
Noname manuscript No.
(will be inserted by the editor)

Efficient and Effective Similarity Search over Probabilistic
Data Based on Earth Mover’s Distance

Jia Xu · Zhenjie Zhang ·
Anthony K.H. Tung · Ge Yu

Received: date / Accepted: date

Abstract Advances in geographical tracking, multi-
media processing, information extraction, and sensor
networks have created a deluge of probabilistic data.
While similarity search is an important tool to support
the manipulation of probabilistic data, it raises new
challenges to traditional relational databases. The prob-
lem stems from the limited effectiveness of the distance
metrics employed by existing database systems. On the
other hand, several more complicated distance opera-
tors have proven their values for better distinguishing
ability in specific probabilistic domains. In this paper,
we discuss the similarity search problem with respect
to Earth Mover’s Distance (EMD). EMD is the most
successful distance metric for probability distribution
comparison but is an expensive operator as it has cu-

Zhenjie Zhang and Anthony K. H. Tung were supported
by Singapore NRF grant R-252-000-376-279. This work is
also supported by the National Natural Science Founda-
tion of China (No. 60933001 and No. 61003058), the Fun-
damental Research Funds for the Central Universities (No.
N090104001) and the National Basic Research Program of
China (973 Program) under grant 2012CB316201.

J. Xu(�)
College of Info. Sci. & Eng., Northeastern University,
Shenyang, China
E-mail: xujia@ise.neu.edu.cn

Z. J. Zhang
Advanced Digital Sciences Center, Illinois at Singapore Pte.
Ltd, Singapore
E-mail: zhenjie@adsc.com.sg

A. K. H. Tung
School of Computing, National University of Singapore, Sin-
gapore
E-mail: atung@comp.nus.edu.sg

G. Yu
College of Info. Sci. & Eng., Northeastern University,
Shenyang, China
E-mail: yuge@ise.neu.edu.cn

bic time complexity. We present a new database index-
ing approach to answer EMD-based similarity queries,
including range queries and k-nearest neighbor queries
on probabilistic data. Our solution utilizes Primal-Dual
Theory from linear programming and employs a group
of B+ trees for effective candidate pruning. We also
apply our filtering technique to the processing of con-
tinuous similarity queries, especially with applications
to frame copy detection in real-time videos. Extensive
experiments show that our proposals dramatically im-
prove the usefulness and scalability of probabilistic data
management.

Keywords Probabilistic data management · Simi-
larity search · Earth mover’s distance · Tree-based
indexing

1 Introduction

Advances in geographical tracking [36], multimedia pro-
cessing [20,30], information extraction [37], and sen-
sor networks [18] have created a deluge of probabilis-
tic data. This trend has led to extensive research ef-
forts devoted to scalable database systems for proba-
bilistic data management [4,8,11,14,15,22,36]. To fully
utilize the information underlying these data distribu-
tions, a variety of probabilistic queries have been pro-
posed and studied in different contexts, such as Accu-
mulated Probability Query [3,35] and Top-k Query [13,
21,23,27,34]. Most of existing studies on these queries
however, simply extend the traditional database queries
on simple distance metrics, e.g., Euclidean distance,
by assuming probabilistic attributes instead of exact
ones. Unfortunately, such extensions do not necessarily
ensure the usefulness of these probabilistic databases,

2 Jia Xu et al.

humidity

.temp

%20 %30 %40 %50 %60
10C

15C

20C

25C

30C

1# 2# 3# 4#

5# 6# 7# 8#

9# 10# 11# 12#

13# 14# 15# 16#

(a) Domain of temperature & humidity

humidity

.temp

%20 %30 %40 %50 %60
10C

15C

20C

25C

30C

(b) Distribution of sensor s1

humidity

.temp

%20 %30 %40 %50 %60
10C

15C

20C

25C

30C

(c) Distribution of sensor s2

Fig. 1 Examples of probabilistic records in the form of histograms

Table 1 Example probabilistic records in Figure 1 stored in a relational table

Cells #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16
ps1 0 0 0 0 0 0 0.2 0.2 0 0.4 0 0 0.2 0 0 0
ps2 0 0 0 0 0 0 0 0.2 0 0 0.3 0.3 0 0.2 0 0

since the simple distance metrics usually fail to cap-
ture the true similarities between the distributions un-
derlying the objects. On the other hand, research re-
sults in other areas, such as computer vision, have in-
dicated that some complex distance operators, such as
the Quadratic Form Distance and the Earth Mover’s
Distance, are more significant in returning meaning-
ful results under the context of search and retrieval
on probabilistic data [28]. In this paper, we offer a
database solution to better serve physical-world appli-
cations that manage probabilistic data. In particular,
we discuss the problem of similarity search based on the
Earth Mover’s Distance (EMD) to query probabilistic
data represented as histograms1.

Since its development in the late 1990s [29], EMD
has been widely used in the analysis of probability dis-
tributions, e.g., content-based image retrieval [20,25,
30,31,33], database foreign key identification [40] and
database privacy protection [24]. To apply EMD on
probabilistic data, a probabilistic record is represented
by discrete probabilities on a group of disjoint bins that
partitions the data domains. EMD models the dissimi-
larity between two probability distributions as the min-
imal work required of moving earth (i.e., probabilities)
from the source bins to the sink bins until one distribu-
tion is equal to the other. The work is measured by the
amount of earth that is moved (called flow) and the dis-
tance moved (called ground distance). Compared to tra-
ditional bin-by-bin distances, such as Lp norms, EMD
not only considers the dissimilarities between each pair
of aligned bins but also allows the probabilities to flow
among unaligned bins. Thus, EMD is more robust to
outliers and small probability shifts, improving the ro-

1 For brevity, the probabilistic data represented in the
form of a histogram will be simply termed as histogram-
representative probabilistic data in the rest of this paper.

bustness of the similarity metric. In the following, we
introduce three examples to better illustrate the sources
of probabilistic data as well as the usefulness of EMD-
based similarity queries in these scenarios.

Example 1 Recent years have witnessed the emergence
of wireless sensor networks as an extremely helpful tool
for monitoring tasks in extreme environments. A pri-
mary challenge for these networks is to minimize the en-
ergy consumption. To save energy, a common approach
is to decrease the amount of data traffic within the
network. To this extent, probabilistic models, such as
BBQ [18] and Ken [12], are devised that try to estimate
the distributions of the measurements based on previ-
ous readings, and thus reduce the need for transmis-
sion operations. The estimation is based on historical
data using some standard machine learning algorithms,
such as Bayesian learning approach [17]. In Figure 1,
we illustrate a probabilistic model of possible readings
from sensor nodes monitoring temperature and humid-
ity. The 2D space regarding temperature and humidity
is divided into 16 bins. The distribution of the measure-
ments of sensor s1 in Figure 1(b) for example, indicates
that s1 is most likely to observe humidities in the range
of [30%, 40%] with temperatures within [20◦C, 25◦C].
Every distribution is thus represented by a histogram,
e.g., ps1 = (ps1 [1], ps1 [2], . . . , ps1 [h]), where ps1 [i] is the
probability of s1’s reading falling into bin i and h rep-
resents the number of bins. In Table 1, we list the sen-
sors’ reading distributions illustrated in Figure 1, in
which h = 16 bins are numbered by increasing humidity
and increasing temperature. Under this scenario, EMD-
based similarity queries with respect to a query q with
high probabilities on high temperature and low humid-
ity, can be helpful for a fire monitoring and alarming
system.

Efficient and Effective Similarity Search over Probabilistic Data Based on Earth Mover’s Distance 3

Table 2 Example probabilistic records for DBLP database stored in a relational table

Author AI Application Bioinformatics Database Hardware Software System Theory
John Doe 0.109 0.109 0.059 0.314 0.0987 0.091 0.123 0.093
Jane Doe 0 0.1 0.3 0 0 0.01 0.59 0

Example 2 With the emergence of the Internet, the World
Wide Web has become an important source of valu-
able information and knowledge. Due to the unstruc-
tured organization of content, extracting information
from the Internet is often rather imprecise. Probabilis-
tic representations are thus introduced to measure the
uncertainties of specific contents connected with differ-
ent topics and keywords [37]. In Table 2, for example,
we present a table with probabilities of computer sci-
ence researchers related to eight different research top-
ics, namely AI, Application, Bioinformatics, Database,
Hardware, Software, System, and Theory, based on anal-
ysis of DBLP2 [41]. A distribution-based similarity query
with respect to the record of John Doe for example, re-
sults in a list of authors with similar publication venues,
helping us to better understand research communities
related to computer science. Note that these eight top-
ics are sometimes correlated, e.g., some researchers on
data mining publish papers in both the AI and Database
topics. The correlations between different topics can
be captured by appropriately defining the ground dis-
tances in EMD.

Example 3 Earth Mover’s Distance originates from sim-
ilarity search techniques in image databases. The highly
effective capability of EMD for image retrieval has been
demonstrated in the seminal paper by Rubner et al.
[28]. By extracting the probabilistic distribution of a
certain image feature (e.g., color, shape or texture [30]),
an EMD-based similarity search will return identical
images with respect to probability distributions over
these features. Figure 2 shows an example of extracting
the RGB color distribution from an image. The RGB
color distribution, in the form of a 3D histogram, is pro-
duced by discretizing the color space into a number of
bins. For example, the RGB color space in Figure 2 is
partitioned into 216 bins by dividing each color chan-
nel into six domains. The probabilities are calculated
by counting the number of pixels falling into each bin
and dividing the counts by the total number of pixels.
Setting the RGB color histogram of the famous paint-
ing Mona Lisa as the query, the EMD-based similarity
query identifies all images in the database that have
similar colors to the Mona Lisa.

In the above examples, probabilistic data are repre-
sented by discrete probability distributions. This rep-

2 http://dblp.uni-trier.de/

Pixel R G B

P1 159 131 52

P2 28 9 9

P3 205 113 29

P4 14 5 8

Fig. 2 Example of probabilistic record in image databases

resentation is consistent with probabilistic data mod-
els proposed in state-of-the-art probabilistic relational
databases, such as the probabilistic tuple proposed in
the ProbView system [22], and the maybe x-tuple de-
fined in the TRIO project [9]. The Earth Mover’s Dis-
tance, as a very powerful distance measure, can help to
enhance the quality of similarity queries on probabilis-
tic data.

While the storage of these probabilistic records is
relatively easy, calculating the EMD is rather difficult,
since it is equivalent to solving a linear programming
problem with complexity of O(h3 log h) where h is the
number of bins in the probabilistic record. To relieve
this efficiency bottleneck, a number of approximation
techniques to reduce the computational complexity of
EMD have been proposed in the computer vision [25,33,
31] and algorithm design communities [5]. While these
techniques accelerate the calculation of EMD between
two probabilistic records, however, they all suffer from
a performance deterioration when they are applied in a
database with a large number of records.

In recent years, effort has been made to address
the similarity search problem using EMD. Most ap-
proaches to design scalable solutions utilize efficient
and effective lower bounds estimators for EMD [6,38].
These solutions are mainly built within the Scan-and-
Refine framework, which incurs high I/O costs and ren-
der low processing concurrency in the database sys-
tems. To overcome the difficulties of these methods, we
present a general approach to provide a truly scalable
and highly concurrent indexing scheme applicable to
mainstream relational databases, such as PostgreSQL3

and MySQL4.
In our approach, all probabilistic records are mapped

to a group of one-dimensional domains by using the
Primal-Dual Theory [26] in linear programming. For

3 http://www.postgresql.org/
4 http://www.mysql.com/

4 Jia Xu et al.

each one-dimensional domain, a B+ tree is constructed
to index pointers to probabilistic records based on their
mapping values. Given a range query search for proba-
bilistic records from a querying histogram within some
specified threshold, our approach transforms the origi-
nal query to a group of one-dimensional range queries
on these mapping domains, while guaranteeing that a
valid query result must reside within all of the querying
ranges on the B+ trees. These one-dimensional range
queries are thus executed in all B+ trees. Candidates
to the original range query are selected by means of
an intersection operation on all results from the range
queries. Refinements and verifications are then conducted
on the remaining candidates, and the final query results
are returned. To answer k-Nearest Neighbor (k-NN for
short) queries, we designed a progressive processing al-
gorithm, which automatically adjusts the search range
after examining partial results from the preliminary
range queries.

While traditional similarity queries are important
for the analysis and management of probabilistic records
stored in databases, continuous queries on probabilis-
tic data are recently emerging as an equally important
problem in many physical-world applications. The pro-
liferation of online video web sites, such as YouTube
and Microsoft Soapbox, has provided Internet users with
high flexibility in regards to video sharing. The pop-
ularity of video sharing however, has brought serious
problems of copyright violations. It is thus important
for such systems to support online real-time video frame
copy detection, to pinpoint potential problems with newly
uploaded videos. Environment monitoring systems us-
ing sensor networks are another example, since there are
often pressing requirements on the real-time monitoring
of environmental changes, in order to be able to timely
warn for potential hazardous situations. All of these
problems can be consistently solved if the database sys-
tem is capable of processing continuous similarity queries
over a dynamic probabilistic data stream. Specifically,
the system allows users to register different range queries,
each of which consists of a probabilistic histogram and
querying range (e.g., the color histogram of a key frame
in a movie and a certain error tolerance parameter).
For each uploaded frame, represented by its color his-
togram, the system quickly evaluates it for all of the
registered queries and then reports the similar frames
to the users.

