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Abstract— Existing 3D clustering algorithms on gene ×
sample × time expression data do not consider the time lags
between correlated gene expression patterns. Besides, they ei-
ther ignore the correlation on time subseries, or disregard the
continuity of the time series, or only validate pure shifting or
pure scaling coherent patterns instead of the general shifting-
and-scaling patterns. In this paper, we propose a novel 3D
cluster model, S2D3 Cluster, to address these problems, where
S2 reflects the shifting-and-scaling correlation and D3 the 3-
Dimensional gene×sample×time data. Within the S2D3 Cluster
model, expression levels of genes are shifting-and-scaling coherent
in both sample subspace and time subseries with arbitrary time
lags. We develop a 3D clustering algorithm, LagMiner, for
identifying interesting S2D3 Clusters that satisfy the constraints
of regulation (γ), coherence (ε), minimum gene number (MinG),
minimum sample subspace size (MinS) and minimum time
periods length (MinT ). Experimental results on both synthetic
and real-life datasets show that LagMiner is effective, scalable
and parameter-robust. While we use gene expression data in this
paper, our model and algorithm can be applied on any other
data where both spatial and temporal coherence are pursued.

I. INTRODUCTION

A. Motivation

Recent advances in microarray technologies have made it
possible to measure the expression profiles of thousands of
genes simultaneously. Clustering gene expression data is one
of the most important tasks since similar expression profiles
of genes could indicate a related function or the same cellular
pathway [11]. To ensure statistical robustness, gene expression
profiles of multiple samples are typically taken and these
samples are usually generated either from the cells of the same
tissue under varying conditions or from tissues of different
patients with the same disease/illness. Furthermore, to analyze
the changes of a cell over time, gene expression of the
same sample can also be taken at different time point giving
rise to time varying profiles. When the expression profiles
of thousands of genes are taken for multiple samples over
multiple time points, this give rise to a gene×sample× time
dataset which is the focus of our study in this paper.

Various clustering algorithm for gene expression datasets
had been developed [7], [32], [30], [16]. In these algorithms,
clusters of gene expression profiles can be found in a subset
of samples (gene × sample clustering), during a certain time
course (gene × time clustering), or within a combination of
the two (gene × sample × time clustering). However, none of
the existing clustering algorithms has considered time lagged
correlation in gene×sample×time dataset. For instance, the
up-regulation / down-regulation of gene g1 across five samples
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Fig. 1. Time-lagged Correlation

at time point t0 may boost/repress the transcription of gene g2

at a later time point t2 and repress/boost the transcription of
g3 at time point t3 across these samples, as shown in Figure
1.

Existing 3D clustering algorithms are problematic in cap-
turing correlated time periods, time continuity and coherency.

While the 3D clustering algorithm TRICLUSTER [32]
identifies 3D clusters, it only searches for coherent patterns
within the same time points and ignores the continuity of
time series. Such time discontinuity is not desirable as a
time series experiment represents a dependent experimental
environment [4]. In addition, TRICLUSTER only detects pure
scaling correlations i.e. the expression of two genes in the
same clusters are a constant multiplier of each other instead
of the more general shifting-and-scaling patterns proposed in
[30] where genes in the same clusters are similar to each
other with a constant multiplier and a constant additive factor.
As a result, TRICLUSTER cannot detect the three shifting-
and-scaling patterns Figure 1 where g2 and g1 are positively
correlated with a constant multiplier of 0.5 and an additive
factor of -5 while g2 and g3 are negatively correlated with a
constant multiplier of -0.5 and an additive factor of 20 1

In the gene × sample × time clustering algorithm, the
Sample-Gene and Gene-Sample search algorithm (SG/GS for
short) [16], computes pattern similarity based on Pearson’s
correlation coefficient using the entire time course. In this way,
it ignores the correlation on time periods and simply casts the
3D clustering task into a single biclustering one and then apply
sample enumeration strategy adopt from [19], [20], [9], [8] to
find the biclusters.

1To see a concrete example, see that the expression level of gene g2 in
sample s4 at time t2 is 0.5 times the expression level of gene g1 in sample
s4 at time t0 plus an additive factor of -5. We leave it to reader to see that
g1 and g3 are related to each other in a similar way
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Fig. 2. Comparison of Lagminer against Previous 3D Clustering Algorithms

B. Goal

In this paper, we propose a novel 3D cluster model which
we call S2D3 Cluster, to address these problems (S2 de-
noteshifting-and-scaling correlation and D3 denote the 3-
Dimensional gene× sample× time data). Within the S2D3

cluster model, expression levels of genes are shifting-and-
scaling coherent in both sample subspace and time periods
with arbitrary time lags. We develop an efficient 3D clustering
algorithm, LagMiner, to identify interesting S2D3 Clusters.

In Figure 2, an example is given to illustrate the different
clusters found by SG/GS, TRICLUSTER and LagMiner. As-
sume we want to find 3D clusters from the gene× sample×
time expression data consisting of the expression levels of five
genes, g0, g1, g2, g3, and g4 from five samples, s0, s1, s2, s3

and s4, at five continuous time points, t0, t1, t2, t3 and t4.
The possible sample output clusters of SG/GS, TRICLUSTER
and LagMiner are as follows.

SG/GS only outputs clusters across the entire time course
such as {g1,g2,g3} × {s1,s2,s3} × {t0,t1,t2,t3,t4} as Figure
2 (a) shows. From Figure 2 (b), we can see that the time
periods of the cluster discovered by TRICLUSTER consists
of discontinuous time points, {t0,t1,t3,t4}. Neither SG/GS nor
TRICLUSTER can detect the time-lagged 3D cluster found
by LagMiner in Figure 2 (c) where the time lags among the
genes exhibit an arithmetic progression and the correlated time
periods can be arbitrarily shifted.

We refer to the projection of 3D cluster on a corresponding
gene/sample/time point as a gene/sample/time slice. Note that
because of the time-lagged correlation, the time slice of the
3D cluster in Figure 2 (c), {g1t1,g2t2,g3t3} × {s1,s2,s3}, is
no longer perpendicular to the time axis.

C. Contributions

In summary, we make the following contributions in this
paper:

(1) We propose a novel 3D cluster model, S2D3 Cluster,
which successfully addresses the problems of time-lagged
correlation, time periods correlation, time continuity and

shifting-and-scaling coherence.

(2) Our cluster model is flexible and can be easily generalize
to model gene × sample and gene × time clusters. Compared
with previous 2D shifting-and-scaling model [30], it is more
consistent and systematic.

(3) We develop an efficient algorithm for finding S2D3 cluster
called LagMiner. Unlike the TRICLUSTER algorithm which
evaluates the coherency of each dimensions individually,
LagMiner performs coherency pruning in all the three
dimensions simultaneously. Consequently, as we shall see
in our experimental study, LagMiner is orders of magnitude
faster than TRICLUSTER. Experiments on real-life 3D gene
expression data also indicate the S2D3 clusters that are found
by LagMiner are meaningful in biology.

The rest of this paper is organized as follows. We review
some related work on gene expression data clustering in
Section 2. We will present the S2D3 cluster model in Section
3. LagMiner will be introduce in Section 4. In Section 5,
we present our experimental results and we will conclude in
Section 6.

