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ABSTRACT 
The skyline of a d-dimensional dataset consists of all points not 
dominated by others. The incorporation of the skyline operator 
into practical database systems necessitates an efficient and 
effective cardinality estimation module. However, existing 
theoretical work on this problem is limited to the case where all d 
dimensions are independent of each other, which rarely holds for 
real datasets. The state of the art Log Sampling (LS) technique 
simply applies theoretical results for independent dimensions to 
non-independent data anyway, sometimes leading to large 
estimation errors. To solve this problem, we propose a novel 
Kernel-Based (KB) approach that approximates the skyline 
cardinality with nonparametric methods. Extensive experiments 
with various real datasets demonstrate that KB achieves high 
accuracy, even in cases where LS fails. At the same time, despite 
its numerical nature, the efficiency of KB is comparable to that of 
LS. Furthermore, we extend both LS and KB to the k-dominant 
skyline, which is commonly used instead of the conventional 
skyline for high-dimensional data. 

Categories and Subject Descriptors 
H.2 DATABASE MANAGEMENT, H.2.4 Systems—Query 
processing, H.2.8 Database applications 

General Terms 
Algorithms, Performance, Experimentation, Theory 

Keywords 
Skyline, Cardinality Estimation, Kernel, Non-Parametric Methods 

1. INTRODUCTION 
Given a d-dimensional dataset DS, we say that a point p ∈ DS 
dominates another q ∈ DS, if and only if p is better than q on at 
least one dimension, and no worse on any of the remaining d−1 

dimensions. The skyline SKYDS ⊆ DS is the set of points not 
dominated by others in DS. Skyline queries are particularly useful 
for selecting records according to multiple, sometimes 
contradicting, criteria [10][15]. Consider the MobilePhone table 
shown in Figure 1 containing 5 records m1-m5. Each phone is 
associated with a price and standby time attribute, and can be 
thought of as a point in the 2-dimensional (price-standby) space. 
Clearly a low price and long standby time are desirable properties 
for any user. Given these preferences, the skyline contains m1, m3, 
and m5; m2 is dominated by m3 since it is more expensive and has 
shorter standby life. Similarly, m4 is dominated by m5. Note that 
although m5 has neither the longest standby time nor the lowest 
price, it is in the skyline as a more balanced choice. In general, 
the skyline consists of all records that are potentially the best 
choice for any user, regardless of the relative weight of different 
attributes. 

In practical applications, a skyline query often involves other 
relational operators, e.g., selection conditions on the records to be 
retrieved [27], and projections that focus on a subspace of all 
attributes [38]. Moreover, complex queries may combine skylines 
with joins. Assume, for instance, that the shop owner wants to 
identify the customer IDs who purchased models that belong to 
the skyline of MobilePhone. In the example database of Figure 1, 
customers c1, c3 satisfy the requirement as they bought skyline 
models m1 and m3. Processing such a query involves computing 
the skyline of MobilePhone, as well as joining MobilePhone with 
Purchase. An execution plan could perform the join before the 
skyline, while another could reverse the order of the two 
operators. To choose the most efficient plan in an educated 
manner, the DBMS should effectively estimate the output size of 
the skyline. This paper focuses on the problem of skyline 
cardinality estimation (SCE), which also plays a pivotal role in 
the cost analysis of the skyline operator [9][15]. 

MobilePhone

mid standby price
m1 200 200
m2 300 400
m3 400 350
m4 250 320
m5 300 300

cid name
c1 James
c2 Lily
c3 George

Customer

oid mid cid date
o1 m3 c1 5/21/08
o2 m2 c2 5/21/08
o3 m1 c1 5/22/08
o4 m4 c2 5/22/08
o5 m3 c3 5/22/08

Purchase

 
Figure 1 Example skyline application 
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The current state-of-the-art for SCE is Log Sampling (LS) [9], 
implemented in Microsoft SQL Server. LS assumes that the 
skyline cardinality m, of an arbitrary dataset of size n, follows the 
model m = AlogB n for some constants A, B. Although this 
property holds for data with independent dimensions, it is not true 
in many practical situations. In particular, we show analytically 
and experimentally that two large classes of datasets violate the 
property. The first involves anti-correlated attributes, i.e., if a 
record has a good value in one attribute (e.g., long standby life), it 
is likely to have a “bad” value on the remaining ones (e.g., have a 
high price). The second type of datasets that lead to failure of LS 
are those consisting of multiple clusters (e.g., MobilePhone may 
contain two clusters in the price-standby plane corresponding to 
PDAs and music phones). 

We solve these problems through a novel Kernel-Based 
approach (KB). Unlike LS, KB is nonparametric, meaning that it 
does not rely on any assumptions about the relationship between 
the skyline cardinality m and the dataset size n, and, thus, is 
generally more robust. Extensive experiments confirm that KB 
achieves low estimation error in a variety of real and synthetic 
datasets, and is significantly more accurate than LS. Moreover, 
the efficiency of KB is comparable to that of LS. As a second 
step, we extend both LS and KB to the k-dominant skyline [8], 
which is more meaningful than the conventional skyline for high-
dimensional datasets. 

The rest of the paper is organized as follows. Section 2 
surveys related work and necessary background for kernel-based 
statistics. Section 3 describes the theoretical foundations and the 
algorithmic framework of KB. Section 4 adapts LS and KB to k-
dominant skylines. Section 5 contains an extensive experimental 
evaluation. Finally, Section 6 concludes the paper with directions 
for future work. 

2. RELATED WORK 
Section 2.1 overviews the literature on the skyline query and its 
variants. Section 2.2 surveys skyline cardinality estimation, 
focusing on LS. Section 2.3 presents kernel-based methods. 

2.1 The Skyline Query 
The skyline query, also known as the Maximal Vector Problem 
[3], was first studied in the computational geometry literature. 
Early work focuses on main-memory solutions. The Double 
Divide-and-Conquer (DD&C) algorithm [23] achieves the lowest 
worst-case cost among all known methods. In particular, DD&C 
answers a skyline query in O(nlogd-2 n) time, where n is the data 
cardinality and d≥2 the dimensionality. Subsequent work, such as 
Linear Divide-and-Conquer [3] and Fast Linear Expected-Time 
[2], use DD&C as a sub-routine and, thus, preserve its worst-case 
bound, while improving its average-case performance. As pointed 
out in [15], these solutions are highly theoretical in nature, and 
commonly incur practical drawbacks, such as large constants, 
poor scalability for large d, and considerable implementation 
overhead. 

Börzsönyi et al. [5] introduced the skyline problem to the 
database community proposing two disk-based solutions, based 
on the divide-and-conquer (D&C) and block-nested loop (BNL) 
paradigms. SFS [11] improves BNL by sorting all tuples on one 
of the d dimensions in a pre-processing step. The pre-sorting idea 
is enhanced in LESS [15], ZSearch [24] and SaLSa [1]. When the 
data dimensionality is relatively low, a multi-dimensional index 
can speed up processing [22][27][34]. Several papers study 

incremental maintenance of skylines in the presence of frequent 
updates, common in data stream environments  [25][35][37]. 