Although it is straightforward to apply our princi-
ple of handling one-shot queries to prune unpromising
records in the streaming environment, it remains dif-
ficult to enhance the throughput of the system when
hundreds of queries are registered at the same time. In
order to further improve the performance of the system,

we devise new strategies to reduce the computational
workload. While a group of feasible solutions derived
from the dual program of EMD are also used to exam-
ine the qualification of an incoming probabilistic record
to each registered query, we enhance the pruning ability
of those feasible solutions by adaptively adjusting them
based on the incoming record. Moreover, we carefully
design a computation sharing mechanism for the con-
dition that similar queries are registered in the system.

The major contributions of the paper are summa-
rized below. Note that this paper is an extended version
of [39], with new technical contributions on the concur-
rency protocol implementation and continuous query
processing.

1. We present what is, to our knowledge, the first tree-
based indexing structure to support similarity search
on histogram-representative probabilistic data based
on the Earth Mover’s Distance.

2. We propose a new query processing technique by
transforming similarity search queries to a group of
range queries on one-dimensional mapping domains.

3. We discuss a progressive searching method to sup-
port k-NN queries with dynamic search range up-
dates.

4. We design and analyze the concurrency protocol in
our system architecture and empirically evaluate the
transaction concurrency.

5. We extend our techniques to handle continuous mon-
itoring queries on probabilistic data streams and de-
vise optimization methods to enhance efficiency.

The rest of the paper is organized as follows. Section
2 introduces the preliminaries and problem definitions.
Section 3 discusses our index structure on the proba-
bilistic records using B+ trees. Section 4 presents the
details on the algorithms for one-shot similarity queries,
i.e., range queries and k-nearest neighbor queries. Sec-
tion 5 extends our techniques to handle continuous simi-
larity queries. Section 6 evaluates our proposals with ex-
periments on physical-world data sets. Section 7 reviews
related works on probabilistic databases and Earth Mover’s
Distance and Section 8 concludes the paper.

2 Preliminaries

In this paper, we discuss the management of probabilis-
tic records represented by histograms. A histogram can
be defined as a probabilistic tuple in the ProbView sys-
tem [22] or a maybe x-tuple in the Trio project [9]. We
use D to denote the original object domain, covering all
possible states of the objects in the physical world. De-
pending on the domain specific knowledge, the object

Efficient and Effective Similarity Search over Probabilistic Data Based on Earth Mover’s Distance 5

domain is partitioned into a suitable number of h bins.
The probabilistic record of an object, represented by a
histogram, thus records the probabilities of the object
appearing in the respective bins/states.

To define Earth Mover’s Distance, a metric ground
distance on D , dij , is provided to measure the distance
between any pair of bins i and j. If Manhattan distance
is employed as dij , in the example of Figure 1(a), we
have dij = 2 when i = 10, j = 13 and dij = 1 when
i = 7, j = 8. Given the ground distance dij , the formal
definition of Earth Mover’s Distance is given below5.

Definition 1 Earth Mover’s Distance (EMD)
Given two probabilistic records p and q, the Earth Mover’s
Distance between p and q, EMD(p, q), is the optimum
achieved by the following optimization program:

Minimize :
∑h

i=1

∑h

j=1
fijdij

s.t. ∀i :
∑

j
fij = p[i] (1)

∀j :
∑

i
fij = q[j]

∀i, j : fij ≥ 0

A total of h2 variables, denoted by F = {fij}, are
used in the program above. Intuitively, each fij ∈ F is
the probability flow from bin i of p to bin j of q. There-
fore, F forms a complete flow from probabilistic record
p to probabilistic q, if and only if 1) the sum of flows
from bin i of p is exactly p[i]; 2) the sum of flows to bin
j of q is exactly q[j]; and 3) all flows are non-negative,
which are describe by the three constraints listed in the
program above. The cost of flow set F is formed by the
weighted sum over all individual flows between every
pair of bins. The Earth Mover’s Distance is the cost of
the optimal flow set (denoted as F ∗), that minimizes
the cost of transforming p to q. In Figure 3, we present
the optimal flow set from probabilistic record ps1 to
probabilistic record ps2 in Figure 1 and Table 1, with
Manhattan distance as the ground distance dij for the
domain of sensor readings. It is thus straightforward to
verify that EMD(ps1 , ps2) = 1.1.

In this paper, we study two types of similarity search
queries, namely Range Query and k-Nearest Neighbor
Query. In particular, given a snapshot of the database
D = {p1, p2, . . . , pn} with n histogram records pi, a
Range Query RQ(q, θ) consists of a querying probabilis-
tic record q and a threshold θ. The result of RQ(q, θ)
contains all records in D with an EMD to q no larger
than θ, or in other words RQ(q, θ) = {pi ∈ D | EMD(pi,
q) ≤ θ}. Similarly, a k-Nearest Neighbor query kNN(q, k)

5 None of the methods proposed in this paper depend on
the selection of the ground distance function dij .

humidity

.temp

%20 %30 %40 %50 %60
10C

15C

20C

25C

30C

humidity

.temp

%20 %30 %40 %50 %60
10C

15C

20C

25C

30C

2.0 3.0 1.0 2.0 2.0

1.102.022.021.013.012.0),(21 =´+´+´+´+´=ssEMD

Fig. 3 The optimal flow set from distribution ps1 to distri-
bution ps2

with respect to a record q and a positive integer k, finds
exactly k records in D with the lowest EMD values with
respect to q. For examples of range queries and k-NN
queries in physical-world applications, the reader is re-
ferred to Example 1-3.

In most commercial database systems, concurrency
control is an important issue. Database updates and
search queries are usually executed simultaneously in
such systems, and it is also desirable for a probabilistic
database to maximize concurrency. We therefore ensure
that our index scheme supports a high level of con-
currency. In summary, the basic problem of similarity
search we want to solve in this paper is formalized in
Problem 1.

Problem 1 Design a database indexing scheme, which
supports efficient range queries and k-NN queries based
on EMD, as well as concurrent updates at the same
time.

For Problem 1, we want to emphasize that every
user should be able to issue queries to the database at
any time and the system returns similarity search re-
sults to the user based on the current records in the
database. In some applications, this method may not
be suitable. Besides finding similar records on the cur-
rent snapshot of the database, users may also be in-
terested in monitoring every new record coming into
the database. In the following, we will give a concrete
example on such an environment.

6 Jia Xu et al.

Example 4 With the proliferation of online video shar-
ing in recent years, video copyright infringement is ap-
pearing as a major concern for video sharing systems,
such as YouTube and Facebook. There are pressing
needs for these systems to identify videos with poten-
tial problems whenever they are uploaded. A possible
solution is to keep a pool of commercial movies in the
system and checks if any new uploaded video clip in-
cludes content from these movies. In particular, it em-
ploys EMD as the underlying distance metric to com-
pare the key frames from the known movies and the up-
loaded video clips from its users. If the EMD between
frames are less than some error tolerance parameter,
the system blocks the display of the video clip.

To meet the requirements of such applications, mul-
tiple Continuous Similarity Queries are to be registered
in the database system. The system then continuously
updates the query results for each registered query upon
the insertion of new probabilistic records [7]. To sum-
marize, the formal problem formulation of continuous
similarity search query is provided below.

Problem 2 Given a group of Continuous Similarity
Queries CSQ(qi, θi), for each incoming probabilistic record
p, find out every CSQ(qi, θi), such that EMD(qi, p) ≤
θi.

To solve both problems listed above, we present sev-
eral new methods to handle EMD, utilizing the primal-
dual theory from linear programming. In the rest of this
section, we provide a brief review of the primal-dual
theory. For a more detailed explanation of this theory,
the reader is referred to [26].

The primal-dual theory states that, for any linear
program with a minimization objective, there always
exists one and only one dual program with maximiza-
tion objective. Thus, given the formulation of EMD in
Definition 1, its dual program can be constructed as
follows. In the dual program, there are 2h variables,
{φ1, φ2, . . . , φh} and {π1, π2, . . . , πh}, each of which cor-
responds to one constraint in the primal program. The
dual program can thus be written as:

Maximize :
∑h

i=1
φi · p[i] +

∑h

j=1
πj · q[j]

s.t. ∀i, j : φi + πj ≤ dij (2)

∀i : φi ∈ R
∀j : πj ∈ R

Given a linear program, a feasible solution to the
program is a set of variable values satisfying all con-
straints in the program but not necessarily optimizing
the objective function. There can be an arbitrarily large

number of feasible solutions to a linear program. As-
sume that F = {fij} and Φ = {φi, πj} are two feasible
solutions to the primal program (Equation (1)) and the
dual program (Equation (2)) of EMD respectively. We
have:

∑
φip[i] +

∑
πjq[j] ≤ EMD(p, q) ≤

∑
fijdij (3)

Equation (3) directly implies the existence of a lower
bound and upper bound on the EMD between p and q.
Our index scheme mainly relies on the feasible solu-
tions to the dual program. The upper bound, derived
with the feasible solution to the primal program will
be covered in Appendix A [1], which is used as a filter
in range query and k-NN query processing. In the fol-
lowing, we first present a simple example of a feasible
solution to the dual program.

Example 5 It is easy to verify that there is a trivial
feasible solution with φi = 1 for all i and πj = −1 for
all j, if dij is a metric distance, i.e., dij ≥ 0 for any
i and j. This feasible solution leads to a trivial lower
bound on EMD(p, q):

EMD(p, q) ≥
∑

φip[i]+
∑

πjq[j] =
∑

p[i]−
∑

q[j] = 0

We want to emphasize that all the constraints in
Equation (2) involve only Φ = {φi, πj} and dij . This
implies that the feasibility of a solution Φ only depends
on the distance metric dij , rather than p and q. Thus,
it is possible to derive a feasible solution for index con-
struction, regardless of the data distribution and the
query.

3 Index Structure and Pruning Principles

Generally speaking, our index structure employs a for-
est of B+ trees, {T1, . . . , TL}, to index pointers to the
probabilistic records in database D. Each tree Tl in the
forest is associated with a feasible solution Φl = {φl

i, π
l
j}

to the dual program of EMD. This feasible solution Φl

uniquely formulates a transformation from the proba-
bilistic domain to a one-dimensional space and facil-
itates the indexing by the B+ tree according to the
mapping values. Section 3.1 discusses the details of the
transformation and an index on the mapping values.
Furthermore, Section 3.2 provides some guidelines for
the selection of feasible solutions for the B+ trees.

3.1 Mapping to One-Dimensional Space

To facilitate the introduction of the mapping construc-
tion, we first define the concepts of key and counter-key
below.

Efficient and Effective Similarity Search over Probabilistic Data Based on Earth Mover’s Distance 7

Definition 2 Key/Counter-Key
Given a probabilistic record p and a feasible solution
Φl = {φl

i, π
l
j} to the dual program of EMD, the key of

p w.r.t. Φl given by:

key(p, Φl) =
∑

i
φl

i · p[i]

The counter-key of p w.r.t. Φl is defined as:

ckey(p, Φl) =
∑

j
πl

j · p[j]

Given a selected feasible solution Φl, the associated
B+ tree Tl simply indexes all pointers to probabilis-
tic records based on the value of key(p, Φl). Note that
the calculations on both key(p, Φl) and ckey(p, Φl) take
only O(h) time, linear to the number of bins in the ob-
ject domain. It is also important to emphasize again
that Φl is independent with respect to the query, facil-
itating the computation of key(p, Φl) before the inser-
tion of p into Tl.

To efficiently support similarity search queries, we
build up the connection between the key/counter-key
and the Earth Mover’s Distance. Specifically, the fol-
lowing two equations derive the lower bound and upper
bound on key(p, Φl), in terms of any query record q and
the distance between p and q.

Given a record p indexed by Tl and a query record
q, based on the primal-dual theory shown in Equation
(3), it always holds that:

key(p, Φl) ≤ EMD(p, q)− ckey(q, Φl) (4)

Moreover, it can be shown that:

key(p, Φl) ≥ min
i

(φi +πi)+key(q, Φl)−EMD(p, q) (5)

Proof Due to the symmetry property on the metric
distance, we have EMD(p, q) = EMD(q, p). Thus, a
lower bound for EMD(q, p) is also a lower bound for
EMD(p, q). By applying Equation (4), we have:

key(q, Φl) + ckey(p, Φl) ≤ EMD(q, p) = EMD(p, q)

(6)

Additionally, when summing up key(p, Φl) and ckey(p, Φl),
the following inequalities can be derived.

key(p, Φl) + ckey(p, Φl) =
∑

i
φip[i] +

∑
j
πjp[j]

=
∑

j
(φj + πj)p[j]

≥
∑

j
min

i
(φi + πi)p[j]

= min
i

(φi + πi) (7)

The last equality holds due to the fact that
∑

j p[j] = 1.
After combining Equation (6) and Equation (7), some
simple algebraic operations bring us to the proof of the
Equation (5). ¤

Based on the Equation (4) and Equation (5) above,
for all result records that satisfy a specific range query
RQ(q, θ), their key values must be located in the inter-
val of the domain constructed by Φl which is associated
with Tl. That is:

key(p, Φl)

∈
[
min

i
(φi + πi) + key(q, Φl)− θ, θ − ckey(q, Φl)

]
(8)

This implies a simple scheme to handle range queries
w.r.t. EMD. Given a range query RQ(q, θ), a group of
one-dimensional sub-queries are constructed by means
of Equation (8), according to each Φl associated with
Tl. These sub-queries are then run on the corresponding
B+ trees. A probabilistic record p is a valid candidate
for RQ(q, θ), only when p appears in all results of the
sub-queries. Therefore, the intersection of all sub-query
results generates a candidate set for RQ(q, θ). Details
of the algorithms will be covered later in Section 4.1.

