
Querying Complex Spatio-Temporal Sequences in
Human Motion Databases

Yueguo Chen #, Shouxu Jiang ∗, Beng Chin Ooi #, Anthony K.H. Tung #

#School of Computing, National University of Singapore
Computing 1, Law Link, Singapore 117590

{chenyueg, ooibc, atung}@comp.nus.edu.sg

∗School of Computer Science and Technology, Harbin Institute of Technology
Harbin, China 150001
jsx@hit.edu.cn

Abstract— Content-based retrieval of spatio-temporal patterns
from human motion databases is inherently nontrivial since
finding effective distance measures for such data is difficult. These
data are typically modelled as time series of high dimensional
vectors which incur expensive storage and retrieval cost as a
result of the high dimensionality. In this paper, we abstract such
complex spatio-temporal data as a set of frames which are then
represented as high dimensional categorical feature vectors.

New distance measures and queries for high dimensional
categorical time series are then proposed and efficient query
processing techniques for answering these queries are developed.
We conducted experiments using our proposed distance measures
and queries on human motion capture databases. The results
indicate that significant improvement on the efficiency of query
processing of categorical time series (more than 10,000 times
faster than that of the original motion sequences) can be achieved
while guaranteeing the effectiveness of the search.

I. INTRODUCTION

Content-based retrieval of spatio-temporal patterns from
human motion databases is inherently nontrivial since finding
effective distance measures for such data is difficult. Defining
similarities (or distances) on such data is difficult because
of three reasons: 1) it’s hard to extract effective numerical
features from them such that an effective distance can be
aggregated based on the pair-wise differences of the fea-
tures; 2) the transformed data (features) are typically in high
dimensional space, while the similarities between two such
sequences may only exist in some subspace of the overall
spatio-temporal space. The simple aggregation of distances
may not take such partial similarity into account; 3) matching
between the sequences might not be perfect and variation
along the spatial and temporal dimensions must be taken into
account.

Many existing studies [1], [2], [3] model such data as high
dimensional trajectories where each frame or segment of the
human motion is represented as a numerical vector in the track
of the trajectories. This essentially converts the data into a
high dimensional time series and the distance between any
pair sequence is then measured based on the distance of the
two time series. However, existing studies on the distance
measures of time series [4], [5], [6], [7] have been focused
on time series with low dimensionality (usually 1-dimensional

to 3-dimensional trajectories). They cannot be easily applied
to high dimensional time series because of the following
three reasons. 1) the efficiency of warping distances for high-
dimensional time series cannot be well improved by simply
extending existing lower bounding techniques [6], [8] due to
the well-known curse of dimensionality. 2) the efficiency of
warping distances will be further weakened by the numerous
pair-wise distance computation of high dimensional numerical
vectors. 3) the numerical similarities obtained from distance
aggregation may not be effective enough, especially when
large variations (e.g. variations in shifting, scaling, directions
and rotations) exist along the spatio-temporal dimensions.

Instead of measuring numerical similarities on such com-
plex spatio-temporal data, a logic-oriented approach has re-
cently been proposed in [9] to perform discrete feature extrac-
tion on human motion capture data as a means to improve the
efficiency of content-based retrieval on motion capture data.
In this technique, a number of categorical geometric features
are extracted from snapshots of the numerical motion capture
data and sequences of extracted categorical features are used
to describe the change of logical states over time. An example
is shown in Figure 1. The efficiency is achieved through binary
operations on high dimensional categorical time series.

The advantages of extracting discrete features from com-
plex spatio-temporal data include: 1) variations within spatio-
temporal patterns are partially handled through discrete trans-
formation; 2) similarities obtained from the categorical states
are intuitive, and therefore, provide operational interfaces for
users to specify the subspace within which overall similarities
are measured; 3) the categorical format of the data reduces
the storage and computational cost of complex spatio-temporal
data. As such, the model of high dimensional categorical time
series provides a significant probe on efficient and effective
content-based retrieval of complex spatio-temporal patterns.

Most studies on data management of time series have been
focused on time series of numerical vectors [10], [11], [5], [6],
[8]. These techniques cannot be applied directly to categorical
time series. The studies on managing categorical time series
are however still limited to one dimensional data such as gene
sequences [12], [13]. To overcome this limitation, our study

...
...

...
...

...

...
...

...
...

...
...

...

f1 f2 f3 f4 fd−1 fd

1 1. . .02 00

1 0. . .02 00

1 1. . .02 10

Fig. 1. Three snapshots of d dimensional categorical vectors in a categorical time series. A local geometric feature (dimension d) of distance between feet
is marked in red.

here will focus on high dimensional categorical time series. In
this paper, we propose new distance measures and query types
for high dimensional categorical time series, which are used in
our PIPA system (a database engine for interactive media, for
supporting effective matches of multimedia objects). Efficient
query processing techniques are developed to handle the
proposed queries. Our contributions can be summarized as
follow:

• We propose the sketch query, which allows users to
retrieve complex spatio-temporal patterns by specifying
partial dimensions on some key frames. Incremental
sketch matching technique is proposed to speed up the
sketch query processing.

• We propose to segment high dimensional categorical
time series using convexes, and measure the distance
of two categorical time series in block-wise. Efficient
early abandoning technique is proposed to accelerate the
subsequence matching on clip queries.

• Extensive experiments on real-life data were conducted.
The results show that our solutions are not only efficient,
but also yielding acceptable accuracy for content-based
retrieval of spatio-temporal data.

The rest of the paper is organized as follows. Section 2
introduces some related work. Section 3 gives the problem
definition. Section 4 and Section 5 introduce the distance
definitions, queries, and related query processing techniques
of sketch query and clip query respectively. The experimental
studies are shown in Section 6, and conclusions are drawn in
Section 7.