Another line of research deals with alternative forms of 
skyline processing. Chan et al. [7] and Sacharidis et al. [32] study 
skylines in partially-ordered domains (e.g., a user may prefer 
“Nokia” to “Motorola”, but considers “Nokia” and “LG” 
incomparable). Pei et al. [28] compute probabilistic skylines in 
uncertain datasets (e.g., a model may have 300 hours stand-by 
time with probability 80%, and 200 hours with probability 20%). 
Given that the skyline of high-dimensional data is usually very 
large, the k-dominant skyline [8] and approximately-dominating 
skyline [21] relax the definition of dominance to obtain more 
meaningful results. SubSky [36] returns the skyline in a subspace 
containing only selected attributes. SkyCube [38] pre-computes 
the skyline in all subspaces, and BestView [29] finds the skyline 
in the subspaces that are most meaningful semantically. Finally, 
[26] accelerates skyline processing in low-cardinality domains, 
e.g., MobilePhone may include a binary attribute indicating 
whether or not the model has Bluetooth capabilities. 

2.2 Skyline Cardinality Estimation 
Most selectivity estimation work focuses on conventional queries 
such as ranges and joins. Common techniques include sampling 
(e.g., [17]), histograms (e.g., [16][20][30]), kernels (e.g., [4][16]), 
etc. However, it is hard to apply these methods to skyline 
cardinality estimation (SCE), due to the special characteristics of 
the skyline operator. First, the geometric shape of the skyline, 
which is required in many histogram and kernel based methods, is 
not known in advance without fully computing it. Second, the 
skyline cardinality does not grow linearly with the sample size, 
and it is non-trivial to compute it from the local skyline of the 
sample set. Furthermore, skyline cardinality varies significantly 
depending on the data distribution. Figure 2 illustrates four typical 
2D distributions: independent, correlated, anti-correlated, and 
clustered. Correlated (resp. anti-correlated) datasets have fewer 
(resp. more) skyline points than independent ones1 . Clustered 
datasets require complex models that aggregate the cardinality in 
individual clusters. 
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c. Anti-Correlated d. Clustered 

Figure 2 Four common data distributions 

                                                                 
1 For this example and the rest of the presentation, we assume that 

smaller values are preferable (i.e., the skyline points have a small 
distance to the beginning of the axes). 



Given the dataset cardinality n, Bentley et al. [3] prove that when 
all d dimensions are independent, the expected skyline cardinality 
m equals the (d−1)-th order harmonic Hd-1,n of n, defined 
recursively as follows: 
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The original proof is limited to the case where no two points share 
the same value on any dimension. Godfrey [14] removes this 
restriction and shows that for sufficiently large n: m = Hd-1,n ≈  
lnd-1 n / d!, where d! denotes the factorial of d. Chaudhuri et al. [9] 
generalize the formula lnd-1 n / d! to AlogB n (where A, B are 
constants) in order to capture other (than independent) datasets. 
The main justification is that for datasets (e.g., anti-correlated), 
whose skyline cardinality grows faster than independent ones, B 
is set to a value larger than d−1, and vice versa. Based on this 
model, Log Sampling (LS) draws a random sample S from the 
dataset DS, splits it into two parts S1 and S2 containing |S1|, |S2| 
points respectively, and computes their skyline cardinalities 
|SKYS1|, |SKYS2|. Since S1, S2 have the same distribution as DS, 
their skyline cardinalities are expected to follow the same model 
as that of DS. Therefore, from equations |SKYS1| = AlogB |S1| and 
|SKYS2| = AlogB |S2|, LS solves constants A and B as follows: 
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AlogB n is used as an estimate for the global skyline cardinality m. 
Although LS is rather accurate on small, synthetic datasets [9], we 
argue that it has two fundamental shortcomings. First, many 
datasets simply do not follow the AlogB n model, independently of 
the values of A and B. For example, in anti-correlated data (Figure 
2c), it is common that m grows linearly with n, i.e., m=Cn for a 
constant C. No matter how large B is, Cn always grows faster 
than AlogB n. Consequently, the error of LS increases with n, and 
can be arbitrarily large, according to the following equation: 

( ), lim logB

n
A B Cn A n

→∞
∀ ∀ − = +∞  (3)

The second problem is that even for datasets whose skyline 
cardinality does follow the AlogB n model, the sample size of LS 
may have to be unrealistically large to capture the correct value 
for B. Consider that the local skyline cardinalities of the two 
clusters in Figure 2d follow models A1logB1 n and A2logB2 n 
respectively, with B1 ≠ B2. Since points from different clusters do 
not dominate each other, the global skyline contains m =  
A1logB1 n1 + A2logB2 n2 points. Without loss of generality, assume 
B1 > B2; then, the first term gradually dominates with increasing n 
leading to m = Θ(logB1 n). Yet, the influence of the second term 
diminishes only when n is sufficiently large, as A1logB1 n grows 
sub-linearly. Using a smaller sample set, Equation (2) is likely to 
yield a value for B that is between B1 and B2, and hence, leads to 
unbounded error when applied to estimate the global skyline 
cardinality. 

2.3 Kernel Density Estimation 
Nonparametric methods, such as kernels [18], radial basis 
function [19] and exploratory projection pursuit [13], are widely 
used to estimate the probability density function (PDF) of a 
dataset from a random sample. Their main advantage is that they 
are not based on any assumptions on the underlying data, and, 

thus, are generally more robust than parametric techniques such 
as LS. We focus on kernel methods as they are most commonly 
used in practice. Figure 3 illustrates 2D kernel density estimation 
(KDE) with a sample set of 3 points (−2, 0), (0, 1) and (3, 2). 
KDE initializes the PDF for the positions holding sample points to 
1, and the remaining ones to 0. Then, it associates a kernel with 
each of the three samples, which spreads the unit PDF of the 
sample to the entire domain according to a specific kernel 
function. 
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Figure 3 KDE with three sample points 

In the following, we use the terms “sample” and “kernel” 
interchangeably. Most kernel functions assign positions closer to 
the sample point a higher portion of the unit PDF. Intuitively, one 
can imagine each kernel as a “light source”, illuminating the 
initially “dark” domain space. The final PDF value for each 
position is calculated by summing up the influence of all kernels 
upon it. For example, in Figure 3, the PDF of positions lying 
between (−2, 0) and (0, 1) are boosted by both kernels, and, thus, 
is higher compared to that of other points close to only one kernel, 
e.g., those around (3, 2). Formally, let S, |S|, d be a random 
sample set, its cardinality, and dimensionality respectively. The 
PDF of an arbitrary position q is given by the following equation: 

( )
( )