There are a couple of important advantages to our
indexing scheme from a system’s perspective. First, the
B+ tree is an I/O efficient structure for query process-
ing. The existing solutions to similarity searches using
EMD based on the Scan-and-Refine framework, incur
high I/O costs during candidate selection. Our scheme
dramatically alleviates this problem by using the B+

tree to conduct the first candidate pruning step. Sec-
ondly, the B+ tree structure is a well studied and opti-
mized data structure, available in most commercial re-
lational database package, making it easy to implement
our scheme in any system. This helps to reduce the de-
velopment difficulty of our index structure. Moreover,
our indexing scheme is able to achieve high through-
put in physical-world applications and directly supports
transactions, since the B+ tree structure is friendly to
transaction management and supportive to high con-
currency. These properties widen the applicability of
our indexing scheme, especially in web-based applica-
tions, when different participants are simultaneously
updating and querying the database system.

It is also worthwhile to note that alternative solu-
tions are possible for indexing the probabilistic records.
One could choose to employ other multidimensional in-
dex trees, such as an R Tree instead of a group of B+

trees. However, the curse of dimensionality will lead to
inefficient pruning and low concurrency performance.
The architecture employing B+ trees also enhances the
flexibility of the system with respect to the number of
adopted feasible solutions. A B+ tree associated with
a specific feasible solution can be easily inserted or re-
moved at run time, without affecting the other trees.
This facilitates simple tuning of the system when the
data distribution changes over time.

8 Jia Xu et al.

3.2 Selection of Feasible Solutions

The performance of the indexing scheme depends on
the selection of the feasible solutions {Φl} for the B+

trees {Tl}. In Example 5, we showed that some feasi-
ble solutions only provide trivial bounds on EMDs. In
this section, we will discuss the issue of finding better
feasible solutions to improve the efficiency of similarity
query processing.

The first question we will study is whether we can
construct a feasible solution minimizing the gap be-
tween the lower bound and upper bound in Equation
(8). Intuitively speaking, a smaller gap will lead to bet-
ter pruning effects. Unfortunately, the following lemma
shows that there is a lower bound on the gap which indi-
cates that no matter how we perform the optimization
the gap cannot be zero.

Lemma 1 For any feasible solution Φl, the gap be-
tween the lower and upper bound used on the range
query RQ(q, θ) in Equation (8) can not be smaller than
2θ.

Proof The gap between the lower bound and upper
bound on the range query RQ(q, θ) in Equation (8) is
minimized with the following inequalities.

(θ − ckey(q, Φl))−
(
min

i
(φi + πi) + key(q, Φl)− θ

)

= 2θ −min
i

(φi + πi)− (ckey(q, Φl) + key(q, Φl))

≥ 2θ − (ckey(q, Φl) + key(q, Φl))

≥ 2θ (9)

The first inequality is due to the metric property of dij

and the constraint on φi and πj , i.e., φi +πi ≤ d(i, i) =
0. The second inequality is derived by employing the
fact that the lower bound of EMD(q, q) equals to 0. ¤

To find a feasible solution with the minimum gap for
all data records is non-trivial. Due to the complexity of
the high-dimensional probabilistic data space, a perfect
feasible solution for probabilistic record p1 and query
q may not be a good choice for probabilistic record p2

and q. Because we do not have an algorithm that prov-
ably finds a gap-minimizing feasible solution, we adopt
two heuristic schemes to generate near-optimal feasi-
ble solutions for the dual program of EMD. Generally
speaking, our selection method tries to avoid dominated
feasible solutions.

Definition 3 A feasible solution Φ is dominated by an-
other feasible solution Φ′, if φ′i ≥ φi for all i and π′j ≥ πj

for all j.

A dominated feasible solution is undesirable, since
it will always lead to weaker bounds, i.e., key(p, Φ) ≤

key(p, Φ′) and ckey(q, Φ) ≤ ckey(q, Φ′) for any p and q,
when Φ is dominated by Φ′. Basically, our scheme de-
pends on the next lemma to eliminate dominated fea-
sible solutions.

Lemma 2 If Φ is the optimal solution to the dual pro-
gram on EMD(p, q) for any p, q, it is not dominated
by any other feasible solution Φ′.

Proof If there exists some feasible solution Φ′ dominat-
ing Φ, it is true that φ′i ≥ φi for all i and π′j ≥ πj for
all j. This leads to the following inequality.

∑
i
φ′ip[i] +

∑
j
π′jq[j] ≥

∑
i
φip[i] +

∑
j
πjq[j] (10)

Since Φ′ is also a feasible solution to the constraints, Φ′

is then a better solution than Φ to the dual program on
EMD(p, q). This contradicts to the optimality condi-
tion of Φ for the dual program. Therefore, such Φ′ does
not exist. ¤

Lemma 2 shows that a non-dominated feasible solu-
tion can be identified by calculating the optimal solu-
tion to the dual program of EMD(p, q) for any pair of
probabilistic records p and q. Therefore, the selection of
a feasible solution for tree Tl is equivalent to the selec-
tion of an appropriate probabilistic record pair (p, q).
In the following, we present two heuristic schemes for
this selection procedure.
Clustering-Based Selection: In this scheme, the sys-
tem applies a uniform sampling algorithm to retrieve a
small sample set S from the probabilistic record database
D. A clustering algorithm is then run on the sample
set S to discover a group of representative records, i.e.,
R = {p1, p2, . . . , pk}. For every pair of pi and pj in R,
the system calculates the optimal solution to the dual
program of EMD(pi, pj) using the Alpha-Beta Algo-
rithm [26]. This generates k(k−1)

2 feasible solutions for
our B+ trees to use. To ensure every tree Tl is assigned
with one feasible solution Φl, we select a sufficiently
large k so that k(k−1)

2 ≥ L, where L is the number of
B+ trees.
Random-Sampling-Based Selection: The clustering-
Based Selection is rather expensive due to the cluster-
ing phase. To reduce the computational costs, a much
cheaper random-sampling-based scheme is proposed. Given
a probabilistic database D, for each tree Tl, the new
scheme randomly picks two records pi and pj from D.
The optimal solution to the dual program of EMD(pi, pj)
is used for mapping probabilistic records to key values
in tree Tl. In Section 6, we will provide detailed empir-
ical evaluations on the performance of the two schemes
defined above.

Efficient and Effective Similarity Search over Probabilistic Data Based on Earth Mover’s Distance 9

1s 2s 3s 4s 5s 6s 7s 8s 9s 10s 11s 12s 13s 14s 15s 10s 6s 3s 15s 9s 13s 5s 14s 12s 7s 8s 4s 1s 2s 11s

5s 7s 9s

1T 2T

Fig. 4 Example of the candidate selection with the B+ trees

4 Algorithms on Range Query and k-NN Query

In this section, we present detailed algorithms for Range
Query (Section 4.1) and k-Nearest Neighbor Query (Sec-
tion 4.2). In Section 4.3 we will discuss the implemen-
tation of a concurrency protocol based on similar pro-
tocols as defined in traditional relational database. The
algorithms presented in this section provide a complete
solution to Problem 1 introduced in Section 2.

4.1 Range Query

Based on the indexing scheme and Equations (4) and
(5) introduced in the previous section, it is straightfor-
ward to design processing algorithms for range queries.

In Figure 4, we present a running example to illus-
trate the candidate selection phase with the help of the
B+ trees. Assume that there are 15 probabilistic records
{s1, s2, ..., s15} indexed in the database, and two B+

trees are constructed with Φ1 and Φ2 as feasible solu-
tions respectively. Given a range query RQ(q, θ), the
algorithm first generates two sub-range queries for T1

and T2, according to Equation (4) and Equation (5)
derived in Section 3.1. As shown in the figure, the two
sub-queries return two different sets of candidates. In
particular, the query result from T1 contains seven can-
didates, namely {s4, s5, s6, s7, s8, s9, s10}. Similarly, T2

returns six candidates based on the sub-range query,
namely {s9, s13, s5, s14, s12, s7}. The intersection of the
two sub-query results leads to the final candidate set,
{s5, s7, s9}.

Given the resulting candidates of the intersection
operation, a number of filters are run in order to fur-
ther prune the candidates. Specifically, two existing fil-
ters are employed in our algorithm, R-EMD (EMD in
the Reduced space) [38] and LBIM (Lower Bound filter
based on the Independent Minimization) [6]. For details
on the two pruning filters, we refer interested readers
to Appendix B [1]. A new Upper Bound filter, named
UBP , is employed to identify candidate records that
certainly belong to the final result. In this way, the ex-
act EMD is only calculated for a small subset of records

for which it is not obvious whether they are valid an-
swers to the range query. The UBP filter is based on
the upper bound on EMD(p, q) derived by the feasible
solution to the primal program of EMD. Details on the
filter are available in Appendix B.

4.2 k-Nearest Neighbor Query

While a range query is answered by intersecting can-
didates from the results of sub-range queries on the
B+ trees, the algorithm for k-NN query is more com-
plicated. The complication is due to the difficulty of
knowing the optimal search range to return exactly k
nearest neighbors. Intuitively, our algorithm for a k-
nearest neighbor queries implicitly generates a sequence
of candidate records based on the B+ tree index struc-
ture. These candidates are then verified with both fil-
ters and with exact EMD computations. The pruning
thresholds are accordingly refreshed when new records
more similar to query q are inserted into the temporary
result buffer. The whole algorithm terminates when all
records have been pruned or verified. In the remain-
der of this section, we will give a concrete example to
illustrate the procedure of the algorithm.

Given a query kNN(q, k), with queried probabilistic
histogram record q and a positive integer k, the algo-
rithm first constructs two iteration cursors for each B+

tree Tl. For Tl, the algorithm calculates the key(q, Φl),
based on the querying record q and the feasible so-
lution Φl. A search query with key(q, Φl) is executed
on Tl to locate the pointer in the index with a map-
ping value closest to key(q, Φl). In Figure 6, for exam-
ple, key(q, Φ1) is located in tree T1 between record s5

and s6. After the positioning with the value key(q, Φ1),
the algorithm builds two cursors

−→
C1 and

←−
C1, which are

used to crawl the pointers from the current location in
the right and left directions respectively. This implic-
itly generates two iteration lists on the record pointers.
Since there are two trees in our example, the algorithm
also initializes

−→
C2 and

←−
C2 to visit the pointers iteratively

on the other tree T2.

10 Jia Xu et al.

4s 3s 2s 1s
7s 8s 9s 11s 12s 13s 14s 15s10s

12s 7s 8s 4s 1s 2s 11s

13s 9s 15s 3s 6s 10s

5s 2 6s 1 14s 1

buffer

5s

1C

1C

2C

2C

(a) Round 1

3s 2s 1s
8s 9s 11s 12s 13s 14s 15s10s

7s 8s 4s 1s 2s 11s

9s 15s 3s 6s 10s

6s 1 14s 1

buffer

5s

17s 14s 112s

113s

1C

1C

2C

2C

(b) Round 2

2s 1s
9s 11s 12s 13s 14s 15s10s

8s 4s 1s 2s 11s

15s 3s 6s 10s

6s 114s 1

buffer

5s

27s 14s 112s

113s

7s

18s 13s 19s

1C

1C

2C

2C

(c) Round 3

Fig. 5 Running example of k-NN query processing

1s 2s 3s 4s 5s 6s 7s 8s 9s 10s 11s 12s 13s 14s 15s

1T

),(1Fqkey

5s 4s 3s 2s 1s
6s 7s 8s 9s 11s 12s 13s 14s 15s10s

10s 6s 3s 15s 9s 13s 5s 14s 12s 7s 8s 4s 1s 2s 11s

2T

),(2Fqkey

14s 12s 7s 8s 4s 1s 2s 11s

5s 13s 9s 15s 3s 6s 10s
2C

2C

1C

1C

Fig. 6 Construction of cursors for k-NN query

If the system is equipped with L different B+ trees,
there are totally 2L cursors initialized on these B+

trees. In the following, our algorithm applies the query
processing strategy similar to Top-k Query [19]. Be-
fore starting the iterations, a temporary buffer for k-
nearest neighbor results is created. In each iteration,
all cursors fetch the next record pointer on their lists in
a round robin manner. A candidate is confirmed only
when it is visited by exactly L cursors of different trees.
Once a candidate is confirmed, it is verified with the
filters and finally evaluated by means of exact EMD
computation if necessary. The new candidate p is di-
rectly inserted into the temporary buffer if it contains
less than k records. If there are k records in the buffer
and EMD(p, q) is smaller than at least one existing
record in the buffer, p replaces the record in the buffer
which has the maximal distance to querying record q.
When such a replacement happens on the buffer, the
algorithm also updates the maximal distance thresh-

old for other unvisited records in the iteration lists. In
particular, the distance threshold is derived according
to the maximal distance from the records in the buffer
to the query record q, similar to the strategy used for
the range query. Such distance thresholds help the al-
gorithm to prune candidates unlikely to be closer to
q than the existing records in the buffer. In Figure 5,
we give an example to show how the algorithm iter-
ates on the cursor lists, with the parameter k = 2. In
the first iteration, all cursors read the first record in
their lists. Since s5 is on the top of two cursor lists,
it is directly added into the temporary buffer. The sec-
ond iteration does not select any record because no new
record has accumulated enough appearances in the cur-
sor lists. The third iteration selects the record s7. The
buffer now consists of k = 2 candidates, letting the al-
gorithm know that records with distance larger than
EMD(s7, q) cannot be part of the query result. This
leads to the elimination of the records on the tails of
the cursor lists. Similar to range query algorithm, our
k-nearest neighbor query algorithm applies all the fil-
ters used in range query algorithm, except for the filter
UBP .

