
Interactive Hierarchical Tag Clouds for
Summarizing Spatiotemporal Social Contents

Wei Kang #1, Anthony K.H. Tung #∗2, Feng Zhao ∗3, Xinyu Li ∗4

NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
1 kangw@nus.edu.sg

∗ School of Computing, National University of Singapore, Singapore
{2 atung,3 zhaofeng,4 lixinyu}@comp.nus.edu.sg

Abstract—In recent years, much effort has been invested in
analyzing social network data. However, it remains a great
challenge to support interactive exploration of such huge amounts
of data. In this paper, we propose Vesta, a system that enables
visual exploration of social network data via tag clouds. Under
Vesta, users can interactively explore and extract summaries of
social network contents published in a certain spatial region
during a certain period of time. These summaries are represented
using a novel concept called hierarchical tag clouds, which
allows users to zoom in/out to explore more specific/general
tag summaries. In Vesta, the spatiotemporal data is split into
partitions. A novel biclustering approach is applied for each
partition to extract summaries, which are then used to construct
a hierarchical latent Dirichlet allocation model to generate a topic
hierarchy. At runtime, the topic hierarchies in the relevant par-
titions of the user-specified region are merged in a probabilistic
manner to form tag hierarchies, which are used to construct
interactive hierarchical tag clouds for visualization. The result
of an extensive experimental study verifies the efficiency and
effectiveness of Vesta.

I. INTRODUCTION

The wide adoption of Social Network Services (SNSs) has
resulted in large amounts of social network contents (e.g.,
tweets in Twitter and newsfeeds in Facebook). For instance,
Twitter CEO Dick Costolo revealed in June 2012 that Twitter
was seeing 400 million tweets per day1. In particular, it is
increasingly becoming more common for published contents to
include both locational and temporal information which great-
ly enriches these SNSs posts. By exploring and summarizing
these contents, we can discover what people are talking about
in certain regions during a certain period of time. For example,
in the 2012 US presidential election, Obama and Romney tried
to win voters in key swing states by getting their campaign
staffers to analyze newly published social network contents
that were related to the election in each of these states and then
adjust their campaign strategies accordingly to the analysis.

In this paper, we propose a system called Vesta that enables
users to interactively browse summaries of social network con-
tents of user-specified spatiotemporal regions2. To represent
the summaries, we introduce a novel concept of hierarchical
tag cloud, which organizes tags (keywords) of a summary in
different levels of depth based on their degrees of generality.
Namely, tags in higher/lower levels have more general/specific

1http://www.mediabistro.com/alltwitter/tag/tweets-per-day
2Try Vesta at http://db128gb-b.ddns.comp.nus.edu.sg/kangwei/bicluster.

meanings. Users can grasp general ideas about what is popular
in a specified spatiotemporal region at first glance, and then
zoom in to lower levels if they want to see more details.
Therefore, the increasing depths of a hierarchical tag cloud
can effectively organize tags of a summary in different levels
of abstraction and present details to users step by step.

As an example, Fig. 1 illustrates how users can interactively
explore what were happening in London during the 2012
Olympic Games via hierarchical tag clouds. By setting a time
range and selecting a geographic region as in Fig. 1(a), top-
10 most interesting hierarchical tag clouds will be displayed,
where different colors represent different topics. Initially, only
tags at the first level of each hierarchical tag cloud are
displayed (Fig. 1(b)), with the largest font size to convey the
most general meanings. When zoomed in, tags at subsequent
levels of each tag cloud are gradually displayed in smaller
font size around the first level tags to provide more specific
meanings (Fig. 1(c) and 1(d)). This process of hierarchical
browsing of tag clouds can be repeated to trigger the display
of the tags at any appropriate level.

As shown in Fig. 1(b), one tag in the first level is “olympic”,
which summarizes the pink tag cloud and indicates that the
tag cloud talks about the Olympic Games. To explore more
about the tag cloud, we zoom into the second level as in
Fig. 1(c). We can see that more tags are displayed, including
“bolt”, “stadium” and so on. Fig. 1(d) shows the pink tag
cloud when we zoom into the fourth level, with even more
tags added around “olympic” including “training”, “time” in
the third level and “price”, “trial” in the fourth level.

Exploring social network contents interactively in hierar-
chical tag clouds is a novel and useful operation. It facilitates
users in exploring different topics by only viewing summaries
instead of directly reading plenty of contents. Users can drill
down or roll up in the tag clouds to better understand the
discovered knowledge interactively and hierarchically. They
can also click any tag in a tag cloud to see the related contents
if they want to know the exact underlying context. Moreover,
users are allowed to specify two sets of spatiotemporal ranges
to compare summaries of different regions for which common
tags will be highlighted in italic type.