( ),1
d
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dist q s
PDF q K

hS h det

Σ

∈

⎛ ⎞⎛ ⎞⎜ ⎟= ⎜ ⎟⎜ ⎟Σ ⎝ ⎠⎝ ⎠
∑  (4)

where h (a real value) and Σ (a d×d matrix) are tunable 
parameters, called the kernel bandwidth and kernel orientation 
respectively; det(Σ) denotes the determinant of matrix Σ; distΣ(p, 
s) signifies the Mahalanobis distance [18] between q and s. As a 
special case, when Σ is an identity matrix, distΣ(q, s) equals the 
Euclidean distance between q and s. Note that Equation (4) uses 
the same value of h and Σ for all kernels (referred to as fixed 
kernels in the literature). Another option is to have individual 
values hs and Σs for each kernel s (called adaptive kernels), which 
replace all occurrences of h and Σ in the above formula. K is the 
kernel function; a popular choice for K is the Gaussian Kernel 
[18], defined by the following equation: 
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Figure 4 visualizes the kernel bandwidth and orientation with 
three Gaussian kernels s1-s3. Both s1 and s2 use the identity matrix 
for the orientation Σ, with s1 having a larger bandwidth than s2. 
Intuitively, the unit PDF of s1 is more evenly spread out over the 
entire space, while that of s2 is more concentrated around the 
sample point. Kernel s3 has a different orientation; its shape 



resembles a rotated oval rather than a circle, reflecting the 
distortion Σ imposes on the distance function distΣ. 

s1

s3s2

 
Figure 4 Kernels with different bandwidths and orientations 

3. KB SKYLINE CARDINALITY 
ESTIMATION 
Section 3.1 discusses the scaling invariance property of skylines. 
Section 3.2 describes the main concepts of KB, and Section 3.3 
focuses on the computation of the kernel bandwidth. Section 3.4 
presents an alternative implementation of KB based on adaptive 
kernels. Table 1 summarizes frequent symbols used throughout 
the section. 

Table 1 Frequent symbols 
Symbol Meaning 

DS Input dataset for skyline cardinality estimation 
d Number of dimensions of DS 
n Number of points in DS 
m Estimated number of skyline points in DS 
S Random sample set of DS 

SKYS Sample skyline set of S 
IDR(p) Inverse dominance region of point p 
PDF(p) Probability density function at position p 
Ωp Cumulated probability density for IDRp 

h, Σ Kernel bandwidth and orientation (for fixed kernels) 
erf(x) Error function [31] (defined in Equation 10) 
pLB[i] Lower bound of dimension i of the domain 
pUB[i] Upper bound of dimension i of the domain 

Sp Subset of samples in S within distance 2h from point p  

3.1 Scaling-Invariance of the Skyline 
A very important property of the skyline is scaling invariance. 
Specifically, any dataset DS has the same skyline cardinality as its 
discretized counterpart DS′, obtained as follows. Let p[i], 1≤i≤d 
be the value of point p on the i-th dimension. Each p ∈ DS is 
mapped to a point p′ ∈ DS′, such that p′[i] (1≤i≤d) is the rank of 
p[i] when all points in DS are sorted in increasing order of their i-
th dimension. For example, if DS = {p1=(−2, 0), p2=(0, 1), p3=(3, 
2)}, we have p′1 = (1, 1), since p1 has the smallest co-ordinates on 
both dimensions. Similarly, p′2 = (2, 2), and p′3 = (3, 3). It can be 
proven [15] that if p is in the skyline of DS, then p′ is in the 
skyline of DS′, and vice versa. 

Scaling invariance leads to the equivalence of datasets with 
very different distributions, with respect to the skyline cardinality. 
Consider the three 2D datasets DS1, DS2 and DS3 shown in Figure 
5. In DS1, values are uniformly distributed in the range (0, 1). DS2 
is obtained by applying the following transformation on DS1: for 
each point (x, y) ∈ DS1, there is a corresponding one (x′, y′) ∈ 
DS2, such that x′ = x and y′ = log y. Similarly, DS3 is generated by 
creating for each (x, y) ∈ DS1, its counterpart (x′′, y′′) ∈ DS2, 
satisfying x′′ = x and y′′ = −log (1−y). Since both transformations 

are order-preserving, the results of discretization for all three 
datasets are the same, and, thus, they have identical skyline 
cardinality. On the other hand, their PDF functions are entirely 
different. This leads to the conclusion that SCE and density 
estimation are distinct problems. This issue is further discussed in 
Section 3.3. 

a. Dataset DS1 b. Dataset DS2 c. Dataset DS3 
Figure 5 Datasets with identical skyline cardinality 

3.2 Main Concepts of KB 
Given a dataset DS, KB first draws a random sample S and 
computes the skyline SKYS of S. To distinguish the skyline sets 
SKYS and SKYDS of the sample S and the entire dataset DS 
respectively, we refer to the former as the sample skyline, and the 
latter as the global skyline. The cardinality of DS, SKYDS, S and 
SKYS are denoted as n, m, |S| and |SKYS|, respectively. Let ΨDS be 
the actual probability that a random data point in DS belongs to 
the global skyline; the expected value for m can be obtained as: 

DSm n= ⋅ Ψ  (6)

Accordingly, SCE reduces to the problem of estimating ΨDS. It is 
worth clarifying that Equation (6) does not imply a linear 
relationship between m and n. In particular, ΨDS is strictly 
associated with the global skyline, and the probability ΨS for a 
sample point in S to lie on the sample skyline can differ from ΨDS, 
i.e., ΨDS≠ΨS, where ΨS=|SKYS|/|S|. Figure 6 illustrates a sample S 
of 5 points p1-p5, whose sample skyline SKYS consists of p1, p4 
and p5. Clearly, the probability for a sample point to lie on SKYS 
is 3/5 = 0.6. On the other hand, regarding the global skyline, p2 
and p3 are definitely not in SKYDS, while p1, p4, p5 may be in 
SKYDS, if they are not dominated by other data points not in S. 
The example shows that the estimation of ΨDS entails assessing 
the probability for each sample skyline point to be dominated by a 
tuple in DS−S. 

kernels
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IDR(   )p 4
p 4

p 3
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p 1

p 5
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Figure 6 Kernels and local skyline points 

We define the inverse dominance region (IDR) of a point p as: 

( ) { | [ ] [ ], 1 }IDR p q q i p i i d= ≤ ∀ ≤ ≤  (7)

where p[i], q[i] denote the value on the i-th dimension of points p 
and q, respectively. Observe that q is not restricted to be a point in 
DS. In the example of Figure 6, the IDR of p4 is the shaded area. 
Let Ωp be the probability that a random point of DS falls in 
IDR(p); the probability for a sample skyline point p ∈ SKYS to 
reside on the global skyline is thus (1−Ωp)

n−|S|. Accordingly, ΨDS 
is estimated as: 



( )1
1

S

n SEST
DS DS p
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KB approximates Ωp with kernels. Specifically, it associates each 
sample point in S with a kernel. These kernels are used to evaluate 
the probability density function (PDF) for all positions in the d-
dimensional space. We apply kernels with fixed bandwidth h and 
identity matrix for the orientation Σ (alternative models are 
discussed in Section 3.4). Note that although each such kernel 
models the local data assuming independent and symmetric 
dimensions, the combination of multiple kernels can capture 
arbitrary data distributions 2 . Figure 7 illustrates examples of 
multiple symmetric kernels. The kernels in Figure 7a (resp. Figure 
7b) correspond to correlated (resp. clustered) data. Symmetric 
kernels are commonly used in practice [12] because more 
complicated kernels do not necessarily lead to better results, while 
the may incur additional performance overhead [18]. 

