
Efficient and Effective KNN Sequence Search with
Approximate ngrams

Xiaoli Wang1 Xiaofeng Ding2,3 Anthony K.H. Tung1 Zhenjie Zhang4

1Dept. of Computer Science
National University of Singapore
{xiaoli,atung}@comp.nus.edu.sg

2Dept. of Computer Science
Huazhong University of Sci. & Tech.

xfding@hust.edu.cn
3Dept. of Computer Science
University of South Australia

4Advanced Digital Sciences Center
zhenjie@adsc.com.sg

ABSTRACT
In this paper, we address the problem of finding k-nearest
neighbors (KNN) in sequence databases using the edit dis-
tance. Unlike most existing works using short and exact n-
gram matchings together with a filter-and-refine framework
for KNN sequence search, our new approach allows us to use
longer but approximate n-gram matchings as a basis of KN-
N candidates pruning. Based on this new idea, we devise
a pipeline framework over a two-level index for searching
KNN in the sequence database. By coupling this framework
together with several efficient filtering strategies, i.e. the
frequency queue and the well-known Combined Algorithm
(CA), our proposal brings various enticing advantages over
existing works, including 1) huge reduction on false positive
candidates to avoid large overheads on candidate verifica-
tions; 2) progressive result update and early termination;
and 3) good extensibility to parallel computation. We con-
duct extensive experiments on three real datasets to verify
the superiority of the proposed framework.

1. INTRODUCTION
Given a query sequence, the goal of KNN sequence search

is to find k sequences in the database that are most similar to
the query sequence. KNN search on sequences have applica-
tions in a variety of areas including DNA/protein sequence
search [13], approximate keyword search [1], and plagiarism
detection [17, 30].
Our study here is also motivated by the real application

on ebook social annotation systems. In our systems, a large
number of paragraphs are annotated and associated with
comments and discussions1. For those who own a physi-
cal copy of the book, our aim is to allow them to retrieve
these annotations into their mobile devices using query by
snapping. As shown in Figure 1, queries are generated by

1http://readpeer.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 40th International Conference on Very Large Data Bases,
September 1st 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 1
Copyright 2013 VLDB Endowment 21508097/13/09... $ 10.00.

Client

Query

Annotations

User Sever

Figure 1: An example of the book annotation search

users when they use mobile devices to snap a photo of page
in the book. The query photo is then processed by an op-
tical character recognition (OCR) program which extracts
the text from the photo as a sequence. Since the OCR pro-
gram might generate errors within the sequence, we need
to perform an approximate query against the paragraphs in
the server to retrieve those paragraphs that had been an-
notated. Since the range of error in such cases is hard to
determine, a k-nearest neighbor (KNN) search is natural-
ly preferred, avoiding the need to estimate how good the
results generated from the OCR are.

This paper uses edit distance to evaluate the similarity
between two sequences. Edit distance is commonly used
in similarity search on large sequence databases, due to it-
s robustness to typical errors in sequences like misspelling
[13]. Existing edit distance algorithms for sequence search
have focused on either approximate searching (e.g., [3, 9,
10, 16, 18, 20, 23]) or KNN similarity search [21, 28, 29].
Although range query has been extensively studied, KNN
search remains a challenging issue. Many efforts on answer-
ing KNN search utilize the filter-and-refine framework [21,
28, 29]. The main idea is to prune off candidates by utilizing
the number of exact matches on a set of n-grams that are
generated from the sequences. An n-gram is a contiguous
subsequence of a particular sequence (also called q-gram).
Although such approaches are effective on short sequence
searches, they are less effective if there is a need to process
sequences that are longer like a page of text in a book. In
this paper, we further investigate the KNN search problem
from the viewpoint of enhancing efficiency.

In this paper, we develop a novel search framework which
uses approximate n-grams as the filtering signatures. This
allows us to use longer n-grams compared to exact matches
which in turn gives more accurate pruning since such match-
ing is less likely to be random. We introduce two novel fil-
tering techniques based on approximate n-grams by relaxing
the filtering conditions. To ensure efficiency, we employ sev-

1

eral strategies. First, we use a frequency queue (f-queue) to
buffer the frequency of the approximate n-grams to support
candidate selection. This can help to avoid frequent candi-
date verification. Second, we develop a novel search strategy
by employing the paradigm of the CA method [6]. By using
the summation of gram edit distances as the aggregation
function, the CA strategy can enhance the KNN search by
avoiding access to sequences with high dissimilarity. Third,
we design a pipeline framework to support simple parallel
processing. These strategies are implemented over a two-
level inverted index. In the upper-level index, n-grams that
are derived from the sequence database are stored in an in-
verted file with their references to the original sequences. In
the lower-level index, each distinct n-gram from the upper-
level is further decomposed into smaller sub-units, and in-
verted lists are constructed to store the references to the
upper-level grams for each sub-unit. Based on the index,
the search framework has two steps.
In the first step, given a query sequence and its n-grams,

similar n-grams within a range will be quickly returned us-
ing the lower-level index. In the second step, the n-grams
returned from the lower level can be automatically used as
the input to construct the sorted lists in the upper level.
With the sorted lists, our proposed filtering strategies are
employed to enhance the search procedure. Our contribu-
tions in this paper are summarized as follows:

• We introduce novel bounds for sequence edit distance
based on approximate n-grams. These bounds offer
new opportunities for improving pruning effectiveness
in sequence matching.

• We propose a novel KNN sequence search framework
using several efficient strategies. The f-queue support-
s our proposed filtering techniques with a sequence
buffer for candidate selection. The well-known CA s-
trategy has an excellent property of early termination
for scanning the inverted lists, and the pipeline strat-
egy can effectively make use of parallel processing to
speed up our search.

• We propose a pipeline search framework based on a
two-level inverted index. By adopting a carefully staged
processing that starts from searching at the lower-level
n-gram index to ending at the upper-level sorted list
processing, we are able to find KNN for long sequences
in an easily parallelizable manner.

• We conduct a series of experiments to compare our
proposed filtering strategies with existing methods. The
results show that our proposed filtering techniques have
better pruning power, and the new filtering strategies
can enhance existing filtering techniques.

The rest of this paper is organized as follows. Section
2 discusses related studies. Section 3 provides preliminary
concepts and basic principles for the KNN search. Section 4
introduces the proposed filtering techniques. Section 5 illus-
trates several efficient strategies to support the KNN search.
Section 6 presents the pipeline search framework with a two-
level inverted index. We evaluate the proposed approaches
with experimental results in Section 7 and conclude the pa-
per in Section 8.

2. RELATED WORK
Similarity query based on edit distance is a well-studied

problem (e.g., [12, 15, 26]). An extensive survey had been
conducted very early in [13]. Early algorithms are based
on online sequential search, and mainly focus on speed-
ing up the exact sequence edit distance (SED) computa-
tion. Among them, the most efficient algorithm requires
O(|s|2/log|s|) time [12] for computing the SED, and only
O(τ |s|) time for testing if the SED is within some thresh-
old τ [29]. However, online search algorithms still suffer
from poor scalability in terms of string length or database
size since they need a full scan on the whole database. To
overcome this drawback, most recent works follow a filter-
and-refine framework. Many indexing techniques have been
proposed to prune off most of the sequences before verifying
the exact edit distances for a small set of candidates [14].
There are three main indexing ideas: enumerating, back-
tracking and partitioning.

The first idea is introduced for supporting specific queries
when strings are very short or the edit distance threshold
is small (e.g., [2, 24]). It is clear that enumeration usually
have high space complexity and is often impractical in real
query systems.

The second idea is based on branch-and-bound techniques
on tree index structures. In [4, 22], a trie is used to index
all strings in a dictionary. With a trie, all shared prefixes
in the dictionary are collapsed into a single path, so they
can process them in the best order for computing the exact
SEDs. Sub-trie pruning is employed to enhance the effi-
ciency of computing the edit distance. However, building
a trie for all strings is expensive in term of both time and
space complexity. In [29], a B+-tree index structure called
Bed-tree is proposed to support similarity queries based on
edit distance. Although this index can be implemented on
most modern database systems, it suffers from poor query
performance since it has a very weak filtering power.