The complete pseudocode of the query processing is
listed in Algorithm 1.

4.3 Concurrency Control

The algorithms presented in previous sections all as-
sume that there is a single thread visiting the database
to answer similarity queries. In practice, to maximize
the usefulness of the system, most commercial rela-
tional database systems allow multiple threads to ac-
cess the database at the same time. These threads can
generally execute any type of operations on data, in-
cluding record insertion, deletion and querying. As is
pointed out in Problem 1, it is important for the index-
ing scheme to support concurrency protocols. If these

Efficient and Effective Similarity Search over Probabilistic Data Based on Earth Mover’s Distance 11

Algorithm 1 k-NN Query (query record q, parame-
ter k, B+ trees {Tl})
1: for each Tl do
2: find the record pointer pl indexed in Tl with the closest

mapping value to key(q, Φl)

3: initialize
−→
Cl and

←−
Cl from the pointer pl

4: initialize each element in array status as 0
5: τ = ∞
6: while TRUE do
7: for each Tl do

8: if
−→
Cr.next(τ) 6= NULL then

9: rId =
−→
Cl.getNext()

10: status[rId] + +
11: if status[rId] == L then
12: checkList.add(rId)

13: if
←−
Cl.next(τ)! = NULL then

14: lId =
←−
Cl.getNext()

15: status[lId] + +
16: if status[lId] == L then
17: checkList.add(lId)
18: if (cannot getNext in all trees)

&&(checkList.empty==TRUE) then
19: break the while loop
20: for each element eli in checkList do
21: if max

l
(key(eli, Φl) + ckey(eli, Φl)) > τ then

22: break
23: else if can be filtered by R-EMD then
24: break
25: else if can be filtered by LBIM then
26: break
27: else
28: if EMD(eli, q) < τ then
29: kNNList.add(eli)
30: if kNNList.size == k + 1 then
31: delete the one in kNNList with the

largest EMD to q
32: τ = max

i
(EMD(kNNList[i], q))

33: Output all records in kNNList

protocols are not supported, the index structure will
become the bottleneck of the probabilistic database,
since all operations need to access it. Insertion and dele-
tion operations, for example, must modify the index
structure to refresh the existence of a record. Similar-
ity queries, on the other hand, also rely on the con-
sistency of the index to locate if records truly exist in
the database. In this section, we design and analyze the
concurrency control protocol on our tree-based index-
ing structure.

Our concurrency control protocol employs the Read-
Committed isolation [10] from standard databases. Com-
pared with the most stringent isolation, namely the Se-
rializable isolation, Read-Committed isolation can pre-
serve consistency and provide high concurrency perfor-
mance, because it releases read locks as soon as the
read operation is finished. Recall the example showing a
range query in Figure 4. Based on the Read-Committed
protocol, during the range searching on leaf nodes of

tree T1, the system locks6 the record pointer s4 at first.
Once the s4 is successfully read, the system releases
its read lock and then continues to block s5. Thus, the
bottom level of tree T1 from s4 to s10 are locked one
by one during the searching procedure. Moreover, the
algorithm also locks the intermediate nodes in the tree
which lead the algorithms from root to s4. Similarly,
record pointers s9 to s7 in tree T2 are also sequentially
blocked whenever their contents are accessed. Note that
all of the locks are executed from left to right in the in-
dex structure, which is an important property for avoid-
ing deadlock.

For a k-nearest neighbor query, the algorithm locks
all intermediate structures routing to its reference pointer
pl on tree Tl. During the iterations of the algorithm, it
orderly locks every pointer it has to access from both
cursor lists on tree Tl, in effect executing the locks in
both directions. In the following, we show that our in-
dex structure always outputs consistent results, no mat-
ter how many threads are allowed in the system.

Lemma 3 Our index structure always outputs consis-
tent query results when the concurrency protocol is ap-
plied.

The proof of the lemma simply relies on the prop-
erties of the Read-Committed isolation [10]. Although
Lemma 3 guarantees the consistency of the query re-
sults, it does not ensure the system is deadlock-free. For
one thing, insertion or deletion in a B+ tree might cause
deadlocks, in that adding or removing pages sometimes
requires the writing thread locks its parent page. Re-
call that when we locate a record, we lock pages from
top to bottom. Thus, locking a parent page reverses the
locking order and brings the potential risk for lock con-
tention. Additionally, k-NN queries may conflict with
other operations. The major reason behind the dead-
locks caused by k-NN queries is that all other opera-
tions are visiting the index structure from left to right,
while k-NN queries move the cursors in two reverse di-
rections. It is thus impossible to avoid deadlocks in our
system. Whenever the system encounters a deadlock, in
our implementation, it rolls back the transaction with
the least number of locks. In Section 6.2.3, we provide
empirical evaluations of our concurrency protocol with
respect to the system efficiency and the impact of the
k-NN queries to the occurrence of deadlocks.

5 Algorithms for Continuous Similarity Queries

In the previous section we presented complete algo-
rithms to solve Problem 1. In this section we address

6 The locks mentioned in the processing of our range queries
or k-NN queries refer to read locks.

12 Jia Xu et al.

Problem 2. In the setting of continuous similarity query
processing, every new probabilistic record p coming into
the system has to be compared against each registered
query in the system. A first glance at the problem may
suggest the use of a method similar to the one defined
in the previous section. However, in Problem 2, every
range query RQ(qi, θi) may have different values for the
distance threshold parameter θi. This leads to difficul-
ties in pruning the registered queries for the incoming
probabilistic record p. To overcome these difficulties, we
propose a different framework for processing continuous
queries.

Given a feasible solution Φl to the dual program
of EMD, every registered Continuous Similarity Query
CSQ(qi, θi) is transformed into an interval on a one-
dimensional domain by the transformation in terms of
Φl. According to the theory derived in Section 2, we
know a probabilistic record p is a candidate for the
query result, only if key(p, Φl) is in the range of Equa-
tion (8). Therefore, we regard every query CSQ(qi, θi)
as an interval in a one-dimensional space, i.e.,

[
min

j
(φj + πj) + key(qi, Φl)− θi, θi − ckey(qi, Φl)

]

For every feasible solution Φl, the system stores these
intervals for all queries in an array structure Al, sorted
based on the lower boundaries of each intervals. For
each incoming probabilistic record p, the system checks
every array structure Al and identifies all queries whose
interval covers the corresponding key value of p. A query
with a potential hit from each feasible solution is called
a candidate query. After retrieving all candidate queries
from all feasible solutions, query qi can be the final can-
didate for p if it is accepted as the candidate query for
all feasible solutions. After that, other filters and ex-
act EMD computations are further run to verify if p is
within the distance θi from the candidate query qi.

The basic framework can be further improved in two
ways. First, feasible solutions are usually precomputed
by the system to construct the intervals for each reg-
istered query. When the distributions of the data and
queries evolve with the incoming data stream, some of
the feasible solutions may not be effective enough for
candidate query pruning. It is thus desirable for the sys-
tem to adaptively update feasible solutions at run-time.
Secondly, when there are multiple queries registered in
the system, it is possible to reduce the computational
workload by reusing the results of other queries for eval-
uating the qualification of the current query. Such a
computation sharing scheme is able to greatly cut the
amount of calculations needed. In the rest of this sec-
tion, we explore these two optimization techniques.

5.1 Adaptive Feasible Solution Update

When a probabilistic record p arrives in the stream,
the system needs to check the qualification of p for
each registered query qi. Given a feasible solution set
{Φl}, the system will accept p as the candidate result
of query qi only if key(p, φl) falls into the interval of
[minj(φj + πj) + key(qi, Φl)− θi, θi − ckey(qi, Φl)], for ev-
ery Φl. Therefore, a query qi is rejected as the candidate
query for record p if p fails to find its mapping position
in any filtering interval of qi constructed with Φl. As a
result, the efficiency of the continuous query processing
is highly proportional to the pruning ability of each fea-
sible solution. In a few applications of continuous query
processing, such as online video monitoring (see Exam-
ple 4), arriving records are temporally correlated, i.e.,
the probability that two consecutive frames are simi-
lar is very high. This fact indicates that optimizations
can be made by adaptively updating the feasible solu-
tions based on the recent probabilistic record coming to
the system. There are two technical problems in imple-
menting this idea: 1) When to renew a feasible solution,
so that the update will not become a burden to the
system; and 2) How to evaluate the effectiveness of a
feasible solution so that the least effective solution can
be replaced. Next, we will define the trigger event for
feasible solution update, after which the calculation of
the effectiveness of a feasible solution will be explained
in detail.

The most direct trigger event is to renew the feasible
solution set based on each incoming record. However,
gaining a new feasible solution requires running an ex-
act EMD calculation which itself is a bottleneck for the
query processing. In order to avoid incurring additional
EMD refinements, we define the trigger event as:

Definition 4 Trigger Event
A trigger event for updating the feasible solution set is
the occurrence of an inevitable exact EMD verification.

Whenever a trigger event occurs, a new feasible so-
lution, denoted as Φnew, is derived which will replace
the currently least effective feasible solution. To select
the least efficient feasible solution, the effectiveness of
a feasible solution must be measured. A feasible solu-
tion can be evaluated based on the statistical data of
its pruning ability. Assume that the system has a reg-
istered query set Q = {CSQ(q1, θ1), . . . ,CSQ(qN , θN)}
and a feasible solution set Φ = {Φ1, . . . , ΦL}. Given a
new record p, In

l (p) is a binary indicator on the qual-
ification of p for query qn with respect to the feasible
solution Φl. Specifically, In

l (p) = 1 if Φl is able to prune
p for query qn, otherwise In

l (p) = 0. After processing p
with all the feasible solutions for all queries, we have a

Efficient and Effective Similarity Search over Probabilistic Data Based on Earth Mover’s Distance 13

binary matrix Mp
L×N , named Indicator Matrix, which

records every indicator In
l (p). Based on the indicator

matrix, we define two effectiveness scores to evaluate
feasible solutions.

Definition 5 Independent Pruning Score (IPS)
Given an indicator matrix Mp

L×N , the Independent Prun-
ing Score of Φl, denoted as IPS(Φl), equals to the num-
ber of 1s in lth row of the Mp

L×N .

Therefore, the independent pruning score measures
the independent filtering capability of each feasible so-
lution.

Definition 6 Dependent Pruning Score (DPS)
Given an indicator matrix Mp

L×N , the Dependent Prun-
ing Score of Φl, denoted as DPS(Φl), is the number of
unique 1s in the lth row of the Mp

L×N , while a 1 is
unique when all other indicators amongst its column
are equal to 0.

Thus, a feasible solution with a relatively high DPS
value is better able to prune more unpromising queries
which could not be eliminated by other solutions.

We give a small example to illustrate the calcu-
lation procedure on IPS and DPS. Given four feasi-
ble solutions (Φ1, Φ2, Φ3, Φ4) and ten registered queries
(q1, · · · q10), the indicator matrix based on the process-
ing statistics with record p is shown in Figure 7, in
which cells with unique 1s are marked in grey. Based
on their respective definitions, IPS and DPS values for
Φ1 to Φ4 are listed in Table 3.