II. RELATED WORK

A. Distances between Time Series

The distance between any two time series is essentially
computed from the aggregation of pair-wise difference of
data items within them. Traditionally, the Euclidean distance
is used to measure the distances between time series of the
same length. Warping distances such as DTW [14] and EDR
[4] have been proposed to measure distances of time series
with arbitrary lengths. The optimal alignments of data items
between two time sequences are obtained by repeating some
data items so that the lengths of two sequences can be the
same. The distance is calculated by finding the best warping
path in the distance matrix using dynamic programming, which

has a complexity of O(mn) (m and n are the lengths of
time series). Lower bounds of warping distances [6], [8] have
been proposed to prune real warping distance computation.
Although they can be extended to high dimensional time series
[15], the achieved lower bounds will be quite loose. This is
because the distance between a high dimensional data item
and a high dimensional bounding item (with an extension in
each dimension [15]) will be much less than the real distance
of two high dimensional data items without the bound.

A more common way to match time series is subsequence
matching, where a short time series is compared to a long
time series. Subsequence matching attempts to locate matching
subsequences within a long time series to a short time series
[5], and it is very useful in content-based retrieval of spatio-
temporal patterns. It is however more complex than full
sequence matching since the positions and lengths of the
matching subsequences need to be detected. Some efficient
subsequence matching algorithms [5], [16] have been proposed
recently. They detect matching subsequences in a dynamic
programming manner based on warping distance such as DTW
[16] and SpADe [5].

B. High Dimensional Time Series

Content-based retrieval based on high dimensional numeri-
cal time series is widely used in multimedia applications [1],
[2], [3], [17]. One typical example is the retrieval of motion
capture data from a large motion database, which is very
useful in computer animation. Many approaches for matching
high dimensional numerical time series are based on numer-
ical similarities, in which the high dimensional time series
data are typically decomposed into a number of trajectories
with low dimensionality (1-dimensional to 3-dimensional) [7],
[18]. Warping distances such as DTW distance are preferred
to match those low dimensional trajectories to handle time
shifting and scaling of time series.

However, due to the variations of shifting, scaling, direction
and rotation along the amplitude and temporal dimensions of
sequences, the numerical similarities obtained from the dis-
tance aggregation may be far from the logical similarities [9],
[18] based on human views. To address this problem, effective
geometric features have been subsequently proposed to map
snapshots of numerical sequences into discrete states [19],
[9]. It has been shown that using logic-oriented categorical
features not only significantly improves the efficiency of se-

quences matching but also achieves high accuracy in content-
based retrieval of human-motion data. Studies on managing
categorical time series have been focused on one dimensional
gene sequences [12], [13]. To the best of our knowledge, there
has been little study on query processing of high dimensional
categorical time series.

C. Building Categorical Time Series

Discretization of time series has been studied in [20], [21].
However, they are focused on discretizing time series of low
dimensional data. In [9], one high dimensional categorical
feature vector is extracted from one frame of human motion
data by thresholding the logic-oriented geometric relations.
Each logic-oriented geometric relation is actually a function
of spatial relationship of some local dimensions, and it is
robust to variations within local dimensions; for example, the
angle between humerus and radius, the distance between two
feet. Discretization is applied to map a geometric relation
expression to a small number of categorical states. This is very
intuitive as people are sensitive to state difference instead of
the quantitative difference in logical similarities. Discretization
partially handles variations within numerical time series as
small variation does not result in a change in the discretized
states. Hysteresis-like thresholding can be applied to avoid
random fluctuations around the thresholds [19].

III. PRELIMINARIES

A. Problem Definition

A categorical time series instance S is represented as S[1 :
T]. S[t], the snapshot of S at time point t, is a d-dimensional
categorical vector. For those categorical vectors extracted from
complex spatio-temporal data, d is typically very large, e.g.,
more than 40. In this paper, we focus on finding the k nearest
neighbors (i.e. kNN queries) of a given query based on some
distance measure as it is a very common query in the domains
we are studying.

The general kNN query can be described as follow: given a
small integer k, a distance function d(·, ·), a query example Q
and a high dimensional categorical time series database DB,
the kNN query retrieves a set M consists of k time series R ∈
DB such that for any time series R1 ∈ M and any time series
R2 ∈ DB − M , d(R1, Q) ≤ d(R2, Q). Different distance
measures of time series result in different query processing
solutions for the kNN queries.

B. Distances Between Categorical Vectors

A commonly used distance measure of categorical vectors is
Hamming distance. The Hamming distance of two categorical
vectors f1 and f2, denoted as H(f1, f2), is defined as the
number of non-matching dimensions of two feature vectors.
f1 and f2 are said to be matched in dimension i if f i

1 = f i
2.

If H(f1, f2) = 0, then f1 and f2 are said to be perfectly
matched.

When using Hamming distance to measure the similarities
of categorical vectors, users may only be interested in a
subset of features by specifying some dimensions that must

be matched and some dimensions which can be ignored.
Therefore, instead of matching feature vectors in all dimen-
sions, a more operable way is to match them on a user
specified subspace. We denote the full dimensional space as
Ω = {1, . . . , d}, and the subspace as π ⊆ Ω. The Hamming
distance on the subspace π can be defined as:

Definition 1 (π-Hamming distance): Given two feature
vectors f1 and f2, the π-Hamming distance of f1 and f2,
denoted as Hπ(f1, f2) is defined as the number of unmatched
dimensions of two feature vectors in subspace π.

The π-Hamming distance ignores all the dimensions in
Ω − π. Hamming distance is a specific case of π-Hamming
distance when π = Ω. Based on the basic distance measures
of categorical vectors, a binary decision on the matches of
two categorical feature vectors f1 and f2 can be made. We
say f1 and f2 are απ-match, denoted as f1 =απ f2, if
Hπ(f1, f2) ≤ α.