To improve filtering effectiveness, most existing works em-
ploy the third idea that splits original strings into several s-
maller signatures to reduce the approximate search problem
to an exact signature match problem (e.g., [3, 7, 9, 10, 11,
16, 18, 20, 23, 27]). We further classify these methods based
on their preprocessing methods into the threshold-aware ap-
proaches and the threshold-free approaches. The threshold-
aware approaches have been developed mainly based on the
prefix-filtering framework. Recent work in [23] performed a
detailed studies of these methods [11, 16, 23] and conclude
that the prefix-filtering framework can be enhanced with an
adaptive framework. These methods typically work well on-
ly for a fixed similarity threshold. If the threshold is not
fixed, two choices exist. First, the index has to be built on-
line for each query with a distinct threshold. This could be
time consuming and always be impractical in real system-
s. Second, multiple indexes are constructed offline for all
possible thresholds. This choice has high space complexity
especially for databases with long sequences since there can
be many distinct edit distance thresholds. The threshold-
free approaches generally employ various n-gram based sig-
natures. The basic idea is that if two strings are similar
they should share sufficient common signatures. Compared
to the threshold-aware approaches, these methods general-
ly have much less preprocessing time and space overhead
for storing indexes. However, if we ignore the preprocess-
ing phrase, these methods have been presented to have the

2

worse performance for supporting edit distance similarity
search [16]. This is because they often suffer from poor fil-
tering effectiveness through the use of loose bounds.
Although most of such approaches had been shown to be

efficient for approximate searching with a predefined thresh-
old, limited progress has been made for addressing the KNN
search problem. Existing efforts utilize two kinds of index
mechanisms [21, 28, 29, 5]. The first index mechanism is
adapted from inverted list based index [21, 28]. The KN-
N search algorithm employs the same intuition by selecting
candidates with sufficient number of common n-grams. The
difference between them is the list merging technique. In
[21], the MergeSkip algorithm is employed to reduce the in-
verted list processing time. A predefined threshold based
algorithm is also proposed by repeating the approximate
string queries multiple times to support KNN search. In
[28], the basic length filtering is used to improve list process-
ing. Another index mechanism is based on the tree struc-
ture [29, 5]. In [29], a B+-tree based index is proposed to
index database sequences based on some sequence orders.
The tree nodes are iteratively traversed to update the low-
er bound of edit distance and the nodes beyond the bound
are pruned. In the most recent work [5], an in-memory trie
structure is used to index strings and share computation-
s on common prefixes of strings. A range-based method is
proposed by grouping the pivotal entries to avoid duplicated
computations in the dynamic programming matrix when the
edit distance is computed. Although such approaches are
effective on the short sequence search, their performances
degrade for long sequences since the length of the common
prefix are relatively short for long sequences and the large
number of long, single branches in the trie bring about large
space and computation overhead.

3. PRELIMINARIES
Let Σ be a set of elements, e.g. a finite alphabet of char-

acters in a string database or an infinite set of latitude and
longitude in a trajectory database. We use s to denote a
sequence in Σ∗ of length |s|, s[i] to denote the ith element,
and s[i, j] to denote a subsequence of s from the ith elemen-
t to the jth element. The common notations used in the
rest of the paper are summarized in Table 1. In this paper,
we employ edit distance as the measure on the dissimilarity
between two sequences, which is formalized as follows.

Definition 1. (Sequence Edit Distance)(SED) Given t-
wo sequences s1 and s2, the edit distance between them, de-
noted by λ(s1, s2), is the minimum number of primitive edit
operations (i.e., insertion, deletion, and substitution) on s1
that is necessary for transforming s1 into s2.

We focus on k-nearest neighbor (KNN) search based on
the edit distance, following the formal definition as below.

Problem 1. Given a query sequence q and a sequence
database D = {s1, s2, ..., s|D|}, find k sequences {a1, a2, ..., ak}
in D, which are more similar to q than the other sequences,
that is, ∀si ∈ D\{aj(1 ≤ j ≤ k)}, λ(si, q) ≥ λ(aj , q).

3.1 KNN Sequence Search Using Ngrams
In this section, we aim to introduce important concepts

and principles of sequence similarity search using n-grams
which is a common technique exploited in existing studies.

Table 1: Notations
Notation Description
D the sequence database
q the query sequence
|s| the length of sequence s

s[i] the ith element of sequence s
Gs the n-gram set of a sequence s
λ(s1, s2) the edit distance between two sequences s1

and s2
λ(g1, g2) the edit distance between two n-grams g1

and g2
µ(s1, s2) the gram mapping distance between two

sequences s1 and s2
ϕ the frequency threshold value of n-grams
k the k value for the KNN search
τ the edit distance threshold
τ(t) the threshold value computed by the ag-

gregation function in the CA method
η(τ, t, n) the number of n-grams affected by τ edit

operations with gram edit distance > t

Definition 2. (n-gram) Given a sequence s and a posi-
tive integer n, a positional n-gram of s is a pair (i, g), where
g is a subsequence of length n starting at the ith element, i.e.,
g = s[i, i+n− 1]. The set G(s, n) consists of all n-grams of
s, obtained by sliding a window of length n over sequence s.
In particular, there are |s| − n+ 1 n-grams in G(s, n).

In this paper, we skip the positional information of the
n-grams. Such a simplified 5-gram set of a sequence intro-
duction, for example, is {intro, ntrod, trodu, roduc, oduct,
ducti, uctio, ction}. The n-gram set is useful in edit dis-
tance similarity evaluation, based on the following obser-
vation: if a sequence s2 could be transformed to s1 by τ
primitive edit operations, s1 and s2 must share at least
ϕ = (max{|s1|, |s2|} − n+ 1)− n× τ common n-grams [18].

Algorithm 1 A Simple KNN Sequence Search Algorithm

Require: The n-gram lists LG for q, and k
1: Initialize a max-heap H using first visited k sequences;
2: for Li ∈ LG do
3: for all unprocessed sj ∈ Li do
4: frequency[sj] + +;
5: τ = max{λs|s ∈ H};
6: ϕ = max{|sj |, |q|} − n+ 1− n× τ ;
7: if frequency[sj] ≥ ϕ then
8: Compute the edit distance λ(sj , q);
9: if λ(sj , q) < τ then
10: Update and maintain the max-heap H;
11: Mark sj as a processed sequence;
12: Output the k sequences in H;

Inverted indexes on the n-grams of the sequences are com-
monly used, such that references to original locations of the
same n-gram are kept in a list structure. Algorithm 1 shows
a typical threshold-based algorithm using the inverted index
on the n-grams as well as an auxiliary heap structure. This
algorithm dynamically updates the frequency threshold us-
ing the maximum edit distance maintained in a max-heap
H (lines 6 - 7). The query performance depends on the effi-
ciencies of two operations, the inverted list scan and the edit

3

distance computation for the candidate verification (lines 3
- 11).
Algorithm 1 could be improved by using optimization s-

trategies, such as length filtering [28] and MergeSkip [21].
The intuition behind length filtering is as follow: if two se-
quences are within an edit distance of τ , their length d-
ifference is no larger than τ . Therefore, the inverted list
scan is restricted to the sequences within the length con-
straint. Inverted lists are thus sorted in ascending order of
the sequence length. On the other hand, the MergeSkip s-
trategy preprocesses inverted lists such that the references
are sorted in ascending order of the sequence identification
number. When the maximum entry in the max-heap H is
updated, it is used to compute a new frequency threshold ϕ,
and those unprocessed sequences with frequencies less than
ϕ are skipped. As an example, in Figure 2, sequence no. 10
is first visited and pushed to the top-1 heap. The temporal
frequency threshold is computed as ϕ = 3, and the candi-
date for next visit is sequence no. 35. In this way, sequences
20 and 30 are skipped as their frequencies are less than 3.