 
a. Correlated b. Clustered 

Figure 7 Combination of symmetric kernels 

Replacing the kernel function K and distance dist with their 
respective definitions, we transform Equation (4) as follows: 
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Ωp is then calculated by the cumulated probability of IDR(p), i.e., 
the integration of PDF(q) over all positions in IDR(p). Formally: 
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x
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The first step in the above derivation simply replaces PDF(q) 
with its concrete definition of Equation (9). The second step 
exploits the facts that (i) IDR(p) is an axis-parallel hyper-
rectangle and (ii) PDF(q) is symmetric for all d dimensions, and, 
thus, the integral is independent in all d dimensions. The function 
erf in the last step is the error function [31]. Although erf does not 
have a closed form solution, it can be approximated very 

                                                                 
2  Likewise, histograms summarize arbitrary distributions, even 

though they assume uniform distribution within each bucket.  

accurately (within error 10-12 for any input) and efficiently 
(involving only one exponential evaluation and a small number of 
multiplications) with Chebyshev fitting [31], which is 
implemented in most scientific libraries, e.g., GSL 
(www.gnu.org/software/gsl/). Equations (6)-(10) then jointly 
estimate the global skyline cardinality m. 

KB applies two additional optimizations in the computation of 
Ωp, which significantly boost accuracy and efficiency, 
respectively. The first one addresses the issue that data points in 
DS are usually restricted in a finite domain D, defined by a pair of 
points (pLB, pUB) such that for each dimension i (1≤i≤d), the value 
p[i] of every point p∈DS is bounded by pLB[i] and pUB[i], i.e., 
pLB[i]≤ p[i] ≤pUB[i]. In this situation we need to apply two changes 
to the computation of Ωp. First, the inverse dominance region 
(IDR) is redefined to take D into account, as follows: 

( ) { | [ ] [ ] [ ], 1 }D LBIDR p q p i q i p i i d= ≤ ≤ ∀ ≤ ≤  (11)

Correspondingly, Ωp is computed by integrating the PDF over 
IDRD(p) instead of IDR(p). Furthermore, we need to address the 
boundary effect [4] of the kernels. Simply stated, the problem is 
that since a kernel stretches throughout the unbounded d-
dimensional data space, some of its influence is outside the 
domain D. Consequently, the PDF values for positions inside D 
are smaller than what they should be. We use a simple remedy 
that normalizes the total PDF in D to 1 for each kernel [4]. The 
resulting Ωp is presented in Equation (12). We omit a detailed 
derivation due to space limitations. 
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The second optimization exploits the fact that when a kernel s is 
sufficiently far away from a sample skyline p, the influence of s 
on p is negligible. Specifically, for Gaussian kernels, 95% of a 
kernel’s unit PDF is distributed to points within distance 2h from 
its center. Accordingly, KB uses 2h as a threshold, and reduces 
unnecessary computations by only considering the subset Sp of 
kernels whose minimum distance (denoted by MinDist) to IDR(p) 
is no larger than 2h. In the example of Figure 6, if p1, p2, p5 are 
farther away than 2h from IDR(p4), then Sp

4
 = {p3, p4}. Applying 

this idea, Equation (12) is transformed to: 
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To accelerate the retrieval of Sp for each sample skyline point p, 
KB pre-processes the sample points with a d-dimensional grid. 
Each cell has length 2h on every dimension, which ensures that 
only those cells that intersect with, or are adjacent to, IDR(p) may 
possibly contain kernels with minimum distance 2h to IDR(p), 
and, thus, have non-negligible influence on Ωp. Note that since p 
is in the local skyline, cells fully contained in IDR(p) must be 
empty. In the example of Figure 6, IDR(p4) intersects with 3 cells 
(excluding the covered cell at the low-left corner), and is adjacent 
to another 5. From these cells, KB only retrieves p3 and p4, and 
avoids checking other sample points, which are guaranteed not to 



be in Sp. The grid index is effective when the dimensionality d is 
relatively low. Its effect gradually decreases as d grows due to the 
curse of dimensionality. Figure 8 summarizes KB. The bandwidth 
h controls the scope of each kernel and its setting affects 
significantly the accuracy of KB. Next, we focus on the 
computation of h. 

KB(DS, S, SKYS, h) 
// INPUT =  DS: the entire dataset 
//      S, SKYS: a random sample of DS, and the skyline of S 
//      h: the fixed kernel bandwidth 
// OUTPUT = m: estimated global skyline cardinality 
1. Organize all sample points in a grid index of cell length 2h 
2.  For each point p in SKYS 
3.  Initialize Sp to empty set 
4.  For each cell C that intersects with, or is adjacent to IDR(p) 
5.   For each sample point s ∈ C 
6.    If MinDist(s, IDR(p))≤2h, add s to Sp 
7.  Compute Ωp according to Equation (13) 
8. Compute m according to Equations (6) and (8), and return m 

Figure 8 KB algorithm 

3.3 Kernel Bandwidth Computation 
In the kernel density estimation literature, a popular choice for 
kernel bandwidth is the optimal value hMISE that minimizes the 
mean integrated squared error (MISE) [18]. Specifically, for 
Gaussian kernels, hMISE is calculated as follows: 
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In SCE, however, there does not exist a single best value for h 
based on d and |S| alone. This is due to the scaling-invariance 
property of skylines, which imposes equivalence for datasets with 
completely different distributions. We illustrate this fact with the 
example of Figure 5. Recall that all three datasets share exactly 
the same skyline cardinality. If we draw sample sets from DS2 and 
DS3, their skyline cardinalities are also expected to be the same, 
assuming that samples follow their respective global distributions. 
However, in DS2 the skyline points generally fall into sparse 
regions, while those in DS3 are in dense areas. Therefore, if KB 
uses the same kernel bandwidth (e.g., hMISE) for both datasets, the 
IDR of a sample skyline in DS2 (resp. DS3) which lies in a sparse 
(resp. dense) region, is far away from (resp. closer to) its 
surrounding kernels, and, thus receives rather weak (resp. strong) 
influence from them. Consequently, the calculated probability Ωp 
for a sample skyline point to be dominated by others is far smaller 
in DS2 than in DS3. Therefore, KB would produce a much larger 
estimate for DS2 than for DS3. Since the two datasets have the 
same skyline cardinality, at least one of the estimates incurs high 
error. 

