 reports results on NBA. Compared with the previous
two datasets, NBA has the following distinct features: (i) more
records (300K) (ii) larger dimensionality (16), and (iii) higher
correlation between attributes, since a (good) player who has long
playing time is likely to perform more activities (e.g., score
points, take rebounds). Again, KB outperforms LS in all settings,
and the performance gap expands fast with the data cardinality.
Specifically, when n is 106, the performance of LS is comparable
to that on household and Corel. On the other hand, when n
reaches 3 million, εLS is around 50%. KB fits this dataset well,
yielding error around 10%.

0

2000

4000

6000

8000

10000

12000

100000 150000 200000 250000 300000 n

skyline cardinality
Actual KB estimate LS estimate

 0

0.1

0.2

0.3

0.4

0.5

0.6

100000 150000 200000 250000 300000
n

KB relative error LS relative error

a. Cardinality estimations b. Error rates
Figure 15 Accuracy vs. dataset size n (NBA)

Figure 16 compares KB and LS on spatial skylines. Since Corel
and NBA cover high-dimensional data, we focus on low-
dimensional queries, using 4 and 5 query points (abbreviated as
4QP and 5QP). The sizes of these datasets (up to 1.25 million) are
also much larger than those in the previous experiments. The
estimates of KB are always very close to the actual skyline
cardinality. LS, however, suffers from severe underestimation
and, for large n, εLS reaches 80%. Note that the dataset (points in
Los Angeles) underlying spatial skyline contains clusters that
correspond to densely populated areas, which partially explains
the poor performance of LS.

0

100000

200000

300000

400000

500000

600000

250000 500000 750000 1000000 1250000 n

skyline cardinality
Actual KB estimate LS estimate

0

0.2

0.4

0.6

0.8

250000 500000 750000 1000000 1250000

n

KB relative error LS relative error

a. Cardinality estimations (4QP) b. Error rates (4QP)

0

100000

200000

300000

400000

500000

600000

700000

250000 500000 750000 1000000 1250000 n

skyline cardinality
Actual KB estimate LS estimate

0

0.2

0.4

0.6

0.8

250000 500000 750000 1000000 1250000

n

KB relative error LS relative error

c. Cardinality estimations (5QP) d. Error rates (5QP)
Figure 16 Accuracy vs. dataset size n (spatial skyline)

Finally, Figure 17 evaluates synthetic 6D datasets with
independent, correlated, and anti-correlated dimensions (n ranges
between 0.5-1.5 million). Unlike the previous experiments, for
synthetic data with independent and correlated dimensions, εLS is
not affected by n, which agrees with the results of [9]. This
suggests that the skyline cardinality for these datasets indeed
follows the AlogB n model. Nevertheless, KB outperforms LS in
all settings. Observe that the correlated datasets yield very small
skylines. Therefore, although KB and LS have low absolute
errors, εKB and (especially) εLS are rather high due to the
significant impact of random fluctuation. For anti-correlated
dimensions, εLS grows slowly with n, which has also been
observed in [9]. This, however, simply suggests that this
particular type of anti-correlated data (produced by the generator
in [5]) can be captured well by LS because they yield a relatively
small skyline (about 10% of the records). On the other hand,
recall that for other types of anti-correlated datasets, such as
Corel, the skyline contains a much higher fraction of the dataset
(up to 90% for Corel) leading to LS failure.

0

2000

4000

6000

8000

500000 750000 1000000 1250000 1500000 n

skyline cardinality
Actual KB estimate LS estimate

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

500000 750000 1000000 1250000 1500000
n

KB relative error LS relative error

a. Cardinality estimations (IND) b. Error rates (IND)

0

20

40

60

80

100

120

500000 750000 1000000 1250000 1500000 n

skyline cardinality

Actual KB estimate LS estimate

0

0.2

0.4

0.6

0.8

1

500000 750000 1000000 1250000 1500000
n

KB relative error LS relative error

c. Cardinality estimations (COR) d. Error rates (COR)

0
20000
40000
60000
80000

100000
120000
140000
160000

500000 750000 1000000 1250000 1500000

skyline cardinality

Actual KB estimate LS estimate

n
0

0.05

0.1

0.15

0.2

0.25

500000 750000 1000000 1250000 1500000

n

KB relative error LS relative error

e. Cardinality estimations (ANT) f. Error rates (ANT)
Figure 17 Accuracy vs. dataset size n (synthetic)

Table 2 lists the median CPU cost of KB, LS in seconds. The two
methods incur comparable overhead. The data cardinality does
not affect the CPU time because both KB and LS operate on
fixed-sized samples. The table does not consider the I/O
operations for obtaining the sample sets. Since the sample size of
LS is six times larger than that of KB, this omission favors LS.