Top 1 heap

10

L
0

10

20

35

…

50

…

100

L
1

10

30

35

50

L
2

35

41

…

50

…

100

Intermediate results

ID

10 2 3

35 2 …

… … …

50 1 5

… … …

L
5

45

…

200

L
3

40

41

42

…

50

…

100

……

L
4

41

48

50

…

100

…

200

50

Pop 10

Push 50

Figure 2: Illustration of the MergeSkip strategy

Although such approaches may somehow improve the effi-
ciency of list processing, they may have limited performance
since they are strictly relying on the efficient processing of in-
verted lists. For example, the length filtering can be useless
in a database where most sequences are around the same
length. In Figure 2, the top-1 heap is updated when se-
quence no. 50 is visited, the new frequency threshold is
ϕ = 5, and the next visiting candidate is sequence no. 45.
In this case, no sequence may be skipped. The reason is
that sequences from 35 to 45 are located in the grey area
may have been processed as the frequencies of their matched
n-grams are larger than 3. As the frequency threshold is
a loose bound that can generate too many false positives,
the candidate verification becomes the most time consum-
ing step.

4. NEW FILTERING THEORY
Due to the limited pruning effectiveness of exact n-gram

matching, we aim to develop new theories for sequence search
filtering by using approximate matching between n-grams
of the two sequences. This is motivated by the observations
that using exact n-gram matching will typically require n to
be small (so that the probability of having exact matching
will not be too low) which will in turn lower the selectivi-
ty of the n-grams. By allowing approximate matching for
these n-grams, we can increase the size of n without com-
promising the chance of a matching taking place, thereby
increasing selectivity of the n-grams and reducing the length
of the inverted list to be scanned. As shown in Definition 2,
an n-gram is a subsequence of the original sequence. Con-
sequently, gram edit distance is computed as the sequence
edit distance between two n-grams.

Count filtering is the first pruning strategy we design
based on gram edit distance, It is an extension of the exist-
ing count filtering on exact n-gram matchings. Basically, we
want to estimate the maximal number of n-grams modified
by τ edit operations such that the gram edit distance be-
tween the affected n-gram and the queried n-gram is larger
than a certain value of t (t ≥ 0). This leads to the new
count filtering using approximate n-grams, as is shown in
the following proposition.

Proposition 1. Consider two sequences s1 and s2. If s1
and s2 are within an edit distance of τ , then s1 and s2 must
have at most η(τ, t, n) = max{1, n− 2× t}+ (n− t)(τ − 1)
n-grams with gram edit distance > t, where t < n.

Proof. Let t = 0. Then η(τ, 0, n) = max{1, n− 2× 0}+
(n− 0)× (τ − 1) = n× τ . Intuitively, this holds because one
edit operation can modify at most n n-grams. Consequently,
τ edit operations can modify at most n × τ n-grams (i.e.,
there are at most n × τ n-grams between s1 and s2 with
gram edit distance > 0).

Let t ≥ 1. We first analyze the effect of edit operations
on the n-grams with certain gram edit distance (GED). We
show the first edit operation in two cases: it is applied on the
first or last n-1 n-grams, and it is applied into other positions
not within the first or last n-1 n-grams. As shown in Figure
3, in Case 1, one edit operation is applied in the position
in the pink box. Two types of edit operations will affect
n-grams to have different distance distributions. Obviously,
one substitution will cause n n-grams to have GED = 1;
while one insertion or deletion will cause one new n-gram
and n-1 n-grams of various GEDs. Consequently, the upper
bound value of η(τ, t, n) will cause at least 1 n-gram with
GED = n. We now show the distribution of the GEDs.
As shown in the figure, two 5-grams g1 and g5 have GED
= 1 in Figure 3(a). However, two 5-grams g2 and g4 can
have GED ≤ 2. Generally, one such operation can cause
at most n − 2 × t n-grams to have GED > t. Remember
that there are at least one new derived n-gram of GED = n.
Therefore, an upper bound on the number of affected n-
grams with GED > t should be max{1, n − 2 × t}. In case
2, one edit operation is applied to the first or last n-1 n-
grams. The total number of affected n-grams, denoted by
n′, is less than n, and the number of affected n-grams have
GED > t should be less than that of Case 1. It is obvious
that the number of affected n-grams in Case 2 is less than
that in Case 1. It is indeed true that Case 1 can infer an
upper bound value on the affected n-gram number when the
insertion or deletion operation is applied.

We now show how the distribution of edit operations will
affect the maximum number of n-grams with GED > t. Sup-
pose E = {e1, e2, . . . , eτ} is a series of edit operations that
is needed to transform one sequence into another sequence.
Suppose the τ edit operations are evenly distributed in a se-
quence. That means no n-gram is simultaneously affected by
multiple edit operations. In this case, the number of affect-
ed n-grams can be maximized . As analyzed above, one edit
operation will affect at most n−2× t n-grams to have GED
> t. This is the boundary case where the edit operation is
the first or the last operation. It is clear that the number
of affected n-grams with GED > t, on the left of the first
edit operation and on the right of the last edit operation,
is at most max{1, n − 2 × t}. For the remaining τ − 1 edit
operations, one new operation will cause n−t newly affected

4

Case 2

g1
g2

g3
g4

g5

A substitutionAn insertion

Case 1

(a) (b) (c)

(e)(d) (f)
An insertion A substitution

Figure 3: Effect of edit operations on n-grams

10
20

30

10

20

30

40

20

30

20

30

20

30

20

30

20

30

40

10

30

40
20

30

40

10

ID Freq. Ȉ
0

10 0 0

20 8 0

30 6 0

40 0 0

ID Freq. Ȉ
1

10 2 1

20 8 1

30 7 1

40 0 1

ID Freq. Ȉ
2

10 3 4

20 16 4

30 15 4

Candidates

ID λ

20 0

30 2

Prune none

L
0

20

30

L
1

20

30

L
2

20

30

L
3

20

30

L
4

20

30

L
5

20

30

L
6

20

L
7

20
GED=0

GED=1

GED=2

Figure 4: An example of the count filtering

n-grams ahead its previous edit position, as the boundary
position will be affected only in this case. Consequently, the
maximum number of affected n-grams with GED > t would
be η(τ, t, n) = max{1, n− 2× t}+ (n− t)(τ − 1).

Lemma 1. Consider two sequences s1 and s2. If s1 and
s2 are within an edit distance of τ , then s1 and s2 must share
at least ϕt(s1, s2) = |s|−n+1−η(τ, t, n) n-grams with gram
edit distance ≤ t. Here, |s| is equal to max{|s1|, |s2|}.

The proposed count filtering offers new opportunities to
improve the search performance as it has a stronger filtering
ability. As is shown in Figure 4, no sequence is pruned
using the count filtering with common n-grams of ϕ0 = 0.
By using the count filtering with n-grams of GED = 1,
sequence no. 40 can be pruned by ϕ1 as its frequency (i.e.,
Freq.) of n-grams with GED ≤ 1 is less than ϕ1. Similarly,
the sequence 10 is pruned by using the count filtering of ϕ2.
Mapping filtering is a more complicated pruning strat-

egy, but provides more effective pruning based on the gram
edit distance. To begin with, we first define the distance
between two multi-sets of n-grams.

Definition 3. (Gram Mapping Distance)(GMD) Given
two gram multi-sets Gs1 and Gs2 of s1 and s2, respectively
with the same cardinality. The mapping distance between
s1 and s2 is defined as the sum of distances of the optimal
mapping between their gram multi-sets, and is computed as

µ(s1, s2) = min
P

∑
gi∈Gs1

λ(gi, P (gi)), P : Gs1 → Gs2

The computation of gram mapping distance is accom-
plished by finding an optimal mapping between two grams

multi-sets. Similar to the work in [25], we can construct a
weighted matrix for each pair of grams from two sequences,
and apply the Hungarian algorithm [8, 19]. Based on gram
mapping distance, we show how a tighter lower bound on
the edit distance between two sequences could be achieved.