II. RELATED WORK

A wealth of work had been done on clustering gene expres-
sion data. According to the space, there are gene × sample
clustering, gene × time clustering and the latest gene ×
sample× time clustering.

A. Gene × Sample Clustering
Some gene × sample clustering algorithms judge profile

similarity on full sample space while others evaluate similarity
on sample subspace. This include hierarchical clustering [10],
self-organizing map [25], and K-means [26]. Hierarchical
algorithms merge genes with the most similar expression
profiles iteratively in a bottom-up manner. Self-organizing map
and K-means partition genes into user-specified k optimal
clusters.

The subspace clustering algorithms, on the other hand,
cluster genes on a subset of samples. Some subspace clustering
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Fig. 3. Bias of regcluster

algorithms [1], [2], [3], [6], [14], [15], [22] are density-
based, requiring genes of the same cluster to be dense and
close to each other. These algorithms assign each gene to
one cluster only. However, a gene may involve in several
pathways, thus participating in several clusters. The heuristic
biclustering algorithm [7] was the first piece of work that
allows overlapping gene members between different clusters.
The later pattern-based clustering algorithms [27], [31], [32]
identify genes whose expression profiles are shifting or scaling
patterns w.r.t. a coherence measure ε. These genes are likely
to be sparse and far in the correlated subspace. The tendency-
based clustering algorithms [5], [17], [18] discover genes
whose expression levels change synchronously across samples.

More recently, another pattern-based algorithm, regcluster
[30], has been proposed to detect the much more general
shifting-and-scaling patterns. regcluster ensures that, within
a cluster, the expression level difference of any two genes
between any two samples are approximately proportional w.r.t.
a coherence threshold ε. regcluster also applies a regulation
threshold γ to control the regulation significance. regcluster
selects two samples with the lowest gene expression levels as
the baseline pair for similarity comparison. Such a strategy
makes regcluster rather sensitive to the baseline dimension
pair. For example, the two diagonal-symmetric gene groups
in Figure 3 have exactly the same degree of coherence
instinctively. However, regcluster is biased towards gene group
1 whose ratio scores2 are much more coherent (ranging from
0.125 to 0.5) than those of gene group 2 (ranging from 2 to
8).

B. Gene × Time Clustering

Most gene × time clustering algorithms judge profile sim-
ilarity on the whole time course and are unaware of timing
variability of correlated biological processes. For example, in
[23], an autoregressive model accounting for the dependency
of temporal observations is adopted which fits the expression
levels at later time points into a linear function of previous p
time points.

However, time-lagged correlation has been generally over-
looked by previous clustering algorithms, although it is a well-
known issue for time series data analysis in bioinformatics

2ratio of expression difference between samples s5 and s3 to that between
baseline samples s1 and s5, (Pgi,s3 − Pgi,s5 )/(Pgi,s5 − Pgi,s1 )

[4], [24]. Besides, as stated in [12], gene expression profiles
may be correlated at some shorter time periods rather than the
whole time course. No gene × time clustering algorithms have
considered both time-lagged correlation and correlation with
shorter time period as far as we know.

C. Gene × Sample × Time Clustering

A more recent clustering algorithm TRICLUSTER [32]
identifies real 3D clusters. However, TRICLUSTER has not
considered the time-lagged correlation. It also ignores the
continuity of time series data and evaluates profile coherence
on disjoined time points. In addition, it validates pure scaling
patterns only, but not the general shifting-and-scaling patterns
[30]. The SG/GS algorithm [16] evaluates pattern similar-
ity with Pearson’s correlation coefficient on the whole time
course. It simply casts the 3D clustering problem into a 2D
one

Notation Description
G0, S0, T0 set of all genes {g0, g1, ..., gN−1}, set of all

samples {s0, s1, ..., sM−1} and the full time
period of the dataset (t0, t1, t2..., tL−1) respec-
tively

G,S a set of genes, G ⊆ G0 and a set of samples,
S ⊆ S0 respectively

Ti, tmi(l) a time periods for gene gi, (tmi , tmi+1, ...,
tmi+l−1). mi, the first time point of time peri-
ods Ti is call the time lag coefficient of Ti

tmi Abbreviated form of tmi(1) i.e. length of time
period is 1

T a set of time periods, {T1, T2, ..., }
GTP,ĝitmi (l) the correlated time periods tmi(l) for a gene gi

G.T a set of GTP, {giTi}i = {ĝitmi (l)}i

Pgi,sj ,tk the expression level of gene gi on sample sj at
time point tk

Pgj ,tk the expression level of gene gj at time point tk

for a sample slice
Pgi,S,tk a set of gene expression value

{Pgi, s
′
1, tk, ..., Pgi, s

′
|S|, tk} where

S = {s′1, ..., s′|S|}
MinScore minimum expression level change ratio for a set

of genes G across three samples su, sv and sw,
Mingi∈G

Pgi, sv−Pgi, su

Pgi, sw−Pgi, su

MaxScore maximum expression level change ratio for a
set of genes G across three samples su, sv and
sw, Maxgi∈G

Pgi, sv−Pgi, su

Pgi, sw−Pgi, su

TORD relative order of time points in the periods
MSGTP the maximum set of GTPs on a sample set.
G.T × S a time-lagged 3D cluster of genes from G

at time periods in T respectively across
samples in S

A A set of generic entities {a1, ..., an}
Paj ,sk the expression level of entity aj in sample sk

TABLE I
NOTATIONS

III. CLUSTER MODEL

A. Notation

For simplicity, we make use of several notations and con-
cepts in our cluster model and algorithm. A short description
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of these notations and concepts is provided in Table I. Formal
definitions and illustrating examples will be given afterwards.

Let D be the gene × sample × time (G0 × S0 × T0)
expression data, where G0 = {g0, g1, ..., gN−1}, S0 = {s0,
s1, ..., sM−1}, and T0 is a continuous time series, T0 =
(t0, t1, t2, ..., tL−1). We denote the expression level of gene gi

on sample sj at time point tk as Pgi,sj ,tk
, where 0 ≤ i < N ,

0 ≤ j < M and 0 ≤ k < L. To further simplify notation,
we will overload P in two ways. The notations Pgi,tk

will be
used to represent the gene expression level in a sample slice
which is essentially a 2D array where the value in the third
dimension is fixed. Also, we will use Pgi,S,tk

to represent a set
of gene expression value {Pgi, s

′
1, tk, ..., Pgi, s

′
|S|, tk} where

S = {s′1, ..., s′|S|}.
We adopt the shifting-and-scaling correlation here because

it is the most general correlation criterion to the best of our
knowledge. Based on the shifting-and-scaling measurement,
we expect the 3D cluster to have coherent time-sample curves
at each gene slice (orthonormal to the gene axis), coherent
gene-time curves at each sample slice (orthonormal to the
sample axis), and also coherent gene-sample curves at each
time slice (possibly not orthonormal to the time axis due to
time lags).

