
  

 

Continuous k-Means Monitoring  

over Moving Objects 
Zhenjie Zhang, Yin Yang, Anthony K.H. Tung, and Dimitris Papadias 

Abstract— Given a dataset P, a k-means query returns k points in space (called centers), such that the average squared 
distance between each point in P and its nearest center is minimized. Since this problem is NP-hard, several approximate 
algorithms have been proposed and used in practice. In this paper, we study continuous k-means computation at a server 
that monitors a set of moving objects. Re-evaluating k-means every time there is an object update imposes a heavy burden 
on the server (for computing the centers from scratch) and the clients (for continuously sending location updates). We 
overcome these problems with a novel approach that significantly reduces the computation and communication costs, while 
guaranteeing that the quality of the solution, with respect to the re-evaluation approach, is bounded by a user-defined 
tolerance. The proposed method assigns each moving object a threshold (i.e., range) such that the object sends a location 
update only when it crosses the range boundary. First, we develop an efficient technique for maintaining the k-means. Then, 
we present mathematical formulae and algorithms for deriving the individual thresholds. Finally, we justify our performance 
claims with extensive experiments. 
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1 INTRODUCTION

fficient k-means computation is crucial in many prac-
tical applications, such as clustering, facility location 
planning and spatial decision making. Given a data-

set P = {p1, p2, … pn} of 2D points, a k-means query re-
turns a center set M of k points {m1, m2, …, mk}, such that 
cost(M) =  ∑n

i=1 dist2(pi, NN(pi,M)) is minimized, where for 
all i satisfying 1≤i≤n, NN(pi,M) is the nearest neighbor of 
pi in M, and dist is a distance (usually, Euclidean) metric. 
The data points whose NN is mj ∈ M (1≤j≤k) form the 
cluster of mj. Since the problem is NP-hard [M06], the vast 
majority of existing work focuses on approximate solu-
tions. In the data mining literature, several methods (e.g., 
[L82, HS05, AV06]) are based on hill climbing (HC). Spe-
cifically, HC starts with k random seeds as centers, and 
iteratively adjusts them until it reaches a local optimum, 
where no further improvement is possible. Then, it re-
peats this process, each time using a different set of 
seeds. The best local optimum among the several execu-
tions of HC constitutes the final result. 

Recently, there is a paradigm shift from snapshot que-
ries on static data to long-running queries over moving 
objects. In this scenario, mobile clients equipped with 

GPS devices send their locations to a central server. The 
server collects these locations and continuously updates 
the results of registered spatial queries. Our work fo-
cuses on continuous k-means monitoring over moving ob-
jects, which has numerous practical applications. For 
instance, in real-time traffic control systems, monitoring 
the k-means helps detect congestions, which tend to hap-
pen near the cluster centers of the vehicles [JLO07]. In a 
military campaign, the k-means of the positions of 
ground troops determine the best locations to airdrop 
critical supplies such as ammunitions and medical kits. 
Compared to conventional spatial queries (e.g. ranges or 
nearest neighbors), k-means monitoring is fundamentally 
more complex. The main reason is that in simple queries, 
the results are based solely on the objects’ individual loca-
tions with respect to a single reference (i.e., query) point. 
On the other hand, a k-means set depends upon the com-
bined properties of all objects. Even a slight movement by 
an object causes its corresponding center to change. 
Moreover, when the object is close to the boundary of 
two clusters, it may be assigned to a different center, and 
the update may have far-reaching effects. 

A simple method for continuous k-means monitoring, 
hereafter called REF (short for reference solution), works 
as follows. When the system starts at time τ=0, every ob-
ject reports its location, and the server computes the k-
means set M(0) through the HC algorithm. Subsequently 
(τ>0), whenever an object moves, it sends a location up-
date. The server obtains M(τ) by executing HC on the 
updated locations, using M(τ-1) as the seeds. The ration-
ale is that M(τ) is expected to be more similar to M(τ-1) 
than a random seed set, reducing the number of HC it-
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erations. REF produces high quality results because it 
continuously follows every object update. On the other 
hand, it incurs large communication and computation 
cost due to the frequent updates and re-computations. 

To eliminate these problems, we propose a threshold-
based k-means monitoring (TKM) method, based on the 
framework of Figure 1.1. In addition to k, a continuous k-
means query specifies a tolerance Δ. The computation of 
M(0) is the same as in REF. After the server computes a 
center set, it sends to every object pi a threshold θi, such 
that pi needs to issue an update, only if its current loca-
tion deviates from the previous one by at least θi. When 
the server receives such an update, it obtains the new k-
means using HC*, an optimized version of HC, over the 
last recorded locations of the other objects (which are still 
within their assigned thresholds). Then, it computes the 
new threshold values. Because most thresholds remain 
the same, the server only needs to send messages to a 
fraction of the objects. Let MREF (MTKM) be the k-means set 
maintained by REF (TKM). We prove that for any time 
instant and for all 1≤i≤k: dist(mREF

i ,mTKM
i ) ≤ Δ, where mREF

i  
∈ MREF and mTKM

i ∈ MTKM; i.e., each center in MTKM is with-
in Δ distance of its counterpart in MREF. 
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Figure 1.1 Threshold-based k-means monitoring 

Our contributions are:  
1. We present TKM, a general framework for continu-

ous k-means monitoring over moving objects. 
2. We propose HC*, an improved HC, which mini-

mizes the cost of each iteration by only considering a 
small subset of the objects.  

3. We model the threshold assignment task as a con-
strained optimization problem, and derive the corre-
sponding mathematical formulae. 

4. We develop an algorithm for the efficient computa-
tion of thresholds. 

5. We design different mechanisms for the dissemina-
tion of thresholds, depending on the computational 
capabilities of the objects.           

The rest of this paper is organized as follows: Section 2 
overviews related work. Section 3 presents TKM and the 
optimized HC* algorithm. Section 4 focuses on the ma-
thematical derivation of thresholds, proposes an algo-
rithm for their efficient computation, and describes pro-
tocols for their dissemination. Section 5 contains a com-
prehensive set of experiments, and Section 6 concludes 
with directions for future work. 

2 BACKGROUND 
Section 2.1 overviews k-means computation over static 
datasets. Section 2.2 surveys previous work on continu-
ous monitoring and problems related to k-means.  
 