To provide interactive hierarchical tag clouds, one big
challenge is to develop efficient methods to summarize social
network contents. Latent Dirichlet allocation (LDA) [1] is a

(a) Parameters (b) The first level (c) The second level (d) The fourth level

Fig. 1. Hierarchical Tag Cloud

popular topic model for summarizing and extracting topics
from documents, and various extensions [2], [3] have been s-
tudied, including extending LDA to deal with short documents
like tweets [4]. However, LDA-based methods are not able to
handle huge amounts of data efficiently since they often per-
form inference by adopting MCMC algorithms such as Gibbs
sampling. The streaming nature of social network content data
renders the summarization task even more challenging.

To tackle the challenges, we propose an efficient bicluster-
ing approach based on formal concept analysis [5], [6]. The
results are called biclusters, and each consists of a set of tags
(keywords in contents) and a set of contents, where the tags
frequently co-occurs in the contents. The contents are clustered
together due to the common tags they share, which means they
are quite likely to discuss similar things. To this effect, tags
in a bicluster serve as a summary of the contents. Thus the
summarization of social network contents is converted to the
generation of biclusters. Besides, biclustering clusters tags and
contents simultaneously so that each bicluster contains both
tags as a summary and contents from which the summary is
extracted, where the contents supplement the tags to provide
more context for a summary. This distinguishes our approach
from normal clustering that often clusters in a single direction
and from LDA-based methods that generate only summaries.
Although finding the largest bicluster is NP-complete [7], [8]
and many heuristic biclustering methods converge slowly, our
approach makes use of formal concept analysis to generate
“full-density” biclusters (i.e., each tag of a bicluster appears in
each content of that bicluster) very efficiently. “Full-density”
biclusters can be strict, but it is easy to relax a bicluster by
adding more tags/contents or merging similar biclusters.

To further enhance the system scalability and visualize the
summaries in hierarchical tag clouds, we propose an efficient
two-phase, disk-based partition-and-merge scheme in Vesta.
The partitioning phase, which is done offline, consists of
three steps. In the first step, we split the spatiotemporal social
network data into partitions. For instance, each such partition
contains one day’s contents for a spatial region in our case.
In the second step, we summarize the social network contents
using the proposed biclustering approach. In the third step,
we apply the hierarchical LDA (hLDA) model [2], [3] to
generate for each partition a topic hierarchy. Topic hierarchies
will be merged in the subsequent merging phase to form
tag hierarchies, which organizes tags of merged biclusters in
different levels from general to specific. In this way, users

can visualize the summaries in a hierarchical fashion. At the
end of the partitioning phase, we have for each partition a
set of biclusters and a topic hierarchy generated by using the
contents in these biclusters. The partitioning phase can also
be carried out in parallel easily.

The merging phase is done at runtime when users query
Vesta by specifying the spatiotemporal ranges. Vesta first
computes the partitions that are covered by the query range
and then proceeds to merge similar biclusters from the selected
partitions. A probabilistic merging algorithm is proposed to
combine the corresponding topic hierarchies to form tag
hierarchies for visualization purpose. Vesta is efficient as most
of the computationally intensive tasks are done offline in the
partitioning phase; the runtime merging phase is fast, making
Vesta an effective interactive visualization tool.

To select the most interesting summaries, we propose a
score function customizable according to users’ preference.
We also evaluate the mismatch problem quantitatively so as
to provide feedback to adjust the partition size adaptively.

We make the following contributions in this paper: (1)
We propose a novel way to explore spatiotemporal social
network contents via hierarchical tag clouds. (2) We propose a
summarization method by biclustering the contents and further
extend it to a disk-based partition-and-merge scheme for better
scalability. (3) We generate and merge topic hierarchies so
as to visualize summaries in hierarchical tag clouds. (4) We
implement all these mechanisms into a system called Vesta.

The rest of the paper is organized as follows. We review the
related work in section II and give the problem formulation in
section III. Section IV introduces our new biclustering method.
In section V, we propose a partition-and-merge scheme, fol-
lowed by the introduction of the system implementation in
section VI. Section VII presents the experimental study and
section VIII concludes the paper.

II. RELATED WORK

Tag clouds are visual presentations of a set of words, or
“tags”, selected by some rationale, in which attributes of the
text (e.g., size, color) are used to represent features (e.g.,
frequency) of the associated terms. The authors in [9] provided
an extensive evaluation of tag clouds for impression formation.
Bielenberg et al. [10] presented their tag cloud in a circular
layout where tags locating nearer the center are more impor-
tant. Dubinko et al. [11] proposed to visualize the evolution of
tags within the Flickr online image sharing community. In this
paper, we combine tag cloud and topic hierarchy to visualize

the summaries of social network contents in hierarchical tag
clouds, which is suitable for large-scale tag representation.