Table 2 CPU cost of KB, LS and skyline computation

Dataset KB LS
Skyline

Computation
Household 6.7 5.1 114

Corel 31.4 28.7 607
NBA 12.0 6.3 1327

Spatial 4D 19.5 19.8 > 1 day
Spatial 5D 24.6 20.7 > 1 day

Independent 6D 7.7 4.2 3254
Correlated 6D 1.2 0.9 58

Anti-correlated 6D 32.2 21.5 > 1 day

Skyline estimators, such as KB and LS, are slower than those
used for conventional queries (e.g., ranges). However, query
processing is accordingly more expensive. In order to illustrate
this, we include in the last column of Table 2 the cost of skyline
computation using a main-memory nested-loops algorithm [5]
that applies several of the optimizations of LESS [15] to eliminate
non-skyline points. In all settings, query processing is at least one
order of magnitude more expensive than estimation.

Next, we compare KB and LS with respect to the
dimensionality d. Since selecting a subset of attributes in a real
dataset may alter its distribution, we focus on synthetic data.
Figure 18 demonstrates the impact of d on the accuracy of the two
methods. The error rate of KB increases with d, due to the curse
of dimensionality, which occurs in most kernel-based methods
[18]. Nevertheless, KB outperforms LS in all but one
(independent 8D) settings. The behavior of LS depends on the
dataset characteristics. For independent dimensions, the variation
of εLS is mainly caused by random fluctuations. For correlated and
anti-correlated datasets, however, the accuracy of LS deteriorates
quickly, indicating that the skyline cardinality shifts away from
AlogB n with increasing d.

1

10

102

103

104

105

4 5 6 7 8 d

skyline cardinality

Actual KB estimate LS estimate

0

0.1

0.2

0.3

0.4

0.5

4 5 6 7 8
d

KB relative error LS relative error

a. Cardinality estimations (IND) b. Error rates (IND)

1

10

10
2

10
3

10
4

105

4 5 6 7 8 d

skyline cardinality
Actual KB estimate LS estimate

10-1

1

10

102

4 5 6 7 8

KB relative error LS relative error

d

c. Cardinality estimations (COR) d. Error rates (COR)

1

10

10 2

10 3

10 4

10 5
10

6

4 5 6 7 8 d

skyline cardinality
Actual KB estimate LS estimate

0

0.2

0.4

0.6

4 5 6 7 8
d

KB relative error LS relative error

e. Cardinality estimations (ANT) f. Error rates (ANT)
Figure 18 Accuracy vs. dimensionality d (synthetic)

Recall that LS extrapolates the skyline cardinality of two sample
sets to assess that of the global skyline. Accordingly, the accuracy
of LS increases with the sample size as reported in [9]. In
contrast, the precision of KB is not directly affected the sample
size. In fact, even with very few (in the order of 100) samples, KB
sometimes still obtains a highly accurate estimate. On the other
hand, the standard deviation of the estimates steadily decreases
with an increasing sample size. Figure 19 illustrates the effect of
the total sample size |S|+|S′| on the standard deviation of the
estimates returned by 10 executions of KB (with different sample
sets), in household, Corel and NBA. As expected [6], the standard
deviation decreases linearly with (|S|+|S′|)−0.5. Results for spatial
skylines and synthetic datasets lead to the same conclusions, and
are omitted.