2.1 k-Means Computation for Static Data 
Numerous methods for computing k-means over static 
data have been proposed in the theoretical literature. 
Inaba et al. [IKI94] present an O(nO(kd)) algorithm for op-
timal solutions and a O(n(1/ε)d) method for ε-
approximate 2-means, where n is the data cardinality 
and d the dimensionality. Kumar et al. [KSS04] develop a 
(1+ε)-approximate algorithm for k-means in any Euclid-
ean space, which is linear to n and d. Kanungo et al. 
[KMN+02] describe a swapping technique achieving 1+ε-
approximation. Several studies focus on the convergence 
speed of k-means algorithms [HS05, AV06]. 

Most data mining literature has applied hill climbing 
(HC) [L82] for solving k-means. Figure 2.1 shows a gen-
eral version of the algorithm. HC starts with a set M that 
contains k random seeds, and iteratively improves it. 
Each iteration consists of two steps: the first (Lines 3-4) 
assigns every point to its nearest center in M, and the 
second (Lines 5-6) replaces each m ∈ M with the centroid 
of its assigned points, which is the best location for mini-
mizing the cost function (i.e., average squared distance) for 
the current point assignment [KSS04] 1. HC converges at a 
local optimum, when there can be no further improvement 
on M. Since a local optimum is not necessarily the global 
optimum, usually several runs of the algorithm are exe-
cuted with different sets of seeds. The best local opti-
mum of these runs is returned as the final output. Al-
though there is no guarantee on efficiency (a large num-
ber of iterations may be needed for convergence), or ef-
fectiveness (a local optimum may deviate significantly 
from the best solution), HC has been shown to perform 
well in practice. 

 

HC (dataset P, k) 
1. Choose k random seeds as the initial center set M 
2. Repeat 
3.  For each point p∈P 
4.    Assign p to its nearest center in M 
5.  For each center m in M 
6.    Replace m with the centroid of all p∈ P assigned to m 
7. Until no change happens in M 
Figure 2.1 Hill climbing for computing k-means 

Zhang et al. [ZDT06] propose a method, hereafter re-
ferred to as ZDT, for predicting the best possible cost that 
can be achieved by HC. We describe ZDT in detail be-
cause it is utilized by the proposed techniques. Let M be 
the current k-means set after one iteration of HC (i.e., 
after Line 6). At present, each center m in M is the cen-
troid of its cluster. For a point p, we use mp to denote the 
currently assigned center of p, which is not necessarily 
the nearest. A key observation is that there is a constant 
δ, such that in all subsequent HC iterations, no center can 
deviate from its position in M by more than δ. Equiva-
lently, as shown in Figure 2.2, each m ∈ M is restricted to 
a confinement circle centered at its current position with 
radius δ. Therefore, when HC eventually converges to a 
 

 
1 The centroid is computed by taking the average coordinates of 

all assigned points on each dimension. 
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local optimum M*, each center in M* must be within its 
corresponding confinement circle. Zhang et al. [ZDT06] 
prove that cost(M)-nδ2 is a lower bound of cost(M*), 
where n is the data cardinality. If this bound exceeds the 
best cost achieved by a previous local optimum (with a 
different seed set), subsequent iterations of HC can be 
pruned. 

Confinement
circles

m3

m2

m1

m'3

m'1

m'2

M = {m1, m2, m3}
Mb = {m'1, m'2, m'3}

Static 
objects

d

d

d

cost(Mb) > cost(M)

 
Figure 2.2 Centers restricted in confinement circles 

It remains to clarify the computation of δ. Let Mb be a set 
constructed by moving one of the centers in M to the 
boundary of its confinement circle, and the rest within 
their respective confinement circles. In the example of 
Figure 2.2, M={m1, m2, m3}, Mb={m'1, m'2, m'3}, and m'3 is 
on the boundary of the confinement circle of m3. The de-
fining characteristic of δ is that for any such Mb, cost(Mb) > 
cost(M). We cannot compute δ directly from the inequal-
ity cost(Mb) > cost(M) because there is an infinite number 
of possible Mb’s. Instead, ZDT derives a lower bound 
LB(Mb) for cost(Mb) of any Mb, and solves the smallest δ 
satisfying LB(Mb) > cost(M). Let Pm (|Pm|) be the set (car-
dinality) of data points assigned to center m. It can be 
shown [ZDT06] that: 

2( ) ( , ) (| | ) ( )
move

2
b p m mp P p P

LB M dist p m min P Y pδ
∈ ∈

= + −∑ ∑

( ) ( )( )22

\{ }where ( ) = ( , ) 0, ( , )
pp m M mY p dist p m max min dist p mδ δ∈+ − −

and { | ( ) 0}moveP p Y p= >  

2.1

The intuition behind Equation 2.1 is: (i) we first assume 
that every point p stays with m'p ∈ Mb, which corre-
sponds to mp ∈ M, the currently assigned center of p, and 
calculate the minimum cost of Mb under such an assign-
ment; then (ii) we estimate an upper bound on the cost 
reduction by shifting some objects to other clusters. In 
step (i), the current center set M is optimal with respect 
to the current point assignment (every m ∈ M is the cen-
troid of its assigned points Pm) and achieves cost 
∑p∈P dist2(p,mp). Meanwhile, moving a center m ∈ M by δ 
increases the cost by |Pm|δ2 [KSS04]. Therefore, the min-
imum cost of Mb when one center moves to the boundary 
of its confinement circle (while the rest remain at their 
original locations) is ∑p∈P dist2(p,mp) + minm(|Pm|δ2). 

In step (ii), let Pmove be the set of points satisfying the 
following property: for any p ∈ Pmove, if we re-assign p to 
another center in Mb (i.e. other than m'p), the total cost 
must decrease. Function Y(p) upper-bounds the cost re-
duction by re-assigning p. Clearly, p is in Pmove iff Y(p) > 0. 
Regarding Y(p), it is estimated using the (squared) max-
imum distance dist(p,mp)+δ between p and its assigned 
center m'p ∈ Mb, subtracted by the (squared) minimum 
distance minm∈M\{mp}dist(p,m)-δ between p and any other 

center m' ∈ Mb, m'≠m'p. The former is reached when m'p 
is δ away from p than its original location mp ∈ M; the 
latter is reached when the nearest center m ∈ M has a 
corresponding location m' in Mb which is δ closer to p 
than m. Recall that from the definition of Mb, the distance 
between a center m ∈ M and its corresponding center m' 
∈ Mb is at most δ. Finally, Zhang et al. [ZDT06] provide a 
method that computes the minimum δ in O(nlog n) time, 
where n is the data cardinality. We omit further details of 
this algorithm since we do not compute δ in this work. 