Besides specifying the subspace, users may also specify
some possible states on some chosen dimensions. This can be
done by giving a σ clause. A σ selection clause consists of a
number of specified features σ = {i1, . . . , im} ⊆ Ω. For each
feature j ∈ σ, a number of matched states σj = {sj1 , . . . , sjp

}
are specified (typically p = 1). Given a selection clause σ, a
feature vector f is a σ-match, denoted as f → σ, if ∀i ∈ σ,
f i ∈ σi.

Categorical time series are extracted from semantic features.
Therefore, it is quite convenient for the users to describe a
σ clause by specifying some constraints on the categorical
feature vectors. The Hamming distance, subspace π and σ
clause form three basic elements of queries on categorical time
series.

IV. SKETCH QUERIES

A. Definition

A very common query on high dimensional time series
is the sketch query, in which users describe a number of
snapshots (by specifying some π and σ clauses) and the
system returns those matching subsequences which fit the user-
specified snapshots well. For example, in animation design,
users may describe their queries by giving some sketches of
the starting pose, the ending pose and some intermediate poses
of an action. These sketches can be some σ clauses or some
examples of snapshots, which are typically not adjacent to
each other.

Formally, a sketch ϕ = {σ, f, απ} describes the snapshots
users want to retrieve. It consists of a σ clause, an example
of categorical vector f and a απ-match filtering threshold on
f . A feature vector f ′ is a ϕ-match, denoted as f ′ → ϕ, if
f ′ → σ and f ′ =απ f . The distance of f ′ to a sketch ϕ is
defined as:

d(f ′, ϕ) =
{

Hπ(f ′, f) if f ′ → ϕ;
+∞ Otherwise.

It is obvious that d(f ′, ϕ) ≤ α if f ′ is a ϕ-match. Note
that σ, α, f and π are optional in a sketch ϕ. When α is
not present, it is assumed that no απ filtering is conducted on

ϕ-match, i.e., α = +∞; If f and π are not present, the sketch
ϕ is simply a σ clause, i.e., f ′ → ϕ ⇔ f ′ → σ. In this case,
d(f ′, ϕ) = 0 if f ′ → ϕ. When σ is not present, the sketch
ϕ is simply a απ filtering. The ϕ-distance is a π-Hamming
distance of f ′ to f if f ′ =απ f .

Definition 2 (γ-distance): Given a time series R and m
sketches γ = {ϕ1, . . . , ϕm}, the γ-distance of time series
R is defined as, d(R, γ) = min(Σm

i=1d(R[ti], ϕi)), where
0 < ti+1 − ti ≤ ∆, and ∆ is the constraint on the temporal
gaps between two consecutive qualified snapshots.

In this definition, R[ti] (i = 1, . . . , m) are snapshots of
feature vectors within R. They are called qualified snapshots
if the constraints 0 < ti+1− ti ≤ ∆ (for i = 1, . . . , m−1) are
satisfied. The γ-distance of R is the minimum of the sum of
ϕ-distances of m qualified snapshots among all combinations
of qualified snapshots within R. Based on the γ-distance, we
define the kNN sketch query on categorical time series as
follows:

Definition 3 (kNN sketch query): Given a categorical time
series dataset DB, a sketch query γ and a small integer k,
the kNN sketch query retrieves a set M consisting of k time
series R ∈ DB such that for any time series R1 ∈ M and
any time series R2 ∈ DB − M , d(R1, γ) ≤ d(R2, γ).

B. ϕ-match Query Processing

The basis of a sketch query is the single sketch match,
i.e., ϕ-match. A simple ϕ-match query retrieves all feature
vectors which are ϕ-match in the time series database. The
sketch ϕ is used to describe the feature vectors of interest to
the users. The ϕ-match query can be simply processed by
performing σ-match and π-Hamming distance computation
on each feature vector within the database. A naı̈ve way to
achieve this is to linearly scan all feature vectors. However,
it is obviously expensive since there are typically millions of
categorical vectors in the database.

There are two ways of organizing categorical feature vectors
in the time series database. One way is to ignore the orders of
the feature vectors within sequences so that the same vectors
in various positions of various time series can be summarized
as one vector. A pointer list recording the positions of a feature
vector is required so that the positions of the feature vectors
can be traced back to the time series. Another way to organize
the vectors is to store them based on the orders of vectors
and sequences containing the vectors, so that fast consecutive
retrieval of feature vectors for a time series can be done. The
benefit of the former approach is that it saves both the memory
and retrieval cost as the duplications of the feature vectors are
removed within the whole database. However, since the vectors
in this approach are stored in a random order, the retrieval of
clips of time series is not convenient. Since queries on time
series require consecutive scan on the feature vectors within
time series, we choose the latter strategy in our solution.

There are many similar feature vectors, which may only
differ by a few bits to each other, especially for those neigh-
boring feature vectors. A good way to improve the efficiency
of ϕ-match processing is to develop some lower bounding

techniques on high dimensional categorical vectors, so that a
tight lower bound of ϕ-distance of similar consecutive vectors
can be efficiently calculated. We propose to use a convex to
bound a number of similar categorical vectors. The convex
provides a lower bound of ϕ-distances of all vectors within
it. Therefore, efficient pruning can be achieved by using the
convex.

A d-dimensional categorical feature vector f is actually a
word f̄ of d′ bits in memory, where d′ ≥ d as one feature
may consume more than one bit. Figure 2 shows an example
of the storage structure of a feature vector, where one feature
f i is mapped to bits f̄si to f̄ei .

f1

f2

fd

.

.

.

f

f

f

f

.

.

.

1

0

1

0

1

1

0

0

11

2

1

0

0

0

3

f

f

s

e

s

f

1

s

d

d

2

2

e

Fig. 2. Binary structure of a feature vector.