Lemma 2. Given two sequences s1 and s2. The gram
mapping distance µ(s1, s2) between s1 and s2 satisfies

µ(s1, s2) ≤ (3n− 2)× λ(s1, s2)

Proof. Let E = {e1, e2, . . . , eK} be a series of edit oper-
ations that is needed to transform s1 into s2. Accordingly,
there is a set of sequences s1 = M0 → M1 → . . . → Mτ = s2,
where Mi−1 → Mi indicates that Mi is the derived sequence
from Mi−1 by performing ei for 1 ≤ i ≤ K. Assume there
are K1 insertion operations, K2 deletion operations and K3

substitution operations, then we have K = K1 +K2 +K3.
We analyze the detailed influence of each type of edit oper-
ation as follows.

Insertion operation: When a character is inserted into
the sequence Mi−1, at most n n-grams are affected. The
edit distance is less than 2 for (n − 1) n-grams , and n
for one newly inserted n-gram. Thus, we conclude that
µ(Mi−1,Mi) ≤ [2(n− 1) + n] = 3n− 2.

Deletion operation: When one character is deleted from
the sequenceMi−1, thus a total number of n n-grams may be
affected. The edit distance is less than 2 for (n−1) n-grams,
and n for one newly deleted n-gram. Thus, in the case of
deleting one character, µ(Mi−1,Mi) ≤ [2(n−1)+n] = 3n−2.

Substitution operation: When a character in sequenceMi−1

is substituted by another character, a total number of n n-
grams are affected. Then, the edit distance for each affected
n-gram is equal to 1, and thus we have µ(Mi−1,Mi) ≤ n.

By analyzing the effect of the above three operations, we
conclude that GMD and SED have the following relation-
ship.

µ(s1, s2) ≤ (3n− 2)×K1 + (3n− 2)×K2 + n×K3

≤ (3n− 2)× (K1 +K2 +K3)

≤ (3n− 2)× λ(s1, s2)

Lemma 2 naturally brings us a new lower bound esti-
mation method on the sequence edit distance. Given two
sequences s1 and s2, and an edit distance threshold τ , if
µ(s1,s2)
3n−2

> τ , then λ(s1, s2) > τ . While the bound is ef-
fective, it remains computational expensive if we directly
apply this bound for pre-pruning. In this work, we employ
this bound function to compute the aggregation value in the
CA filtering algorithms. That is, we use the summation of
gram edit distances as the aggregation function, instead of
directly computing the mapping distance. We will intro-
duce new implementing filtering strategies and algorithmic
frameworks to make these theories practical.

5. FILTERING ALGORITHMS
Based on the filtering theories derived in the previous sec-

tion, we introduce new algorithms to support efficient filter-
ing. Given a query sequence q, we assume that there are
existing inverted lists that support efficient search on the
n-grams under specified edit distance constraint, as shown
in Figure 5 and 6 with LG = {L0, L1, ..., L|q|−n}.

5

Algorithm 2 KNN Search Algorithm Using the F-queue

Require: N-gram lists LG with GED = t for q, and k′

1: Initialize the f-queue as ∅;
2: Initialize a max-heap H using first visited k sequences;
3: for Li ∈ LG do
4: for all unprocessed sj ∈ Li do
5: frequency[sj] + +;
6: Update the top-k′ f-queue;
7: if k′ items in f-queue then
8: for all sc ∈ top− k′ do
9: τ = max{λs|s ∈ H};
10: η(τ, t, n) = max{1, n− 2× t}+ (n− t)(τ − 1);
11: ϕt = max{|sc|, |q|} − n+ 1− η(τ, t, n);
12: if frequency[sc] ≥ ϕt then
13: Compute the edit distance λ(sc, q);
14: Mark sc as a processed sequence;
15: if λ(sc, q) < τ then
16: Update and maintain the max-heap H;
17: Output the k sequences in H;

L
0

10

20

35

…

50

…

…

100

L
1

10

30

35

50

L
2

35

41

…

…

50

…

100

Intermediate results

ID
t

10 2 3

50 1 5

… … …

L
3

40

41

42

…

50

…

…

100

L
4

41

48

50

…

…

…

…

200

50

41

Top 1 heap

10

50

Pop 10

Push 50

F queue

h

L
5

45

…

…

…

…

…

…

200

……

Figure 5: Illustration of the frequency queue

We use a frequency queue (f-queue) to speed up our in-
verted list processing. The basic intuition is that sequences
that share higher number of matched approximate n-grams
with the query sequence will be given preference for process-
ing. Here, the f-queue is an unordered queue, which main-
tains the top-k′ unique visited sequences with frequency of
approximately matched n-grams larger than a temporary
frequency threshold.
The f-queue is first initialized to be an empty set, and we

perform access to the inverted lists to count the frequency of
approximately matched n-grams. As shown in Algorithm 2,
if the queue contains k′ unprocessed sequences, our algorith-
m first sorts the visited sequences in ascending order based
on the frequencies. Subsequently, we verify the sequences in
the f-queue using the temporary frequency threshold (high-
est frequency first). Those sequences passing the count fil-
tering are verified with the exact edit distance computation,
and used to update the top-k heap. Note that the tem-
porary frequency threshold is immediately updated when a
new value is inserted into the top-k heap. Generally, the
f-queue technique avoids frequent verifications on the visit-
ed sequences. It offers new opportunities to employ count
filtering with approximate n-grams, as only the top-k′ se-
quences are processed for every batch of h elements that are
retrieved from the inverted list (h ≥ k′). The f-queue can
be used to improve the performance of existing algorithms
based on the length filtering or the MergeSkip strategy.
Figure 5 illustrates the idea of the f-queue and explains

why it improves the MergeSkip strategy. The top-1 heap

Algorithm 3KNN Search Algorithm Using the CAMethod

Require: N-gram lists LG with GED = t for q, and h
1: Initialize the f-queue as ∅;
2: Initialize a max-heap H using first visited k sequences;
3: Initialize ti = t with i = 0 . . . |q| − n;
4: for Li ∈ LG do
5: for all unprocessed sj ∈ Li do
6: frequency[sj] + +;
7: Update the top-k′ f-queue;
8: if The end of Li is visited then
9: ti = t+ 1;
10: if t > 0 then
11: τ = max{λs|s ∈ H};
12: τ(t) =

∑l=|q|−n
l=0 tl;

13: if τ(t) ≥ τ × (3n− 2) then
14: Terminate the list processing;
15: if k′ items in f-queue then
16: Apply the filtering strategy with the f-heap;
17: Output the k sequences in H;

Intermediate results

ID Freq.: 0 Freq.: 1 μ(L) λ

10 0 -- -- --

20 8 8 1 1

30 6 7 3 3

40 0 -- -- --

20

30

10

20

30

40

20

30

20

30

20

30

20

30

20

30

40

10

30

20

30

40

10

L0

20

30

L1

20

30

L2

20

30

L3

20

30

L4

20

30

L5

20

30

L6

20

L7

20
GED=0

GED=1

GED=2

Top-1 heap20

10

20

L8

The maximum value in the heap is: max { λs| s top-1} = 1

The CA threshold value is: τ(t) = t0+...+t8 = 2+2+2+2+2+1+1+1+1 = 14

The CA halts: 1×(3n-2) = 13 < 14

Figure 6: An example of CA based filtering

is initialized using the first sequence which is visited i.e.
sequence no. 10 and the frequency threshold is set as 3.
Here, we set the value of k′ as 2. After scanning the list-
s in the gray box, two unprocessed sequences no. 41 and
50 are pushed into the f-queue since the frequency of their
approximately matched n-grams are higher than the tempo-
rary frequency threshold. The f-queue is then traversed for
candidate verification, and sequence no. 50 is verified first
since it possesses a highest number of matching n-grams. As
its edit distance is computed as 1, a new threshold is com-
puted for the top-1 matching and the top-1 heap is updated
accordingly, by discarding the sequence no. 10 and pushing
sequence no. 50. Finally, the new frequency threshold is 5,
based on our update rule. Compared against the standard
method in Figure 2, our approach can successfully skip the
sequences from 35 to 45.