2.2 Other Related Work 
Clustering, one of the fundamental problems in data 
mining, is closely related to k-means computation. For a 
comprehensive survey on clustering techniques see 
[JMF99]. Previous work has addressed the efficient main-
tenance of clusters over data streams (e.g. [BDMO03, 
GMM+03]), as well as moving objects (e.g. [LHY04, 
KMB05, JLO07]). However, in the moving object setting, 
the existing approaches require the objects to report 
every update, which is prohibitively expensive in terms 
of network overhead and battery power. In addition, 
some methods, such as [LHY04] and [JLO07], are limited 
to the case of linearly moving objects, whereas we as-
sume arbitrary and unknown motion patterns. 

Recently, motivated by the need to find the best loca-
tions for placing k facilities, the database community has 
proposed algorithms for computing k-medoids [MPP07], 
and adding centers to an existing k-means set [ZDXT06]. 
These methods address snapshot queries on datasets 
indexed by disk-based, spatial access methods. Papado-
poulos et al. [PSM07] extend [MPP07] for monitoring the 
k-medoid set. Finally, there exist several systems aimed 
at minimizing the processing cost for continuous moni-
toring of spatial queries, such as ranges (e.g., [GL04, 
MXA04]) nearest neighbors (e.g., [XMA05, YPK05]), re-
verse nearest neighbors (e.g., [XZ06, KMS+07]) and their 
variations (e.g., [JLOZ06, ZDH08]). Other systems 
[MPBT05, HXL05] minimize the network overhead, but 
currently there is no method that optimizes both factors. 
Moreover, as discussed in Section 1, k-means computa-
tion is inherently more complex and challenging than 
continuous monitoring of conventional spatial queries. In 
the sequel, we propose a comprehensive framework, 
based on a solid mathematical background and including 
efficient processing algorithms.  

3 THRESHOLD-BASED K-MEANS MONITORING 
Let P = {p1, p2, …, pn} be a set of n moving points in the d-
dimensional space. We represent the location of an object 
pi (1≤i≤n) at timestamp τ as pi(τ) = {pi(τ)[1], pi(τ)[2], …, 
pi(τ)[d]}, where pi(τ)[j] (1≤j≤d) denotes the coordinate of pi 
on the j-th axis. When τ is clear from the context, we sim-
ply use pi to signify the object’s position. The system does 
not rely on any assumption about the objects’ moving 
patterns2. A central server collects the objects’ locations 
 

 
2 The performance can be improved if each object’s average 

speed is known. We discuss this issue in Section 4.3. 



  

 

 

and maintains a k-means set M = {m1, m2, …, mk}, where 
each mi (1≤i≤k) is a d-dimensional point, called the i-th 
cluster center, or simply center. We use mi(τ) to denote the 
location of mi at timestamp τ, and M(τ) for the entire k-
means set at τ. The quality of M(τ) is measured by the 
function cost(M(τ)) = ∑p dist2(p(τ), mp(τ)) , where mp(τ) is 
the center assigned to p(τ) at τ, and dist(p(τ),mp(τ)) is their 
Euclidean distance.  

The two objectives of TKM are effectiveness and effi-
ciency. Effectiveness refers to the quality of the k-means 
set, while efficiency refers to the computation and net-
work overhead. These two goals may contradict each 
other, as intuitively, it is more expensive to obtain better 
results. We assume that the user specifies a quality toler-
ance Δ, and the system optimizes efficiency while always 
satisfying Δ. Δ is defined based on the reference solution 
(REF) discussed in Section 1. Specifically, let MREF(τ) 
(MTKM(τ)) be the k-means set maintained by REF (TKM) at 
τ. At any time instant τ and for all 1 ≤ i ≤ k, dist(mREF

i (τ), 
mTKM

i (τ))≤Δ, where mREF
i (τ)∈MREF(τ) and mTKM

i (τ) ∈ 
MTKM(τ); i.e., each center in MTKM(τ) is within Δ distance 
of its counterpart in MREF(τ). Given this property, we can 
prove [ZDT06] that cost(MTKM(τ)) ≤ cost(MREF(τ))+nΔ2, 
thus providing the guarantee on the quality of  MTKM. 

TKM works as follows. At τ=0, each object sends its 
location to the server, which computes the initial k-means 
set. Then, the server transmits to every object pi a thresh-
old θi, such that pi sends a location update if and only if it 
deviates from its current position (i.e. pi[0]) by at least θi. 
Alternatively, the server can broadcast certain statistical 
information, and each object computes its own θi’s lo-
cally. Figure 3.1a shows an example, where p1-p7 start at 
positions p1(0)-p7(0), and receive thresholds θ1-θ7 from the 
server, respectively. At timestamp 1, the objects move to 
the new locations shown in Figure 3.1b. According to 
REF, all 7 objects have to issue location updates, whereas 
in TKM, only p6 informs the server since the other objects 
have not crossed their thresholds. When a new object 
appears, it sends its location to the server. When an exist-
ing point leaves the system, it also informs the server. In 
both cases, the message is processed as a location update. 

Upon receiving a location update from pi at timestamp 
τ (in Figure 3.1b, from p6), the server computes the new k-
means using pi(τ) and the last recorded positions of the 
other objects. Specifically, the server feeds the previous k-
means set as seeds to an optimized version of HC, here-
after referred to as HC*. HC* computes exactly the same 
result as HC and performs the same iterations, but visits 
only a fraction of the dataset in each iteration. 

  

(a) Timestamp 0  (b) Timestamp 1 

Figure 3.1 Example update 

HC* exploits the fact that the point assignment for the 
seed is usually similar to the converged result. As illus-

trated in Figure 3.2, only points close to the perpendicu-
lar bisectors (the shaded area), defined by the centers, 
may change clusters. Specifically, before an iteration 
starts, HC* estimates Pactive, which is a super set of the 
points that may be re-assigned in the following iteration, 
and considers exclusively these points. Recall from Sec-
tion 2.1 that an iteration consists of two steps: the first 
reassigns points to their respective nearest centers and 
the second computes the centroids of each cluster. HC* 
re-assigns only the points of Pactive in the first step; whe-
reas in the second step, for each cluster, HC* computes 
its new centroid based on the previous one and Pactive. 
Specifically, for a cluster of points Pm, the centroid mg is 
defined as mg[i] = ∑p∈Pm

 (p[i] / |Pm|)  for every dimension 
1≤i≤d. HC* maintains an aggregate point SUMm for each 
cluster such that SUMm[i] = ∑p∈Pm

 p[i] (1≤i≤d). The cen-
troid mg can be thus computed using SUMm and |Pm|. If 
in the previous step of the current iteration, one point p 
in Pactive is reassigned from center m to m', HC* subtracts 
p from SUMm and adds it to SUMm'. 