As an example, refer to Figure 4d, where three gene,
sample and time slices of a cluster C ′ are shown. Both
the gene (one example highlighted with continuous line) and
sample(one example highlight with short broken line) slices
are orthonormal to the gene and sample axis respectively while
the time slices(one example highlighted with long broken line)
is not orthonormal. As a running example, we also show the
actual value of these slices in Figure 4a, Figure 4b and Figure
4c with non-related space marked with ‘*’. To further show
example of the mapping between Figure 4d and Figure 4a, 4b
and 4c, we have marked the corresponding yellow, red and

blue slices from Figure 4d in Figure 4a, 4b and 4c as well.
Because they are not orthonormal to the time axes, repre-

senting the three time slices of Figure 4c in mathematical no-
tation is more complex than representing the sample and gene
slices. Generally, this also make representing and defining a
time-lagged 3D cluster more complex than previous cluster
model which have clusters that are all orthogonal to the axes.

Formally speaking, a time-lagged 3D cluster C = G ·T ×S
consists of a subset of genes G ⊆ G0, a subset of samples
S ⊆ S0, and a set of local time periods T = {Ti = (tp, tp+1,
..., tp+l−1)|gi ∈ G, l ≤ L|}, where Ti is the gene-specific
time periods of length l.

To have an intuition on how the mathematical definition of
time-lagged 3D cluster come about, we will again use Figure
4 as an example. Note that any three slices from Figure 4a,
4b or 4c will be sufficient to represent C and we pick Figure
4a to derive our representation.

We can see that each gene, g1, g2 and g3 are associate with
different time periods: g1 is associated with time period t0 to
t2, g2 is associated to time period t0 to t2, and g3 associated
with time period t0 to t2. To simplify such a presentation, we
denote a time period from tmi to tmi+l as tmi(l) with l being
the length of the time period. In the case where l = 1, we will
simple denote it as tmi . Thus g1 is associate with t0(3), g2 is
associate with t1(3) and g3 is associate with t2(3).

We call each of this association a gene-time periods (GTP),
denoted as ̂gitmi(l). This further simplify our representation
of the gene-time period association to ̂g1t0(3), ̂g2t1(3), ̂g3t2(3)
which represented {g1, g2, g3} · {t0(3) , t1(3), t2(3) }. Finally,
since these gene-time period association are true for sample
set {s1, s2, s3}, our 3D time lagged cluster C is just defined as
{g1, g2, g3} · {t0(3), t1(3), t2(3) } × {s1,s2,s3} i.e. G ·T ×S
where G = {g1, g2, g3}, T = {t0(3), t1(3), t2(3)} and S =
{s1, s2, s3}. Alternative, we also represent C as {ĝ1t0, ĝ2t1,



ĝ3t2}3 × {s1, s2, s3} in this paper as well.
In the remaining of this section, we will formally present

the framework of our cluster model. We will start with 2D
shifting-and-scaling cluster model for gene× sample cluster
and gene× time cluster first. Base on that, we will introduce
our 3D shifting-and-scaling cluster model, S2D3 cluster, for
gene× sample× time cluster.

B. Shifting and Scaling Patterns

We will first define a generic notion of shifting and scaling
patterns in a general 2D array, A × S where A represents
a general set of entities, A = {a1, ..., an} and S is a set
of samples, S = {s1, ..., sm}. Later on in this paper,A will
be instantiated to different type of entities (eg. genes, time
periods) depending on the context of discussion. Here, we
assume that each element in the array A × S is a gene
expression value and is denote as Pai,sj

, ai ∈ A, su ∈ S.
Given any two samples, su and sw, it is always possible to

make two elements in A, ai and aj perfectly linear correlated
across the two samples i.e. we can always find a scaling factor
c1 and a shifting factor c2 such that Pai,su = c1 ∗Pai,sw + c2

and Paj ,su = c1 ∗ Paj ,sw + c2. Thus it does not make sense
to define a shifting and scaling patterns for |S| ≤ 2. 3

Instead, we will define the coherence of shifting-and-scaling
patterns across three and more samples w.r.t. threshold ε
by proposing a shifting-and-scaling score (S2Score) on
every sample triplet. Note that the use of quadruple or more
combination of samples can be done but this will not only
restrict the clusters found to contain more samples but will also
result in more expensive computation which will be discussed
later.

Before we explain S2Score, we will first define the sample
triplet order on an element ai as a set of three samples {su,
sv , sw} such that su ≺ sv ≺ sw if (1) Pai,su ≤ Pai,sv ≤
Pai,sw and u < w or (2) Pai,su ≥ Pai,sv ≥ Pai,sw and u <
w. Essentially, the sample triple order ensure that the gene
expression of Pai,su , Pai,sv and Pai,sw are either in increasing
or decreasing order.

We measure the coherence of gene expression patterns on a
sample triplet with our shifting-and-scaling score (S2Score)
which is equal to the range of expression level change ratio,
MaxScore-MinScore, as defined below.
Definition 1: (S2Score(A,{su, sv, sw}))
Assume A is a set of entities and {su, sv , sw} is a sample
triplet and su ≺ sv ≺ sw is a sample triplet order that is
the same for all elements in A. Then the shifting-and-scaling
score (S2Score for brevity) of A on {su, sv , sw} is:

S2Score(A, {su, sv, sw})
=MaxScore−MinScore

=Maxai∈A
Pai,sv − Pai,su

Pai,sw − Pai,su

−Minai∈A
Pai,sv − Pai,su

Pai,sw − Pai,su

3Alternatively, it is also possible to limit |A| ≥ 2 and allow |S| ≥ 2. We
will not elaborate on this symmetric nature of the definition further due to
lack of space

If entities in A share no common sample triplet order on
{su, sv , sw}, then we define S2Score(A, {su, sv, sw}) =
∞. 2

Lemma 3.1: (S2Score Property)
Two genes ai and aj are perfectly shifting-and-scaling corre-
lated on sample triplet {su, sv , sw} if and only if

S2Score({ai, aj}, {su, sv, sw}) = 0.

Proof:
(1) Assume Pai,{su,sv,sw} = c1 ∗ Paj ,{su,sv,sw} + c2, c1 6= 0.
According to the definition of sample triplet order, ai and
aj must have the same sample triplet order. Without loss of
generality, assume the common order is su ≺ sv ≺ sw, then
we have

Pai,sv − Pai,su

Pai,sw − Pai,su

=
c1 ∗ (Paj ,sv − Paj ,su)
c1 ∗ (Paj ,sw − Paj ,su)

=
Paj ,sv

− Paj ,su

Paj ,sw − Paj , su

.

Therefore, S2Score({ai, aj}, {su, sv, sw}) = 0.

(2) A zero S2Score (Def. 1) indicates ai and aj have the same
triplet order. Without loss of generality, assume su ≺ sv ≺ sw.
Transform the S2Score equation with this sample triplet order
and then we can find a constant

c1 =
Pai,sv − Pai,su

Paj ,sv − Paj ,su

=
Pai,sw − Pai,su

Paj ,sw − Paj ,su

.

Similarly, we can find a constant c2 equal to

Pai,su−c1∗Paj ,su = Pai,sv−c1∗Paj ,sv = Pai,sw−c1∗Paj ,sw .