Without a universal formula, KB resorts to a validation based 
approach to compute the appropriate kernel bandwidth. 
Specifically, it draws two random sample sets S and S′, referred to 
as the training set and validation set respectively, such that S ∩ 
S′= ∅. Then, it computes the local skyline SKYS′ of S′, and obtains 
its cardinality |SKYS′|. With the training set S and a given value 
for the bandwidth h (but without S′), KB is able to compute an 
estimate |SKYS′|

EST, as described below. The goal of tuning h is 
that the difference between |SKYS′| and |SKYS′|

EST is no larger than 
θ⋅|S′|, where |S′| is the cardinality of S′, and θ is a pre-defined 

threshold. Specifically, let ΨS′ = |SKYS′| / |S′| denote the 
probability for a random point in S′ to be in the skyline of S′. Its 
estimation from the training set is: 
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Comparing Equations (8) and (15), the latter simply substitutes n-
|S| with |S′|. The target h must satisfy |ΨS′−ΨEST

S′ |≤θ. To compute it, 
KB initially sets h to hMISE defined in Equation (14), and 
calculates ΨEST

S′  with the procedure described in Section 3.2. If the 
goal is achieved, h is considered satisfactory and the estimated 
value for the global skyline cardinality is returned; otherwise, h 
has to be tuned further. 

The tuning of h follows the Newton-Raphson framework, an 
iterative process that usually converges very fast: if the final value 
for h has b bits, the expected number of iterations is O(log b) [31].  
In addition, Newton-Raphson is robust, in the sense that even if it 
does not reach the best h, it still converges to a local minimum. 
Specifically, let hold (hnew) be the bandwidth value before (after) 
tuning, respectively; hnew is calculated with the following 
equation: 
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where dΨEST
S′ /dh is the first-order derivative of ΨEST

S′  as a function 
of h. We next compute this derivative, assuming that KB uses 
Equation (10) to obtain Ωp. The case in which KB applies 
Equations (12) or (13) leads to longer formulae for dΨEST

S′ /dh, but 
the computations are based on the same principles. In preparation 
of deriving dΨ EST

S′ /dh, we first obtain dPDF(q)/dh, which is 
straightforward following the definition of PDF(q) and basic rules 
of derivatives: 
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Then, we apply the results of Equation (17) in (18): 
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Finally, using Yi = −(s[i]−q[i])2/2h2, we obtain: 
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Similar to Equation (10), the derivation in Equation (19) exploits 
the fact that the integrand can be decomposed into the product of 
d independent components, and that the region IDR(p) is an axis-
parallel hyper-rectangle. In the last step of Equation (19), γ(a, x) 
is the incomplete gamma function [31], which, like erf, can be 
approximated accurately and efficiently. We summarize the 
bandwidth computation algorithm in Figure 9. 

Compute_Bandwidth (DS, S, SKYS, θ) 
// INPUT =  DS: the entire dataset 
//      S, SKYS: a random sample of DS, and the skyline of S 
//      τ: pre-defined thresholds controlling output accuracy 
// OUTPUT = h: kernel bandwidth 
1. Initialize h to hMISE, defined by Equation (14) 
2.  Draw a sample S′ from the DS, such that S ∩ S′= ∅ 
3. Compute the local skyline SKYS′ of S′, and ΨS′ = |SKYS′|/|S′| 
4. Repeat 
5.  Compute ΨEST

S′  with Equation (15) and the KB algorithm 

6.  If  |ΨS′−Ψ
EST
S′ |>θ, replace h with hnew computed from 

 Equations (16)-(19) 
7. Until |ΨS′−Ψ

EST
S′ |≤θ 

8. Return h 

Figure 9 Bandwidth computation algorithm 

3.4 Discussion 
So far we have used kernels with fixed bandwidth h and identify-
matrix orientation Σ in KB. In the sequel, we first address 
adaptive bandwidth, and then complex orientations. Consider that 
each kernel s has a distinct hs. Besides replacing h with hs in all 
formulae, we also need to calculate |S| different bandwidths. 
Toward this, KB first computes the initial values hs,0 for each s 
using local statistics surrounding s, following the standard 
procedure described in [18]. Then, we assume that there exists a 
constant δ such that the best value hs

* of hs for every s satisfies 
hs

*= δhs,0, and apply the Newton-Raphson procedure to find δ. In 
our experiments, the accuracy gains brought by adaptive 
bandwidths are usually rather small, if not negligible. Similar 
observations have been made in traditional kernel density 
estimation [18]. 

KB can also be easily extended to diagonal (but not 
necessarily identity) orientation matrices Σ. In this case, the 
distance can be decomposed into the weighted sum of individual 
dimensions, i.e., dist2

∑(q,s) = ∑
d
i=1wi(q[i]-s[i])2, where the weights 

are determined by the diagonal values. Such an orientation Σ is 
calculated with the global data variations on each dimension [18]. 

Furthermore, similar to the bandwidth, the orientation can also be 
adaptive, i.e., each kernel s may use a distinct Σs, computed based 
on local statistics around s. In our experiments, we found that 
diagonal-matrix orientations indeed improve accuracy for 
specially designed datasets. For real data, however, they do not 
have a clear advantage. 

Using more complex (i.e., non-diagonal) orientations in KB is 
much harder. Intuitively, such kernels (e.g., s3 in Figure 4) can be 
thought of as “rotated” counterparts of those with diagonal-matrix 
orientations. Hence, the distance function distΣ(q, s) can no longer 
be decomposed into the product of d independent, axis-parallel 
components, invalidating the derivations in Equations (10) and 
(19). Consequently, the evaluation of the probability Ωp and its 
derivative can no longer be performed using special functions 
such as erf. Instead, KB must resort to general-purpose, multi-
variant integration approximation techniques (e.g., Monte-Carlo 
[31]). Such methods are usually expensive or inaccurate, 
defeating the purpose of using complex orientations. 

4. CARDINALITY ESTIMATION FOR K-
DOMINANT SKYLINES 
Besides conventional SCE, the proposed KB framework can be 
adapted to handle other skyline variants. We focus on the k-
dominant skyline [8], which is particularly useful for high-
dimensional data. According to the definition of the conventional 
skyline, as d grows, it becomes increasingly difficult for a point to 
dominate another on all dimensions. Consequently, for high 
dimensional data, the skyline includes a considerable portion of 
the entire dataset, and may become meaningless. The k-dominant 
skyline avoids this problem by altering the definition of 
dominance, as follows: a d-dimensional point p is said to k-
dominate another q, if and only if p is better than q on at least one 
dimension and not worse on at least k (k < d) dimensions. Clearly, 
if p dominates q, p also k-dominates q for any k, but the reverse 
does not hold. Revisiting the example of Figure 1, records m1 and 
m2 in the MobilePhone table are incomparable according to the 
conventional dominance definition, since m1 has a lower price 
than m2, while the latter has longer standby time. With respect to 
1-dominance, however, the two models dominate each other, 
since each is preferable on one attribute. In general, transitivity 
does not hold, and mutual or circular k-dominance is common, 
e.g., between m1 and m2. 

The set of points not k-dominated by others form the k-
dominant skyline. The k-dominant skyline is always a subset of 
the conventional skyline, usually containing the most meaningful 
points. However, as there is no direct relationship between the 
cardinality of the conventional and k-dominant skylines, the 
problem of k-dominant skyline cardinality estimation (k-SCE) is 
non-trivial. In Section 4.1, we adapt LS for k-SCE. Then, in 
Section 4.2, we propose k-KB, which is based on kernels. 