 

m2

m3

m1

 

 

m2

m3

m1

 

(a) Seeds  (b) Converged result 

Figure 3.2 Example of Pactive 

Figure 3.3 shows the pseudo-code of HC* and clarifies 
the computation of Pactive. HC* initializes Pactive with points 
that will change clusters in the first iteration (Lines 1-4), 
and after each iteration, it adds to Pactive an estimated su-
perset of the points that will change cluster in the next 
iteration (Line 17). Specifically, for each point p, it pre-
computes: (i) dp, which is the distance between p and its 
assigned center mp in the seed set MS, and (ii) d'p, the 
distance between p and its nearest center in MS \ {mp}.  

HC* (dataset P, k, Seed MS) 
1. For each point p ∈ P 
2.  Compute dp = dist(p, mp), d'p = minm∈MS\{mp}dist(p, m) 
3. Build a heap H on P in increasing order of d'p–dp 
4. Compute set Pactive = {p | d'p–dp<0} using H 
5. For each center m ∈ MS 
6.  For each dimension i, SUMm[i] = ∑p∈Pm

 p[i] 

7. Initialize σ = 0, M = MS 
8. Repeat 
9.  For each point p∈Pactive 
10.   Assign p to its nearest neighbor in M 
11.   If p is re-assigned from center m to m' 
12.    For each dimension i, adjust SUMm[i]=SUMm[i]–p[i] 
       and SUMm'[i] = SUMm'[i] + p[i] 
13.  For each center m∈M, corresponding to ms∈MS 
14.   For each dimension i, mg[i] = SUMm[i] / |Pm| 
15.   Adjust σ = max(σ, dist(ms, mg)) 
16.   Replace m with mg 
17.  Adjust Pactive = {p | d'p–dp<2σ} using the heap H 
18. Until no change happens in M 
Figure 3.3 Algorithm HC* 
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Figure 3.4 illustrates an example. Points satisfying d'p<dp 
are re-assigned in the first iteration. HC* finds such 
points using a heap H sorted in increasing order of d'p–dp 
(Lines 3-4). During the iterations, HC* maintains a value 
σ, which is the maximum distance that a center m devi-
ates its original position ms∈MS in all previous iterations. 
After finishing an iteration, only points satisfying the 
property d'p–dp<2σ may change cluster in the next one, 
because in the worst case, mp∈MS moves σ distance away 
from p and another center moves σ distance closer, as 
illustrated in Figure 3.4. HC* extracts such points from 
the heap H as the new Pactive. Note that over all the itera-
tions of HC*, σ is monotonically non-decreasing (Line 
15), meaning that Pactive never shrinks when adjusted 
(Line 17), reaching its maximum size after HC* termi-
nates. Let this maximum size be na (na ≤ n), and L be the 
number of iterations HC* takes to converge. The overall 
time complexity of HC* is O(na log n + Lnak), where the 
first term (na log n) is the time consumed by computing 
and adjusting Pactive using the heap. In contrast, the unop-
timized HC takes O(Lnk) time. Note that the two algo-
rithms take exactly the same number of iterations (L) to 
converge. Following the assumption that only a fraction 
of points change clusters, na is expected to be far smaller 
than n, thus HC* is significantly faster. These theoretical 
results are confirmed by our experimental evaluation in 
Section 6. 

m'm

d

p

σ σ

p d'p

 
Figure 3.4 Illustration of dp and d'p 

After HC* converges, TKM computes the new thresh-
olds. Most thresholds remain the same, and the server 
only needs to send messages to a fraction of the objects. 
An object may discover that it has already incurred a 
violation, if its new threshold is smaller than the previ-
ous one. In this case, it sends a location update to the 
server. In the worst case, all objects have to issue up-
dates, but this situation is rare. The main complication in 
TKM is how to compute the thresholds so that the guar-
antee on the result is maintained, and at the same time, 
the average update frequency of the objects is mini-
mized. We discuss these issues in the following section. 

4 THRESHOLD ASSIGNMENTS 
Section 4.1 derives a mathematical formulation of the 
threshold assignment problem. Section 4.2 proposes an 
algorithm for threshold computation. Section 4.3 inte-
grates the objects' speed in the threshold computation, 
assuming that this knowledge is available. Section 4.4 
discusses methods for threshold dissemination. 

4.1 Mathematical Formulation of Thresholds 
The threshold assignment routine takes as input the ob-
jects’ locations P = {p1, p2, …, pn} and the k-means set M = 
{m1, m2, …, mk}, and outputs a set of n real values Θ = {θ1, 
θ2, …, θn}, i.e. the thresholds. We formulate this task into 
a constrained optimization problem, where the objective 

is to minimize the average update frequency of the ob-
jects subject to the user’s tolerance Δ. We first derive the 
objective function. Without any knowledge of the motion 
patterns, we assume that the average time interval be-
tween two consecutive location updates of each object pi 
is proportional to θi. Intuitively, the larger the threshold, 
the longer the object can move in an arbitrary direction 
without violating it. Considering that all objects have 
equal weights, the (minimization) objective function is: 

1
1

n

ii
θ

=∑  4.1

Next we formulate the requirement that no center in 
MTKM  deviates from its counterpart in MREF by more than 
Δ. Note that this requirement can always be satisfied by 
setting θi = 0 for all 1≤i≤n, in which case TKM reduces to 
REF. If θi > 0, TKM re-computes M only when there is a 
violation of θi. Accordingly, when all objects are within 
their thresholds, the execution of HC*3 should not cause 
any center to shift from its original position by more than 
Δ. 

As shown in Section 2.1, the result of HC* can be pre-
dicted in the form of confinement circles. Compared to 
the static case [ZDT06], the problem of deriving con-
finement circles in our settings is further complicated by 
the fact that the exact locations of the objects are un-
known. Consequently, for each cluster of points Pm as-
signed to center m ∈ M, m is not necessarily the centroid 
of Pm, since the points may have moved inside their con-
finement circles. In the example of Figure 4.1a, m is the 
assigned center for points p1-p7, computed by HC* on the 
points’ original locations (denoted as dots). After some 
time, the points are located at p'1-p'7 shown as solid 
squares. Their new centroid is m', rather than m. 