As the novel count filtering can be applied without any
constraint on the gram edit distance, the list processing with
the f-queue can continue until all the sequences are pro-
cessed. However, applying more count filters will mean that
more list processing time is required. To avoid having large
overhead on list processing, we use the CA based strategy
[6] and use the summation of gram edit distances as the
aggregation function. As inverted lists of certain GED are
fetched out separately, they are naturally sorted by the gram
edit distance (lowest distance first). Algorithm 3 shows the
details of the CA based filtering algorithm. We use Exam-
ple 1 to illustrate the effectiveness of the CA-based filtering
framework for supporting the KNN search.

6

Example 1. In Figure 6, we consider the nine sorted lists
for a query sequence q. The length of the n-gram is set to
be n = 5. Each list has three groups of n-grams with various
GEDs of 0, 1, and 2. Each entry in the lists stores the
sequence id number. Suppose we perform sorted access to
each sorted list Li. For each list Li, let ti be the GED score
of the last sequence visited under sorted access. The CA
threshold value is computed as τ(t) =

∑i=8
i=0 ti. As soon as

τ(t) ≥ max{λs|s ∈ top − k} × (3n − 2), CA halts and we
stop scanning the inverted lists. In the figure, CA halts at the
positions at the bottom of the grey area. In this case, each
ti in the group of GED=1 is initialized to be 1. When we do
sorted access to the list L4, each value of ti with i = 0, 1, .., 4
is set to be equal to 2 as no entry has distance of 1, and 2 is
the smallest score that can be obtained for unseen elements.
Therefore, τ(t) is computed as

∑i=8
i=0 ti = 2 + 2 + 2 + 2 +

2 + 1 + 1 + 1 + 1 = 14. Consequently, the CA halts as
τ(t) ≥ max{λs|s ∈ top − 1} × (3n − 2) = 1 × 13. In this
case, the unseen sequences 10 and 40 are safely pruned.

The correctness of CA based strategy is easily to be shown
according to Lemma 2. When CA halts, any unseen se-
quence has a mapping distance µ(sunseen, q) that is not
less than τ(t). Then, we have (3n − 2) × λ(sunseen, q) ≥
µ(sunseen, q) ≥ τ(t) ≥ max{λs|s ∈ top−k}× (3n−2). Con-
sequently, any unseen sequence has an edit distance that is
not less than the maximum edit distance in the top-k heap,
i.e., λ(sunseen, q) ≥ max{λs|s ∈ top− k}. The sequences in
the top-k heap are the required KNN results.

6. INDEXING AND QUERY PROCESSING
In the previous section, we developed our algorithms based

on the assumption that we can find the approximately matched
n-grams efficiently and is thus able to access the correspond-
ing inverted list of these approximately matched n-grams. In
this section, we will explain how this can be done on top of a
two-levels inverted index. Based on this two-levels index, we
will develop a pipeline framework to support efficient KNN
sequence search.
We build a two-levels inverted index based on n-grams

with different granularity of n1 and n2 respectively. As
shown in Figure 7, the index consists of the upper-level index
and the lower-level index. In particular, given a sequence
database D, the upper-level is used to index the n1-grams
that are obtained from the original sequences in D, and the
lower-level is used to index the n2-grams that are obtained
from n1-grams in the upper-level (n1 > n2).
There are two steps to build the index: 1) we extract

n1-grams from sequences in D, and build the upper-level
inverted index. The index is made up of two main compo-
nents: an index for all distinct n1-grams and an inverted
list below each n1-gram. In general, each entry in the in-
verted lists contains the sequence identifier. 2) we further
extract n2-grams from all distinct n1-grams, and build the
lower-level inverted index. Similarly, the index consists of
two main parts, which stores the n2-grams with the ref-
erence to the corresponding n1-gram in the inverted lists.
Generally, the inverted list entries in the upper-level index
are usually sorted into various orders when using different
filtering techniques. For example, they are sorted into order
of increasing sequence identifier for the MergeSkip strate-
gy and increasing sequence length for the length filtering.

A sequence database

ID Sequence

10 Introduction

20 introductive

The lower level inverted index

ct du in io iv od on ro uc ti ve tr

g1

g4

g6

g8

g9

g0

g4

g5

g9

g7 g1

g6

g2

g8

g0

g3

g5

g6 g0

g3

g5

g7

g1

g2

g4

g9

g1

g2

g6

g8

g9

g8 g0

g3

g7

The upper level inverted index

g0

trodu

g1

uctio

g2

uctiv

g3

ntrod

g4

oduct

g5

roduc

g6

ction

g7

intro

g8

ctive

g9

ducti

10

20

10 20 10

20

10

20

10

20

10 10

20

20 10

20

5 grams

2 grams

Figure 7: An example of the two-level index

A query sequence

The n1-gram

similarity search

Step 1: GS

KNN search with

F-queue

Step 2: DF

CA- based KNN

search with

F-queue

Step 3: CA

Algorithm

halts?

no
n1-gram of distance 0

n1-gram of distance t

The top-k queue

Figure 8: The simple serial query processing flow

This paper will investigate the effect of the list order on the
proposed techniques in the experimental study.

6.1 A Simple Serial Solution
We first introduce a simple serial solution using the pro-

posed two-level inverted index. Our approach follows a
filter-and-refine framework. Given a query sequence q, it
is first decomposed into a set of n1-grams Gq. As shown in
Figure 8, the serial algorithm works as follows.

1. GS: For each gi ∈ Gq, the lower-level index is used
to support the sequence similarity search to return n1-
grams with GED ≤ t to gi. The returned list pf n1-
grams are naturally grouped based on the GED dis-
tance of 0, 1, ..., t.

2. DF: Given the output from the GS step, we fetch
out the inverted lists from the upper-level index for
those matching n1-grams of distance 0. The list merg-
ing algorithm with the proposed f-queue technique is
employed to support fast frequency aggregation and
maintain the top-k queue for processed sequences (See
Algorithm 2).

3. CA: If the DF step does not halt the algorithm, we
further fetch the inverted lists from the upper-level
index for those similar n1-grams of distance t (t ≥ 1).
Given the f-queue and the top-k queue from the output
of the DF step, the list merging algorithm will continue
to accumulate frequencies of similar n1-grams, and use
the proposed count filtering bound for further pruning.
Noted that, the CA filtering bound will be employed if
a new gram edit distance appears (See Algorithm 3).

In the GS step, we employ the fastest approximate string
matching algorithm to support efficient n1-gram similarity

7

A query sequence The n1-gram

similarity search

The GS step

The frequency

accumulation

with CA method

The CA step

n1-gram of distance 1

KNN search with

F-queue

The DF step

The n1-gram

similarity search

The GS step

The frequency

accumulation

with CA method

The CA step

n1-gram of distance t

...

...

Pipe 1 Pipe t
...

The top-k queue

Frequency of n1-grams with distance t

Figure 9: The pipelined query processing flow

search. In our implementation, we use the traditional count
filtering with exact n-gram matching to do pre-pruning. The
quality of the approximate string matching is sufficiently
high to return similar n1-grams with negligible query time.
We employ the proposed f-queue technique in the DF step

and adopt a CA based algorithm to do further pruning in
the CA step if the previous processing cannot terminate our
search. The algorithm halts under the following condition-
s: 1) All sequences in the database have gone through the
candidate verification; 2) The maximum value in the root
of the top-k queue is within an acceptable small distance.
Generally, if the temporary frequency threshold is equal to
0, those unseen sequences cannot be safely pruned and need
post processing. The algorithm will request for further list
processing by relaxing the distance threshold for n1-gram if
these conditions are not meet.
In general, the filter-and-refine framework can be evaluat-

ed using the cost model with Tq = Tf + |Cq| × Tr, where Tf

is the filtering time and Tr is the verification time for each
candidate. Our solution attempts to reduce the number of
false positives, as it is costly to verify the candidates for long
sequences. Compared with existing n-gram based methods,
our approach offers new opportunities to speed up the query
processing in the CA step by using our novel count filtering.