Biclustering [12] was first proposed decades ago and be-
came popular after Cheng et al. [7] adopted it for gene
expression data analysis. Many approaches were proposed
to do biclustering in both gene and condition dimensions
simultaneously to find a set of genes expressing coherently in
a set of conditions [7], [13], [14]. It is also used in text analysis
referred to as “co-clustering” to analyze dyadic data [15], [16],
e.g., the document and word co-occurrence frequencies. An
information theoretic co-clustering framework was proposed in
[17] and efforts were spent in extending existing co-clustering
to support constraints on both words and documents [16].

Since finding the largest bicluster is NP-complete for al-
most all variants of the biclustering problem [7], [8], most
biclustering approaches are designed with heuristics in a non-
deterministic manner, thereby often taking a long time to
converge [8], [14]. Recently, some authors [18] applied biclus-
tering to the analysis of social network data. They proposed to
do biclustering by means of formal concept analysis (FCA).
FCA [5], [6] is a data analysis method in growing popularity
across various domain, which is widely used to discover
relationships between a set of objects and a set of attributes.
Although biclustering using FCA is more efficient than general
biclustering approaches, this approach is still unable to scale
to huge amounts of social network data. Besides, it tends
to generate sparse biclusters but miss the dense ones [18].
Our proposed biclustering method also makes use of FCA to
summarize social network data, but can handle large dataset
more efficiently and generate denser biclusters.

Latent Dirichlet allocation (LDA) [1] is a popular topic
model for latent topic discovery in text collection. It inspires
various extensions such as the correspondence LDA models
[19] and topic-sentiment models [20]. Another extension hier-
archical LDA (hLDA) [2], [3] is germane to our work. The au-
thors proposed a nested Chinese restaurant process and showed
how to use the process to do Bayesian nonparametric inference
of topic hierarchies. Ma et al. in [21] introduced a Master-
Slave Topic Model to discover and summarize topics in readers
comments and the related news articles. Another work [22]
proposed a model called Uni-Topical Blockmodels to capture
topics from tweet replies among Twitter users. Twevent [23]
proposed a segment-based event detection system for tweets,
which helps users to understand the topics attracting a large
number of common Twitter actors.

Our work focuses on the spatiotemporal social network
content data summarization. Then we adopt hLDA to generate
tag hierarchies to help visualize the summaries. We will show
in the experimental study that hLDA cannot handle large
amounts of content data for the analysis of topic hierarchies.
Our work mainly differs from hLDA as follows. (1) We
discover summaries and the related contents from which
the summaries are extracted simultaneously. (2) We generate
discrete summaries which capture various interesting topics
while hLDA generates topics at different levels of abstraction.
(3) We generate a tag hierarchy for each summary while hLDA

generates a topic hierarchy for a corpus of documents.

III. PROBLEM FORMULATION

A. Preliminaries

Definition 1: Social network contents (or contents for
short) are textual microblogs, such as tweets, published by
users in SNSs. Each content is denoted by ci ∈ Ĉ, where Ĉ is
the collection of all contents. Tags are meaningful keywords
in contents after stop words removal. Each tag is denoted by
ti ∈ T̂ , where T̂ is the collection of tags. A social network
matrix MT̂ Ĉ is a |T̂ | by |Ĉ| matrix whose rows represent tags
and whose columns represent social network contents.

Definition 2: A bicluster, denoted by (T,C), is a pair
consisting of a subset T of tags T̂ and a subset C of social
network contents Ĉ. The process of finding biclusters is called
biclustering. A bicluster corresponds to a submatrix MTC of
the social network matrix MT̂ Ĉ , where the tag set T of the
bicluster corresponds to the row set of the submatrix and the
content set C to the column set.

The value of any element Mij in MT̂ Ĉ can be 1 or
0, indicating whether tag ti appears in content cj or not.
Therefore, biclustering in social network data analysis is the
process to explore the social network matrix MT̂ Ĉ to discover
biclusters (submatrices) satisfying certain criteria. Density is
commonly used as an effective measure for determining the
quality of biclusters. Without loss of generality, we use density
as one of the major measures to assess the quality of a bicluster
in this paper. Users can easily replace it with other measures
such as variance [12] and mean squared residue [7].