Thus, ai and aj are perfectly shifting-and-scaling correlated
on the sample triplet. 2

We can also define the S2Score for a set of samples with
more than 3 members:
Definition 2: (S2Score(A,S))
Assume A is a set of entities and S is a set of samples with
more than three members. S2Score(A,S)=max{S2Score(G,
{su, sv , sw})|∀{su, sv , sw} ⊆ S}. 2

Based on the above definition, given two entities ai and
aj which are perfectly shifting-and-scaling correlated with
respect to S, S2Score({ai, aj},S) is always zero. This can
be from Lemma 3.1 by observing that ai and aj should also
be perfectly shifting-and-scaling correlated with respect to all
possible triplets from S

C. Gene × Sample and Time × Sample Clusters

We will next look at how we will use the concept of shifting
and scaling patterns to define what are gene × sample and time
× sample clusters by instantiating A either to be a set of genes
G or a set of time points T ′ .

A gene × sample cluster occur in a time slice (Figure 4c
shows three examples) and is essential a set of genes, G, which
are shifting-and-scaling correlated with each other across a set
of samples S based on the S2Score.
Example 1: Figure 1 shows three perfect shifting-and-scaling
patterns, [20, 10, 50], [5, 0, 20] and [30, 40, 0], across {s1,
s4, s2}. The common sample triplet order of the three genes is



s2 ≺ s1 ≺ s4. And, S2Score({g1, g2, g3}, {s1, s4, s2}) = 0,
since ∀gi, i = 1, 2 and 3, Pgi, s1−Pgi, s2

Pgi, s4−Pgi, s2
= 0.75. 2

In real applications however, there are usually no perfect
shifting-and-scaling patterns due to noise, experimental errors,
etc. Therefore, a coherence threshold ε is used to control the
degree of coherence.
Definition 3: (gene × sample cluster w.r.t. ε)
Assume G is a group of genes and S is a set of samples where
|S| ≥ 3, then C = G× S is a coherent cluster w.r.t. ε, if and
only if S2Score(G,S) ≤ ε. 2

Correspondingly, we can also define a time × sample cluster
in a gene slice (Figure 4a shows three examples):
Definition 4: (time × sample cluster w.r.t. ε)
Assume T ′ is set of time points and S is a set of samples
where |S| ≥ 3, then C = T ′×S is a coherent cluster w.r.t. ε,
if and only if S2Score(T ′, S) ≤ ε. 2

In the case where ε = 0 in the two definitions above, we
will refer to the corresponding clusters as perfect clusters.
In addition to the coherence threshold, ε, we also perform a
regulation test with threshold γ in LagMiner. This is because
biologists are generally interested in gene expression patterns
of significant regulations. Cheng and Church [7] state that the
utmost important goal of gene expression data analysis is to
find a set of genes showing strikingly similar up-regulation
and down-regulation under a set of conditions. We apply γ
in our cluster model to ensure a significant expression level
difference between any two samples.

D. Gene × Time Cluster
Unlike the sample dimension, the time dimension has a

fixed order of time points and there may exist some time
lags between correlated patterns. Comparatively, the coherence
requirement over time series data is more relaxed than that on
sample data. One can define the coherence of gene × time
cluster as either correlated or anti-correlated in expression
levels. Accordingly, we extend gene × sample cluster model
w.r.t. ε to gene × time cluster model by relaxing ε to 1.0 .

We further propose the concepts of time lag coefficient
and time-lagged order (TORD) to capture expression patterns
with arbitrary time lags.

Let t0 be the starting time point of the time dimension and
Ti = (tmi , tmi+1, ..., tmi+l−1) be the corresponding time
periods for gi. Then we say the time lag coefficient of Ti is
mi i.e. mi is the starting time slice of Ti. We further define
the time-lagged order (TORD) of gene gi on time sequence
Ti = (tmi , tmi+1, ..., tmi+l−1) as k1 ≺ k2 ≺ ... ≺ kl, where
ki ∈ {0, 1, ..., l − 1}, if either
(1) Pgi,tmi+k1 < Pgi,tmi+k2

< ...... < Pgi,tmi+kl
and k1 < kl,

or
(2) Pgi,tmi+k1

> Pgi,tmi+k2
> ...... > Pgi,tmi+kl

and k1 < kl.
Example 2: As an example of time lag coefficient and TORD.
For sample slice s1 of Figure 4b, the time lag coefficients of
g1, g2 and g3 are 0, 1 and 2 respectively. The three shifting-
and-scaling patterns of time lags have a common TORD: 0 ≺
1 ≺ 2. 2

We denote gene expression patterns with time lags as G.T ,
where G = {gi} is a group of correlated genes, T = {Ti|gi ∈

G} is the set of corresponding time periods. We define G.T
as a coherent gene × time cluster when there is a common
TORD among T . The formal definition is given below.
Definition 5: (gene × time Cluster)
Assume G = {gi} is a group of genes, T = {Ti|gi ∈ G} is
the set of time periods, where Ti = (tmi , tmi+1, ..., tmi+l−1),
|Ti| = l ≥ 3 and mi is the lag coefficient of gi. We say
C = G · T is a coherent gene × time cluster iff there is a
common TORD among T . 2

E. Gene × Sample × Time Cluster

A time-lagged 3D cluster can be considered as a combi-
nation of gene × sample and gene × time clusters. Figure 4
shows an ideal one whose time slice/gene slice corresponds to
a perfect gene × sample cluster, and sample slice corresponds
to a gene × time cluster. The following observation further
helps optimize our S2D3 Cluster model.
Observation 3.1: (gene/time slice combination)
Assume G = {gi|∀i} = {g1, g2, ..., gn}) is a group of genes,
S is a set of samples, T = {Ti|gi ∈ G} is a set of time
periods, where Ti = (tmi

, tmi+1, ..., tmi+l−1) and l ≥ 3. Let
C = G · T × S be a perfect time-lagged 3D cluster where:

1)each time slice corresponds to a perfect gene × sample

2)each gene slice corresponds to a perfect time × sample
cluster

3)each sample slice corresponds to a gene × time cluster

Let A={ĝitmi |gi ∈ G}={g1tm1 , g1tm1+1, ..., g1tm1+l−1,
g2tm2 , g2tm2+1, ..., g2tm2+l−1, ..., gntmn , gntmn+1, ...,
gntmn+l−1}. We claim that S2Score(A,S) = 0 i.e. A× S is
a perfect cluster.

Proof:
(1) Transitivity of Coherence Property: If Pgi,S,tu and
Pgj ,S,tv are perfectly shifting-and-scaling correlated, then
(Pgi,S,tu = c1 ∗ Pgj ,S,tv + c2). Similarly if Pgj ,S,tv

and Pgk,S,tw are also shifting-and-scaling correlated
(Pgj ,S,tv = c′1 ∗ Pgk,S,tw + c′2), then Pgi,S,tu and Pgk,S,tw are
also perfectly shifting-and-scaling correlated. This is because
Pgi,S,tp = c1 ∗ c′1 ∗ Pgk,S,tr + c1 ∗ c′2 + c2.