4.1 k-LS 
To relate the problems of SCE and k-SCE, we observe that any 
point p in the k-dominant skyline kSKYDS must be a conventional 
skyline point in every k-dimensional subspace DS|k, constructed 
by projecting the entire dataset DS onto k out of the d attributes. 
Conversely, if p belongs to the skyline of all k-dimensional 
subspaces, it is in kSKYDS as well. Therefore, the k-dominant 
skyline is equivalent to the intersection of conventional skylines 
in all k-dimensional subspaces. Formally: 



|
|

where |  is any -dimensional projection of 

k

k

DS DS
DS

k

kSKY SKY

DS k DS
∀

= ∩
 (20)

For instance, consider 1-dominance in the MobilePhone table. 
The 1D skyline on attributes standby and price is {m3} and {m1} 
respectively. Since these two sets do not overlap, the 1-dominant 
skyline is empty. As another example, the 2-dominant skyline of a 
4-dimensional (say, x, y, z, w) dataset is the intersection of the 
skylines in the 6 subspaces xy, xz, xw, yz, yw, zw. 

Based on the LS methodology, the skyline cardinality of each 
k-dimensional subspace follows the m=AlogB n model, with 
distinct values for A and B in different subspaces. Let B* be the 
minimum value of B among all such subspaces, DS* be the 
particular subspace having B*, and A* be the corresponding value 
for constant A. Following Equation 20, we have: 
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The equality in the above formula holds when all points on 
SKYDS* are simultaneously skyline points in every other k-
dimensional subspace. On the other hand, |kSKYDS| can be as low 
as zero, e.g., for the 1-dominant skyline in the example of Figure 
1. We thus hypothesize that there exists a constant A′ (0≤A′≤A*) 
such that |kSKYDS|= A′logB* n, and use this assumption in kLS. 
This choice is based on our experimental evaluation, which 
indicates that LS usually underestimates the true cardinality of 
conventional skylines. Thus, using the upper-bound for |kSKYDS| 
compensates for this bias. The computation of A′ and B* can be 
performed in two different ways, both using two disjoint random 
sample sets S1 and S2 of DS. The first estimates the value of B for 
every k-dimensional subspace, takes their minimum as B*, and 
solves A′ from equations |kSKYS1

|= A′logB* |S1| and |kSKYS2
|= 

A′logB* |S2|. The second approach directly solves A′, B* from these 
two equations. While the second method is faster, it carries the 
risk of underestimating B*, and, consequently, may yield larger 
error for |kSKYDS|. 

4.2 k-KB 
Similar to KB, k-KB draws a random sample S ⊂ DS, and 
computes the sample k-dominant skyline kSKYS. Again we reduce 
the estimation of the cardinality of the global k-dominant skyline 
kSKYDS to that of PrkSKY, i.e., the probability for a random data 
point to lie in kSKYDS. PrkSKY is in turn reduced to the computation 
of Ωp for each sample k-dominant skyline point p∈kSKYS. The 
first significant difference between KB and k-KB concerns the 
definition of inverse dominance region (Equation 7 for KB). The 
corresponding concept used in k-KB is the k-dominant IDR 
(kIDR), defined as follows. 
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We elaborate on the shape of kIDR (k=2) for a 3D point p. Let px, 
py, pz be the value of p on the x, y, z axes respectively. Figure 10 
illustrates three axis-parallel hyper rectangles: {q|qy<py, qz<pz}, 
{q|qx<px, qz<pz}, {q|qx<px, qy<py}. Each rectangle is bounded in 
two dimensions by the respective projection of p, and spans over 
the entire domain in the remaining one. For instance, the leftmost 
rectangle in Figure 10 is bounded by (py, pz) on y, z axes, and 
covers the whole x dimension. Any point inside {q|qy<py, qz<pz} 
dominates p in the subspace consisting of the y and z axes. 
Similarly, a point in {q|qx<px, qz<pz} (middle rectangle in Figure 
10) dominates p in the subspace consisting of x and z dimensions. 

Point p is not 2-dominated, and therefore, it belongs to 2-SKYDS, if 
all three rectangles are empty. Consequently, 2-IDR(p) is the 
union of the three rectangles. 
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Figure 10 2-IDR of a 3D point p 

In general, the kIDR of a d-dimensional point p is the union of (d
k) 

hyper-rectangles, each bounded in k dimensions and unbounded 
in (d−k) dimensions. Since kIDR(p) has a complex shape, the 
derivation in Equation (10) is not directly applicable. In order to 
obtain Ωp, k-KB (i) decomposes kIDR(p) into ( d

k ) disjoint 
partitions, (ii) evaluates the integration of PDF(q) over all 
positions q in each partition separately, and (iii) sums up the 
results. Figure 11 shows the decomposition of 2-IDR(p) in Figure 
10. The first partition is P1={q|qy<py, qz<pz}, i.e., the entire hyper-
rectangle bounded on y and z, and unbounded on x. The second 
one is P2={q|qx<px, qz<pz}−P1, i.e., the hyper-rectangle bounded 
on x and z and unbounded on y, except for the part already 
contained in P1 (to render the two partitions disjoint). The third 
partition is P3={q|qx<px, qy<py}−P1−P2. 
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Figure 11 Decomposition of 2-IDR(p) 

Figure 12 describes the general algorithm for decomposing a 
kIDR. The ith partition is obtained by taking the ith hyper-
rectangle forming kIDR(p), and removing parts already covered 
by previous partitions (Lines 4-6). Because in every dimension, 
each hyper-rectangle is either unbounded, or bounded at one end 
by the corresponding value of p, a partition Pi (1≤i≤(d

k)) returned 
by Decompose is also a d-dimensional, axis-parallel hyper-
rectangle. Thus, the derivation of Equation (10) applies to the 
integration of PDF(p) over every partition Pi (1≤i≤(d

k)).  

Decompose (kIDR(p)) 
// INPUT = the kIDR of a point p 
// OUTPUT = (d

k) disjoint partitions of kIDR(p) 
1. Initialize the set P to empty 
2.  Let kIDR(p) be the union of a set R of (d

k) hyper-rectangles 

3. For i = 1 To (d
k) 

4.  Initialize Pi = Ri, where Ri is the ith hyper-rectangle in R 
5.  For j = 1 To i−1  
6.   Pi = Pi − Pj 
7.  Add Pi to P 
8. Return P 

Figure 12 Algorithm for decomposing kIDR(p) 



If P = {Pi|1≤i≤(d
k)}, Ωp is computed using Equation (23): 
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The calculation of the best bandwidth h is performed in a similar 
fashion as in KB, with the additional complication that Ωp now is 
the sum of (d

k) integrals. When the dimensionality d is high, the 

number of partitions (d
k) may become very large. Consequently, 

the evaluation of Equation (23) can be very expensive. For such 
cases, we propose adjustable k-KB (Ak-KB), which provides a 
tradeoff between efficiency and accuracy. Specifically, Ak-KB 
lets the user specify a parameter τ (0≤τ≤1), and estimates Ωp as 
follows. 
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Intuitively, Equation (24) considers only a subset R of the 
partitions P, whose combined volume in the d-dimensional space 
is no smaller than τ times the total volume of all partitions in P, 
and extrapolates the result obtained from R. To minimize the 
number of partitions evaluated, Ak-KB sorts the partitions of P in 
decreasing order of their volumes, and selects the first |R| 
partitions that satisfy the above condition. Clearly, a smaller value 
of τ leads to a faster estimate, while a larger τ achieves higher 
accuracy and stability. 