Definition 3: The density of (T,C), denoted by den(T,C),
is the non-zero rate of its corresponding submatrix MTC ,
which equals the ratio of the number of 1’s to |T ||C|. The size
of (T,C), denoted by sz(T,C), is defined to be min(|T |, |C|).

In a bicluster, a set of tags co-occur in a set of contents
such that the tags can be viewed as a summary of the contents.
The denser the bicluster, the more “consistent” the contents in
a summary. A density threshold δden and size threshold δsz
can filter out sparse biclusters with very few tags or contents,
thereby avoiding bicluster explosion. Having the biclusters, we
visualize them in hierarchical tag clouds, which calls for the
generation of tag hierarchy using the tags in each bicluster.

Definition 4: If a tag set T can be divided into a few non-
empty subsets T1,T2,...,Tn such that Ti ∩ Tj = ∅, ∪ni=1Ti =
T and Ti < Tj (i.e., every two different subsets follow a
total order) for any i, j ∈ {1, 2, ...n}(i < j), we say that
T1,T2,...,Tn form a tag hierarchy H for the tag set T and
that Ti contains tags in the ith level of the hierarchy.

A tag hierarchy organizes the tags of a bicluster in different
levels from general to specific. A hierarchical tag cloud is
actually the visualized form of a tag hierarchy while a tag
hierarchy defines the levels of tags for a hierarchical tag cloud.
By showing the tags level by level in a hierarchical tag cloud,
users can better understand the meaning of the tags and the
relationships among them in an interactive way.

B. Problem Definition

By highlighting a geographic region Rgeo, our aim is to
(1) generate the top-k most interesting biclusters (Ti, Ci)
(1 ≤ i ≤ k), where den(Ti, Ci) ≥ δden and sz(Ti, Ci) ≥ δsz ,
to summarize the set of social network contents Ĉ published
within Rgeo during a user-specified period of time Rtim,
and (2) build a tag hierarchy Hi for each tag set Ti so
as to visualize these summaries in hierarchical tag clouds.
The interestingness of the biclusters is measured by a score
function, which will be introduced in section V-D.

With hierarchical tag clouds, users are empowered to ex-
plore any geographic region of interest, or even discover
commonalities and uniqueness by comparing different regions.

IV. BICLUSTERING APPROACH

Most biclustering algorithms iterate many times prior to
convergence, which renders the execution time large and
unpredictable. Besides, biclustering was initially proposed to
analyze gene expression data often in small size with no or a
small number of empty values. Social network content data,
however, is usually large and sparse, further disqualifying
the application of common biclustering algorithms in social
network data analysis. Next, we will propose an efficient and
deterministic way of finding biclusters based on FCA.

A. Introduction to Formal Concept Analysis (FCA)

Definition 5: A formal context is a triplet (Â, Ô, I) where
Ô is an object set, Â is an attribute set and I ⊆ Â × Ô
represents the relationships of objects in Ô and attributes
in Â. A pair (A,O), where A ⊆ Â, O ⊆ Ô, is called a
formal concept of the formal context (Â, Ô, I) if it satisfies
the fullness property: ∀a∈A,o∈O(a, o) ∈ I , and the maximum
property: ∀o/∈O∃a∈A(a, o) /∈ I and ∀a/∈A∃o∈O(a, o) /∈ I .

Every formal concept (A,O) is full and maximal: being
full means that every object in O has all attributes in A, while
being maximal means that, if any attribute a /∈ A (or any
object o /∈ O) is added to A (or O), (A∪{a}, O) (or (A,O∪
{o})) is not full and thus not a formal concept any more.

Example 1: Fig. 2(a) shows a formal context (Â, Ô, I)
where Â = {a1, a2, a3, a4}, Ô = {o1, o2, o3, o4, o5}. The cells
with Xij means ai is an attribute of object oj , i.e., (ai, oj) ∈ I .
(A,O) is a formal concept where A = {a2, a3, a4}, O =
{o2, o4}. (A,O) is full because every object oj ∈ O has all the
attributes in A. It is also maximal. If we add in any attribute or
object which is not in A or O, o5 for instance, (A,O) would
not be a formal concept because (a4, o5) 6∈ I .

Compared with the definition of social network matrix, it
is obvious that a formal context can also be perceived as a
matrix M whose rows are attributes and whose columns are
objects. The value of an element Mij is set to 1 if the jth
object has the ith attribute, 0 otherwise. Similarly, a formal
concept (A,O) can be perceived as a “full-density” bicluster
whose density equals 1. From this perspective, (A,O) being
full means the submatrix of the bicluster has no empty value
while (A,O) being maximal means the submatrix will have
empty value(s) if any a 6∈ A or o 6∈ O is added to A or O.