(2) Intersection between Gene and Time Slice:At each gene
slice gi, ĝitmi ×S is a perfect gene × sample cluster. That is,
Pgi,S,tmi

, Pgi,S,tmi+1 , ..., and Pgi,S,tmi+l−1 are all perfectly
shifting-and-scaling correlated with each other. Likewise, in
a time slice {gitmi |∀gi ∈ G}, Pg1,S,tm1

, Pg2,S,tm2
, ..., and

Pgn,S,tmn
are also perfectly shifting-and-scaling correlated. It

can be seen that given any gene slice and time slice, there
should be an intersection (refer to Figure 4), P(gi, S, gitmi)
which is common in both the slices. Thus any members in the
gene or time slice will be perfectly shifting-and-scaling corre-
lated with each other based on transitivity of their relationship
with P(gi, S, gitmi)

2



Example 3: The running example of time-lagged 3D cluster
in Figure 4 is an example of a perfect, time-lagged 3D cluster:
{ĝ1t0, ĝ2t1, ĝ3t2}3 × {s1, s2, s3}. Each of its gene slice and
time slice corresponds to a perfect 2D shifting-and-scaling
cluster. Each of its sample slice, meanwhile, corresponds to
a gene × time cluster with a common TORD: 0 ≺ 1 ≺ 2 at
sample slice s1 and 1 ≺ 0 ≺ 2 at sample slices s2 and s3. In
the example, {ĝitmi

|gi ∈ G} correspond to {g1t0, g1t1, g1t2,
g2t1, g2t2, g2t3, g3t2, g1t0, g1t0} based on Figure 4b. By
crossing this set with S in our running example, each of the
sample s1, s2 and s3 will be associate with {ĝitmi |gi ∈ G}
based on their corresponding gene slices in Figure 4b as
follow:

s1 associated with a1={10, 15, 20, 30, 40, 50, 20, 15, 10}

s2 associated with a2={20, 35, 10, 50, 80, 30, 10, -5, 20}

s3 associated with a3={5, 5, 25, 20, 20, 60, 25, 25, 5}

Let A = {a1, a2, a3}, then we can see that S2Score(A,S)=0.
2

As can be seen, Observation 3.1 allows us to linearize each
sample slice (which is a 2D array) into a 1D array such
that comparing coherency among the 1D arrays is equivalent
to comparing coherency among the 2D arrays. Later on in
Section IV-A, our enumeration of sample triplets can thus be
conducted on a set of 1D arrays making the algorithm a 2D
mining algorithm that explore along all the three dimensions
in the gene-sample-time space. Compare to the TRICLUSTER
[32] algorithm which search in the sample and time slices
separately, this simultaneous exploration along all three di-
mensions (for a small distance) give much more room for
pruning.

In additional, Observation 3.1 also allows us to simplify the
definition of the S2D3 cluster model with respect to a coher-
ence threshold ε and time periods length l and given below.
Note that the first condition in the definition is essentially a
result of Observation 3.1.
Definition 6: (S2D3 Cluster w.r.t. ε and l)
Assume G = {gi} is a group of genes, S is a set of samples,
and T = {Ti|gi ∈ G} is a set of time periods, where Ti =
(tmi , tmi+1, ..., tmi+l−1) and mi is the lag coefficient of gi.
Then C = G · T × S is a time-lagged S2D3 cluster iff (1)
S2Score({ĝitmi |gi ∈ G}, S) ≤ ε ; and (2) each sample slice
sn ∈ S is a gene · time cluster: there exists a common TORD
over Ti among G. 2

F. Model Comparison

Compared with previous shifting-and-scaling model [30],
our cluster model is much more consistent and flexible, as
summarized below.

Justifiability: As we discussed in Section II, regcluster model
is biased towards cluster whose baseline sample-pair has a
large expression difference. Hence, regcluster favors gene

group 1 in Figure 3 while our new model have the same degree
of coherence for both groups.
Compactness: Because of the use of baseline sample-pair,
the submatrix of a regcluster may not be coherent w.r.t. ε any
more. However, any submatrix of our 2D or 3D cluster is still
coherent w.r.t. ε.
Convenience: The coherence threshold in the regcluster
model and previous work [27], [32] is difficult to specify
in advance, varying from 0 to ∞. Comparatively, our
cluster model ensures the S2Score on any sample triplet is
always within [0, 1], 0 indicating perfect shifting-and-scaling
correlation.

To filter out the most interesting S2D3 Clusters, besides the
coherence threshold ε, we also apply the regulation threshold γ
(similar to that proposed in [30]), the minimum gene number
threshold MinG, the minimum sample set size MinS, and
the minimum time periods length MinT (similar to those
proposed in [32]) in our algorithm.

IV. ALGORITHM LAGMINER

Unlike previous 3D clustering algorithms [16], [32], our
S2D3 Cluster discovery algorithm, LagMiner, explores on
all three dimensions simultaneously. Meanwhile, it takes into
account all the three issues that are not addressed by the
previous algorithms: (1) the time-lagged correlation, (2) the
continuity of time periods data and (3) the general shifting-
and-scaling correlation.

To implement the simultaneous 3D exploration, we propose
a concept of maximum set of gene-time periods (MSGTP)
over a sample set S. In this way, any maximal 3D clusters
with time lags can be recovered from one or more MSGTPs
with ease.
Definition 7: (MSGTP w.r.t. ε and γ)
Assume S is a set of samples, ε is the coherence threshold,
γ is the regulation threshold (γ > 0), then the maximum set
of gene-time periods (MSGTP) of length l over S that satisfy
the constrains of coherence and regulation is a maximal set
of gene-time periods {ĝitmi}l that satisfies the following
conditions:

(1)4 Coherence at gene/time slices: ∀ sample triplet
{su, sv, sw} ∈ S, S2Score({ĝitmi}, {su, sv, sw}) ≤ ε;

(2) Coherence at sample slices: At any sample slice su ∈ S,
∀ĝitmi , TORD(ĝitmi) is the same.

(3) Regulation significance: ∀su, sv ∈ S, ∀gitmi+x, 0 ≤ x <
l, we have either Pgi,su,tmi+x −Pgi,sv,tmi+x ≥ Pgi,sv,tmi+x ·γ
or Pgi,sv,tmi+x − Pgi,su,tmi+x ≥ Pgi,su,tmi+x · γ. 2

Figure 5 gives an algorithmic description of LagMiner.
Details will be explained in the following sections. Generally,
LagMiner performs clustering in three basic steps.

4This condition is one reason why the smallest unit of triplet is used instead
of quadruple or larger set of samples. Testing all combination of samples can
be expensive for larger sample set.



Input: D = G0×S0×T0: 3D dataset, MinG: minimum number of genes, MinS:
minimum number of samples, MinT : minimum time sequence length, γ: regulation
threshold and ε: coherence threshold.
Output: all validated optimal S2D3 Clusters.

1) MS0 = MSGTP const(D, MinG, MinS, MinT , ε, γ);
2) for each M = GTPset× Sm in MS0 (|Sm| = 3) do

SSet extend(M) and records to MS;
Prune the non-maximal M in MS;

3) CS = maxclus recover(MS);
Output the optimal maximal S2D3 Cluster in CS.
Subroutine: MSGTP const().