With IPS and DPS values in the table, the system
performs a two phases ranking on the feasible solutions.
First, all feasible solutions are ranked in descending or-
der according to their DPS values. We use DPS as our
first ranking criterion because DPS measures the dis-
tinct pruning ability of one feasible solution. For those
feasible solutions with the same DPS value, the system
further ranks them by their IPS values. Consequently,
the ranking of feasible solutions for our example in Ta-
ble 3 is Φ1 > Φ2 > Φ4 > Φ3. It is intuitive to understand
the meaning of the final ranking: Φ1 is the most effec-
tive feasible solution, because it can prune two unique
queries (i.e., q4 and q8) accepted by all other feasible so-
lutions. Although Φ2 and Φ4 have the same DPS value,
Φ2 is more effective than Φ4, since it can eliminate more
records than Φ4, as is shown on IPS values. Finally, Φ3

is the least effective feasible solution for its DPS value
equals to zero. Having the ranking of all feasible so-
lutions, we automatically select the least effective for
replacement. In our example, Φ3 will be removed from
the feasible solution set. After that a new feasible solu-
tion which is derived from the latest unavoidable EMD

1 0 1 111 0 1 0 1

0 0 1 010 1 0 1 0

1 0 1 110 1 0 0 1

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

 1

 2

 3

1 1 0 100 0 0 0 0 4

Fig. 7 Example of an indicator matrix based on the statistics
of processing record p. The gray squares indicate unique 1s.

Table 3 Values for IPS and DPS

Feasible Solution IPS DPS

Φ1 7 2

Φ2 5 1

Φ3 6 0

Φ4 3 1

refinement will be inserted into the solution set to coop-
eratively prune following records with those remaining
feasible solutions.

5.2 Multi-query Optimization

Because continuous queries are long-running and many
applications may register a large number of continu-
ous queries simultaneously over a shared data stream,
multi-query optimization is of importance. Our main
idea for multi-query optimization is based on the defi-
nition of an Inferrable Query Set and we give its formal
definition in Definition 7.

Definition 7 Inferable Query Set (IQS)
Given a continuous query set Q = {CSQ(q1, θ1), · · · ,
CSQ(qN , θN)}, and a certain data record p, the in-
ferable query set of query qi based on p, denoted as
IQSqi,p = {qj}, is a subset of Q which satisfies the
following inequality.

∀qj ∈ IQSqi,p EMD(qi, qj)− EMD(qi, p) > θj (11)

Theorem 1 Pruning Law for Multi-query Opti-
mization
Given a data record p and a query qi, p will not be in
the answer set for any query in IQSqi,p.

Proof Given any query qj , based on the Triangle In-
equality, we have EMD(qj , p)≥ EMD(qi, qj)−EMD(qi, p).
Thus, EMD(qi, qj)−EMD(qi, p) derives a lower bound
for EMD(qj , p). If qj ∈ IQSqi,p, based on Definition 7,
Inequality 11 holds. This leads to the conclusion that
EMD(qj , p) > θj which indicates the disqualification
of record p for query qj and proves the correctness of
Theorem 1. ¤

14 Jia Xu et al.

With the theorem given above, if qj is in IQSqi,p, we
can conclude in advance that p is not a query result for
qi. This will undoubtedly avoid the potential process-
ing for any query in IQSqi,p. Moreover, for the purpose
of guaranteeing the filtering performance of Inequality
(11), we need to make sure the value of EMD(qi, qj)−
EMD(qi, p) is at least greater than 0, or else the in-
equality defined above has no pruning effect. Our so-
lution is that we maintain a set Si = {qj |j > i} for
each query qi, where each query in Si is sorted based on
their EMD with respect to qi. Based on this order, after
an EMD refinement between qi and p, we can quickly
obtain a subset of Si with an EMD value larger than
EMD(qi, qj)−EMD(qi, p) using a binary search. After
that, the inferable query set can be found from that
subset on the basis of Inequality (11).

These two mechanisms are described in Algorithm
2. In Algorithm 2, we maintain a set Si for each query
qi. All elements in Si are the following queries of qi and
we order them by their EMD values to qi (lines 3-4).
Given an arriving probabilistic record p, we first check
whether there are any new feasible solutions generated
in the previous iteration (line 6). If there are, we cal-
culate the IPS and DPS values for all feasible solutions
based on statistical information captured in the indica-
tor matrix, which was updated during the processing
of the previous record (line 7). Then, we perform a two
phases ranking for all feasible solutions based on their
corresponding IPS and DPS values as described before
(lines 8-9). After that, we replace the least effective so-
lution with a new solution randomly chosen from the
new solution list (line 10). Within lines 14-17, we verify
p’s qualification to each registered query using L fea-
sible solutions and update the indicator matrix at the
same time. If all feasible solutions accept p as a can-
didate for query qi, we further check the qualification
of p using R-EMD, LBIM and UBp (lines 19-24). If we
still cannot eliminate p, we need to do the exact EMD
computation (line 26). Based on the calculated EMD
value, we take the multi-query optimization into oper-
ation (lines 29-33). Moreover, we add the newly gen-
erated feasible solution obtained from the exact EMD
calculation into the new solution list (line 34).

6 Empirical Studies

In this section, we will first introduce the experimental
setup (Section 6.1). Secondly, we present the experi-
mental results for one-shot queries, including the range
query (Section 6.2.1) and the k-nearest neighbor query
(Section 6.2.2). After that, a transaction throughput
test based on these two types of one-shot queries is dis-
cussed in Section 6.2.3. Finally, in Section 6.3, we eval-

Algorithm 2 Continuous Similarity Query with
Adaptive Feasible Solution Update and Multi-
query Optimization (query set Q = {q1, · · · , qN},
threshold set Θ = {θ1, · · · , θN}, and feasible solution
set Φ = {Φ1, · · · , ΦL}
1: initialize the empty result set array RS[N]
2: initialize the indicator matrix ML×N

3: for each query qi do
4: maintain a set Si={qj |N ≥ j > i

&& EMD(qi,qj)≥ EMD(qi,qj+1)}
5: for each arriving records p do
6: if newSoluList.empty()==FALSE then
7: calculate the IPS and DPS values for each Φl based

on ML×N

8: rank all feasible solutions by their DPS values
9: rank all feasible solutions that have the same DPS

value by their IPS values
10: update the Φl with the lowest rank to a new solution

randomly chosen from newSoluList
11: newSoluList.clear()
12: reset ML×N /* reset every element in ML×N to 0 */
13: candidateQuery.clear()
14: for each query qi do
15: if p cannot be filtered by all Φl then
16: candidateQuery.add(qi)
17: ML×N .update()
18: for each query qi ∈ candidateQuery do
19: if R-EMD.filter(θ) then
20: candidateQuery.delete(qi)
21: else if LBIM .filter(θ) then
22: candidateQuery.delete(qi)
23: else if UBp.filter(θi) then
24: RS[i].add(p)
25: else
26: calculate EMD(qi,p)
27: if EMD(qi,p)≤ θi then
28: RS[i].add(p)
29: for each qj ∈ Si with

EMD(qi,qj)>EMD(qi,p) do
30: if candidateQuery.exist(qj) then
31: lb =EMD(qi,qj)-EMD(qi,p)
32: if lb > θj then
33: candidateQuery.delete(qj)
34: newSoluList.add(Φnew)
35: return {RS[N]}

uate the experimental results for continuous similarity
queries. For more information about our system imple-
mentation, please access our homepage 7 to download
the Dll File and User Manual.

6.1 Experimental Setup

In this section, we introduce the experimental setup,
including the data preparation, verification methods,
parameter settings and experimental environment. We

7 http://faculty.neu.edu.cn/ise/xujia/home/

TBI-Introduction.html

Efficient and Effective Similarity Search over Probabilistic Data Based on Earth Mover’s Distance 15

Table 4 Experimental parameters. Default value is typeset in Bold

Parameters Varying Range
Search range RETINA1-θ 0.3,0.35,0.4,0.45,0.5
Search range IRMA-θ 0.3,0.4,0.5,0.6,0.7
Search range DBLP-θ 0.1,0.15,0.2,0.25,0.3
Search range MTV/Movie-θ 3,6,9,12,15
k for k-NN query 2,4,8,16,32,64
B+ tree number 1,2,3,4,5
Method for choosing feasible solutions Random-sampling-based,Clustering-based
Query number in continuous query 5,10,20,40,80
Reduced dimension in continuous query 32,64,96,128,160
Ground distance Euclidean, Manhattan
Cardinality of DBLP data set 50,100,150,200,250 (×103)

begin with describing the five physical-world data sets
used in our experiments.

We evaluate the one-shot query algorithms using
the following three real data sets, where RETINA1 and
IRMA data sets are also used by [38].
RETINA1: This is an image data set consisting of

3,932 feline retina scans labeled with various antibodies.
For each image, twelve 96-dimensional histograms are
extracted. Each bin of a histogram has a 2-dimensional
Feature Vector. Each feature vector represents the bin’s
location based on which we calculate the ground dis-
tance.
IRMA: This data set contains 10,000 radiography

images from the Image Retrieval in Medical Application
(IRMA) project [2]. For each image, a 199-dimensional
histogram is extracted based on the information of 199
patches collected at both salient points and on a uni-
form grid. There is a 40-dimensional feature vector de-
fined for each bin, which represents the 40 principal
component coefficients for each patch. For details on
the feature extraction process, please refer to [16]. With
the largest histogram dimensionality and feature vector
dimensionality, IRMA is the most time-consuming data
set for individual EMD calculations.
DBLP: This is an 8-dimensional histogram data set

with 250,100 records which was generated from the
DBLP database in October 2007. As in Example 2 of
Section 1, the 8 dimensions represent 8 different re-
search domains in computer science, namely AI, Appli-
cation, Bioinformatics, Database, Hardware, Software,
System and Theory. We define the feature vector for
each bin/research domain, considering its correlation
to the following three aspects: Computer, Mathematics
and Architecture. Thus, there is a 3-dimensional feature
vector corresponding to each histogram bin. For further
details on the DBLP data set, please refer to [41].

During the process of evaluating one-shot queries,
each complete data set is divided into a query data
set containing 100 query histograms and the remain-
ing data form the database to be queried. As a result,

SAR: R-LBIM R-EMD EMD

TBI: R-EMDB
+

Tree LBIM UBp EMD

Fig. 8 Default filter chain settings (We mark the new filters
proposed in this paper in blue)

the cardinalities of the RETINA1, IRMA and DBLP
databases are 3,832, 9,900 and 250,000 respectively. We
refer to our approach for one-shot queries as TBI (Tree-
Based Indexing). TBI-R is used to represent the TBI
employed with the feasible solutions produced by the
Random-sampling approach and TBI-C connotes the
TBI with the feasible solution generated by Clustering-
based method, as described in Section 3.2. We use the
average experimental results based on three randomly
generated feasible solutions to evaluate the performance
of TBI-R. The filter train employed in TBI-R and TBI-
C follows the default setting as shown in Figure 8, where
R-EMD [38] denotes a lower bound filter of EMD uti-
lizing the properties of EMD in the Reduced space and
LBIM is a Independent Minimization lower bound filter
described in [6]. The same sequence of filters, but now
skipping the UBP is used for the one-shot k-NN query
experiments. We compare the TBI-R and TBI-C, with
the Scan-And-Refine (SAR) algorithm as proposed in
[38]. The setup of the filter chain in SAR follows the
description in Figure 8. To the best of our knowledge,
SAR is the most efficient exact EMD-based similar-
ity search algorithm over high-dimensional histograms.
The dimension reduction matrices used in both TBI
and SAR are chosen to be the most efficient ones ac-
cording to the experimental results in [38]. Specifically
speaking, for the RETINA1 and IRMA data sets, we
use an 18- and 60-dimensional reduction matrices re-
spectively, generated using the FB-ALL-KMed method
[38]. For the DBLP data set, the filters that start with
a letter R, namely R-EMD and R-LBIM , are removed
from all filter chains, since the histogram dimensional-
ity in DBLP is 8, which is already quite low.

16 Jia Xu et al.

The following two data sets are derived to evalu-
ate the continuous similarity query algorithms. In or-
der to obtain histograms satisfying the data continu-
ity, we use two videos, i.e., a Music Video Clip and a
Movie, as the sources of query data sets. For each video
stream, we continuously sample frames at a frequency
of 4 frames per second. After that, a 256-dimensional
grey level histogram is extracted from each sampled
frame. The feature vector of each bin is set as a value
which is increased with the index number of each bin.
More information for Music Video Clip and Movie data
sets is given below.

Music Video Clip: This data set contains 1,031 grey
level histograms extracted from a music video clip of
the 2008 Olympics theme song You and Me. Its total
duration is 4 minutes and 30 seconds.

Movie: This data set contains 22,000 grey level his-
tograms extracted from a movie named Les aventures
extraordinaires d’Adéle Blanc-Sec with a total duration
of 1 hour and 53 minutes.