On the other hand, ZDT relies on the assumption that 
each center is the centroid of its assigned points. To 
bridge this gap, we split the tolerance Δ into Δ = Δ1 + Δ2, 
and specify two constraints called the geometric-mean 
(GM), and the confinement-circle (CC) constraint. GM re-
quires that for each cluster centered at m ∈ M, the cen-
troid m' must be within Δ1-distance from m, while CC 
demands that starting from each centroid m', the derived 
confinement circle must have a radius no larger than Δ2. 
Figure 4.1b visualizes these constraints: according to GM, 
m' should be inside circle c1, whereas according to CC, 
the confinement circle of m', and thus the center in the 
converged result, should be within c2. Combining GM 
and CC, the center in the converged result must be with-
in circle c3, which expresses the user’s tolerance Δ. 

  

(a) Centroid mʹ  (b) Constraints 

Figure 4.1 Dividing Δ into Δ1 and Δ2 
 

 
3 Since HC* performs exactly the same iterations as HC, the re-

sults of [ZDT06] apply directly to HC*.   



  

 

 

We now formulate GM and CC. For GM, the largest dis-
placement occurs when all points move in the same di-
rection, in which case the deviation of the centroid is the 
average of the points’ displacement. Let |Pm| be the car-
dinality of data points assigned to m, and θp be the thre-
shold of p. GM requires that: 

1
,
| | m

p 1p P
m

m Δ
P

θ
∈

∀ ≤∑  4.2

Note that Inequality 4.2 expresses k constraints, one for 
each cluster. The formulation of CC follows the general 
idea of ZDT, except that we do not know the objects’ cur-
rent positions, or their centroids. In short, we are trying 
to predict the output of HC* without having the exact 
input. Let p'i be the precise location of pi, and P'={p'1, p'2, 
…, p'n}. M' = {m'1, m'2, … m'k}, where m'i is the centroid 
of all points assigned to mi ∈ M. Similar to Section 2.1, 
m'p' denotes the assigned center for a point p' ∈ P'; Pm' is 
the set of points assigned to center m' ∈ M'. By applying 
ZDT on the input P' and M', and using Δ2 as the radius 
of the confinement circles, we obtain: 
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4.3

Inequality 4.3 is equivalent to 2.1, except for their inputs 
(P, M in 2.1; P', M' in 4.3). We apply known values (i.e. P, 
M) to re-formulate Inequality 4.3. First, it is impossible to 
compute cost(M') with respect to P' since both P' and M' 
are unknown. Instead, we use ∑p'∈P' dist2(p',m'p') as an 
upper bound on cost(M'); i.e., every point p' ∈ P' is as-
signed to m'p', which is not necessarily the nearest center 
for p'. Comparing LB(Mb) and cost(M'), we reduce the 
inequality LB(Mb) > cost(M') to: 

( )
movep P

Y p
′ ′∈

′ ≤∑ ( )2
m m 2min P Δ′ ′  4.4

The right side of Inequality 4.4, is exactly minm(|Pm|Δ 22), 
since the point assignment in M' is the same as in M. It 
remains to re-formulate the function Y(p) with known 
values. Recall from Section 2.1 that Y(p) is an upper 
bound of the maximum cost reduction by shifting point p 
to another cluster. We thus derive an upper bound 
UB_Y(p) of Y(p) using the upper bound and lower bound 
of dist(p',m') for a point/center pair p' and m'. Because 
each p' ∈ P' is always within θp distance to its corre-
sponding point p ∈ P, and each center m' ∈ M' is within 
Δ1 distance to its corresponding center m ∈ M, we have: 

, ' , ( , ) ( , ) 1 pp P m M dist p m dist p m Δ θ′ ′ ′ ′ ′∀ ∈ ∀ ∈ − ≤ +  4.5

Using Inequality 4.5, we obtain UB_Y(p) in Equation 4.6, 
where Δ = Δ1+ Δ2: 
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Summarizing, we formulate constraint CC into: 
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Thus, the optimization problem for threshold assignment 
has the objective function expressed by equation (4.1), 
subject to the GM (Inequality 4.2) and CC (Inequality 4.7) 
constraints. However, the quadratic and non-
differentiable nature of Inequality 4.7 renders an efficient 
solution for the optimal values of θi infeasible. Instead, in 
the next section we propose a simple and effective algo-
rithm. 

4.2 Computation of Thresholds 
In order to derive a solution, we simplify the problem by 
fixing Δ1 and Δ2 as constants. The ratio of Δ1 and Δ2 is cho-
sen by the server and adjusted dynamically, but we defer 
the discussion of this issue until the end of the sub-
section. We adopt a two-step approach: in the first step, 
we ignore constraint CC, and compute a set of thresholds 
using only Δ1; in the second step, we shrink thresholds 
that are restricted by CC. The problem of the first step is 
solved by the Lagrange multiplier method [AW95]. The 
optimal solution is: 

θ1 = θ2 =…= θn = Δ1 4.8

Note that all thresholds have the same value because 
both the objective function (4.1) and constraint GM (4.2) 
are symmetric. We set each θi =Δ1, and use these values 
to compute set Pmove. In the next step, when we decrease 
the threshold θp of a point p, Pmove may change accord-
ingly. We first assume that Pmove is fixed, and later pro-
pose solutions when this assumption does not hold. 

Regarding the second step, according to Inequality 
4.7, constraint CC only restricts the thresholds of points p 
∈ Pmove. Therefore, to satisfy CC, it suffices to decrease the 
thresholds of those points. Next we study UB_Y in Ine-
quality 4.7. Note that UB_Y is a function of threshold θp, 
associated with point p. We observe that UB_Y is in the 
form of (A+θp)2–(max(0,(B–θp))2), where A, B are constants 
with respect to θp. Hence, as long as B–θp ≥ 0, UB_Y is 
linear to θp because the two quadratic terms cancel out; 
on the other hand, when B–θp< 0, UB_Y becomes quad-
ratic to θp. The turning point where UB_Y changes from 
linear to quadratic is the only non-differentiable point of 
UB_Y. Therefore, we simplify the problem by making B–
θp ≥ 0 a hard constraint, which ensures that UB_Y is al-
ways differentiable and linear to θp. Specifically, we have 
the following constraint: 

\{ } ( , )
pp m M m  min dist p mθ Δ∈≤ −  4.9
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We then decrease the affected threshold values accord-
ingly4. Inequality 4.9 enables us to transform constraint 
CC (Inequality 4.7) to: 
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4.10

Note that Pmove is already determined in the previous 
step. Solving the optimization problem (again using La-
grange multiplier) with (4.1) as the objective function and 
(4.10) as the only constraint, the optimal solution is: 
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After that, for each threshold θp of point p∈Pmove whose 
current value is above θ*

p, we decrease it to θ*
p. In rare cas-

es, this decrease causes UB_Y(p)≤0, meaning that p 
should not be a member of Pmove. When this happens, we 
remove p from Pmove, and repeat step 2 until Pmove is stable, 
which signifies that CC is satisfied. In practice, this pro-
cedure usually converges very fast. Because we never 
increase any threshold value, GM is still satisfied, thus 
we now have a feasible solution to the original problem. 
The algorithm for threshold computation is summarized 
in Figure 4.2.  