6.2 A Novel Pipeline Framework
Next, we propose a dynamic method that is easy to be

pipelined to enhance query processing. The main idea is
that similar n1-grams are dynamically returned from the
lower-level index for pruning in the upper-level index.
As shown in Figure 9, we adapt the CA step to perfor-

m the frequency accumulation without processing sequences
using the f-queue. We develop a pipelined algorithm to exe-
cute the GS step and the CA step. In this way, the DF step
can process visited sequences in the f-queue by using the
temporary frequency thresholds that is computed from the
approximate n1-grams, instead of only using the frequen-
cy bound of common n1-grams. The pipelined execution
offers new opportunities for reducing the overhead costs of
employing multiple filtering techniques.

6.3 The Pipelined KNN Search
To support efficient KNN search, the three stages are im-

plemented differently in the pipeline framework as described
below.
The GS stage are shown in Algorithm 4. The algorithm

takes the n1-gram set Gq obtained from a query q as the
input. Given a constraint on the maximum value of gram

Algorithm 4 The GS Stage

Require: The n1-gram set Gq, a constraint of tmax

1: loop
2: Update the GED threshold value of t;
3: if The halting signal is detected then
4: Terminate this stage;
5: else
6: for Li ∈ Gq do
7: Apply gramSimilaritySearch(gi, t);
8: Pipe similar n1-grams with GED=t to the CA

stage;

Algorithm 5 The CA Stage

Require: The global top-k heap H
1: loop
2: Update the GED threshold value of t;
3: if The halting signal is detected then
4: Terminate this stage;
5: Obtain inverted lists LG from the upper-level index

for all n1-grams;
6: for Li ∈ LG do
7: for all unprocessed sj ∈ Li do
8: frequency[sj] + +;
9: if The end of Li is visited then
10: ti = t+ 1;
11: if t > 0 then
12: τ = max{λs|s ∈ H};
13: τ(t) =

∑l=|q|−n
l=0 tl;

14: if τ(t) ≥ τ × (3n− 2) then
15: All unseen strings are safely pruned;
16: Send a global halting signal;
17: Terminate this stage;

edit distance (GED) value, this stage performs the similari-
ty search to return n1-grams with GED=t to each gi ∈ Gq.
The output of the query results will be fed into the CA stage.
In the CA stage, given the n1-gram set with GED=t, the
inverted lists are fetched from the upper-level index, and
scanned to accumulate the frequencies for each visited se-
quence. The CA strategy is used to terminate the whole
process if the CA threshold value of the gram edit distance
summation is larger than the temporary threshold comput-
ed from the top-k heap. It is convenient to compute the
new CA threshold value τ(t) with a summation of the gram
edit distance returned from the GS stage. For example, if
the GED for all returned grams is equal to t, then we have
τ(t) = t× |Gq|. However, this value is updated when a new
distance value appears. As shown in Line 9 and Line 12
in Algorithm 5, CA can enhance the total query processing
by avoiding access to those very dissimilar strings. If the
halting condition with the CA aggregation value has been
found, this stage immediately stops and sends a global signal
to invoke the termination of the whole search. The details
of the CA stage are shown in Algorithm 5.

In the DF stage, we maintain a global max-heap H for
storing the current top − k similar sequences and use the
maximum edit distance score in the root of the heap to up-
date the temporary frequency value. As shown in Algorithm
6 (lines 13 - 15), the distance value of the top element in the
top − k heap is selected as a new range bound for the CA
stage and the DF stage.

8

Algorithm 6 The DF stage

Require: A query sequence q
Require: The global top-k heap H
1: Initialize the f-queue as ∅;
2: Initialize a max-heap H using first visited k sequences;
3: Obtain the n1-gram set Gq from q
4: Obtain N-gram lists LG for all gi ∈ Gq

5: for Li ∈ LG do
6: for all unprocessed sj ∈ Li do
7: if The halting signal is detected then
8: Terminate this stage;
9: frequency[0][sj] + +;
10: Update the top-k′ f-queue;
11: if k′ items in f-queue then
12: for all sc ∈ top− k′ do
13: τ = max{λs|s ∈ H};
14: η(τ, t, n) = max{1, n− 2× t}+ (n− t)(τ − 1);
15: ϕt = max{|sc|, |q|} − n+ 1− η(τ, t, n);
16: for all l = 0 . . . t do
17: frequency(sc)l =

∑m=l
m=0 frequency[m][sc];

18: if all frequency(sc)l ≥ ϕl with l = 0 . . . t
then

19: Compute the edit distance λ(sc, q);
20: Mark sc as a processed sequence;
21: if λ(sc, q) < τ then
22: Update and maintain the max-heap H;
23: Output the k sequences in H;

7. EXPERIMENTAL STUDY
We compare the performance of our proposed approach

AppGram against several state-of-the-art methods over a
wide spectrum of real datasets.

7.1 Setup
The algorithms used in the following experiments are p-

resented as below.

• Bed-tree [29] is proposed to support the string simi-
larity queries using a B+-tree based index structure.
We use the implementation from the authors.

• Flamingo [9] is an open-source data cleaning system
which supports approximate string search. We use the
latest release 4.1. For existing work [21] and [28], we
use the implementation from the Flamingo, as it has
integrated the previous filtering techniques.

• TopkSearch [5] is the most recent method that is
proposed to support top-k sequences similarity search
with edit-distance constraints. We obtain the exe-
cutable binary file from the authors.

We use two real datasets that are available publicly. They
cover different domains and are widely used in previous s-
tudies. We use another paragraph dataset obtained from an
ebook reading system. The details of the datasets are shown
as follows, and the statistics are shown in Table 2.

• IMDB consists of movie titles which are taken from
a public database of IMDB2, and we use the dataset
provided in paper [29].

2http://www.imdb.com

Table 2: Datasets
Dataset Size Avg. Len Max. Len
IMDB 1,553,914 19 240
DBLP 1,385,668 105 1626
ANNOTEXT 1,572,561 75 1250

Table 3: Parameter Settings
Parameter Description Value
k k value for the search 1, 2,4, 6, 8, 10
|q| average query size 10, 20, 30, 40, 50
τ distance threshold 1, 2, 4, 8, 10, 16

• DBLP consists author names and titles of publica-
tions which are extracted from the DBLP Bibliogra-
phy3, and we use the dataset provided in paper [23].

• ANNOTEXT is a dataset containing annotated para-
graphs. We extract the paragraphs from a paper ab-
stract collection that are taken from a public citation
database4. The annotated paragraphs are generated
with a random sampling method. We maintain the
length distribution of this dataset to be the same as
the DBLP dataset.

The query files of the first two public datasets are also
available in their original work. Each query file includes
100 sequences, and we obtain them from the authors to-
gether with the datasets. For the ANNOTEXT dataset, we
select 100 queries by random sampling. Table 3 presents
major parameters used in our experiments, including their
descriptions and values (with default values in bold). Here-
after, the default values will be used in all the experiments
unless otherwise stated.

AppGram was implemented in C++, and the pipeline
algorithm is implemented using pthread. In all the ex-
periments, we only implement two threads to support two
pipelines. We compiled all the algorithms with gcc 4.4.6
in Red hat Linux Operating System, and all experiments
were done on a server with Quad-Core AMD Opteron(tm)
Processor 8356, 128GB memory, running RHEL 4.7AS.