We randomly sample a number of frames from both
the Music Video Clip and Movie data sets to form the
registered query set. For convenience, we named our ba-
sic method of handling continuous similarity queries as
FSBP (Feasible Solution-Based Pruning) which denotes
the feasible solution-based pruning strategy without the
consideration of the adaptive feasible solution update
and multi-query optimization as mentioned in Section
5. FSBP-Adap on the other hand indicates the addition
of the adaptive feasible solution update module to the
original FSBP. Moreover, FSBP-Adap-Opt is the same
as FSBP-Adap, but now including the multi-query op-
timization module. The filter chain used in all FSBP-
based approaches is similar to the pruning sequence of
one-shot range queries, except that no B+ tree index is
built, and instead we use a group of feasible solutions
to rule out unpromising queries. We compare our three
FSBP-based approaches with SAR-Cont, which is an
implantation of SAR in the context of continuous query
processing. Instead of using the FB-All-Kmed [38] for
the generation of data-reduction matrices as used in
the experiments for the one-shot-queries, we will be us-
ing the KMedoid [38] method in the continuous query
processing experiments. Although the matrix generated
by the first method offers tighter lower bounds for the
R-EMD filter, we cannot use it under the context of
continuous query processing. For one thing, data for
continuous queries are arriving in real-time, and thus
it will not be possible to derive data distribution in
advance. Additionally, creating a dimensionality reduc-
tion matrix for high-dimensional data is time consum-

ing8, which implies that we cannot produce reduction
matrices under realistic time constraints.

For both of the evaluation of one-shot queries as well
as continuous similarity queries, we summarize their ba-
sic parameter settings in Table 4. The default value for
each parameter is highlighted in bold.

All programs are compiled using Microsoft VS 2005
under Windows XP and run on a PC with an Intel
Core2 2.4GHz CPU, 2GB RAM and 150GB hard disk.

6.2 Evaluation of One-shot Queries

The reported results on range or k-NN query are the
averages over a workload of 100 queries. To verify the
efficiency of our algorithm, we measure the Querying
CPU Time, the Number of EMD Refinements and the
Querying I/O cost in Sections 6.2.1 and 6.2.2. To eval-
uate the concurrency efficiency of our framework, we
test the Transaction Processing Throughput in Section
6.2.3.

6.2.1 Evaluation of Range Queries

Figures 9 and 10 display the impact of the similarity
search threshold on the querying CPU time and the
number of exact EMD refinements required for each
query. Figure 9 illustrates that both TBI-R and TBI-
C beat SAR where the time requirements of SAR can
be up to 3-6 times larger than that of TBI on the
DBLP data set. This is because the number of EMD
refinements in TBI is greatly reduced, especially on the
DBLP data set (see Figure 10). As discussed in the
previous sections, calculation of the exact EMD is very
expensive, and as such, the number of exact EMD cal-
culations is an important factor affecting the efficiency
of the EMD-based query processing. The reduction of
the number of EMD refinements in TBI implies that
our B+ tree-based filtering technique and UBP filter-
ing method are better suited to candidate pruning for
range queries. Moreover, TBI-R performs better than
TBI-C on all data sets.

In Figure 11, we show the average CPU time per
query as we vary the number of B+ trees in our indexing
structure. On RETINA1, the CPU time requirements
for both TBI-R and TBI-C slowly decreases and there
is no apparent difference between the two. A difference
between TBI-R and TBI-C, however is obvious on the
IRMA data set while TBI-C lags behind TBI-R in most

8 Based on the authors’ description of literature [38], for
the IRMA data set with dimensionality 199, creating a 115
dimensional reduction matrix will take many hours. This will
undoubtedly be higher for Music Video Clip and Movie data
set which both have a dimensionality of 256

Efficient and Effective Similarity Search over Probabilistic Data Based on Earth Mover’s Distance 17

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

0.3 0.35 0.4 0.45 0.5

C
P

U
 T

im
e

(S
ec

on
ds

)

Threshold

TBI-R
TBI-C
SAR

(a) RETINA1

 0

 10

 20

 30

 40

 50

 60

0.3 0.4 0.5 0.6 0.7

C
P

U
 T

im
e

(S
ec

on
ds

)

Threshold

TBI-R
TBI-C
SAR

(b) IRMA

 0

 0.05

 0.1

 0.15

 0.2

 0.25

0.1 0.15 0.2 0.25 0.3

C
P

U
 T

im
e

(S
ec

on
ds

)

Threshold

TBI-R
TBI-C
SAR

(c) DBLP

Fig. 9 Effect of range threshold on the average querying CPU time per range query

 0

 100

 200

 300

 400

 500

 600

 700

 800

0.3 0.35 0.4 0.45 0.5

E
M

D
 R

ef
.

Threshold

TBI-R
TBI-C
SAR

(a) RETINA1

 0

 100

 200

 300

 400

 500

 600

 700

 800

0.3 0.4 0.5 0.6 0.7

E
M

D
 R

ef
.

Threshold

TBI-R
TBI-C
SAR

(b) IRMA

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

0.1 0.15 0.2 0.25 0.3

E
M

D
 R

ef
.

Threshold

TBI-R
TBI-C
SAR

(c) DBLP

Fig. 10 Effect of range threshold on the average EMD refinement number per range query

 0

 0.5

 1

 1.5

 2

 2.5

1 2 3 4 5

C
P

U
 T

im
e

(S
ec

on
ds

)

Tree Number

TBI-R
TBI-C

(a) RETINA1

 0

 5

 10

 15

 20

1 2 3 4 5

C
P

U
 T

im
e

(S
ec

on
ds

)

Tree Number

TBI-R
TBI-C

(b) IRMA

 0

 0.02

 0.04

 0.06

 0.08

 0.1

1 2 3 4 5

C
P

U
 T

im
e

(S
ec

on
ds

)

Tree Number

TBI-R
TBI-C

(c) DBLP

Fig. 11 Effect of the number of B+ trees on average query CPU time per range query

of the settings. This phenomenon can be explained as
the high dimensionality of IRMA leads to worse cluster-
ing results used in the construction of the B+ indexing
trees. On the DBLP data set, which has the largest car-
dinality (cardinality = 250, 000) but the smallest his-
togram dimensionality (dimensionality = 8), the query
efficiency gradually deteriorates when more than 3 or 4
trees are employed. This phenomenon is also visible for
TBI-R on IRMA. The reason for the performance de-
terioration is that the pruning ability is strong enough
with a certain number of B+ trees. The addition of
more trees only induces higher searching times but is
unhelpful in reducing the number of candidates.

Figure 12 summarizes the experimental results on
the effectiveness of different filters used in our query
processing algorithm. The effectiveness of each filter is
evaluated by its Selectivity which indicates the average

number of records passing a specific filter per query.
We observe that filters equipped after the B+ tree filter
remain valuable for candidate pruning. Recall that SAR
also employs the R-EMD filter but is less efficient than
TBI methods, thus it can be concluded that our B+

tree index and UBP filter do provide an effective and
efficient additional pruning power. Another observation
that can be made from the figure is on the effectiveness
of UBP , where it can be seen that UBP is more effective
for lower dimensional data, especially for the DBLP
data set, as compared to higher dimensional data sets,
such as RETINA1 and IRMA.

In Figure 13, we show the impact of database car-
dinality on CPU time and the number of EMD refine-
ments. We can see that without the assistance of a B+

tree index and UBP filters, SAR suffers a quick lin-
ear increase on both CPU time as well as the number

18 Jia Xu et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

B+Index R-EMD LBIM UBP

S
el

ec
tiv

ity
 (

10
3)

TBI-R
TBI-C

(a) RETINA1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

B+Index R-EMD LBIM UBP

S
el

ec
tiv

ity
 (

10
3)

TBI-R
TBI-C

(b) IRMA

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

B+Index LBIM UBP

S
el

ec
tiv

ity
 (

10
3)

TBI-R
TBI-C

(c) DBLP

Fig. 12 Effect of filters on average selectivity per range query

 0

 0.05

 0.1

 0.15

 0.2

50 100 150 200 250

C
P

U
 T

im
e

(S
ec

on
ds

)

Database Size (103)

TBI-R
TBI-C
SAR

(a) CPU Time vs Database Size

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

50 100 150 200 250

E
M

D
 R

ef
.

Database Size (103)

TBI-R
TBI-C
SAR

(b) EMD Refinements vs Database Size

Fig. 13 Effect of database size on range queries

 0

 5

 10

 15

 20

50 100 150 200 250

I/O
 C

os
t (

10
3)

Database Size (103)

TBI-R
TBI-C

(a) I/O Counts vs Database Size

 0

 10

 20

 30

 40

 50

 60

 70

1 2 3 4 5

I/O
 C

os
t (

10
3)

Tree Number

TBI-R
TBI-C

(b) I/O Counts vs the Number of Trees

Fig. 14 Average I/O costs for range queries

of EMD refinements, while our TBI methods exhibit a
much slower growth. This explicates that the pruning
effects of the B+ tree and UBP filters remain significant
even when the data cardinality is as large as 250,000.

The results of I/O cost are depicted in Figure 14.
The I/O cost is evaluated by counting the average num-
ber of I/O accesses per query. In Figure 14(a), we vary
the database cardinality and observe that the I/O cost
increases linearly with respect to the size of the database.
That is because, with the increase of the cardinality, we
need to visit more records within a certain search range.
When we alter the number of B+ trees, the I/O cost
drops evidently from one B+ tree to two B+ trees and
then declines slowly from two trees to five trees. The
reason is that installing more than two B+ trees can
not significantly shrink the size of the candidate set,
and thus the I/O decline becomes less notable.

6.2.2 Evaluation of k-Nearest Neighbor Queries

In this section, we experimentally evaluate the perfor-
mance of our algorithms on k-NN queries. Figure 15
summarizes the average CPU time required for k-NN
queries over different data sets. Our TBI approaches are
consistently faster than SAR on all data sets which is
even more obvious for larger data sets. To explain why
SAR incurs a smaller number of EMD refinements than
the TBI approaches as shown in Figure 16, one should
remember its processing steps as described in Section
7. By utilizing the optimal multi-step retrieval frame-
work for k-NN queries, known as KNOP [32], SAR ob-
tains a good query-based data ranking. Query-based
data ranking is quite helpful for pruning the unpromis-
ing records in k-NN queries, thus significantly cutting
down the number of required EMD refinements. How-
ever, the time cost required for the process of rank-

Efficient and Effective Similarity Search over Probabilistic Data Based on Earth Mover’s Distance 19

 0

 0.5

 1

 1.5

 2

2 4 8 16 32 64

C
P

U
 T

im
e

(S
ec

on
ds

)

k

TBI-R
TBI-C
SAR

(a) RETINA1

 0

 5

 10

 15

 20

 25

 30

2 4 8 16 32 64

C
P

U
 T

im
e

(S
ec

on
ds

)

k

TBI-R
TBI-C
SAR

(b) IRMA

 0

 0.05

 0.1

 0.15

 0.2

 0.25

2 4 8 16 32 64

C
P

U
 T

im
e

(S
ec

on
ds

)

k

TBI-R
TBI-C
SAR

(c) DBLP

Fig. 15 Effect of k on the average query CPU time per k-NN query

 0

 50

 100

 150

 200

 250

 300

 350

2 4 8 16 32 64

E
M

D
 R

ef
.

k

TBI-R
TBI-C
SAR

(a) RETINA1

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

2 4 8 16 32 64

E
M

D
 R

ef
.

k

TBI-R
TBI-C
SAR

(b) IRMA

 0

 50

 100

 150

 200

 250

2 4 8 16 32 64

E
M

D
 R

ef
.

k

TBI-R
TBI-C
SAR

(c) DBLP

Fig. 16 Effect of k on the average number of EMD refinements per k-NN query

 0

 0.05

 0.1

 0.15

 0.2

50 100 150 200 250

C
P

U
 T

im
e

(S
ec

on
ds

)

Database Size (103)

TBI-R
TBI-C
SAR

(a) CPU Time vs Database Size

 0

 20

 40

 60

 80

 100

50 100 150 200 250

E
M

D
 R

ef
.

Database Size (103)

TBI-R
TBI-C
SAR

(b) EMD Refinements vs Database Size

Fig. 17 Effect of database size for k-NN queries

ing becomes a bottleneck when the data cardinality
is large (e.g., DBLP data set) or the computational
cost of the ranking distance function is high (e.g., on
IRMA data set, the ranking distance function is the
EMD over 60-dimensional reduced histograms with the
ground distances calculated by 40-dimensional feature
vectors). That is why TBI still outperforms SAR al-
though SAR requires a lower number of EMD refine-
ments on IRMA and DBLP data sets. On RETINA1,
on the other hand, the query-based data ranking is de-
rived from a reduced 18-dimensional data space, which
makes the obtained data ranking deviate from the true
ranking in the original data space, with 96 dimensions.
Therefore, SAR requires a large number of EMD refine-
ments on RETINA1 which naturally degrades its query
efficiency.

Figure 17 shows the results for the average CPU
time and the number of EMD refinements by varying
the data size of the DBLP data set. The results are as
expected: since the ranking order of records in SAR is
excellent, its number of EMD refinements approaches
the optimal value 16 in a 16-NN query. However, the
great ranking costs cause the SAR to exhibit poor CPU
time.

6.2.3 Evaluation of Transaction Concurrency

One of the important benefits of our scheme is the de-
ployment of B+ trees for concurrency control, which
generally improves the performance of a system when
different users access the database concurrently. To test
the concurrency performance of our algorithm, we gen-
erated 150 database transactions by randomly selecting
existing data records from the static data set. Several

20 Jia Xu et al.

 0

 0.5

 1

 1.5

 2

1 2 3 4 5

A
vg

. T
ra

ns
. P

ro
c.