Therefore, the problem of generating biclusters now becomes
the generation of formal concepts.

B. Properties of Formal Concept
A partial order “≤” can be defined in a formal context:

given two formal concepts (A1, O1) and (A2, O2), we have
(A1, O1) ≤ (A2, O2) if O1 ⊆ O2 (or A1 ⊇ A2 equivalently).
This also implies a relationship between the object set and
attribute set of a formal concept in terms of set size. That
is, the larger the size of the object set, the smaller that of
the attribute set, vice versa. This actually follows, according
to Galois theory, the antitone Galois connection [24] which
is defined as a pair of antitone functions F : A → B and
G : B→ A between two partially ordered sets A and B, such
that β ≤ F (α) iff α ≤ G(β) where α ∈ A, β ∈ B. Here F
can be viewed as a function mapping an attribute set to an
object set while G as a function mapping an object set to an
attribute set. Next we introduce the Galois operators “′” and
“′′” which work as the above functions.

Given an attribute set A ⊆ Â and an object set O ⊆ Ô,

A′ = {o ∈ Ô|∀a∈A(o, a) ∈ I}
O′ = {a ∈ Â|∀o∈O(o, a) ∈ I} (1)

where A′ is an object set, every object in which has all
attributes in A, and O′ is an attribute set, every attribute
in which is an attribute of all objects in O. Similarly, A′′

is an attribute set by applying the Galois operator twice to
A (or once to A′) and O′′ is an object set by applying the
Galois operator twice to O (or once to O′). The operator “′′”
is monotone (i.e., A′′ ⊆ B′′ if A ⊆ B), idempotent (i.e.,
(A′′)′′ = A′′), and extensive (i.e., A ⊆ A′′) [18].�� �� �� �� ���������� ������������ ������������������ ���

(a) Example

���������� ������ ����
(b) Change in shape

� �������� ����������������� �������� ������������ ����� ��� �	
(c) Four types

Fig. 2. Formal Concepts

Lemma 1: Given any attribute set A ⊆ Â and any object
set O ⊆ Ô, both (A′′, A′) and (O′, O′′) are formal concepts.

Proof: We only prove that (A′′, A′) is a formal concept,
(O′, O′′) can be proven similarly. According to Eq. 1, it is
easy to note that A′′ ⊆ A, A′ ⊆ O and ∀a∈A′′,o∈A′(a, o) ∈ I .
Next we prove (A′′, A′) is maximal by contradiction. Suppose
the object set A′ is not maximal. There must exist an object
o′ /∈ A′ that has all attributes in A′′. Since A ⊆ A′′ (“′′” is
extensive), o′ has all attributes in A. This contradicts Eq. 1
stating that A′ contains all objects having every attribute in
A. Suppose the attribute set A′′ is not maximal. There must
exist an attribute a′ /∈ A′′ shared by all objects in A′. This
contradicts A′′ = {a ∈ Â|∀o∈A′(o, a) ∈ I} according to Eq.
1, meaning that all attributes shared by every object in A′ are
included in A′′. Hence the proof.

Example 2: Consider the formal context in Fig. 2(a). Given
A = {a2, a3}, we have A′ = {o2, o4, o5}, where each object
in A′ has all attributes in A, and A′′ = {a2, a3}, where each
attribute in A′′ is an attribute of any object in A′, by applying
the Galois operators. It is easy to know that (A′′, A′) is a
formal concept according to its definition.

This lemma provides a way to generate formal concepts.
Given any attribute or object set, we can apply the Galois
operator once and twice respectively to generate the attribute
and object sets of a new formal concept. However, should we
enumerate all the possible attribute or object sets to generate
formal concepts (which leads to 2|Â| + 2|Ô| different sets for
a formal context (Â, Ô, I) in the worse case)? Besides, the
formal concepts in a formal context can be ordered to form a
concept lattice according to the inclusion relationships of the
object or attribute sets. The number of concepts in the lattice
is also up to 2min(|Â|,|Ô|) in the worse case.