Finally, KB can be used for cardinality estimation in other 
types of queries related to skylines. For instance, given a set of 
points Q, the spatial skyline retrieves the objects that are the 
nearest neighbors of any point in Q [33]. In this case, a data point 
p dominates another p', if p is closer than p' to every query point. 
Although spatial skylines necessitate specialized query processing 
algorithms, in terms of SCE the problem can be thought of as |Q|-
dimensional skyline, where each dimension corresponds to the 
distance from a query point. Thus, KB is directly applicable, and 
as evaluated in our experiments, rather accurate. 

5. EXPERIMENTAL EVALUATION 
We implemented LS and KB, as well as their adaptations for the 
k-dominant skyline, in C++. LS is based exactly on the 
description of [9]. KB uses fixed-bandwidth kernels with identity 
orientation. All experiments are performed on a Pentium 4 2.4G 
CPU, using the following datasets: 
• Household (available at www.ipums.org) contains 127K 

tuples. Each record has 6 attributes that store the percentage 
of an American family’s annual income spent on: gas, 
electricity, water, heating, insurance, and property tax. 
Smaller values are considered better for the skyline query. 

• Corel (available at kdd.ics.uci.edu) includes data about 68K 
images. Each image is encoded in the HSV (i.e., hue, 
saturation and value) space, and the 9 dimensions correspond 
to the mean, standard deviation and skewness of the image’s 
pixels in the H, S, V channels. The skyline prefers lower 
values for the mean, and standard deviation, and higher values 
for skewness. 

• NBA (available at www.basketballreference.com) contains 
data about 20K basketball players in 300K matches. Each 
player is associated with 16 different statistics, e.g., number 
of games played, minutes played, total points, etc. Larger 
values are preferred for all attributes. Following most 

previous work (e.g., [28]), we consider appearances of the 
same player in different matches as distinct records. The 
skyline contains the set of outstanding (i.e., not dominated) 
performance records over all matches. 

• Spatial skyline (available at www.rtreeportal.org) has the 2D 
co-ordinates of 1.25 million points in Los Angeles. A set Q of 
query points are randomly chosen from this set. For every 
remaining point, we measure its distance to each query point 
as the |Q| dimensions to be considered in the skyline query, 
preferring smaller values. According to [33], only query 
points that reside on the convex hull of Q affect the result of 
the skyline query. Hence, we manually ensure that all points 
in Q are on the convex hull to eliminate this effect. 

• Synthetic datasets, with independent (abbreviated as IND), 
correlated (COR) and anti-correlated (ANT) dimensions, 
created3 with the dataset generator of [5]. 

In experiments where we need to alter the cardinality n of a real 
dataset, we randomly select a fraction of the records. The 
maximum value of n corresponds to the (original) cardinality of 
the dataset. Section 5.1 reports the results for conventional SCE. 
Section 5.2 deals with k-dominant skylines. 

5.1 Conventional Skyline 
The initial set of experiments evaluates the accuracy of SCE as a 
function of the dataset cardinality n. For each setting, we execute 
KB and LS with 10 different random sample sets (i.e., obtained 
with different random seeds), and report the median results. 
Because KB involves more complex computations, and, thus, 
higher running time, we compensate LS by giving it a larger 
sample size. Specifically, in all experiments involving n, KB uses 
two disjoint sample sets S and S′ (see Section 3), whose sizes are 
fixed to 500 and 1000, whereas LS uses 3000 samples for S1 and 
another 6000 for S2 (Section 2.2). As we show later, with these 
sample sizes, KB and LS have comparable CPU overhead. 

We first evaluate KB and LS on the household dataset. Figure 
13a plots the absolute values of the actual skyline cardinality m, 
as well as the estimates mKB and mLS produced by KB and LS. 
Figure 13b shows the relative error rates  εKB and εLS of the two 
methods, calculated as εKB = |mKB −m| / m and εLS = |mLS −m| / m, 
respectively. In all settings, LS leads to higher error despite its 
larger sample size. Notably, when n = 40000, LS samples over 
20% of the entire dataset, and yet incurs a considerable error of 
23%. Furthermore, εLS increases with n, whereas εKB is affected 
mainly by random fluctuations. An interesting observation is that 
KB and LS are complementary, in the sense that mKB tends to 
overestimate m, while mLS usually underestimates it. 
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Figure 14 repeats the same experiments on the Corel dataset. 
Corel differs from household in that the former has a much larger 

                                                                 
3  Correlated and anti-correlated datasets are produced by rotating 

independent ones. 



skyline, containing a considerable fraction of the whole dataset. 
Nevertheless, the observations that (i) KB consistently 
outperforms LS, and (ii) the relative error rate of LS steadily 
increases with n, still hold. Moreover, εKB is more stable in Corel 
than in household, indicating that Corel contains fewer outliers, 
leading to better density estimates using kernels. 
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Figure 15 reports results on NBA. Compared with the previous 
two datasets, NBA has the following distinct features: (i) more 
records (300K) (ii) larger dimensionality (16), and (iii) higher 
correlation between attributes, since a (good) player who has long 
playing time is likely to perform more activities (e.g., score 
points, take rebounds). Again, KB outperforms LS in all settings, 
and the performance gap expands fast with the data cardinality. 
Specifically, when n is 106, the performance of LS is comparable 
to that on household and Corel. On the other hand, when n 
reaches 3 million, εLS is around 50%. KB fits this dataset well, 
yielding error around 10%. 
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Figure 16 compares KB and LS on spatial skylines. Since Corel 
and NBA cover high-dimensional data, we focus on low-
dimensional queries, using 4 and 5 query points (abbreviated as 
4QP and 5QP). The sizes of these datasets (up to 1.25 million) are 
also much larger than those in the previous experiments. The 
estimates of KB are always very close to the actual skyline 
cardinality. LS, however, suffers from severe underestimation 
and, for large n, εLS reaches 80%. Note that the dataset (points in 
Los Angeles) underlying spatial skyline contains clusters that 
correspond to densely populated areas, which partially explains 
the poor performance of LS. 
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Finally, Figure 17 evaluates synthetic 6D datasets with 
independent, correlated, and anti-correlated dimensions (n ranges 
between 0.5-1.5 million). Unlike the previous experiments, for 
synthetic data with independent and correlated dimensions, εLS is 
not affected by n, which agrees with the results of [9]. This 
suggests that the skyline cardinality for these datasets indeed 
follows the AlogB n model. Nevertheless, KB outperforms LS in 
all settings.  Observe that the correlated datasets yield very small 
skylines. Therefore, although KB and LS have low absolute 
errors, εKB and (especially) εLS are rather high due to the 
significant impact of random fluctuation. For anti-correlated 
dimensions, εLS grows slowly with n, which has also been 
observed in [9]. This, however, simply suggests that this 
particular type of anti-correlated data (produced by the generator 
in [5]) can be captured well by LS because they yield a relatively 
small skyline (about 10% of the records). On the other hand, 
recall that for other types of anti-correlated datasets, such as 
Corel, the skyline contains a much higher fraction of the dataset 
(up to 90% for Corel) leading to LS failure. 
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Table 2 lists the median CPU cost of KB, LS in seconds. The two 
methods incur comparable overhead. The data cardinality does 
not affect the CPU time because both KB and LS operate on 
fixed-sized samples. The table does not consider the I/O 
operations for obtaining the sample sets. Since the sample size of 
LS is six times larger than that of KB, this omission favors LS. 