0

0.2

0.4

0.6

0.8

1

100 300 500 700 900

Standard deviation / actual skyline cardinality

|S|+|S'|

 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

100 300 500 700 900

Standard deviation / actual skyline cardinality

|S|+|S'|

a. Household b. Corel

0

0.2

0.4

0.6

0.8

1

1.2

100 300 500 700 900

Standard deviation / actual skyline cardinality

|S|+|S'|

c. NBA

Figure 19 Standard deviation of KB vs. sample size

5.2 k-Dominant Skyline
Since k-dominant skylines mainly target high dimensional data,
we use Corel (9D), NBA (16D), and synthetic datasets with 12
dimensions. Due to space limitations, we only vary the data
cardinality n and fix k to d−1. Figure 20 evaluates the methods
using the Corel dataset. Recall from Figure 14 that a large portion
of records in Corel are in the conventional skyline. The k-
dominant skyline, however, has a much higher selectivity, and
grows slowly with n, a phenomenon also observed in [8].
Consequently, the error rate εkLS of k-LS is more stable than εLS.
Furthermore, note that k-LS overestimates the cardinality because
it applies an upper-bound of the true value according to Equation
(21). k-KB clearly outperforms k-LS in all settings.

0

4000

8000

12000

16000

45000 50000 55000 60000 65000

k-

skyline cardinality

Actual KB estimate LS estimatek-

n 0

0.1

0.2

0.3

0.4

45000 50000 55000 60000 65000

KB relative error LS relative errork-k-

n

a. Cardinality estimations b. Error rates
Figure 20 Accuracy vs. dataset size n (Corel)

Figure 21 reports the results on NBA. The estimation mkLS of k-LS
grows significantly slower than the actual cardinality m with
increasing n. Therefore, although εkLS decreases initially due to
reduced overestimation, we expect that as n increases further, m
will eventually surpass mkLS, and consequently, εkLS will start to
increase. On the other hand, k-KB consistently achieves high
accuracy, and εkKB is not affected by n.

0

500

1000

1500

2000

2500

100000 150000 200000 250000 300000

k-
skyline cardinality

Actual KB estimate LS estimatek-

n
0

0.2

0.4

0.6

0.8

100000 150000 200000 250000 300000

KB relative error LS relative errork-k-

n

a. Cardinality estimations b. Error rates
Figure 21 Accuracy vs. dataset size n (NBA)

Figure 22 investigates synthetic datasets. Both methods achieve
relative error rates below 50%. k-KB outperforms k-LS in all but
two settings (n = 500K and n = 750K for correlated dimensions).
For the independent data, the behavior of k-LS resembles that in
NBA, in the sense that mkLS grows faster than m with increasing n.

Meanwhile, in the anti-correlated data, mkLS grows slower than m,
similar to the situation in Corel. For correlated data, both
techniques incur low absolute error, and the variance in their
relative errors mainly reflects random fluctuations due to the
small skyline cardinality.

0

10000

20000

30000

40000

500000 750000 1000000 1250000 1500000

k-
skyline cardinality

Actual KB estimate LS estimatek-

n
0

0. 1

0. 2

0. 3

0. 4

0.5

500000 750000 1000000 1250000 1500000

KB relative error LS relative errork-k-

n

a. Cardinality estimations (IND) b. Error rates (IND)

0

40

80

120

160

200

500000 750000 1000000 1250000 1500000

k-
skyline cardinality

Actual KB estimate LS estimatek-

n
0

0.1

0.2

0.3

0.4

500000 750000 1000000 1250000 1500000

KB relative error LS relative errork-k-

n

c. Cardinality estimations (COR) d. Error rates (COR)

0

50000

100000

150000

200000

250000

300000

350000

500000 750000 1000000 1250000 1500000

k-

skyline cardinality
Actual KB estimate LS estimatek-

n
0

0.1

0.2

0.3

0.4

0.5

500000 750000 1000000 1250000 1500000

KB relative error LS relative errork-k-

n

e. Cardinality estimations (ANT) f. Error rates (ANT)
Figure 22 Accuracy vs. dataset size n (synthetic)