To answer the above question, we need to investigate how
the size of an attribute or object set affects the size of its
resultant formal concept. It is illustrated in Fig. 2(b) where
formal concepts are represented by rectangles with the length
representing the size of the object set and height representing
that of the attribute set. Given three attribute sets A1, A2 and
A3 (A1 ⊆ A2 ⊆ A3), their formal concepts are (A′′1 , A

′
1),

(A′′2 , A
′
2) and (A′′3 , A

′
3) which are denoted by rectangle 1234,

1′2′3′4′ and 1′′2′′3′′4′′ respectively in Fig. 2(b). Note that
A′1 ⊇ A′2 ⊇ A′3 because a smaller attribute set is likely to be
shared by a larger object set and vice versa. Similarly, we have
A′′1 ⊆ A′′2 ⊆ A′′3 . Thus, if we expand A1 to A2 and even to A3,
the object set A′1 in the corresponding formal concept starts
shrinking and the attribute set A′′1 starts expanding. This can
be reflected in Fig. 2(b) by changing the shape of the formal
concept from rectangle 1234 to 1′2′3′4′, and to 1′′2′′3′′4′′.
Likewise, given any object set O, when it expands by adding
more objects in it, the process can be reflected by changing
the shape of the formal concept (O′, O′′) from 1′′2′′3′′4′′ to
1′2′3′4′ to 1234. The above discussion indicates that in a
formal concept we can expand the attribute (or object) set
by shrinking the object (or attribute) set. In this paper, we
generate formal concepts based on each attribute and object,
which greatly reduce the number of formal concepts to be
generated to at most |Â| + |Ô|. Formal concepts with larger
attribute (or object) sets can be generated easily by shrinking
their object (or attribute) sets.

C. Generating Biclusters

Given any attribute a ∈ Â and any object o ∈ Ô, we can
find their corresponding formal concepts (a′′, a′) (we write
({a}′′, {a}′) as (a′′, a′) for simplicity) and (o′, o′′), which are
shown in Fig. 2(c) as rectangle 1234 and 1′2′3′4′ respectively.
They can be viewed as “full-density” biclusters according to
the fullness and maximum properties. Besides, there are two
other rectangles 1′′′2′′′3′′′4′′′ and 1′′2′′3′′4′′. The former is the
overlap of 1234 and 1′2′3′4′, which is too tight to be used as
a bicluster since it often leads to very small attribute set and
object set. The latter is treated as extended formal concept

(by allowing the density less than 1) and used to generate
biclusters in [18]. We find this form also less qualified since
it often includes many empty values thus greatly decreases
the density. The authors in [18] set a threshold to filter out
those with small density. However, this causes a problem that
when they filter out some less dense extended formal concept
1′′2′′3′′4′′, they also discard the “full-density” formal concepts
1234 and 1′2′3′4′ that are within 1′′2′′3′′4′′.

Therefore, we use the two real formal concepts 1234 and
1′2′3′4′ to generate biclusters in this paper. They differ from
each other in terms of shapes. Specifically, 1234 tends to have
a larger object set and smaller attribute set while 1′2′3′4′

tends to have a smaller object set and large attribute set. In
terms of bicluster, 1234 corresponds to biclusters with more
contents and fewer tags while 1′2′3′4′ to those with fewer
contents and more tags. Users can generate different forms
according to their requirements. We refer to the methods
generating biclusters in the form of 1234 and 1′2′3′4′ as
ours tag and ours content respectively below. Also note that
many duplicate biclusters could be generated because contents
in a bicluster often have similar tags and each of the tag-
content pairs would be used to generate biclusters. To avoid
duplication, we only generate biclusters without overlap. That
is, if a tag or content appears in the tag set or content set of
a bicluster, it will not be used to generate other biclusters.

D. Relaxation

Since the “full-density” biclusters are too strict, we can relax
them through either transformation or merging.

Transformation refers to adding tags or contents to a bi-
cluster. We take the addition of tags as an example. Given a
bicluster (T,C), the contents in C may have another set T ′

of tags which are not included in T because having those tags
makes the bicluster no longer satisfy the fullness property. We
now break the property to enlarge T by adding tags in T ′ to T .
Tags in T ′ should be ordered so that each time the tag leading
to the least density decrease is added to T . This continues until
the next tag to be added makes the density of the bicluster less
than a density threshold δden. To add even more tags, we can
delete a few contents which lead to the largest density increase
after the deletion so as to increase the bicluster density first.

Merging can also result in relaxed biclusters. In this paper,
we merge biclusters sharing common tags since those biclus-
ters are more likely to discuss similar topics and may thus be
merged. Readers can refer to section V-C for details.

V. PARTITION-AND-MERGE SCHEME

To further improve the scalability and reduce the system
response time, we next extend the proposed biclustering ap-
proach to a disk-based partition-and-merge (PM for short)
scheme. In the offline partitioning phase, we split the data
space (all the content data) into partitions and generate bi-
clusters for each partition. Then biclusters in certain parti-
tions are merged efficiently at runtime given user-specified
spatiotemporal parameters. To visualize the merged biclusters
as hierarchical tag clouds, we adopt hLDA to produce topic

hierarchies for partitions in the partitioning phase and generate
tag hierarchies by merging the topic hierarchies at runtime.