Given a number of feature vectors f1, . . . , fn, the convex
of f1, . . . , fn includes two d′-dimensional binary vectors,
c = (c�, c⊥). c� is defined as c� =

∧
i,j f̄i ⊕ f̄j , which

appears one at positions where f̄1, . . . , f̄n share common
binary values. c⊥ is defined as c⊥ = f̄1, which is the first
feature vector recording the common binary values shared by
f̄1, . . . , f̄n in the common positions represented by c�. Based
on the convex, the lower bound of π-Hamming distance of
another feature vector f to c is LB(f, c) = Dπ(c�∧(f̄⊕c⊥)).
Dπ(f̄) =

∑
i∈π

∨ei

j=si
f j , which is a function checking the

number of non-zero values of d features within the subspace
π. It is guaranteed that LB(f, c) ≤ Hπ(f, fi), i = 1, . . . , n.

Figure 3 shows an example of a convex obtained from
three consecutive feature vectors f1, f2 and f3. Here, π is
the subspace over dimensions of d1, d2, d3, d5 and d7. The
lower bound LB(f, c) is calculated based on the number of
dimensions (in π) having ones (in red of the last word). In
this example, it is 3.

A convex c is a σ-match if cj
� ∨ (cj

⊥ ∈ σj) is true, ∀j ∈ σ.
That means those common binary values in convex c must
satisfy the σ clause. It is guaranteed that all feature vectors
are not σ-matches if their convex c is not a σ-match. However,
a feature vector may not be a σ-match even though its convex
is a σ-match. Therefore, the σ-match of a convex actually
provides a lower bound on the σ-matches of the vectors it
contains.

Those bits with zeros in c� are called flexible bits as the

1f 2f 3f cc c f)(c c

d6

d7

d5

d4

d3

d1

d2

0

0

1

0

0

1

1

1

1

0

0

0

0

0

1

1

1

1

1

1

0

1

1

0

0

0

0

0

0

0

1

1

1

1

0

1

0

1

1

0

0

0

0

0

1

0

1

1

1

1

1

1 0

10

0

0

0

0

0

1

1

1

fπ

Fig. 3. An example of a convex.

convex allows variance in these bits. However, the effective-
ness of convex will be affected by the number of flexible bits
in c�, denoted as ρ. Of course, the smaller the number of
flexible bits, the tighter the convex, and the more accurate the
convex is in lower bounding ϕ-distances. However, ρ should
not be too small because small ρ limits the number of the
feature vectors that could be bounded by a convex.

We build the convexes by dividing categorical time series
into a number of segments. Each segment contains a number of
consecutive feature vectors, which are packaged into a convex.
As shown in Algorithm 1, the convexes are built incrementally.
The first feature vector is chosen as the c⊥ of a convex. The
convex expands until the number of flexible bits surpasses the
threshold ρ. A number of convexes will be learned from a
sequence by iteratively implementing the above procedure.

Algorithm 1 Convex building
1: Input: R, a categorical time series instance, R[1 : T]
2: Input: ρ, the maximial number of flexible bits
3: Output: C, the convexes of features vectors in R
4: i = 1
5: while i ≤ T do
6: c⊥ = R[i] //the first vector within a convex
7: c� =

−→
1 //a vector of ones in all dimensions

8: i + +
9: while i ≤ T do

10: c� = c�
∧

c⊥ ⊕ R[i] //enclose one vector
11: if NumberOfZeros(c�) ≤ ρ then
12: aconvex.c� = c�
13: else
14: aconvex.c⊥ = c⊥
15: C.add(aconvex) //generate a convex
16: break
17: i + +

C. Sketch Query Processing

In content-based retrieval of complex spatio-temporal pat-
terns, a single snapshot is not enough to describe a pattern
perfectly. Therefore, a number of sketches are used in a

γ sketch query, to retrieve subsequences consisting of ϕ-
match snapshots to the sketches in γ. A sketch query γ
can be processed by executing multiple ϕ-match processing
and joining the results of multiple ϕ-matches based on the
temporal gap constraints (specified in Definition 2). kNN
queries can be further conducted based on the γ-distances of
matching subsequences generated from the spatial join.

We note that a multi-way join requires linear scan of the
feature vectors (or convexes) multiple times. However, due
to the spatial constraints over consecutive ϕ-match snapshots,
the number of potential matching subsequences to γ may
be quite small after the first ϕ-match or the first few joins
of ϕ-matches. Therefore, subsequent ϕ-matches and spatial
joins may not be necessary since the potential matching
subsequences are already reduced to a very small number.
It will be more efficient if the multi-way spatial join can be
processed incrementally, so that some unnecessary linear scans
and ϕ-match joins can be pruned.

Figure 4 shows the incremental approach of sketch query
processing. Given a sketch query γ = {ϕ1, . . . , ϕ5}, ϕ1 is
first processed by a linear scan of convexes and vectors in
the database. A number of snapshots which are ϕ1-match are
retrieved after the linear scan. Next, for ϕ2 clause, we may not
need to retrieve all ϕ2-match snapshots by linear scan over all
the convexes and vectors if the number of retrieved ϕ1-match
snapshots is limited. The potential matching subsequences can
be detected by checking the successive qualified snapshots
of those ϕ1-matches. Therefore, for each matching snapshot
f1 → ϕ1 (f1 ∈ R), we try to detect successive qualified
snapshots in R by only considering the temporal region from
f1.t to f1.t+∆. By doing this sketch by sketch, the matching
subsequence is found cumulatively. The number of potential
matching subsequences drops significantly in the incremental
process. As a result, most regions are not required to be
scanned during the subsequent ϕ-match processing. Those
matching snapshots within the untouched regions are actually
pruned from the computation. The incremental sketch query
processing preforms γ distance computation and ϕ-match on
the fly, providing an effective pruning approach for the ϕ-
match processing.