Compute_Thresholds(Dataset P, Center set M) 
1. Set all θi (1≤i≤n) to Δ1 // step 1 
2. Compute Pmove using the current θi’s 
3. For each point p ∈ Pmove // step 2 
4.  Decrease θp so that it satisfies Inequality 4.9 

5.  Let θ*p be results of evaluating Equation 4.11 

6.  If θ*p < θp, θp = θ*p 
7. For each point p ∈ Pmove  
8.  If UB_Y(p) ≤ 0, Remove p from Pmove 

9. If Pmove has changed, Goto Line 3 // repeat step 2 
Figure 4.2 Algorithm for computing thresholds 

Finally we discuss the choice of Δ1 and Δ2. Let α = Δ1/ Δ. 
Initially, TKM chooses α according to past experience, 
e.g. 0.7 in our experiments. After the system starts, TKM 
examines periodically whether it can improve perform-
ance by adjusting α. Specifically, using the routine for 
computing thresholds described above, we express the 
objective function (4.1) as a function of α and analyze the 
first order derivative of it. Let PGM be the set of points 
assigned threshold Δ1 in the routine described above, 
and PCC =P\PGM. Then, the objective function is ex-
pressed as: 
 

 
4 Inequality 4.9 may require θp<0. If this pathological case oc-

curs, we set θp to a pre-defined value, treat it as a constant, and 
solve the optimization problem with one less variable. 
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The derivative obj'(α) is computed during the assignment 
process. If the absolute value of obj'(α) is above a pre-
defined threshold, TKM adjusts α by adding (subtracting) 
a step value ε to (from) it, depending on whether obj'(α) < 
0. In our experiments, we simply set ε = 0.05α. Alterna-
tively, ε can be a function of obj'(α). 

4.3 Utilizing the Object Speed 
In practice, the speed of moving users is restricted by 
their means of transportation (e.g., pedestrians vs. cars 
etc). In this section, we assume that the system knows 
roughly the average speed si of each object pi (1≤i≤n). In-
tuitively, fast objects are assigned larger thresholds, so 
that they do not need to issue updates in the near future. 
In addition to location updates, pi sends a speed update to 
the server when its speed changes significantly, e.g. a 
pedestrian mounts a motor vehicle. We first re-formulate 
the constrained optimization problem to incorporate the 
speed information. The two constraints GM and CC re-
main the same, but the objective function (4.1) becomes: 

1

n

i ii
s θ

=∑  4.13

The rationale is that when pi moves constantly in one 
direction, it is expected to violate the threshold after θi/si 
timestamps. Next we compute the thresholds using the 
approach of Section 4.2. In the first step, we solve the 
optimization problem with (4.13) as the objective and 
(4.2) as the only constraint. Using the Lagrange multi-
plier method, we obtain the optimal solution: 
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Comparing Equation 4.8 with 4.14, the former gives 
equal thresholds to all objects, while the latter assigns 
thresholds proportional to the square root of the objects’ 
speeds. In the second step, we solve the problem with 
(4.13) as the objective function and (4.10) as the only con-
straint. Let sp be the speed of object p, the optimal solu-
tion is: 
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The threshold routine of Figure 4.2 is modified accord-
ingly, by substituting Equation 4.8 with Equation 4.14, 
and Equation 4.11 with Equation 4.15. 

4.4 Dissemination of Thresholds 
After computing the thresholds, the server needs to dis-
seminate them. We propose two approaches, depending 
on the computational capabilities of the objects. The first 



  

 

 

is based on broadcasting, motivated by the fact that the 
network overhead of broadcasting is significantly small-
er than sending individual messages to all moving ob-
jects, and does not increase with the dataset cardinality. 
Initially, the server broadcasts Δ. After the first k-means 
set is computed, the broadcast information includes the 
center set M, Δ1 (if it has changed with respect to the pre-
vious broadcast), the two sum values in Equation 4.11, 
and minm |Pm|. Each object computes its own threshold 
based on the broadcast information. 

The second approach assumes that objects have lim-
ited computational capabilities. Initially, the server sends 
Δ1 to all objects through single-cast messages. In subse-
quent updates, it sends the threshold to an object only 
when it has changed. Note that most objects, besides 
those in Pmove, have identical threshold Δ1. As we show 
experimentally in Section 5, usually Pmove is only a small 
fraction of P. Therefore, the overhead of sending these 
the thresholds is not large. Alternatively, we propose a 
variant of TKM that sends messages only to objects that 
issue location updates. Let Pu be the set of objects that 
have issued updates, and Θold be the set of thresholds 
before processing these updates. After re-evaluating the 
k-means, the server computes the set of thresholds Θnew 
for all objects. Then, it constructs the threshold set Θ as 
follows. For each point in Pu, its threshold in Θ is the 
same as in Θnew, whereas all other thresholds remain the 
same as in Θold. After that, the sever checks whether Θ 
satisfies the two constraints GM and CC. If so, it simply 
disseminates Θ to Pu. Otherwise, it modifies the con-
strained optimization problem, by treating only the 
thresholds of points in Pu as variables, and all other 
thresholds as constants whose values are from Θold. Us-
ing the two-step approach of Section 4.2, this version of 
TKM obtains the optimal solution Θ′new. If Θ′new is valid, 
i.e. each threshold is non-negative, the server dissemi-
nates Θ′new to objects in Pu; otherwise, it disseminates 
Θnew to all affected objects. 