A. Offline Partitioning

Three dimensions, i.e., longitude, latitude and time, need
to be considered for partitioning. We first slice the data on
a daily basis and then split the geographic space for each
day adaptively according to data density by using a space-
partitioning data structure such as kd-tree [25] or quadtree
[26]. Note that the partitioning layout may be different for
each day since the data distribution varies every day. Also
note that slicing data on a daily basis is a tradeoff between
two possible mismatches. Since the temporal parameter can
be set to any consecutive days, covering more than one day
in a partition may lead to a temporal mismatch between the
parameter and partitions. On the other hand, covering less than
24 hours may lead to larger spatial partitions and increase the
geographic mismatch discussed in section V-E.

B. Offline Pre-computation

1) Pre-computation of Biclusters: Once the data space is
split, we can generate biclusters for each partition using the
method proposed in section IV. One potential problem is that
partition-based biclustering may leave out biclusters that can
only be formed by using contents of multiple partitions. This
may arise if the number of contents regarding certain topics
are small. In this case generating biclusters in as small size as
possible may relieve the problem. However, this could produce
uninteresting biclusters and lead to bicluster explosion.

Given this observation, we make an assumption that glob-
ally interesting summaries are also interesting in certain parti-
tions. Specifically, if a bicluster about an interesting summary
is generated from contents in some geographic region, biclus-
ters about the similar summary can also be generated from
contents in certain partitions of that region. We will introduce
a score function to measure the interestingness of a summary
later and validate this assumption in the experimental study.

2) Pre-computation of Topic Hierarchies: hLDA is extend-
ed from LDA to generate topic hierarchies for documents.
We apply hLDA to social network contents in our context
to generate topic hierarchies for different partitions. Topic
hierarchies are generated after the biclustering process for
each partition by using the contents of the biclusters. Topic
hierarchies generated by hLDA are trees, with a few closely
related tags in each node [3]. The tags in higher level nodes
are more general and those in lower level nodes more specific,
which provides the possibility of generating tag hierarchies
with different levels of tags by merging topic hierarchies.

The pre-computation of biclusters and topic hierarchies can
be done easily for different partitions in parallel.

C. Online Merging

1) Merging Biclusters: Given the spatiotemporal parame-
ters, i.e., a time range Rtim measured in days and a geographic
region Rgeo measured in coordinates, biclusters in partitions
falling within Rtim and Rgeo need to be merged together to

produce “unified” results. Note that if two biclusters (T1, C1)
and (T2, C2) are merged to form a new bicluster (T,C), it
will have all tags and contents from (T1, C1) and (T2, C2),
i.e., T = T1 ∪ T2, C = C1 ∪ C2. Suppose the corresponding
matrix of (T,C) is denoted by MTC . The density of (T,C),
den(T,C) , is thus the non-zero rate of MTC . Next we give
algorithm 1 for merging biclusters sharing common tags.

Given a group P of the biclusters and a density threshold
δden, the algorithm produces a set B of merged biclusters. We
initialize a set Bused storing used biclusters to empty in line
2 and start to merge biclusters by checking each bicluster in
P but not in Bused in line 3. When we start from Bi we
first label it as used in line 4. Line 5 and 6 try to find a set
P ′ of biclusters having common tags with Bi and sort them
according to the number of common tags in descending order
so that those with more common tags can be merged with Bi

earlier. To accelerate the search for P ′, we build an inverted
list to map each tag to biclusters having that tag. Lines 7 to
13 merge Bi with the ordered biclusters in P ′. At first, Bi is
merged with the first bicluster in P ′ to form a new bicluster
Bnew. Then Bnew is merged with subsequent biclusters in
P ′ in turn. Note that the merging action only happens if the
density of the new merged bicluster is no less than δden (line
10) and that biclusters used to form Bnew are labeled as used
(line 12). After the merging phase finishes, Bnew is added to
B (line 13). The algorithm continues until all biclusters in P
are used. We use an example below to illustrate the algorithm.