 T
hr

ou
gh

pu
t

Tree Number

(a) RETINA1

 0

 0.05

 0.1

 0.15

 0.2

1 2 3 4 5

A
vg

. T
ra

ns
. P

ro
c.

 T
hr

ou
gh

pu
t

Tree Number

(b) IRMA

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 2 3 4 5

A
vg

. T
ra

ns
. P

ro
c.

 T
hr

ou
gh

pu
t

Tree Number

(c) DBLP

Fig. 18 Effect of number of trees on the transaction processing throughput

 0

 0.5

 1

 1.5

 2

1 2 4 8

A
vg

. T
ra

ns
. P

ro
c.

 T
hr

ou
gh

pu
t

Thread Number

(a) RETINA1

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

1 2 4 8

A
vg

. T
ra

ns
. P

ro
c.

 T
hr

ou
gh

pu
t

Thread Number

(b) IRMA

 0

 2

 4

 6

 8

 10

 12

1 2 4 8

A
vg

. T
ra

ns
. P

ro
c.

 T
hr

ou
gh

pu
t

Thread Number

(c) DBLP

Fig. 19 Effect of number of threads on the transaction processing throughput

 0

 0.5

 1

 1.5

 2

512 1024 2048 4096 8192

A
vg

. T
ra

ns
. P

ro
c.

 T
hr

ou
gh

pu
t

Page Size

(a) RETINA1

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

512 1024 2048 4096 8192

A
vg

. T
ra

ns
. P

ro
c.

 T
hr

ou
gh

pu
t

Page Size

(b) IRMA

 0

 2

 4

 6

 8

 10

 12

512 1024 2048 4096 8192

A
vg

. T
ra

ns
. P

ro
c.

 T
hr

ou
gh

pu
t

Page Size

(c) DBLP

Fig. 20 Effect of page size on transaction processing throughput

worker threads are created to handle the transactions
concurrently. Every worker thread runs our TBI-R al-
gorithm and fetches one transaction from the workload
pool at one time. The workload pool contains 150 trans-
actions, including 50 insertions, 50 deletions, 25 range
queries and 25 k-NN queries. Three groups of experi-
ments are conducted to test the change of average trans-
action throughput, i.e., the average number of transac-
tions processed per second, by varying the number of
B+ tree, the number of worker threads and the page
size of the index structure respectively. Note that we
employ the B+ tree implementation with the guaran-
tee of Read-Committed isolation from BerkeleyDB9 as
the basic index structure in this group of experiments.

9 http://www.oracle.com/technology/products/

berkeley-db/index.html

The results on varying the number of trees are pre-
sented in Figure 18. It can be observed that the trans-
action processing throughput is improved on both the
RETINA1 and IRMA data sets when more trees are
created. On the other hand, the results on DBLP data
set show an opposite trend. This is because DBLP has a
fairly low dimensionality, leading to a small calculation
time for exact EMD refinement. Under these circum-
stances, the time saved by adding trees is less than the
time consumed for accessing multiple trees. Therefore,
the CPU time increases with the addition of each B+

tree and the overall throughput declines. Conversely,
the high dimensionality of histograms on RETINA1 and
IRMA data sets, requires more expensive EMD compu-
tations and thus it becomes advantageous to add more
trees.

Efficient and Effective Similarity Search over Probabilistic Data Based on Earth Mover’s Distance 21

Table 5 Average deadlock rate (varying the ratio of k-NN queries)

``````````Dataset
k-NN ratio

0.0 0.25 0.5 0.75 1.0

RETINA1 0% 0.67% 1.14% 0.76% 0%
IRMA 0% 0% 0.53% 0% 0%
DBLP 0% 0% 0% 0% 0%

Table 6 Average deadlock rate (varying the page size of database)

``````````Dataset
Page size

512 1024 2048 4096 8192

RETINA1 0% 0.53% 1.14% 1.73% 3.73%
IRMA 0.01% 0% 0.57% 0.48% 0.76%
DBLP 0% 0% 0% 0% 0%

From Figure 19, we can see that the throughput
gradually climbs with each increase in the number of
worker threads on the RETINA1 and DBLP data sets.
The reason behind this increase is obvious. On the IRMA
data set however, the throughput declines between 4
and 8 threads. This phenomenon can be explained as
follows. Due to the high dimensionality of the IRMA
data, it takes more time for each individual worker
thread to finish the transaction. This leads to a higher
probability of the occurrence of deadlocks between the
threads, since each thread tends to lock the tree nodes
with a longer locking time. Thus, several transactions
are aborted and conducted from the beginning again
when deadlock is detected, thus reducing the through-
put of our algorithm on the IRMA data set.

Figure 20 summarizes the experimental results for
system throughput by changing the page size in the B+

trees. It is interesting to see that the three different data
sets show different trends. The underlying reason for
the phenomenon is the different cardinalities of the data
sets. For a smaller data set, such as the RETINA1, there
will be less pages in the B+ trees with an increase in
the page size. It is thus more likely for different worker
threads to request the same page. Such locking conflicts
are resolved by giving the authority to only one of the
threads while suspending the others until the lock is re-
leased. This mechanism greatly affects the throughput
especially when the database cardinality is not large.
As to DBLP data set, due to its large cardinality, lock-
ing conflicts are less likely to occur. Combined with the
reduction in I/O time requirements with an increasing
page size, the system achieves better concurrency when
larger page sizes are used. The performance of IRMA
displays a trend between that of RETINA1 and DBLP,
for its medium data cardinality.

The deadlock rate is an important factor influenc-
ing the concurrency of a DB application. Based on our
discussion in Section 4.3, the k-NN query visits data
pages in different directions and thus is impossible to

avoid deadlocks when write operations exist. Next, we
investigate the impact of the k-NN query on the dead-
lock occurrence. We mix insertion operations and k-NN
queries to form a workload of 150 transactions. Ten
worker threads are created to handle the workload con-
currently. All tested deadlock rates are summarized in
Table 5 and Table 6, with each rate representing the
average over five random testings.

In Table 5, we fix the page size and alter the ratio of
k-NN queries in the workload. It can be observed that
on both REATINA1 and IRMA data sets, the dead-
lock rate reaches its maximum when k-NN queries oc-
cupy half of the workload. This shows that, although
increasing the k-NN ratio leads to more read operations
from reverse directions, the number of write operations,
namely the insertions here, also plays a vital part in the
occurrence of deadlocks. There is no deadlock found on
DBLP data set. It is because DBLP has a large data
cardinality and thus owns more pages, making it more
difficult for two operations to meet on the same page.

In Table 6, we change the page size and show the
change of deadlock rate. The total trend is that the
deadlock rate increases with the page size. That is be-
cause, as the growth of page size, the number of pages
in a B+ tree diminishes. Consequently, there are fewer
pages that can be locked, which potentially increases
the deadlock rate. We are glad to see that DBLP es-
capes from lock contention even when the page size is
as large as 8,192 due to its large cardinality (250,000
tuples). This shows that our concurrency protocol for
k-NN queries has advantage on large data sets.

6.3 Evaluation of Continuous Similarity Queries

Each reported result in this section is an average over a
workload of 20 continuous similarity queries. First, we
evaluate the usability of our FSBP-based algorithms,
namely FSBP, FSBP-Adap and FSBP-Adap-Opt, un-
der the scenario of continuous query processing and pro-

22 Jia Xu et al.

(a) Query (b) R1 (c) R2 (d) R3 (e) R4 (f) R5

Fig. 21 Illustration of query results on Music Video Clip

(a) Query (b) R1 (c) R2 (d) R3 (e) R4 (f) R5

Fig. 22 Illustration of query results on Movie

 0

 20

 40

 60

 80

 100

 120

32 64 96 128 160

A
vg

. F
ra

m
e

P
ro

ce
ss

in
g

T
hr

ou
gh

pu
t

Reduced Dimensionality

FSBP-Adap-Opt
FSBP-Adap

FSBP
SAR-Cont

(a) Music Video Clip

 0

 50

 100

 150

 200

32 64 96 128 160

A
vg

. F
ra

m
e

P
ro

ce
ss

in
g

T
hr

ou
gh

pu
t

Reduced Dimensionality

FSBP-Adap-Opt
FSBP-Adap

FSBP
SAR-Cont

(b) Movie

Fig. 23 Effect of reduced dimensionality on average frame processing throughput

vide screen shots of several query results. After that, we
verify the efficiency of our FSBP-based algorithms by
measuring the average Frame Processing Throughput,
i.e., the average number of frames processed per sec-
ond.

We use the default similarity threshold as given in
Table 4, to initiate continuous queries on both the Mu-
sic Video Clip and Movie data sets. By setting the a
screen shot in Music Video Clip (see Figure 21(a)) as
the query, Figure 21(a) to 21(f) display its partial result
set. Amongst the result set, Figure 21(d) is the adjacent
previous scene of the query frame while Figure 21(e)
and 21(f) are its adjacent following scenes. Although
Figure 21(b) and 21(c) display a different content, their
grey-level color distributions are very similar to that of
the query frame. This kind of false-positive does exist
for we use the grey level histogram as the fingerprint
for each frame, and can be alleviated by using a hybrid
histogram combining both of the grey scale and texture
information in the frame.

The Movie data set’s query frame is shown in Fig-
ure 22(a), together with its query results, from Figure
22(a) to Figure 22(f). Besides the query frame, the sys-

tem successfully returns similar frames. The result set
is composed of frames with earlier as well as later time
stamps, shown in 22(d)-22(f). The other two frames
come from a different scene, however, their contents is
very similar to the query, i.e, a broad stretch of sky and
a light-colored desert.

Figure 23 illustrates the trade-off between the re-
duced dimensionality and the frame processing through-
put. The general trend on both data sets is that the
throughput increases slowly at first with decreasing data
dimensionality, and then has a slight decrease after a
certain reduced dimensionality. Theoretically speaking,
a higher reduced dimensionality produces a tighter lower
bound for the R-EMD filter and thus can prune more
records. However, increasing the reduced dimensional-
ity also incurs the growth of computational complex-
ity of the R-EMD filter and therefore decreases the
throughput. Besides the trend, it is easy to observe that
our three FSBP-based methods outperform the SAR-
Cont approach, with respect to the frame processing
throughput. Moreover, the inclusion of the two opti-
mization modules, namely the adaptive feasible solu-

Efficient and Effective Similarity Search over Probabilistic Data Based on Earth Mover’s Distance 23

 0

 100

 200

 300

 400

 500

 600

3 6 9 12 15

A
vg

. F
ra

m
e

P
ro

ce
ss

in
g

T
hr

ou
gh

pu
t

Similarity Threshold

FSBP-Adap-Opt
FSBP-Adap

FSBP
SAR-Cont

(a) Music Video Clip

 0

 200

 400

 600

 800

 1000

3 6 9 12 15

A
vg

. F
ra

m
e

P
ro

ce
ss

in
g

T
hr

ou
gh

pu
t

Similarity Threshold

FSBP-Adap-Opt
FSBP-Adap

FSBP
SAR-Cont

(b) Movie

Fig. 24 Effect of similarity threshold on average frame processing throughput

 0

 50

 100

 150

 200

5 10 20 40 80

A
vg

. F
ra

m
e

P
ro

ce
ss

in
g

T
hr

ou
gh

pu
t

Query Number

FSBP-Adap-Opt
FSBP-Adap

FSBP
SAR-Cont

(a) Music Video Clip

 0

 50

 100

 150

 200

 250

 300

 350

 400

5 10 20 40 80

A
vg

. F
ra

m
e

P
ro

ce
ss

in
g

T
hr

ou
gh

pu
t

Query Number

FSBP-Adap-Opt
FSBP-Adap

FSBP
SAR-Cont

(b) Movie

Fig. 25 Effect of the number of queries on the average frame processing throughput

tion update and the multi-query optimization, further
increases the system performance.

We summarize the impact of different similarity thresh-
olds on the throughput in Figure 24. As the threshold
increases, more candidates need to be verified and thus
the throughput will decline. However, our FSBP-based
algorithms display superiority compared to the SAR-
Cont technique. Furthermore, the participation of the
two optimization techniques described in this paper in-
deed increases the system throughput.

Figure 25 shows the influence of the number of queries
on the throughput. As we vary the number of the queries,
our FSBP-based methods always outperform SAR-Cont.
When the number of the concurrent queries reaches as
large as eighty, three FSBP-based approaches can still
guarantee a throughput larger than 4 frames per sec-
ond which is the frame extracting rate on both data
sets. When the number of queries equals to eighty, the
throughput of SAR-Cont drops to 3.13 frames per sec-
ond on the Music Video Clip data set and 3.42 frames
per second on the Movie data set. This means that
when frames arrive at a speed of 4 frames per second,
SAR-Cont is unable to provide a timely service to ap-
plications. Another interesting observation is that the
FSBP-Adap outperforms FSBP-Adap-Opt on the Mu-
sic Video Clip data set when the number of queries
equals to 5. This is because, a small query number in-
dicates a low probability for multi-query optimization.
Therefore, instead of apparently improving the perfor-
mance of the system, the participation of the multi-
query optimization actually downgrades system efficiency.