* * **

** * * **

** * *

** *

* ** **

* *

ta matching subsequence

1

2

3

4

5

pruned
−matches −matches

cumulated

ϕ

ϕ
ϕ

ϕ

ϕ ϕ

ϕ

Fig. 4. Incremental sketch matching.

Along with the incremental sketch query processing, the
γ-distance of a time series is also calculated incrementally.

The best fitting combination of matching snapshots can be
detected by attaching a cumulative distance to each detected ϕ-
match. The cumulative distance of a matching snapshot can be
accumulated from the cumulative distance of its predecessor,
i.e., cd(fi) = cd(fi.predecessor)+d(fi, ϕj). The predecessor
fk of a ϕ-match snapshot fi satisfies following conditions: 1),
fi → ϕj , fk → ϕj−1. 2), fk.t < fi.t and fi.t ≤ fk.t + ∆. fk

is said a potential predecessor of fi if it satisfies conditions
1 and 2. 3), fk has the lowest cumulative distance among
all potential predecessors of fi. For the example shown in
Figure 5, all ϕ distances of matching snapshots are given in
the brackets. The γ-distance of subsequence from f1 to f6 is
7.

*

*

*

*

*

*

3

2

4 (0)

(2)

t

1 (2)

5 (1)

(3)

f

ff
f

f

f

1

2

4

5

6

ϕ

ϕ

ϕ

ϕ

(1)3

ϕ

Fig. 5. Computing γ-distance.

V. CLIP QUERIES

A. Distances Between Categorical Time Series

The distance between time series is calculated from the
aggregation of pair-wise differences of data items within
two time series, regardless of the factual distance used. For
categorical time series, the pair-wise distance is actually the
π-Hamming distance of two categorical vectors. However, the
neighboring categorical vectors within one time series are
typically identical or quite similar to each other as they are
extracted from consecutive frames of spatio-temporal data,
especially when the spatio-temporal data is in high sampling
rate or low changing rate. The naive way of pair-wise distance
aggregation on those near-duplicative vectors may accrue some
disadvantages: 1), the distance of time series will be mainly
determined by those sub-regions where intensive duplications
exist, while these regions do not provide too much semantics
information since the changing rate of time series is slow over
these sub-regions. 2), the large number of the resultant distance
aggregation (pair-wise) is not efficient; 3), the duplicated
aggregation of π-Hamming distance caused by duplications
of feature vectors does not make too much sense when local
time scaling is present as in many cases of complex spatio-
temporal data.

Many studies in content-based retrieval of videos avoid
the near-duplication problem by segmenting video sequences
and extracting key frames from the video sequences. The
similar idea can be applied to high dimensional categorical
time series by applying the convex technique. Following the
Algorithm 1, a categorical time series can be partitioned into a
number of segments/blocks. The similarities of vectors within

one block are controlled by the threshold of flexible bits ρ.
Upon measuring distances of categorical time series, instead
of using pair-wise distance aggregation, we propose to use
block-wise distance aggregation. Given two convexes c1 and
c2, the block-wise distance between c1 and c2 is defined
as d(c1, c2) = Dπ((c1.c⊥ ⊕ c2.c⊥) ∧ c1.c� ∧ c2.c�). The
block-wise distance of two time series is then defined as the
aggregation of block-wise distances of convexes within the
two time series.

B. Clip Queries

We next look at a clip query which retrieves the similar
categorical time series instances (or subsequences of time
series) of a given query instance of time series. Depending
on the matching sequences, clip queries can be classified into
full clip queries and subsequence clip queries. In full clip
queries, the query clip is compared to the whole time series in
the database while in subsequence clip queries, the query clip
may be matched to any subsequence of the time series within
database. It is obvious that subsequence clip queries are more
complex than full clip queries. Full clip queries have been well
studied. Subsequence clip queries on the other hand are more
useful since users may only provide a query example of a short
clip, and the matching clips are most likely to be subsequences
within the long time series instances. Consequently, we are
more interested in subsequence clip queries. Given a query
clip Q and a time series R, we define the τ -distance between
R and Q as:

Definition 4 (τ -distance): dτ (R,Q) = min d(R′, Q),
where R′ is any subsequence of R, and d(R′, Q) is a full
clip block-wise distance between R′ and Q.

Note that distance function d(·, ·) can be any distance
measure of time series. However, we propose to use DTW
distance as it handles temporal shifting and scaling between
two time series. Moreover, it is widely used as a distance
measure of time series. Based on τ -distance, the kNN clip
query is defined as:

Definition 5 (kNN clip query): Given a categorical time se-
ries dataset DB, a clip query Q and a small integer k, the
kNN clip query retrieves a set M consisting of k time series
R ∈ DB such that for any time series R1 ∈ M and any time
series R2 ∈ DB − M , dτ (R1, Q) ≤ dτ (R2, Q).

C. Clip Query Processing

Note that a time series instance R within DB may be much
longer than the query clip Q. The number of subsequences of
R will be extremely large as subsequences of various lengths
must be allowed in order to handle temporal shifting and
scaling between the matching subsequences and Q. Due to the
properties of high dimensionality and categorization, indexing
techniques on DTW distance [6], [8] cannot be applied to high
dimensional categorical time series. It will be very expensive if
all subsequences are extracted from R, and linearly compared
to Q based on the full clip block-wise distances.

A better solution for matching subsequences is to use the
dynamic programming approach for linear scan [5], [16]. For

the query Q with m blocks (convexes) and time series R
with n blocks, a matrix of n × m is used to calculate the
τ -distance between R and Q. The τ -distance dτ (R,Q) is
determined by the best matching subsequence in R. It is
calculated column by column in the distance matrix. Within
each column, we accumulate distances from bottom to up,
based on the block-wise distances of two convexes. According
to DTW distance, the cumulative distance at position [i, j] is
aggregated as d[i, j] = min(d[i, j − 1], d[i− 1, j], d[i− 1, j −
1]) + d(R.ci, Q.cj), with d[i, 1] = d(R.ci, Q.c1). Therefore,
d[i1, j] is calculated before d[i2, j] if i1 < i2 and d[i, j1] is
calculated before d[i, j2] if j1 < j2.