1) for each sample triplet Sm = {su, sv, sw} enumerated in depth-first order do
Check all the gene-time periods of length MinT ;
Record validated GTP w.r.t. ε and γ to CandiSm .

2) Apply MinS compactness property pruning iteratively:
if candidate GTP conflicts with property 1
then remove GTP ;
if sample s conflicts with property 2
then remove GTP for any Sm that contains s;
if sample pair su − sv conflicts with property 3
then remove GTP for any Sm that contains su − sv ;

3) for each CandiSm in depth-first order do
Sort its GTP first by triplet order, second by TORD
and last by MinScore;
Slide window w.r.t. constraints ε and MinG;
Record validated MSGTPs into MS0;

4) return MS0.
Subroutine: SSet extend(M = GTPset× S).

1) if |S| ≥ MinS then insert M to MS.
2) for each extension candidate s′ do

Intersect M with one MSGTP on each {su, sv, s′}
that su, sv ∈ S
while applying TORD, MinG and redundancy pruning;
if not prunable then

S′ = S ∪ {s′};
GTPset′ = intersected gene-time periods;
Mnew = GTPset′ × S′;
if |S| ≥ MinS then

Insert Mnew into MS;
SSet extend(Mnew).

Subroutine: maxclus recover(MS).
1) Gene uniqueness processing on MS;
2) Sort MS = {Mn = gthset × S} first by |S| next by |gthset| (both

descending);
3) for each Mn ∈ MS in sorted order do

Extend the time sequences of Mn in both
positive and negative directions;
Prune subset MSGTP of extended M ′

n;
Record M ′

n in CS;
4) return CS;

Fig. 5. LagMiner

(1) MSGTP Construction (MSGTP const()): We construct
all possible MSGTPs for each sample triplet {su, sv, sw} ⊆ S
w.r.t. ε, γ and MinT .

(2) Sample Set Extension (SSet extend()): We extend the
sample sets of initial MSGTPs to meet MinS constraint.

(3)Maximal Refinement (maxclus recover()): Since we
only consider time periods of length MinT at the first
two steps, at Step (3), we extend the cluster in the time
dimension and then output the optimal 3D clusters. This
implies that larger weights are assigned to gene dimension
and sample dimension. Assume we have two 3D clusters,
C1 = G1 · T1 × S1 and C2 = G2 · T2 × S2, if G1 ⊂ G2,
S1 ⊆ S2, then C1 is not optimal given C2.

In many ways, LagMiner adopt the concept of shotgun and
assembly approach for human genome sequencing [21], [13]
which first break the human DNA into many small fragment

and then assemble them into longer sequences by joining
fragments which have matching suffix and prefix. In this case,
the fragments in LagMiner are the MSGTPs which will be
combined to form the final clusters. However, MSGTPs differ
from sequence fragments since it is multi-dimensional.

Figure 6 give an overview of the cluster assembly process of
LagMiner for a S2D3Cluster. Initial, basic unit of MSGTP
are constructed in the first phase with 3 samples, MinT time
units and more than MinG genes. In the second phase, exten-
sion are then done along the sample dimension to construct
MSGTPs consisting of more than MinS samples. Finally in
the last phase, extension are done along the time dimension to
construct the final optimal clusters which can have more than
MinT time slices.

Compare to TRICLUSTER [32] which search in the sample
and time space separately, LagMiner first explore along all
three dimensions (for a small distance) in order to construct the
basic unit of MSGTP. This allow us to first prunes the search
space along all three dimensions. Searching in sample and
time space separately will inevitably results in an extremely
large number of candidate 2D clusters. As we will show
later, LagerMiner is much more efficiently than TRICLUSTER
because of this.

A. MSGTP Construction

In subroutine MSGTP const(), we firstly discover all
candidate gene-time subseris (GTP ) of length MinT for a
MSGTP over a sample triplet {si, sj , sk}. Then we perform
MinS compactness checking and 1D window sliding to
obtain the initial MSGTPs on sample triplets.

GTP Discovery: for each sample triplet Sm = {su, sv, sw}
and ∀ĝitmi ∈ G ·T of time sequence length MinT , we carry
out

(1) regulation test: We test whether ∀gitmi+x,
0 ≤ x < MinT , the expression level difference across
any two samples in Sm is significant w.r.t. γ, and

(2) coherence test: We test whether S2Score(ĝitmi ,Sm) ≤ ε.
If ĝitmi satisfies these two conditions, then it is a candidate
GTP for Sm and will be stored in the candidate list,
CandiSm , together with its associated S2Score range
[MinScore, MaxScore] (Definition 1).

Compactness Pruning: Recall that in a valid 3D cluster, there
should be at least MinS correlated samples. Owing to the
compact property of our S2D3 Cluster model (Section III-F),
each candidate GTP must satisfy the MinS compactness
property below, assuming MinS > 3:

(1) Each candidate GTP should cover at least C3
MinS

different sample triplets.

(2) Among the sample triplets that GTP covers, each sample
must occur at least C2

MinS−1 times.
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Fig. 6. Assembling MSGTPs to form S2D3 Cluster

(3) Among the sample triplets that GTP covers, each
sample-pair must occur at least C1

MinS−2 times.

Fig. 7. 1D Window Sliding

1D Window Sliding: For each sample triplet Sm, we sort
candidate GTP in CandiSm first by sample triplet order,
next by TORD and last by MinScore. We slide a window
of length ε over the sorted GTP s of the same sample triplet
order and the same TORD. If the number of genes within the
window is above MinG, then an initial MSGTP w.r.t. MinG,
MinS, MinT , ε and γ is found. This process is termed 1D
window sliding since each candidate GTP occupies a space
of [MinScore, MaxScore], as opposed to a single value in
previous studies.
Example 4: For example, with respect to our running example
in Figure 4, Figure 7 shows two MSGTPs on sample triplet
{s0, s1, s3} when ε = 0.25 and MinG = 3: {ĝ3t1, ĝ1t2, ĝ2t4,
ĝ6t1} × {s0, s1, s3} and {ĝ1t2, ĝ2t4, ĝ6t1, ĝ4t5} × {s0, s1,
s3}. 2

B. Sample Set Extension

We note that the sample sets of the initial MSGTPs ob-
tained in Step 1 only consist of three samples. In Subroutine
SSet extend(), we extend the sample sets of initial MSGTPs
to meet the MinS constraint. After extension, the maximal
MSGTPs are stored in MS.

To avoid redundancy, we impose an ORD order on the
samples: s0 ≺ s1 ≺ ... ≺ sn. We extend the sample set
in depth-first order of ORD. Assume the sample set of the
current MSGTP, M , is S, then the extension candidates of
M are those samples of a lower ORD rank than samples in
S: {s′|∀su ∈ S, su ≺ s′}. To extend M ’s sample set from S
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Fig. 8. Sample Set Extension

to S ∪ {s′}, we recursively intersect M with one MSGTP on
each newly involved sample triplet, {su, sv , s′|su, sv ∈ S,
su ≺ s′ and sv ≺ s′}.