7.2 Construction Time and Index Size
Table 4 and 5 show the construction time and the index

size on the three datasets. The n-gram length is set at n=5
for all datasets. As the selection of n value has been com-
prehensively investigated in existing n-gram based methods,
we skip the results here. In AppGram, the gram length for
the lower level is set at 3. As shown in the figure, the Bed-
tree takes less time and smaller space than AppGram and
Flamingo. Since the AppGram decomposes the sequences
into n-grams without any prefix and suffix, it takes slight-
ly smaller space than the Flamingo. The AppGram takes
slightly more construction time than the Flamingo, as it
needs to build the lower-level index for the n-grams in the
upper level. As the binary file for the TopkSearch algorithm
does not provide the preprocessing time and space costs, we
exclude the results on this method.

To evaluate the space and time overhead on the extra
lower-level index, we present the percentage of total index

3http://www.informatik.uni-trier.de/∼ley/db
4http://arnetminer.org/citation

9

Table 4: Construction time (sec)

AppGram Bed-tree Flamingo
IMDB 13 57 25.59
DBLP 154.3 35 116.22
ANNOTEXT 89.3 45 64.12

Table 5: Index size (MB)

AppGram Bed-tree Flamingo
IMDB 108 63.2 159
DBLP 563 222.9 608
ANNOTEXT 444 183.7 492

cost on three datasets in Figure 10. Obviously, the lower-
level index has a very small ratio compared with the upper-
level index. As shown in the figure, it represents 11.1% of the
index size over the IMDB dataset, and no more than 5% of
the index size over the DBLP and ANNOTEXT datasets.
This small cost indicates that the overhead for the lower-
level processing with queries may be negligible compared
to the total time cost. We will present more results in the
following subsections.

7.3 Quality of Count Filtering
We evaluate the quality of the proposed count filtering

technique. The AppGram-0 is the proposed algorithm which
employs the common count bound with n-grams of distance
0; while the AppGram-1 is one which uses not only the com-
mon count bound but also the count filter with approximate
n-grams of distance 1. A query file of 10000 sequences are
randomly sampled from each dataset by reserving the orig-
inal distribution. We vary the edit distance threshold τ as
1, 2, 4, 8, 10, and 16. We accumulate number of sequences
which are pruned. Figure 11 shows the average number
of sequences that are filtered with respect to the edit dis-
tance threshold on the three datasets. As shown in the fig-
ure, the AppGram-1 can filter out more sequences than the
AppGram-0, which means that the proposed count filtering
based on approximate n-grams have better filtering power
than the existing common count bound.
Generally, the filtering power of the AppGram-1 prunes

about 10% more sequences compared with the AppGram-
0, and the improvement becomes more significant when the
edit distance threshold becomes larger. As shown in Fig-
ure 11(c), when the edit distance threshold becomes 8 and
16, the AppGram-1 can prune 20K sequences compared to
2K sequences that are pruned by the AppGram-0. The d-
ifference even becomes larger if we further increase the edit
distance threshold value.

7.4 Effect of Various Filters
We evaluated various ways to integrate our proposed fil-

ters with existing techniques on the three datasets. We use
the default query file containing 100 sequences. For each
query, we execute the KNN search with various k values
from 1 to 10, and count the number of accessed elements in
the list processing and the generated candidate size.
Figure 12 shows the average number of sequences on the

query inverted lists for various filter combinations. As shown
in the figure, using only the MergeSkip technique to support
dynamic count filtering will access too many sequence ids for

 0%

 20%

 40%

 60%

 80%

 100%

Size Time Size Time Size Time

P
er

ce
nt

ag
e

of
 to

ta
l i

nd
ex

 c
os

t 11.1% 5.8% 4.6% 1.3% 4.5% 1.6%

IMDB DBLP ANNOTEXT

lower−level
Upper−level

Figure 10: Percentage of the index cost

processing the inverted lists. The length filtering technique
is useful in reducing the number of entries that are accessed
for list processing. We also design an algorithm to combine
our proposed technique with the MergeSkip technique and
the length filter. It is obvious that, the combined technique
can significantly reduce the number of accessed entries in
the processed lists.

Figure 13 shows the candidate size for each filter combi-
nation. The results indicate that combining the MergeSkip
with the length filter can help to reduce the candidate size
and improve the query performance. Our proposed filter
can further reduce the candidate size. The proposed filtering
technique enhances the query performance of the MergeSkip
technique and the length filter, as this filter combination
needs access to the smallest number of entries in the invert
lists and generates the smallest number of candidates.

7.5 Query Evaluation
We evaluate the query performance of the proposed ap-

proach compared to exiting methods of Bed-tree, Flamingo,
and TopkSearch. The KNN search are conducted as follows.
We vary k over 1, 2, 4, 8, and 16. For each k, we execute the
100 queries, and compute the average of the query results.

Figure 14 shows the average query time with respect to k
on three datasets. It can be seen that the AppGram method
outperforms all the competitive techniques with k ≥2. The
proposed f-queue and CA based filtering strategies can re-
duce the cost of the candidate verification. When the k
value is as small as 1, Flamingo can run efficiently as it on-
ly needs to execute a range query once to obtain the top-1
result. In this case, a small edit distance threshold of 1
may be enough to report the top-1 sequence. Similarly, the
TopkSearch is also more efficient for k=1 as its range-based
algorithm only needs to verify a small number of entries in
the dynamic matrix. However, when the k value increases,
our AppGram method indeed outperforms other algorithms,
and has a stable average query time. Note that TopkSearch
takes too long to run on the long sequences of DBLP and
the ANNOTEXT datasets and its results are excluded.

Figure 15 compares the overhead of two query phases:
the filtering time and the candidate verification time. We
randomly select five groups of queries with various aver-
age lengths of 10, 20, 30, 40, and 50, and each group has
100 query sequences. For each group, we execute the KNN
search, and compute the average filtering time and verifi-
cation time. It is clear that candidate verification is the
most consuming step in the KNN search. That means that
a tighter bound is required for speeding up KNN search and
it is reasonable to sacrifice slightly higher filtering overhead
to reduce the candidate sequences as much as possible.

10

 0K

 100K

 200K

 300K

 400K

 500K

 600K

1 2 4 8 10

F
ilt

er
in

g
N

um
be

r

Edit Distance Threshold

PPS−1
PPS−0

(a) IMDB

 0K

 50K

 100K

 150K

 200K

1 2 4 8 16

F
ilt

er
in

g
N

um
be

r

Edit Distance Threshold

PPS−1
PPS−0

(b) DBLP

 0K

 100K

 200K

 300K

 400K

 500K

 600K

1 2 4 8 16

F
ilt

er
in

g
N

um
be

r

Edit Distance Threshold

PPS−1
PPS−0

(c) ANNOTEXT

Figure 11: Average filtering number vs. τ

 0K

 10K

 20K

 30K

 40K

 50K

 60K

 70K

 80K

 90K

1 2 4 6 8 10

A
cc

es
s

N
um

be
r

k

AppGram+MergeSkip
AppGram+Length
AppGram+MergeSkip+Length

(a) IMDB

 0K

 500K

 1,000K

 1,500K

 2,000K

1 2 4 6 8 10

A
cc

es
s

N
um

be
r

k

AppGram+MergeSkip
AppGram+Length
AppGram+MergeSkip+Length

(b) DBLP

 0K

 500K

 1,000K

 1,500K

 2,000K

 2,500K

 3,000K

 3,500K

 4,000K

1 2 4 6 8 10

A
cc

es
s

N
um

be
r

k

AppGram+MergeSkip
AppGram+Length
AppGram+MergeSkip+Length

(c) ANNOTEXT

Figure 12: Average accessed number of sequences on lists vs. k

 0K

 5K

 10K

 15K

 20K

 25K

 30K

 35K

 40K

 45K

1 2 4 6 8 10

C
an

di
da

te
 N

um
be

r

k

AppGram+MergeSkip
AppGram+Length
AppGram+MergeSkip+Length

(a) IMDB

 0K

 100K

 200K

 300K

 400K

 500K

 600K

1 2 4 6 8 10

C
an

di
da

te
 N

um
be

r

k

AppGram+MergeSkip
AppGram+Length
AppGram+MergeSkip+Length

(b) DBLP

 0K

 50K

 100K

 150K

 200K

 250K

1 2 4 6 8 10

C
an

di
da

te
 N

um
be

r

k

AppGram+MergeSkip
AppGram+Length
AppGram+MergeSkip+Length

(c) ANNOTEXT

Figure 13: Average candidate size vs. k

10-4

10-3

10-2

10-1

100

101

1 2 4 6 8 10

Q
ue

ry
 T

im
e(

se
c)