Note that the dominant computational component of τ -
distance is from the numerous block-wise distance computa-
tion and the accumulating of distances in the distance matrix.
To improve the efficiency of τ -distance computation, we
propose an early abandoning technique to avoid some distance
computation within the distance matrix. Given a pruning
threshold ε (achieved in the early stage of kNN query and
refined in the later stage), the bound of a column i, denoted
as hi, is defined as:

hi =

1 if i = 0;
maxj<hi−1, d[i,j]≤ε j + 1 Else if d[i, hi−1] > ε;
maxj<m, d[i,j]≤ε j + 1 Else if d[i,m] ≤ ε;
minj>hi−1,d[i,j]>ε j Otherwise.

For each column i, the distances are first accumulated from
d[i, 1] to d[i, hi−1]. If d[i, hi−1] > ε, the distances within
column i will not be accumulated further. Otherwise, the
accumulation continues until d[i, j] > ε. The correctness of
early abandoning by the bound can be proven by induction.
Assume that all cumulative distances d[i − 1, j] > ε, where
j ≥ hi−1. Given a cumulative distance d[i, l] > ε, where
l ≥ hi−1, d[i, l + 1] must be larger than ε as d[i − 1, l] and
d[i−1, l+1] are also larger than ε. Incrementally, d[i,m] can
be proven to be larger than ε. Therefore, all cells after row l in
the column i can be pruned out for distance aggregation. As
shown in Figure 6, the bound helps to prune the real block-
wise distance computation in the regions where there are no
matching subsequences as the distances will quickly surpass
ε in these regions.

H (t, j)π11 8 6 3

5

10

5

5

8

3

5

8

6

11

9

4

9

1

4

10

2

1

7

3

6

2

7

3

8

7

5 8

12

6

7

2

9

5

6

4

9

9

10

5

6

8

8

3

6

11

4

8

12

Matching subsequence

4

5

6

m

0

t

Fig. 6. Illustration of early abandoning in subsequence clip queries.

For the given example shown in Figure 6, suppose the

pruning threshold of τ -distance is ε = 7. The cells where
the bounds of columns locate are colored with blue. In the
the current column of time t, three block-wise distances (4,
5, 6) are calculated. The distance stops from aggregation at
the third row since the row position reaches ht−1 = 3 and
d[t, 3] = 12 > ε. The bound of current column is updated as
ht = 2 where a cumulative distance of d[t, 2] = 8 exists.

VI. EXPERIMENTAL STUDY

A. Datasets

We generate the high dimensional categorical time series
from the real-life dataset of CMU motion capture database
[22]. Two thousands of human motion sequences of more
than 100 subjects are used in our experiments, with the
length of sequences varied from 2 to 22,948. The original
motion sequences are 3-dimensional trajectories of 31 joints
of human bodies. Therefore, the size of original dataset is
2.3G. Based on the geometric features proposed in [9], 46
geometric relation features are extracted in our experiments.
Among them, there are 19 pair-wise distance features (e.g.,
hand to hand distance), 11 angle features (e.g., the angle
between femur and tibia) and 15 plane features (e.g., whether
left hand is before the body). A binary vector of 56 dimensions
is generated from one snapshot of 46 dimensional geometric
relation features by categorizing these features. In our exper-
iments, each feature is categorized into at most three discrete
states. As a result, a categorical time series dataset of 2.4M is
obtained. Therefore, the compression ratio of categorical time
series to the original motion sequences is around 1 : 1000. Due
to its small size, once the whole transformed vector database
is read into the memory, it could be kept in memory without
further rereferencing. On the other hand, the original database
has to be read in and the pages are paged out if there are no
buffer pages available. Depending on the buffering strategy,
pages may have to be read in for each scan. Our experimental
platform is a PC of Pentium4 3.0G CPU with 1G RAM.

B. ϕ-match Query Processing

To show the effectiveness of categorizing high dimensional
time series, we retrieve some pairs of matching categorical
snapshots by using π-Hamming distance. Figure 7 shows 3
examples of matching snapshot pairs which have zero π-
Hamming distance. We can see that these pairs of snapshots
are quite similar. Some of the matching pairs have certain
variation on detailed poses. However, the categorical vectors
ignore small magnitude of variations, keeping those snapshots
exactly matched.

One of the advantages of extracting discrete features from
complex spatio-temporal data is to achieve efficiency on
matching spatio-temporal data. We compare the efficiency of
ϕ-match (0π-match) on categorical vectors, with range queries
(small ε such that similar selectivity is achieved to ϕ-match) on
original motion sequences (both disk-based and in-memory).
The average computational time is shown in Table I. As
expected, the results clearly show that ϕ-match on categorical
vectors are much faster than range queries on original motion

Fig. 7. Pairs of matching snapshots.

sequences, due to the efficient binary operations and small
size of categorical vectors. Moveover, many results of the
range queries on original motion sequences are far from logical
similarities due to the different variations in human motion.
While, the results of ϕ-match are quite matched.

Original Original Categorical
disk-based in-memory vectors

t(sec.) 230.1 2.66 0.116

TABLE I

EFFICIENCY ON SNAPSHOT MATCHING.

To evaluate the performance of convexes, we adjust the
matching threshold α in ϕ-match query, and compare the
efficiency of ϕ-match queries on categorical vectors with and
without convexes in Figure 8. The number of flexible bits
on building convexes is capped at ρ = 8. The results show
that ϕ-match of high dimensional categorical vectors with
convexes is more efficient than that without convexes when
the matching threshold α is small. The performance of ϕ-
match with convexes drops when α is enlarged, as the convex
is not effective enough for pruning large distances. However,
in practice, the matching threshold in απ-match is very small
(e.g., less than 6). The efficiency of ϕ-match with convex
supports will be better than direct ϕ-match on categorical
vectors.