The following pruning strategies are applied in
SSet extend():

(1) TORD Pruning: if the gene-time periods of the two
MSGTPs for intersection have different TORD on any
common sample, the subsequent search stops (Please refer to
Definition 6).

(2) MinG Pruning: if the number of genes after intersection
falls below MinG, the subsequent search stops.

(3) Redundancy Pruning: if the new MSGTP after intersection
has been explored already, the subsequent search stops.

Example 5: Let’s look at an example of sample set extension.
Table II shows the initial MSGTPs constructed on sample
triplets over dataset D. There are five samples in D: s0, s1,
..., and s4. Assume MinS = 3, the sample set extension
procedure proceeds as Figure 8 shows. For M0 on sample
triplet {s0, s1, s2}, the extension candidates are s3 and s4.
Staring from s3, M0 intersects with one MSGTP of three



MSGTP TORD {s0, s1, s2} MSGTP TORD {s0, s1, s3}
M0 012,012,102 {ĝ1t2, ĝ2t4, ĝ6t1} M2 012,012,021 {ĝ3t1, ĝ1t2, ĝ2t4, ĝ6t1}
M1 102,102,012 {ĝ1t3, ĝ2t5, ĝ6t2} M3 012,012,021 {ĝ1t2, ĝ2t4, ĝ6t1, ĝ4t5}

MSGTP TORD {s0, s2, s3} MSGTP TORD {s1, s2, s3}
M4 012,102,021 {ĝ1t2, ĝ2t4, ĝ6t1} M5 012,102,021 {ĝ1t2, ĝ2t4, ĝ6t1}

TABLE II
CONSTRUCTED MSGTPS IN MS0 WHEN MinS = 3 AND MinT = 3

sample triplets, each consists of s3 and two samples from
{s0, s1, s2}: {s0, s1, s3}, {s0, s2, s3} and {s1, s2, s3}.
Specifically, M0 intersects with M2, M4 and M5. We obtain
Mnew = {ĝ1t2, ĝ2t4, ĝ6t1} × {s0, s1, s2, s3}. Since no
MSGTP exists on sample triplet containing s4, we can no
longer extend Mnew. The SSet extend() subroutine then goes
back to the intersection of M0 with M3. Since the intersection
is redundant with Mnew, subsequent search is pruned.

The next MSGTP to extend is M1 on sample triplet {s0, s1,
s2}. M1’s extension candidates are s3 and s4. When extending
with s3, no MSGTP on sample triplet {s0, s1, s3} has the same
TORD as M1 on samples s0 and s1, thus the extension with
s3 stops (TORD pruning strategy). M1 is also not extendable
with s4, since s4 is not available in any sample triplets.

The only extension candidate for M2, M3, M4 and M5 is
s4 which is not available in any sample triplets, therefore the
subroutine stops.

Given Mnew, M0, M4 and M5 are no longer maximal and
thus are pruned. The maximal MSGTPs in MS are Mnew,
M1, M2 and M3. 2

C. Optimal 3D Cluster Recovery

In Subroutine maxclus recover(), we search and output
optimal S2D3 Cluster in the following steps.

First, we check whether each MSGTP, Mn, contains gene-
time periods of the same gene. We split Mn if so. After that,
each Mn is a candidate S2D3 Cluster that satisfies the MinG,
MinS, ε, γ and MinT constraints.

Second, we sort the processed MSGTPs first in descending
order of sample set size, next in descending order of gene set
size, and last in enumeration order. In this way, an optimal
3D clusters can always be discovered before the non-optimal
ones.

Finally, we recover the optimal S2D3 Cluster in sorted
order. Recall that the MSGTPs found so far consist of gene
time periods of length MinT . For each MSGTP in sorted
order, Mn = {ĝitmi}MinT × S ∈ MS, where the subscript
before ‘×’ indicates time periods length, we check whether
the time periods of Mn can be extended in the negative or
positive direction synchronously. For each ĝitmi , the negative
direction refers to the time points before tmi : tmi−1, tmi−2,
etc. Similarly, the positive direction refers to the time points
after tmi+MinT−1: tmi+MinT , tmi+MinT+1, etc. For Mn, if
there are p negative extensions and q positive extensions, then
the new MSGTP is M ′

n = { ̂gitmi−p}MinT+p+q × S. During
time periods extension, the TORD of new time periods are
examined. We mark all the non-optimal MSGTP given M ′

n,

Order MSGTP GTPSet× SampleSet

0 Mnew {ĝ1t2, ĝ2t4, ĝ6t1}3 × {s0, s1, s2, s3}
1 M2 {ĝ3t1, ĝ1t2, ĝ2t4, ĝ6t1}3 × {s0, s1, s3}
2 M3 {ĝ1t2, ĝ2t4, ĝ6t1, ĝ4t5}3 × {s0, s1, s3}
3 M1 {ĝ1t3, ĝ2t5, ĝ6t2}3 × {s0, s1, s2}

TABLE III
SORTED MSGTPS

Order MSGTP GTPSet× SampleSet

0 Mnew {ĝ1t2, ĝ2t4, ĝ6t1}3 × {s0, s1, s2, s3}
1 M2 {ĝ3t1, ĝ1t2, ĝ2t4, ĝ6t1}3 × {s0, s1, s3}
2 M3 {ĝ1t2, ĝ2t4, ĝ6t1, ĝ4t5}3 × {s0, s1, s3}
3 M ′

1 {ĝ1t2, ĝ2t4, ĝ6t1}4 × {s0, s1, s2}
TABLE IV

FINAL OPTIMAL S2D3 CLUSTER

record M ′
n in CS, come to the next promising MSGTP and

repeat the time periods extension procedure recursively.
Example 6: For example, assuming that maxclus recover()
subroutine sorts the MSGTPs after sample set extension as
shown in Table III. Obviously, the time periods in Mnew, M2

and M3 are not extensible in either direction, and the three
MSGTPs cover no subset MSGTPs. However, when it comes
to M1, one negative extension of time periods is made, since
{ĝ1t2, ĝ2t4, ĝ6t1} × {s0, s1, s2} is subsumed by Mnew. The
final optimal S2D3 Cluster output are those listed in Table IV.

2

D. Time Complexity

In terms of time complexity, the bottleneck of LagMiner is
the MSGTP construction subroutine and sample set extension
subroutine. For the 3D dataset D = G0 × S0 × T0, where
|G0| = N , |S0| = M and |T0| = L, assume there are k
validated MSGTPs discovered in MSGTP construction. Then,
there are N ∗(L−MinT +1) gene-time periods to be checked
for each sample triplet. There are M∗(M−1)∗(M−2) sample
triplets. Therefore the overall time complexity of MSGTP
construction is O(N ·L ·M3). Without applying any pruning
strategies, the time complexity of sample set extension is
exponential with k. By applying MinG, MinS, MinT , ε
and γ constraints, the efficiency of LagMiner is improved
significantly.