One more interesting conclusion from Figures 23–25
is that the throughput of the Movie data set is obviously
larger than that of the Music Video Clip data set for
FSBP-based methods. This can be explained by the
fact that compared to the Music Video Clip data set,
the correlation between two neighboring images in the
Movie data set is much stronger and thus the effect of
using adaptive feasible solution update is strengthened.

Recently, by employing our approach of processing
EMD-based continuous queries, we have built a demon-
stration system10, to demonstrate the online video frame
copy detection.

7 Related Work

In this section, we provide a literature review of existing
research results relating to our problem.

Recent years have witnessed the numerous advances
of probabilistic data management, especially in tech-
niques for efficient and effective query processing. Two
types of queries have been intensively investigated, namely
Top-k query and Accumulated Probability Query11.

Definition 8 Top-k Query
Given a d-dimensional vector pi = (pi[1], pi[2], . . . , pi[d])
and a weight vector W = (w[1], w[2], . . . , w[d]), the

10 http://faculty.neu.edu.cn/ise/xujia/home/

EUDEMON-Introduction.html
11 While it is called a Range Query in some papers, here we
prefer the term Accumulated Probability Query to distinguish
it from our range query definition w.r.t. EMD.

24 Jia Xu et al.

weighted aggregation of pi with respect to W is defined
as

∑
j pi[j]w[j]. The Top-k query on the probabilistic

database D = {p1, p2, . . . , pn} where pi is a probabilis-
tic record, retrieves k records from the database with
the maximal weighted aggregations.

While the definition on top-k query is clear when all
records consist of only exact values on all attributes, it
is challenging to extend it to probabilistic databases.
If a record pi is associated with different attribute val-
ues with probabilities, the weighted aggregation of pi

becomes some probability distribution. It is then un-
clear how to rank the probabilistic records to return the
top-k records to the user. To overcome such difficulties,
different solutions have been proposed to complete the
semantics of top-k query in the probabilistic domain,
including Uncertain Top-k [34], Uncertain Rank-k [34],
Probabilistic Threshold Top-k [21], Expected Rank-k
[13], PRFω and PRF e [23].

Definition 9 Accumulated Probability Query
Given the distribution records from the probabilistic
database D = {p1, p2, . . . , pn}, an accumulated proba-
bility query with range R and threshold θ will return
all distributions appearing in R with probability larger
than θ, i.e., {pi ∈ D |Pr(pi ∈ R) ≥ θ}.

The problem of range query and k-nearest neigh-
bor query based on EMD however is different from
the query types mentioned above. First, our similarity
queries aim to discover similar distributions. Secondly,
our similarity queries cannot be directly formulated by
any simple ranking scheme as is done in top-k query.

Due to the linear programming nature of the Earth
Mover’s Distance, the metric is computationally rather
expensive. When first proposed in [29], Rubner et al.
showed that exact EMD could be evaluated with an ex-
isting algorithm designed for the Transportation Prob-
lem. The complexity of the algorithm is cubic with re-
spect to the number of bins in the histograms. This has
become a major efficiency bottleneck for any applica-
tion employing EMD as the underlying metric.

Some attempts have been made to accelerate the
computation of exact EMD. In [25], Ling and Okada
investigated a special case of EMD, which used Man-
hattan distance as the ground distance. They modified
the original Simplex Algorithm [26] to exploit the na-
ture of the Manhattan distance. Although there is no
theoretical proof of the acceleration effects, their empir-
ical studies imply that their algorithm takes quadratic
time with respect to the number of bins.

From an algorithmic point of view, Andoni et al. [5]
devised an embedding method for EMD based on a ran-
dom projection technique. After the embedding, queries

on EMD can be answered in a new space using the Ham-
ming distance. Unfortunately, their method only guar-
antees O(log n log d)-distortion, i.e., the ratio between
original EMD and new Hamming distance is no larger
than O(log n log d) with high probability. In fact, this
scheme is only of theoretical interest. For practical ap-
plications, the data cardinality can be arbitrarily large
which may weaken its accuracy. Moreover, this embed-
ding method only works on static data sets, and as such
is not friendly to dynamic updates. Shirdhonkar and Ja-
cobs [33], in another attempt, proposed a new distance
operator to approximate EMD. They applied wavelet
decomposition on the dual program of EMD and elimi-
nated the parameters on small waves. The new distance
can be efficiently calculated in linear time with respect
to the number of bins in the histograms. However, their
method does not directly support indexing structures
for query processing on large data sets.

Existing solutions to the indexing problem for EMD-
based queries mainly rely on the framework of Scan-
and-Refinement [6,38]. In this framework, a linear scan
on the complete data records results in a set of can-
didates to the query results based on efficient lower
bound filters for EMD. In the pre-processing step, di-
mensionality reduction is conducted. In the scan phase,
all reduced records are verified with two filters, namely
the LBIM (Appendix B [1]) and the EMD computa-
tion which are both performed in the reduced space.
Given a range query, a final verification phase returns
the complete query result by verifying the distances of
all candidates not pruned by the previous filters. For k-
nearest neighbor queries, the algorithm follows the op-
timal multi-step retrieval framework, known as KNOP
[32], to guarantee no more candidates are produced in
each filter step. First, all records are sorted based on a
theoretical lower bound of the EMD. Another sequence
of random accesses are conducted based on the ranking
of the records, until the top-k threshold is smaller than
the lower bound of next record in the sequence. The
major drawback of KNOP with respect to EMD, is the
high I/O cost incurred by the sorting operation.

8 Conclusion

In this paper, we present a new indexing scheme to sup-
port similarity search queries on histogram-representative
probabilistic databases, based on Earth Mover’s Dis-
tance (EMD). Our indexing method relies on the primal-
dual theory to construct a mapping from the original
probabilistic space to a one-dimensional domain. Each
mapping domain is indexed using the B+ tree struc-
ture. We show that our efficient query processing al-
gorithms can answer both range query and k-nearest

Efficient and Effective Similarity Search over Probabilistic Data Based on Earth Mover’s Distance 25

neighbor query. Our index structure is also shown to be
friendly to concurrency protocols and is easily extensi-
ble to handle continuous queries on data streams. Our
experiments prove that our proposals generally outper-
form the state-of-the-art methods.

References

1. J. Xu. et al. Appendix Section.
http://vldb.org/vldb_journal. http://faculty.neu.

edu.cn/ise/xujia/home/appendix.pdf.
2. T. Lehmann et al. IRMA project site.

http://ganymed.imib.rwth-aachen.de/irma/.
3. P. K. Agarwal, S.-W. Cheng, Y. Tao, and K. Yi. Indexing

uncertain data. In PODS, pages 137–146, 2009.
4. P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth,

S. U. Nabar, T. Sugihara, and J. Widom. Trio: A system
for data, uncertainty, and lineage. In VLDB, pages 1151–
1154, 2006.

5. A. Andoni, P. Indyk, and R. Krauthgamer. Earth mover
distance over high-dimensional spaces. In SODA, pages
343–352, 2008.

6. I. Assent, A. Wenning, and T. Seidl. Approximation tech-
niques for indexing the earth mover’s distance in multi-
media databases. In ICDE, page 11, 2006.

7. S. Babu and J. Widom. Continuous queries over data
streams. SIGMOD Record, 30(3):109–120, 2001.

8. O. Benjelloun, A. D. Sarma, A. Y. Halevy, and J. Widom.
Uldbs: Databases with uncertainty and lineage. In
VLDB, pages 953–964, 2006.

9. O. Benjelloun, A. D. Sarma, A. Y. Halevy, and J. Widom.
Uldbs: Databases with uncertainty and lineage. In
VLDB, pages 953–964, 2006.

10. P. A. Bernstein, V. Hadzilacos, and N. Goodman. Con-
currency Control and Recovery in Database Systems.
Addison-Wesley, 1987.

11. R. Cheng, S. Singh, and S. Prabhakar. U-dbms: A
database system for managing constantly-evolving data.
In VLDB, pages 1271–1274, 2005.

12. D. Chu, A. Deshpande, J. M. Hellerstein, and W. Hong.
Approximate data collection in sensor networks using
probabilistic models. In ICDE, page 48, 2006.

13. G. Cormode, F. Li, and K. Yi. Semantics of ranking
queries for probabilistic data and expected ranks. In
ICDE, pages 305–316, 2009.

14. N. N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. In VLDB, pages 864–875, 2004.

15. N. N. Dalvi and D. Suciu. Management of probabilistic
data: foundations and challenges. In PODS, pages 1–12,
2007.

16. T. Deselaers, D. Keysers, and H. Ney. Discriminative
training for object recognition using image patches. Com-
puter Vision and Pattern Recognition, IEEE Computer
Society Conference on, 2:157–162, 2005.

17. A. Deshpande, C. Guestrin, and S. Madden. Using prob-
abilistic models for data management in acquisitional en-
vironments. In CIDR, pages 317–328, 2005.

18. A. Deshpande, C. Guestrin, S. Madden, J. M. Heller-
stein, and W. Hong. Model-based approximate querying
in sensor networks. VLDB J., 14(4):417–443, 2005.

19. R. Fagin, A. Lotem, and M. Naor. Optimal aggrega-
tion algorithms for middleware. J. Comput. Syst. Sci.,
66(4):614–656, 2003.

20. K. Grauman and T. Darrell. Fast contour matching using
approximate earth mover’s distance. In CVPR, pages
220–227, 2004.

21. M. Hua, J. Pei, W. Zhang, and X. Lin. Ranking queries
on uncertain data: a probabilistic threshold approach. In
SIGMOD Conference, pages 673–686, 2008.

22. L. V. S. Lakshmanan, N. Leone, R. B. Ross, and
V. S. Subrahmanian. Probview: A flexible probabilis-
tic database system. ACM Trans. Database Syst.,
22(3):419–469, 1997.

23. J. Li, B. Saha, and A. Deshpande. A unified approach
to ranking in probabilistic databases. PVLDB, 2(1):502–
513, 2009.

24. N. Li, T. Li, and S. Venkatasubramanian. t-closeness:
Privacy beyond k-anonymity and l-diversity. In ICDE,
pages 106–115, 2007.

25. H. Ling and K. Okada. An efficient earth mover’s distance
algorithm for robust histogram comparison. IEEE Trans.
Pattern Anal. Mach. Intell., 29(5):840–853, 2007.

26. C. H. Papadimitriou and K. Steiglitz. Combinatorial
Optimization: Algorithms and Complexity, pages 67–71.
Dover Publications, 1998.

27. C. Re, N. N. Dalvi, and D. Suciu. Efficient top-k query
evaluation on probabilistic data. In ICDE, pages 886–
895, 2007.

28. Y. Rubner, J. Puzicha, C. Tomasi, and J. M. Buhmann.
Empirical evaluation of dissimilarity measures for color
and texture. Computer Vision and Image Understand-
ing, 84(1):25–43, 2001.

29. Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for
distributions with applications to image databases. In
ICCV, pages 59–66, 1998.

30. Y. Rubner, C. Tomasi, and L. J. Guibas. The earth
mover’s distance as a metric for image retrieval. Interna-
tional Journal of Computer Vision, 40(2):99–121, 2000.

31. R. Sandler and M. Lindenbaum. Nonnegative matrix fac-
torization with earth mover’s distance metric. In CVPR,
pages 1873–1880, 2009.

32. T. Seidl and H.-P. Kriegel. Optimal multi-step k-nearest
neighbor search. In SIGMOD Conference, 1998.

33. S. Shirdhonkar and D. W. Jacobs. Approximate earth
mover’s distance in linear time. In CVPR, 2008.

34. M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang. Proba-
bilistic top-k and ranking-aggregate queries. ACM Trans.
Database Syst., 33(3), 2008.

35. Y. Tao, X. Xiao, and R. Cheng. Range search on multidi-
mensional uncertain data. ACM Trans. Database Syst.,
32(3):15, 2007.

36. G. Trajcevski, O. Wolfson, K. Hinrichs, and S. Chamber-
lain. Managing uncertainty in moving objects databases.
ACM Trans. Database Syst., 29(3):463–507, 2004.

37. D. Z. Wang, M. J. Franklin, M. N. Garofalakis, and J. M.
Hellerstein. Querying probabilistic information extrac-
tion. PVLDB, 3(1):1057–1067, 2010.

38. M. Wichterich, I. Assent, P. Kranen, and T. Seidl.
Efficient emd-based similarity search in multimedia
databases via flexible dimensionality reduction. In SIG-
MOD Conference, pages 199–212, 2008.

39. J. Xu, Z. Zhang, A. K. H. Tung, and G. Yu. Efficient and
effective similarity search over probabilistic data based on
earth mover’s distance. PVLDB, 3(1):758–769, 2010.

40. M. Zhang, M. Hadjieleftheriou, B. C. Ooi, C. M. Pro-
copiuc, and D. Srivastava. On multi-column foreign key
discovery. PVLDB, 3(1):805–814, 2010.

41. Z. Zhang, B. C. Ooi, S. Parthasarathy, and A. K. H.
Tung. Similarity search on bregman divergence: Towards
non-metric indexing. PVLDB, 2(1):13–24, 2009.