5 EXPERIMENTAL EVALUATION 
This section compares TKM against REF using two data-
sets. In the first one, denoted as spatial, we randomly se-

lect the initial position and the destination of each object 
from a real dataset, California Roads (available at 
www.rtreeportal.org) illustrated in Figure 5.1a. Each object 
follows a linear trajectory between the two points. Upon 
reaching the endpoint, a new random destination is se-
lected and the same process is repeated. The second da-
taset, denoted as road [MYPM06], is based on the genera-
tor of [B02] using sub-networks of the San Francisco road 
map (illustrated in Figure 5.1b) with about 10K edges. 
Specifically, an object appears on a network node, com-
pletes a shortest path to a random destination and then 
disappears. To ensure that the data cardinality n (a pa-
rameter) remains constant, whenever an object disap-
pears, a new one enters the system. In both datasets, the 
coordinates are normalized to the range [0..1] on each 
dimension, and every object covers distance 1/1000 at 
each timestamp. In spatial, movement is unrestricted, 
whereas in road, objects are restricted to move on the net-
work edges. 

REF employs HC to re-compute the k-means set, whe-
reas TKM utilizes HC*. Since every object moves at each 
timestamp, there are threshold violations in most time-
stamps, especially for small tolerance values. This im-
plies that TKM usually resorts to re-computation from 
scratch and the CPU gains with respect to REF are most-
ly due to HC*. For the dissemination of thresholds we 
use the single-cast protocol, where the server informs 
each object individually about its threshold. Table 5.1 
summarizes the parameters under investigation. The 
default (median) values are typeset in boldface5.  

TABLE 5.1 EXPERIMENTAL PARAMETERS 

Parameter Spatial Road 
Cardinality n (×103) 16, 32, 64, 128, 256 4, 8, 16, 32, 64 
Number of means k 2, 4, 8, 16, 32, 64 2, 4, 8, 16, 32, 64 
Tolerance Δ 0.0125, 0.025, 0.05, 0.1, 0.2 0.05, 0.1, 0.2, 0.4, 0.8

 

In each experiment we vary a single parameter, while 
setting the remaining ones to their median values. The 
 

 
5 Due to the huge space and time requirements of simulations in 

large network topologies, we use smaller values for n in road. 

 
 

(a) spatial  (b) road 
Figure 5.1 Illustration of the datasets 
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reported results represent the average value over 10 
simulations. For each simulation, we monitor the k-
means set for 100 timestamps. We measure: (i) the overall 
CPU time at the server for all timestamps, (ii) the total 
number of messages exchanged between the server and 
the objects, and (iii) the quality of the solutions. 

Figure 5.2 evaluates the effect of the object cardinality 
n on the computation cost for the spatial and road data-
sets. The CPU overhead of REF is dominated by re-
computing the k-means set using HC at every timestamp, 
whereas the cost of TKM consists of both k-means com-
putations with HC*, and threshold evaluations. The re-
sults show that TKM consistently outperforms REF, and 
the performance gap increases with n. This confirms both 
the superiority of HC* over HC and the efficiency of the 
threshold computation algorithm, which increases the 
CPU overhead only marginally. An important observa-
tion is that TKM scales well with the object cardinality 
(note that the x-axis is in logarithmic scale). 
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(a) spatial  (b) road 
Figure 5.2 CPU time versus data cardinality n 

Figure 5.3 illustrates the total number of messages as a 
function of n. In REF all messages are uplink, i.e., location 
updates from objects to the server. TKM includes also 
downlink messages, by which the server informs the ob-
jects about their new thresholds. We assume that the 
costs of uplink and downlink messages are equal6. In 
both datasets, TKM achieves more than 60% reduction 
on the overall communication overhead. Specifically, 
TKM incurs significantly fewer uplink messages since an 
object does not update its location while it remains inside 
its threshold. On the other hand, the number of down-
link messages in TKM never exceeds the number of up-
link messages, which is ensured by the threshold dis-
semination algorithm.  
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(a) spatial  (b) road 
Figure 5.3 Number of messages versus data cardinality n 

Interestingly, the number of downlink messages in the 
road dataset is smaller than in spatial. This is because 
 

 
6 In practice uplink messages are more expensive in terms of 

battery consumption (i.e., the battery consumption is 2-3 times 
higher in the sending than the receiving mode [DVCK99]). This 
distinction favors TKM. 

TKM only updates the thresholds of the objects lying 
close to the boundary of clusters (i.e. those in Pmove). In 
road, objects’ movements are restricted by the road net-
work, leading to highly skewed distributions. Conse-
quently, the majority of objects lie close their respective 
centers. In spatial, however, the distribution of the objects 
is more uniform; therefore, a large number of objects lie 
on the boundary of the clusters. 

Having established the performance gain of TKM 
with respect to REF, we evaluate its effectiveness. Figure 
5.4 depicts the average squared distance achieved by the 
two methods versus n. The column MaxDiff corresponds 
to the maximum cost difference between TKM and REF 
in any timestamp. Clearly, the average cost achieved by 
TKM is almost identical to that of REF. Moreover, Max-
Diff is negligible compared to the average costs, and 
grows linearly with n, since it is bounded by nΔ2 as de-
scribed in Section 3.1. 

TKM REF MaxDiff

16 142.23 142.15 0.18

32 289.58 289.40 0.34

64 566.25 566.14 0.70

128 1139.87 1139.64 1.40

256 2302.60 2302.22 2.82

n (×103)

 

n(×103) TKM REF MaxDiff

4 19.67 19.46 1.012

8 37.78 37.69 1.050

16 76.07 76.05 1.849

32 151.09 150.73 2.913

64 303.21 302.69 3.884

(a) spatial  (b) road 
Figure 5.4 Quality versus data cardinality n 

Next we investigate the impact of the number of means k. 
Figure 5.5 plots the CPU overhead as a function of k. 
TKM outperforms REF on all values of k, although the 
difference for small k is not clearly visible due to the high 
cost of large sets. The advantage of TKM increases with k 
because the first step of HC has to find the nearest center 
of every point, a process that involves k distance compu-
tations per point. On the other hand, HC* only considers 
points near the cluster boundaries, therefore saving un-
necessary distance computations. 
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(a) spatial  (b) road 
Figure 5.5 CPU time versus number of means k 

Figure 5.6 studies the effect of k on the communication 
cost. While consistently better than REF, TKM behaves 
differently in the two datasets. In spatial, the number of 
uplink messages is stable, and the downlink messages 
increase with k. This is because the objects are more uni-
formly distributed, and a larger k causes an increased 
boundary area, meaning that more points need to update 
their thresholds. On the other hand, in the road dataset, 
the numbers of both uplink and downlink messages de-
cline with the increase of k. The dominating factor in road 
is the high degree of skewness of the objects. A larger k 
fits this distribution better because more dense areas are 



  

 