V. EXPERIMENTAL EVALUATION

We conduct a series of experiments on both synthetic data
and real-life data to compare the performance of LagMiner
against TRICLUSTER (discovering pure scaling pattern in 3D
space). We perform the scalability test on synthetic dataset by
varying the number of genes, the number of samples, the time



20 40 60 80 100
10

1

10
2

10
3

10
4

10
5

MinG

ru
n
tim

e
 (

se
co

n
d
s)

LagMiner
TRICLUSTER

(a) Varying MinG

3 4 5 6 7

10
2

10
3

10
4

10
5

MinS

ru
nt

im
e 

(s
ec

on
ds

)

LagMiner
TRICLUSTER

(b) Varying MinS

4 5 6 7 8
10

2

10
3

10
4

10
5

10
6

MinT

ru
nt

im
e 

(s
ec

on
ds

)

LagMiner
TRICLUSTER

(c) Varying MinT

0.005 0.01 0.015 0.02 0.025
10

1

10
2

10
3

10
4

10
5

epsilon

LagMiner
TRICLUSTER

ru
n
tim

e
 (

se
co

n
d
s)

 

(d) Varying ε

0.1 0.2 0.3 0.4 0.5
0

200

400

600

800

1000

1200

1400

gamma

ru
nt

im
e 

(s
ec

on
ds

)

LagMiner

(e) Varying γ

Fig. 9. Sensitivity Evaluation
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(b) Five Sample Slices
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Fig. 10. A S2D3 Cluster

series length and the number of embedded clusters. However,
due to limited space, we are unable to present the result in
this paper and will refer interested reader to [29] for the
experimental result.

We also test the sensitivity of LagMiner and TRICLUSTER
on the real-life yeast 3D dataset that was previously used to
evaluate [32]. This 3D dataset contains the expression values
of 7679 genes of yeast from 13 samples across 14 consecutive
time points. Finally, we evaluate the biological significance of
the S2D3 clusters discovered in the 3D yeast dataset with the
yeast gene ontology term finder.

All experiments are done on a 1.0-GHz Dell PC with 3GB
memory running Redhat Linux.

A. Sensitivity

We test the sensitivity of LagMiner w.r.t. MinG, MinS,
MinT , ε and γ, as opposed to TRICLUSTER, on the real-life
3D dataset in [32]. The default parameter settings of LagMiner
are MinG = 80, MinS = 5, MinT = 4, γ = 0.1 and
ε = 0.01. One parameter is varied at each time.

Figure 9 illustrates the runtime of LagMiner and TRICLUS-
TER when varying parameters MinG, MinS, MinT , ε and
γ respectively. As can be seen, LagMiner is in general much
more efficient than TRICLUSTER, though TRICLUSTER
only finds pure-scaling patterns without time lags, a specific
case of the much more general shifting-and-scaling patterns
with arbitrary time lags that LagMiner discovers.

Figures 9 (a), (b) and (d) show that LagMiner is quite
insensitive to MinG, MinS and ε, compared with TRICLUS-
TER. The runtime of LagMiner slightly decreases from 1399
seconds to 1376 seconds when MinG varies from 20 to 100,
smoothly drops from 1387 seconds to 1376 seconds when
MinS increases from 3 to 7, and gently increases from 1286
seconds to 1550 seconds when raising ε. On the contrary,
TRICLUSTER is so sensitive to MinG, MinS and ε that

it cannot finish running within 24 hours when MinG ≤ 80
or MinS ≤ 5 or ε ≥ 0.01. Its runtime suddenly drops below
100 seconds when MinG = 100 or MinS = 6 or ε = 0.005.

The extremely high sensitivity of TRICLUSTER to MinG,
MinS and ε is due to the costly enumeration of excessive 2-
dimensional gene×sample clusters at each time slice. A large
proportion of enumerated gene × sample candidate patterns
actually will be pruned with the later MinT constraint,
especially when MinG, MinS, or ε constraints are loose.
Comparatively, LagMiner avoids unnecessary exploration by
performing MinG, MinS and MinT pruning simultaneous.

Figure 9 (c) shows that the runtime of TRICLUSTER is
approximately two orders of magnitude of that of LagMiner
when varying MinT from 4 to 8. Figure 9 (e) shows that the
runtime of LagMiner is anti-exponential to γ.

B. Effectiveness
LagMiner is able to identify time-lagged correlation. For

instance, LagMiner identified 29 S2D3 Clusters from the real
3D dataset within 20 minutes when MinG = 20, MinS = 5,
MinT = 4, γ = 0.1 and ε = 0.02. We adopt the yeast genome
ontology term finder (http://db.yeastgenome.org/
cgi-bin/GO/goTermFinder) to evaluate the biological
significance of the 29 S2D3 Clusters. Out of the 29 clusters, 21
clusters turn out to be highly significant w.r.t. one or more GO
terms in associated biological processes, cellular components
or gene functions at significant level p=0.005.

One S2D3 Cluster of time lag 2 among the 29 3D clusters,
C ′′, is illustrated in Figure 10. C ′′ has a p-value of 0.00284 in
association with mitochondrion inheritance. It consists of 24
gene members, 5 samples and local time periods of length 4.
The correlated sample set is {s6, s7, s8 ,s11, s12}. In C ′′,
there is a time lag of two between its 11 gene members
occupying time periods (t7, t8, t9, t10) and its 13 gene
members occupying time periods (t9, t10, t11, t12). Under the



same parameter setting, TRICLUSTER cannot finish running
in three days, thus we do not evaluate its findings here 5.

Figure 10 demonstrates the coherence patterns of C ′′ at
gene/sample/time slices. The four gene slices in Figure 10 (a)
show the coherent time − sample patterns projected on the
6th, 12th, 18th and 24th gene respectively. For instance, the
leftmost gene slice in Figure 10 (a) consists of shifting-and-
scaling time curves, t7-t10, of gene YGL232W across samples
s6, s7, s8, s11 and s12. The coherent gene curves across time
sequences on the five sample slices are shown in Figure 10
(b), in which a time lag of 2 can be observed. Figure 10 (c)
demonstrates the coherent gene curves across samples in the
1st, 2nd, 3rd and 4th corresponding time point of correlated
time periods. Note that the starting time point is either t7 or
t9.

VI. CONCLUSION

In this paper, we have addressed three issues not addressed
by previous 3D clustering algorithms, (1) the time-lagged
correlation, (2) the continuity of correlated time periods, and
(3) the general shifting-and-scaling correlation, by proposing
a novel shifting-and-scaling cluster model, S2D3 Cluster. Our
cluster model can be generalized to 2-dimensional clustering
as well and is much more consistent than the previous 2D
shifting-and-scaling model [30].

We have designed algorithm LagMiner for efficient discov-
ery of S2D3 Clusters. Unlike TRICLUSTER, which explores
the gene×sample space and time space separately, LagMiner
gains much more efficiency by exploring the three dimensions
simultaneously. Furthermore, our experimental results on both
synthetic and real-life datasets show that: LagMiner is rather
scalable for large datasets and robust to parameter settings.
The yeast genome ontology term finder also indicates that
the S2D3 clusters discovered by LagMiner is meaningful in
biology.

In the future, we planned to visualize the interaction graph
that are derived from the result of our clustering by applying
graph visualizing techniques [28] to facilitate better explo-
ration of the clusters.
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