To further study the performance of convexes, we adjust
flexible bit threshold ρ. In practice, ρ should be limited
to a small number compared to d′ (dimensions of binary
vectors) so that the derived convex can be effectively used
in pruning ϕ-distances. However large number of convexes
will be generated if ρ is set too small as it limits the number

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8

C
om

pu
ta

tio
na

l c
os

t (
m

s)

απ-match threshold α

φ-match without convexes
φ-match with convexes

Fig. 8. Efficiency of ϕ-match queries.

of feature vectors contained by a convex. Consequently, the
performance of convex scan will be dropped. The results in
Figure 9 shows the impact of ρ on the efficiency of ϕ-match
query processing. In our experiments, convexes achieve better
pruning performance when ρ = 7 ∼ 10.

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

C
om

pu
ta

tio
na

l c
os

t (
m

s)

απ-match threshold α

ρ = 4
ρ = 8
ρ = 12
ρ = 16
ρ = 20

Fig. 9. Impact of ρ on the efficiency of ϕ-match query processing with
convexes.

C. Sketch Query Processing

We evaluate the effectiveness and efficiency of the sketch
query using sketches from one time series of a swing action
in golf(time series 64 011). As shown in Figure 10, 5 key
snapshots are extracted from one query example. Assuming
a user is interested in all the swing actions of golfing in the
database, he may pose a sketch query consisting of these key
snapshots (which may already exist or be obtained from ϕ-
match queries). We use the 8π-match filtering on each sketch
in the γ query. The results of 10 nearest neighbors of the
γ sketch query are shown in Table II. The first 9 nearest
neighbors of a γ sketch query contain all swing actions of
golf (time series 64 02-64 10, 64 01 is excluded as it forms
the sketch query) in the database. Moreover, the γ distances
of these matching actions are no more than 7, which are
much more less than those of the other actions (more than

1Videos of all time series used in our experiments are available at
http://mocap.cs.cmu.edu

25). Therefore, the sketch query in our example effectively
distinguishes matching sequences from unmatched sequences.
Note that some sketch queries may not be good enough
to distinguish sequences, however, they can be modified by
refining the matching threshold α, specifying π and σ, or
providing more sketches.

Rank Results Distances Rank Results Distances
1 64 03 1 6 64 07 6
2 64 09 2 7 64 04 7
3 64 02 4 8 64 06 7
4 64 08 4 9 64 10 7
5 64 05 5 10 14 20 26

TABLE II

RESULTS OF A KNN SKETCH QUERY.

We compare the efficiency of sketch query processing of
naive spatial join with that of incremental spatial join. The
απ-match threshold α in the γ sketch query is adjusted from
0 to 10. From the results shown in Figure 11, we can see that
two sketch query processing approaches are quite efficient (no
more than 0.6 seconds). Comparatively, the incremental spatial
join is more efficient than the naive spatial join, especially
when α is small. The smaller α filters more snapshots in ϕ-
match. As a result, many regions of the incremental spatial
join are pruned in the last several linear scans of ϕ-match.
This is why the computational cost of the incremental spatial
join is around 1/5 of that of the naive spatial join, as only
one pass of linear scan is required for most of unmatched
sequences. The pruning effect of the incremental spatial join
will be more prominent if the number of sketches in a γ sketch
query is larger.

0

100

200

300

400

500

600

0 2 4 6 8 10

C
om

pu
ta

tio
na

l c
os

t (
m

s)

Snapshot matching threshold α

Naive spatial join
Increamental spatial join

Fig. 11. Efficiency of sketch queries.

D. Clip Query Processing

We now compare the accuracy and efficiency of pair-
wise distance and block-wise distance on categorical time
series over a number of clip queries. The accuracy of one
nearest neighbor classification has been widely used as an
important measure of effectiveness of time series distance
measures in many studies [4], [5], [23]. Therefore, we use
it as the benchmark for accuracy comparison. 72 time series

of moderate lengths (with 300 ∼ 600 snapshots) are randomly
chosen as query instances. We do not use too many query
examples as the class labels of the time series are not given
explicitly, and many actions within long time series need to be
checked manually. The average results of one nearest neighbor
queries are shown in table III. We can see that block-wise
distance is much more efficient than the pair-wise distance
due to the summarization of categorical vectors. The accuracy
of block-wise distance however can also be better than pair-
wise distance when the flexible bit threshold ρ is small. For
example, compared to pair-wise distance, an efficiency of 136
times faster is achieved by block-wise distance when ρ = 4,
while the accuracy is still better than that of pair-wise distance.
We should note that some error rates are generated because
there are actually no matching sequences of the query clips.

ρ Pair-wise 0 2 4 6 8
Error rate 18.1% 15.3% 15.3% 16.7% 23.6% 36.1%
Time (sec.) 66.5 4.09 1.33 0.49 0.24 0.13

TABLE III

COMPARISON OF ACCURACY AND EFFICIENCY ON ONE NEAREST

NEIGHBOR CLIP QUERIES.

To improve the efficiency subsequence matching, we ap-
ply the proposed early abandoning technique on τ -distance
computation, and test the efficiency of clip queries in Figure
12. The query clip is an action of kicking ball in soccer. We
perform several kNN queries by adjusting the parameter k.
Figure 12 shows that the less the k, the more efficiency can
be achieved by the early abandoning technique because more
pruning power is achieved when the pruning threshold ε is
smaller. We also conduct a 4NN query of this query instance
on the original motion sequences, which consumes more than
20,000 seconds. Comparatively, the categorical time series
achieves more than 10,000 times faster. Moreover, the results
of 4NN query on original sequences are far from accuracy due
to spatial variations.