 

populated with centers. Consequently, the boundary 
area decreases, leading to fewer downlink messages. The 
number of uplink messages also decreases because the 
assigned thresholds are larger, since the objects are closer 
to their respective centers. 
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(a) spatial  (b) road 
Figure 5.6 Number of messages vs. number of means k 

Figure 5.7 measures the result quality as a function of k. 
The average k-means cost of TKM and REF are very close 
for all values of k. In terms of the maximum cost differ-
ence, the two dataset exhibit different characteristics. The 
result of spatial is insensitive to k, whereas in road, the 
maximum difference increases with k. The reason is that 
since the objects are skewed in road, a slight deviation of 
a center causes a large increase in cost. This effect is more 
pronounced with large k, since the centers fit the distri-
bution better. Nevertheless, the quality guarantee nΔ2 is 
always kept. 

k TKM REF MaxDiff

2 5552.35 5552.20 1.080

4 2231.06 2230.87 1.440

8 1156.37 1156.68 1.010

16 566.25 566.14 1.565

32 286.58 286.57 1.373

64 143.78 143.64 1.362

k TKM REF MaxDiff

2 678.97 678.94 0.36

4 326.25 326.23 0.15

8 166.11 166.06 0.70

16 76.07 76.05 1.85

32 36.98 36.95 2.47

64 18.09 17.67 2.85  
(a) spatial  (b) road 
Figure 5.7 Quality versus number of means k 

The last set of experiments studies the effect of the user’s 
quality tolerance Δ. Because REF does not involve Δ, its 
results are constant in all experiments, and we focus 
mainly on TKM. Figure 5.8 demonstrates the effect of Δ 
on the CPU cost, where TKM is the clear winner for all 
settings. Specifically, its CPU time is relatively stable 
with respect to Δ, except for very large values. In these 
cases, the CPU time of TKM drops because at some time-
stamps, no objects issue location updates (and the server 
does not need to perform any computation). 
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(a) spatial (b) road 
Figure 5.8 CPU time versus tolerance Δ 

Figure 5.9 shows the impact of Δ on the communication 
cost. The numbers of both uplink and downlink mes-
sages drop as Δ increases, with the former dropping 

faster than the latter. Naturally, the number of uplink 
messages decreases because the update frequency is in-
versely proportional to the threshold value. The 
downlink messages drop for two reasons. First, in the 
threshold computation procedure, the value of each 
threshold θ* given by Equation 4.11 increases as Δ grows. 
According to the algorithm, when θ* exceeds Δ1, the ob-
ject’s threshold remains Δ1. Consequently, when Δ is 
large, many objects in Pmove retain Δ1, and do not need to 
be updated by a downlink message. The second reason is 
that for large Δ, at some timestamps there are no location 
updates, and therefore, no threshold dissemination. 
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Figure 5.9 Number of messages versus tolerance Δ 

Figure 5.10 investigates the effect of Δ on the result qual-
ity. As expected, in both datasets the result quality drops 
with the larger Δ. This is more pronounced in road due to 
the more skewed distribution. Observe that even when Δ 
is very large (reaching 80% of the axis length in road), 
TKM is still competitive in terms of quality. 

 TKM REF MaxDiff

0.0125 566.21 566.14 1.212

0.025 566.21 566.14 1.272

0.05 566.25 566.14 1.565
0.1 566.54 566.14 1.722

0.2 569.39 566.14 8.535

Δ 

 

TKM REF MaxDiff

0.05 75.41 76.05 0.072

0.1 75.52 76.05 0.651

0.2 76.07 76.05 1.849

0.4 76.87 76.05 7.535

0.8 81.56 76.05 13.829

Δ

 

(a) spatial  (b) road 
Figure 5.10 Quality versus tolerance Δ 

Finally, Figure 5.11 demonstrates the impact of varying 
object speed on the spatial dataset. Specifically, every 
object at medium speed covers distance 1/1000 at each 
timestamp (i.e., the default speed value). Slow and fast 
objects cover distance 0.5/1000 and 1.5/1000, respec-
tively.  In each setting, all objects move with the same 
speed, and the other parameters are set to their default 
values. As shown in Figure 5.11a, the CPU cost of REF 
increases with the object speed, because the faster the 
objects move, the farther away the centers diverge from 
their original locations. Thus, HC needs more iterations 
to converge. In contrast, TKM is less sensitive to object 
speed due to the robustness of the underlying HC* algo-
rithm. Figure 5.11b shows that TKM outperforms REF 
also in terms of communication overhead. The perform-
ance gap, however, shrinks as the speed increases be-
cause a higher speed causes more objects to cross the 
boundary of their assigned thresholds, necessitating loca-
tion updates. Finally, according to Figure 5.11c, the result 
quality of TKM is always close to that of REF, and their 
difference is well below the user-specified threshold Δ 
(5%).  
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Speed TKM REF MaxDiff

slow 604.80 604.60 0.125

medium 566.25 566.14 1.565

fast 512.73 512.55 2.804  
(c) Quality vs. speed 

Figure 5.11 Effect of object speed (spatial dataset) 

Summarizing the experimental evaluation, TKM outper-
forms REF by a wide margin on both CPU cost and 
communication overhead, while it incurs negligible dete-
rioration of the result quality. Therefore, it allows moni-
toring of k-means in very large datasets of continuously 
moving objects. Moreover, TKM scales better than REF 
on the number of means, implying that it can be used in 
applications that require high values of k. 

6 CONCLUSIONS 
This paper proposes TKM, the first approach for con-
tinuous k-means computation over moving objects. Com-
pared to the simple solution of re-evaluating k-means for 
every object update, TKM achieves considerable savings 
by assigning each object a threshold, such that the object 
needs to inform the server only when there is a threshold 
violation. We present mathematical formulae and an effi-
cient algorithm for threshold computation. In addition, 
we develop an optimized hill climbing technique for re-
ducing the CPU cost, and discuss optimizations of TKM 
for the case that object speeds are known. Finally, we 
design different threshold dissemination protocols de-
pending on the computational capabilities of the objects.  

In the future, we plan to extend the proposed tech-
niques to related problems. For instance, k-medoids are 
similar to k-means, but the centers are restricted to points 
in the dataset. TKM could be used to find the k-means 
set, and then replace each center with the closest data 
point. It would be interesting to study performance 
guarantees (if any) in this case, as well as devise adapta-
tions of TKM for the problem. Finally, another direction 
concerns distributed monitoring of k-means. In this sce-
nario, there exist multiple servers maintaining the loca-
tions of distinct sets of objects. The goal is to continu-
ously compute the k-means using the minimum amount 
of communication between servers. 
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