k

AppGram
Bed-tree

Flamingo
TopkSearch

(a) IMDB

10-4

10-3

10-2

10-1

100

101

102

1 2 4 6 8 10

Q
ue

ry
 T

im
e(

se
c)

k

AppGram
Bed-tree

Flamingo
TopkSearch

(b) DBLP

10-4

10-3

10-2

10-1

100

101

102

1 2 4 6 8 10

Q
ue

ry
 T

im
e(

se
c)

k

AppGram
Bed-tree

Flamingo
TopkSearch

(c) ANNOTEXT

Figure 14: Average query time vs. k

 1e−05

 0.0,001

 0.001

 0.01

 0.1

10 20 30 40 50

Q
ue

ry
 T

im
e(

se
c)

|q|

Filtering time
Verification time

(a) IMDB

 1e−05

 0.0,001

 0.001

 0.01

 0.1

 1

10 20 30 40 50

Q
ue

ry
 T

im
e(

se
c)

|q|

Filtering time
Verification time

(b) DBLP

 1e−05

 0.0,001

 0.001

 0.01

 0.1

 1

 10

10 20 30 40 50

Q
ue

ry
 T

im
e(

se
c)

|q|

Filtering time
Verification time

(c) ANNOTEXT

Figure 15: Detailed analysis on the query cost vs. |q|

11

8. CONCLUSION
In this paper, we study the problem of k-nearest neigh-

bor sequence search based on edit distance. While existing
approaches often suffer from poor filtering power and low
query performance when sequences in the database are long,
we tackle the problem by designing a novel file-and-refine
pipeline approach utilizing approximate n-gram matchings.
In the filtering phase, we develop a novel filtering technique
based on counting the number of approximate n-grams. Ex-
perimental results show that this technique provides strong
pruning on the unqualified candidates. We also propose an
efficient searching algorithm with the frequency queue and
the CA strategy. The frequency queue supports our pro-
posed filtering techniques by reducing the number of can-
didate verification, while CA supports early termination to
stop unnecessary computation of the whole pipeline frame-
work. As a conclusion, our proposed filtering strategies show
excellent performance on the KNN search, and the pipeline
framework is easy to extend to parallel computation.

Acknowledgment
Wang was supported by the Singapore NRF under its IR-
C@SG Funding Initiative and administered by the IDMPO,
at the SeSaMe Centre. Tung was supported under the Cam-
pus for Research Excellence And Technological Enterprise
(CREATE) programme. Ding was supported by NSFC Chi-
na grant 61100060. Zhang was partly supported by Human
Sixth Sense Project by A*STAR at Advanced Digital Sci-
ences Center.

9. REFERENCES
[1] S. Alsubaiee, A. Behm, and C. Li. Supporting

location-based approximate-keyword queries. In ACM
GIS, pages 61–70, 2010.

[2] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact
set-similarity joins. In VLDB, pages 918–929, 2006.

[3] X. Cao, S. C. Li, and A. K. H. Tung. Indexing dna
sequences using q-grams. In DASFAA, pages 4–16,
2005.

[4] S. Chaudhuri and R. Kaushik. Extending
autocompletion to tolerate errors. In SIGMOD, pages
707–718, 2009.

[5] D. Dong, L. Guoliang, F. Jianhua, and L. Wen-Syan.
Top-k string similarity search with edit-distance
constraints. In ICDE, 2013.

[6] R. Fagin, A. Lotem, and M. Naor. Optimal
aggregation algorithms for middleware. In PODS,
pages 102–113, 2001.

[7] L. Gravano, P. G. Ipeirotis, H. V. Jagadish,
N. Koudas, S. Muthukrishnan, and D. Srivastava.
Approximate string joins in a database (almost) for
free. In VLDB, pages 491–500, 2001.

[8] H. W. Kugn. The hungarian method for the
assignment problem. Naval Research Logistics,
2:83–97, 1955.

[9] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering
algorithms for approximate string searches. In ICDE,
pages 257–266, 2008.

[10] C. Li, B. Wang, and X. Yang. Vgram: improving
performance of approximate queries on string
collections using variable-length grams. In VLDB,
pages 303–314, 2007.

[11] G. Li, D. Deng, J. Wang, and J. Feng. Pass-join: a
partition-based method for similarity joins. PVLDB,
5(3):253–264, 2011.

[12] W. J. Masek and M. Paterson. A faster algorithm
computing string edit distance. JCSS, 20(1):18–31,
1980.

[13] G. Navarro. A guided tour to approximate string
matching. ACM Comput. Surv., 33(1):31–88, 2001.

[14] G. Navarro, R. A. Baeza-Yates, E. Sutinen, and
J. Tarhio. Indexing methods for approximate string
matching. IEEE Data Eng. Bull., 24(4):19–27, 2001.

[15] R. Prasad and S. Agarwal. Study of bit-parallel
approximate parameterized string matching
algorithms. In CCIS, pages 26–36, 2009.

[16] J. Qin, W. Wang, Y. Lu, C. Xiao, and X. Lin.
Efficient exact edit similarity query processing with
the asymmetric signature scheme. In SIGMOD, pages
1033–1044, 2011.

[17] Z. Su, B.-R. Ahn, K.-Y. Eom, M.-K. Kang, J.-P. Kim,
and M.-K. Kim. Plagiarism detection using the
levenshtein distance and smith-waterman algorithm.
In ICICIC, 2008.

[18] E. Sutinen and J. Tarhio. Filtration with q-samples in
approximate string matching. In CPM, pages 50–63,
1996.

[19] I. H. Toroslu and G. ı́çoluk. Incremental assignment
problem. Inf. Sci., 177(6):1523–1529, 2007.

[20] Ukkonen and Esko. Approximate string-matching with
q-grams and maximal matches. Theor. Comput. Sci.,
92:191–211, 1992.

[21] R. Vernica and C. Li. Efficient top-k algorithms for
fuzzy search in string collections. In KEYS, pages
9–14, 2009.

[22] J. Wang, J. Feng, and G. Li. Trie-join: efficient
trie-based string similarity joins with edit-distance
constraints. PVLDB, 3(1-2):1219–1230, 2010.

[23] J. Wang, G. Li, and J. Feng. Can we beat the prefix
filtering? an adaptive framework for similarity join
and search. In SIGMOD, 2012.

[24] W. Wang, C. Xiao, X. Lin, and C. Zhang. Efficient
approximate entity extraction with edit distance
constraints. In SIGMOD, pages 759–770, 2009.

[25] X. Wang, X. Ding, A. K. H. Tung, S. Ying, and H. Jin.
An efficient graph indexing method. In ICDE, 2012.

[26] S. Wu, U. Manber, and E. W. Myers. A subquadratic
algorithm for approximate limited expression
matching. Algorithmica, 15(1):50–67, 1996.

[27] X. Yang, B. Wang, and C. Li. Cost-based
variable-length-gram selection for string collections to
support approximate queries efficiently. In SIGMOD,
pages 353–364, 2008.

[28] Z. Yang, J. Yu, and M. Kitsuregawa. Fast algorithms
for top-k approximate string matching. In AAAI, 2010.

[29] Z. Zhang, M. Hadjieleftheriou, B. C. Ooi, and
D. Srivastava. Bed-tree: an all-purpose index
structure for string similarity search based on edit
distance. In SIGMOD, pages 915–926, 2010.

[30] M. Zini, M. Fabbri, M. Moneglia, and A. Panunzi.
Plagiarism detection through multilevel text
comparison. In AXMEDIS, pages 181–185, 2006.

12