Finally, we evaluate adjustable k-KB (Ak-KB), which provides a
tradeoff between efficiency and accuracy through the user-
specified parameter τ (0≤τ≤1). Figures 23 and 24 demonstrate
results for the two real datasets Corel and NBA as a function of τ,
after fixing the dataset sizes to their median values (i.e., 55k in
Corel, 200k in NBA). Specifically, Figures 23a and 24a show the
median estimates of Ak-KB over 20 executions, in comparison
with their respective actual values. CPU times are shown under
their respective diagrams. Figure 23b and 24b depict the standard
deviations as a ratio of the actual skyline cardinality. We observe
the following. (i) A low value of τ does not necessarily introduce
additional error due to the adaptive nature of Ak-KB (i.e., the
kernel bandwidth is determined iteratively). (ii) The standard
deviation generally decreases as τ increases. At the same time, a
large number of partitions with small volumes are taken into
account. Consequently, the accumulated error in the evaluations
of special functions (e.g., erf, γ) renders the algorithm less stable,
leading to fluctuations in the standard deviation. (iii) The CPU
time increases with τ because of the large number of small-
volume partitions involved in the computations. Overall, a value
of τ between 0.6 and 0.8 achieves a good balance between
efficiency and accuracy.

0

4000

8000

12000

0.2 0.4 0.6 0.8 1
25sec 44sec 81sec 133sec 217sec

k-
skyline cardinality

Actual

CPU time:

KB estimateA

0

0.1
0.2
0.3
0.4
0.5
0.6

0.2 0.4 0.6 0.8 1

Standard deviation / actual skyline cardinality

a. Cardinality estimations b. Standard deviations
Figure 23 Effect of τ (Corel)

0

400

800

1200

1600

0.2 0.4 0.6 0.8 1

skyline cardinality Actual

18sec 30sec 48sec 71sec 150secCPU time:

k-KB estimateA

 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.2 0.4 0.6 0.8 1

Standard deviation / actual skyline cardinality

a. Cardinality estimations b. Standard deviations
Figure 24 Effect of τ (NBA)

6. CONCLUSION
This paper proposes KB, a kernel-based approach for skyline
cardinality estimation. KB is based on nonparametric statistics,
and, thus, is more robust compared to LS, the current state of the
art technique, which is parametric. Extensive experiments confirm
that KB achieves high accuracy in a variety of real and synthetic
datasets. As a second step, we extend both LS and KB to the
problem of estimating the cardinality of the k-dominant skyline,
commonly used for high-dimensional data. In the future, we plan
to apply KB to other skyline variants, including low-cardinality
domains, and continuous monitoring of the skyline cardinality.

ACKNOWLEDGEMENTS
Zhenjie Zhang and Anthony Tung were supported by Singapore
ARF grant R-252-000-268-112. Yin Yang and Dimitris Papadias
were supported by grant 6184/06 from Hong Kong RGC.

REFERENCES
[1] Bartolini, I., Ciaccia, P., Patella, M. Efficient Sort-based

Skyline Evaluation. TODS, 33(4):31.1-31.49, 2008.

[2] Bentley, J., Clarkson, K., Levine, D. Fast Linear Expected-
Time Algorithms for Computing Maxima and Convex
Hulls. SODA, 1999.

[3] Bentley, J., Kung, H., Schkolnick, M., Thompson, C. On
the Average Number of Maxima in a Set of Vectors and
Applications. Journal of the ACM, 25(4): 536-543, 1978.

[4] Blohsfeld, B., Korus, D., Seeger, B. A Comparison of
Selectivity Estimators for Range Queries on Metric
Attributes. SIGMOD, 1999.

[5] Börzsönyi, S., Kossmann, D., Stocker, K. The Skyline
Operator. ICDE, 2001.

[6] Casella, G., Berger, R., Statistical Inference. Duxbury
Press, 2001.

[7] Chan, C.-Y., Eng, P.-K., Tan, K.-L. Stratified Computation
of Skylines with Partially-Ordered Domains. SIGMOD,
2005.

[8] Chan, C.-Y., Jagadish, H., Tan, K.-L. Tung, A., Zhang, Z.
Finding k-dominant Skylines in High Dimensional Space.
SIGMOD, 2006.

[9] Chaudhuri, S., Dalvi, N., Kaushik, R. Robust Cardinality
and Cost Estimation for the Skyline Operator. ICDE, 2006.

[10] Chomicki, J. Querying with Intrinsic Preferences. EDBT,
2002.

[11] Chomicki, J., Godfrey, P., Gryz, J., Liang, D. Skyline with
Presorting. ICDE, 2003.

[12] Duda, R., Hart, P., Stork, D. Pattern Classification. Wiley-
Interscience, 2000.