0

0.5

1

1.5

2

1 2 4 6 8

C
om

pu
ta

tio
na

l c
os

t (
se

c.
)

Parameter k

Without early abandoning
With early abandoning

Fig. 12. Example of the effectiveness of early abandoning in clip query.

VII. CONCLUSIONS

In this paper, we have addressed the problem of query
processing on high dimensional categorical time series, and

Fig. 10. Snapshot examples of a γ sketch query (a swing in golf).

to the best of our knowledge, this paper is the first to
address the issue. We show that the transformation of complex
spatio-temporal data to high dimensional categorical time
series reduces the size of the database significantly. Effective
distance measures on categorical time series are developed
to perform content-based retrieval of complex spatio-temporal
data efficiently and effectively.

We define the basic distance measures of high dimen-
sional categorical time series, γ-distances and τ -distances, and
subsequently propose the sketch queries and clip queries of
the categorical time series. We also propose efficient query
processing techniques on these queries. Experiments on the
proposed distance measures and queries were conducted on
a real-life spatio-temporal dataset, the CMU motion capture
database [22]. The results demonstrate the efficiency and effec-
tiveness of our proposed distance measures and queries. The
proposed techniques significantly improve the efficiency of
kNN queries on original motion sequences up to 10,000 times
while guaranteeing the accuracy of the search. In conclusion,
query processing based on categorical time series provides
an efficient and effective means for content-based retrieval of
complex spatio-temporal sequences.

ACKNOWLEDGMENT

This work was supported in part by the National Grant
Fundamental Research 973 Program of China (Grant No.
2006CB303000), the Key Program of National Natural Sci-
ence Foundation of China (Grant No. 60533110).

REFERENCES

[1] S.-C. S. Cheung and A. Zakhor, “Efficient video similarity measurement
with video signature.” IEEE Trans. Circuits Syst. Video Techn., vol. 13,
no. 1, pp. 59–74, 2003.

[2] L. Kovar and M. Gleicher, “Automated extraction and parameterization
of motions in large data sets.” ACM Trans. Graph., vol. 23, no. 3, pp.
559–568, 2004.

[3] H. T. Shen, B. C. Ooi, and X. Zhou, “Towards effective indexing for
very large video sequence database.” in SIGMOD Conference, 2005, pp.
730–741.

[4] L. Chen, M. T. Özsu, and V. Oria, “Robust and fast similarity search for
moving object trajectories.” in SIGMOD Conference, 2005, pp. 491–502.

[5] Y. Chen, M. A. Nascimento, B. C. Ooi, and A. K. H. Tung, “Spade: On
shape-based pattern detection in streaming time series.” in ICDE, 2007,
pp. 786–795.

[6] E. J. Keogh, “Exact indexing of dynamic time warping.” in VLDB, 2002,
pp. 406–417.

[7] E. J. Keogh, T. Palpanas, V. B. Zordan, D. Gunopulos, and M. Cardle,
“Indexing large human-motion databases.” in VLDB, 2004, pp. 780–791.

[8] Y. Zhu and D. Shasha, “Warping indexes with envelope transforms for
query by humming.” in SIGMOD Conference, 2003, pp. 181–192.

[9] M. Müller, T. Röder, and M. Clausen, “Efficient content-based retrieval
of motion capture data.” ACM Trans. Graph., vol. 24, no. 3, pp. 677–
685, 2005.

[10] R. Agrawal, C. Faloutsos, and A. N. Swami, “Efficient similarity search
in sequence databases.” in FODO, 1993, pp. 69–84.

[11] Y. Cai and R. T. Ng, “Indexing spatio-temporal trajectories with cheby-
shev polynomials.” in SIGMOD Conference, 2004, pp. 599–610.

[12] S. Burkhardt, A. Crauser, P. Ferragina, H.-P. Lenhof, E. Rivals, and
M. Vingron, “Q-gram based database searching using a suffix array
(quasar).” in RECOMB, 1999, pp. 77–83.

[13] C. Meek, J. M. Patel, and S. Kasetty, “Oasis: An online and accurate
technique for local-alignment searches on biological sequences.” in
VLDB, 2003, pp. 910–921.

[14] D. J. Berndt and J. Clifford, “Using dynamic time warping to find
patterns in time series.” in KDD Workshop, 1994, pp. 359–370.

[15] T. M. Rath and R. Manmatha, “Lower-bounding of dynamic time warp-
ing distances for multivariate time series.” in University of Massachusetts
Amherst Technical Report MM-40, 2002.

[16] Y. Sakurai, C. Faloutsos, and M. Yamamuro, “Stream monitoring under
the time warping distance.” in ICDE, 2007, pp. 1046–1055.

[17] Y. Sheikh, M. Sheikh, and M. Shah, “Exploring the space of a human
action.” in ICCV, 2005, pp. 144–149.

[18] A. Veeraraghavan and A. K. R. Chowdhury, “The function space of an
activity.” in CVPR (1), 2006, pp. 959–968.

[19] M. Müller and T. Röder, “Motion templates for automatic classification
and retrieval of motion capture data,” in Proceedings of the 2006 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, 2006.

[20] E. J. Keogh, J. Lin, and A. W.-C. Fu, “HOT SAX: Efficiently finding the
most unusual time series subsequence.” in ICDM, 2005, pp. 226–233.

[21] V. Megalooikonomou, Q. Wang, G. Li, and C. Faloutsos, “A multireso-
lution symbolic representation of time series.” in ICDE, 2005, pp. 668–
679.

[22] CMU Graphics Lab Motion Capture Database,
http://mocap.cs.cmu.edu/.

[23] E. J. Keogh and S. Kasetty, “On the need for time series data mining
benchmarks: a survey and empirical demonstration.” in KDD, 2002, pp.
102–111.