Table 2 CPU cost of KB, LS and skyline computation 

Dataset KB LS 
Skyline  

Computation 
Household 6.7 5.1 114 

Corel 31.4 28.7 607 
NBA 12.0 6.3 1327 

Spatial 4D 19.5 19.8 > 1 day 
Spatial 5D 24.6 20.7 > 1 day 

Independent 6D 7.7 4.2 3254 
Correlated 6D 1.2 0.9 58 

Anti-correlated 6D 32.2 21.5 > 1 day 



Skyline estimators, such as KB and LS, are slower than those 
used for conventional queries (e.g., ranges). However, query 
processing is accordingly more expensive. In order to illustrate 
this, we include in the last column of Table 2 the cost of skyline 
computation using a main-memory nested-loops algorithm [5] 
that applies several of the optimizations of LESS [15] to eliminate 
non-skyline points. In all settings, query processing is at least one 
order of magnitude more expensive than estimation.  

Next, we compare KB and LS with respect to the 
dimensionality d. Since selecting a subset of attributes in a real 
dataset may alter its distribution, we focus on synthetic data. 
Figure 18 demonstrates the impact of d on the accuracy of the two 
methods. The error rate of KB increases with d, due to the curse 
of dimensionality, which occurs in most kernel-based methods 
[18]. Nevertheless, KB outperforms LS in all but one 
(independent 8D) settings. The behavior of LS depends on the 
dataset characteristics. For independent dimensions, the variation 
of εLS is mainly caused by random fluctuations. For correlated and 
anti-correlated datasets, however, the accuracy of LS deteriorates 
quickly, indicating that the skyline cardinality shifts away from 
AlogB n with increasing d. 
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Recall that LS extrapolates the skyline cardinality of two sample 
sets to assess that of the global skyline. Accordingly, the accuracy 
of LS increases with the sample size as reported in [9]. In 
contrast, the precision of KB is not directly affected the sample 
size. In fact, even with very few (in the order of 100) samples, KB 
sometimes still obtains a highly accurate estimate. On the other 
hand, the standard deviation of the estimates steadily decreases 
with an increasing sample size. Figure 19 illustrates the effect of 
the total sample size |S|+|S′| on the standard deviation of the 
estimates returned by 10 executions of KB (with different sample 
sets), in household, Corel and NBA. As expected [6], the standard 
deviation decreases linearly with (|S|+|S′|)−0.5. Results for spatial 
skylines and synthetic datasets lead to the same conclusions, and 
are omitted. 
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5.2 k-Dominant Skyline 
Since k-dominant skylines mainly target high dimensional data, 
we use Corel (9D), NBA (16D), and synthetic datasets with 12 
dimensions. Due to space limitations, we only vary the data 
cardinality n and fix k to d−1. Figure 20 evaluates the methods 
using the Corel dataset. Recall from Figure 14 that a large portion 
of records in Corel are in the conventional skyline. The k-
dominant skyline, however, has a much higher selectivity, and 
grows slowly with n, a phenomenon also observed in [8]. 
Consequently, the error rate εkLS of k-LS is more stable than εLS. 
Furthermore, note that k-LS overestimates the cardinality because 
it applies an upper-bound of the true value according to Equation 
(21). k-KB clearly outperforms k-LS in all settings. 
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Figure 21 reports the results on NBA. The estimation mkLS of k-LS 
grows significantly slower than the actual cardinality m with 
increasing n. Therefore, although εkLS decreases initially due to 
reduced overestimation, we expect that as n increases further, m 
will eventually surpass mkLS, and consequently, εkLS will start to 
increase. On the other hand, k-KB consistently achieves high 
accuracy, and εkKB is not affected by n. 
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Figure 22 investigates synthetic datasets. Both methods achieve 
relative error rates below 50%. k-KB outperforms k-LS in all but 
two settings (n = 500K and n = 750K for correlated dimensions). 
For the independent data, the behavior of k-LS resembles that in 
NBA, in the sense that mkLS grows faster than m with increasing n. 



Meanwhile, in the anti-correlated data, mkLS grows slower than m, 
similar to the situation in Corel. For correlated data, both 
techniques incur low absolute error, and the variance in their 
relative errors mainly reflects random fluctuations due to the 
small skyline cardinality. 
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Finally, we evaluate adjustable k-KB (Ak-KB), which provides a 
tradeoff between efficiency and accuracy through the user-
specified parameter τ (0≤τ≤1). Figures 23 and 24 demonstrate 
results for the two real datasets Corel and NBA as a function of τ, 
after fixing the dataset sizes to their median values (i.e., 55k in 
Corel, 200k in NBA).  Specifically, Figures 23a and 24a show the 
median estimates of Ak-KB over 20 executions, in comparison 
with their respective actual values. CPU times are shown under 
their respective diagrams. Figure 23b and 24b depict the standard 
deviations as a ratio of the actual skyline cardinality. We observe 
the following. (i) A low value of τ does not necessarily introduce 
additional error due to the adaptive nature of Ak-KB (i.e., the 
kernel bandwidth is determined iteratively). (ii) The standard 
deviation generally decreases as τ increases. At the same time, a 
large number of partitions with small volumes are taken into 
account. Consequently, the accumulated error in the evaluations 
of special functions (e.g., erf, γ) renders the algorithm less stable, 
leading to fluctuations in the standard deviation. (iii) The CPU 
time increases with τ because of the large number of small-
volume partitions involved in the computations. Overall, a value 
of τ between 0.6 and 0.8 achieves a good balance between 
efficiency and accuracy. 
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6. CONCLUSION 
This paper proposes KB, a kernel-based approach for skyline 
cardinality estimation. KB is based on nonparametric statistics, 
and, thus, is more robust compared to LS, the current state of the 
art technique, which is parametric. Extensive experiments confirm 
that KB achieves high accuracy in a variety of real and synthetic 
datasets. As a second step, we extend both LS and KB to the 
problem of estimating the cardinality of the k-dominant skyline, 
commonly used for high-dimensional data. In the future, we plan 
to apply KB to other skyline variants, including low-cardinality 
domains, and continuous monitoring of the skyline cardinality. 
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