[13] Fridman, J. Exploratory Projection Pursuit. Journal of
American Statistics Association, 82:249-266, 1987.

[14] Godfrey, P. Skyline Cardinality for Relational Processing.
FoIKS, 2004.

[15] Godfrey, P., Shipley, R., Gryz, J. Algorithms and Analyses
for Maximal Vector Computation. VLDB Journal, 16(1): 5-
28, 2007.

[16] Gunopoulos, D., Kollios, G., Tsotras, V., Domeniconi, C.
Selectivity Estimators for Multidimensional Range Queries
over Real Attributes. VLDB Journal, 14(2): 137-154, 2005.

[17] Haas, P., Swami, A. Sequential Sampling Procedures for
Query Size Estimation. SIGMOD, 1992.

[18] Hwang, J.-N., Lay, S.-R., Lippman, A. Nonparametric
Multivariate Density Estimation: A Comparative Study.
IEEE Trans. on Signal Processing, 42(10): 2795-2810,
1994.

[19] Hwang, J.-N., Lay, S.-R., Lippman, A. Unsupervised
Learning for Multivariate Probability Density Estimation:
Radial Basis and Projection Pursuit. IEEE Conf. on Neural
Networks, 1994.

[20] Jagadish, H., Koudas, N., Muthukrishnan, S., Poosala, V.,
Sevcik, K., Suel, T. Optimal Histograms with Quality
Guarantees. VLDB, 1998.

[21] Koltun, V., Papadimitriou, C. Approximately Dominating
Representatives. ICDT, 2005.

[22] Kossmann, D., Ramasak, F., Rost, S. Shooting Stars in the
Sky: An Online Algorithm for Skyline Queries. VLDB,
2002.

[23] Kung, H., Luccio, F., Preparata, F. On Finding the Maxima
of a Set of Vectors. Journal of the ACM, 22(4): 469-476,
1975.

[24] Lee, K., Zhang, B., Li, H., Lee, W.-C. Approaching the
Skyline in Z Order. VLDB, 2007.

[25] Lin, X., Yuan, Y., Wang, W., Lu, H. Stabbing the Sky:
Efficient Skyline Computation over Sliding Windows.
ICDE, 2005.

[26] Morse, M., Patel, J., Jagadish, H. Efficient Skyline
Computation over Low-Cardinality Domains. VLDB, 2007.

[27] Papadias, D., Tao, Y., Greg, F., Seeger, B. Progressive
Skyline Computation in Database Systems. TODS, 30(1):
41-82, 2005.

[28] Pei, J., Jiang, B., Lin, X., Yuan, Y. Probabilistic Skylines
on Uncertain Data. VLDB, 2007.

[29] Pei, J., Jin, W., Ester, M., Tao, Y. Catching the Best Views
of Skyline: a Semantic Approach Based on Decisive
Subspaces. VLDB, 2005.

[30] Poosala, V., Ioannidis, Y. Selectivity Estimation without the
Attribute Value Independence Assumption. VLDB, 1997.

[31] Press, W., Teukolsky, S., Vetterling, W., Flannery, B.
Numerical Recipes in C, Second Edition. Cambridge
University Press, 1992.

[32] Sacharidis, D., Papadopoulos, S., Papadias, D.
Topologically-sorted Skylines for Partially-ordered
Domains. ICDE, 2009.

[33] Sharifzadeh, M., Shahabi, C. The Spatial Skyline Query.
VLDB, 2006.

[34] Tan, K.-L., Eng, P.-K., Ooi, B.-C. Efficient Progressive
Skyline Computation. VLDB, 2001.

[35] Tao, Y., Papadias, D. Maintaining Sliding Window
Skylines on Data Streams. IEEE TKDE, 18(3): 377-391,
2006.

[36] Tao, Y., Xiao, X., Pei J. SUBSKY: Efficient Computation
of Skylines in Subspaces. ICDE, 2006.

[37] Xia, T., Zhang, D. Refreshing the Sky: the Compressed
SkyCube with Efficient Support for Frequent Updates.
SIGMOD, 2006.

[38] Yuan, Y., Lin, X., Liu, Q, Wang, W., Yu, J. X., Zhang, Q.
Efficient Computation of the Skyline Cube. VLDB, 2005.