Algorithm 1: The Bicluster Merging Algorithm
Input: a group P of biclusters (Ti, Ci)(i = 1, 2, ..., n) (use Bi to

denote each bicluster for short), a user-defined density threshold
δden

Output: a merged bicluster set B
1 begin
2 let Bused = ∅;
3 foreach Bi ∈ P and Bi /∈ Bused do
4 let Bused = Bused ∪ {Bi};
5 find a subset P ′ of biclusters in P but not in Bused such that

∀B∈P′B
⋂
Bi 6= ∅;

6 sort B ∈ P ′ by |B
⋂
Bi| in descending order;

7 let Bnew = Bi;
8 foreach B ∈ ordered P ′ do
9 merge Bnew and B to form a new bicluster Btmp;

10 if den(Btmp) ≥ δden then
11 let Bnew = Btmp;
12 let Bused = Bused ∪ {B};

13 add Bnew to B; ��������������������
(a) Biclusters

����������������������������	��������
�������������
(b) Inverted list

Fig. 3. Bicluster merging example

Example 3: Consider the three biclusters B1, B2 and B3

only sharing common tags (rows) in Fig. 3(a). Suppose δden
is 0.5. Algorithm 1 starts the merging from B1 by searching for

biclusters having common tags with B1 as candidates which
is B2 and B3. B2 and B3 should be sorted so that the one
(B2 here) with more common tags is merged with B1 first. To
search more efficiently, we build an inverted list as in Fig. 3(b)
showing which tag appears in which biclusters. Since B1 have
four tags, we can look up them in the inverted list to generate
an ordered candidate set {B2 : 2, B3 : 1} (note that B1 is
removed from the list) easily. Each bicluster in the set has
a number which is the frequency of the bicluster mapped to
the four tags. This number also means the number of common
tags shared with B1 and thus can be used to sort the candidate
biclusters. B2 having more common tags is used to merge with
B1 first to form a new bicluster Btmp whose tag (or content)
set is the union of the tag (or content) sets of B1 and B2. The
density of Btmp is (4× 5 + 3 × 3)/(5× 8) = 0.725 > δden,
meaning the merging of B1 and B2 is acceptable. Next we
use B3 to merge with Btmp. The new bicluster’s density is
(5 × 8 × 0.725 + 3 × 4)/(7 × 12) = 0.488 < δden, meaning
that we should cancel merging Btmp with B3. Since no further
merging can be done, the algorithm outputs Btmp and B3

and terminates. In our system, we precalculate the density by
assuming two biclusters were merged. If the density is less
than δden, we do not merge them actually.

2) Merging Topic Hierarchies: When biclusters are merged
together, the topic hierarchies for partitions having those
biclusters also need to be merged to form a tag hierarchy so
as to visualize the new bicluster. Given that the same tag can
appear in multiple levels of the topic hierarchies generated by
hLDA, we next propose a probabilistic approach to generating
“unified” tag hierarchies in which each tag only appears in
one level. Each of the resultant tag hierarchies has one node
containing several tags in each level, and each node has at
most one child in terms of the tree structure.������ ������ ��� ��������	�
��
�� ���
����	�
��
�� ���
����� ��� ��� ��� �����	�
��
�� ���
��

Fig. 4. Tag-Level Matrix

Given m topic hierarchies T i
1,T i

2,...,T i
ni

(1 ≤ i ≤ m) to be
merged together, where T i

j denotes the tag set in the jth level
of the ith topic hierarchy which has ni levels in total, we first
construct a vote-based tag-level matrix shown in Fig. 4. Rows
in the matrix corresponds to tags while columns to levels. cij
(1 ≤ i ≤ u, 1 ≤ j ≤ v) in the ith row and jth column indicates
the frequency of tag i appearing in level j throughout the m
topic hierarchies. Based on the tag-level matrix, we define a
weight function for each tag i in level j as follows.

weight(ti, lj) = c2ij/(ΣicijΣjcij) (2)

The weight has two factors. The first one cij/Σicij captures
how likely different tags are chosen for level j while the
second one cij/Σjcij captures how likely different levels
contain tag i. The weight chooses tags for each level with
the intuition that the larger the weight for tag i and level j,

the more likely the tag appears in that level. In algorithm 2,
we normalize weight(ti, lj) for all tags in each level to select
the most likely tags hierarchically. The algorithm computes
weight(ti, lj) using the tag-level matrix built on the m topic
hierarchies from line 1 to 6. Then, starting from the first level,
it chooses tags probabilistically for each level in turn from line
7 to 13. Note that by drawing tags without replacement, we
disallow one tag to be chosen for multiple levels (line 9 to
12). After drawing tags for the n0 − 1 levels, we leave the
unused tags in Tunused for the last level directly (line 13).

Algorithm 2: The Topic Hierarchy Merging Algorithm
Input: m topic hierarchies T i

1 ,T i
2 ,...,T i

ni
(i ∈ {1, 2, ...,m}), the

number of levels n0 (n0 ≤ max(n1, n2, ...nm)) and the
number of tags sl (l ∈ {1, 2, ..., n0}) in each level of the
resultant tag hierarchy

Output: a tag hierarchy H : T 0
1 ,T 0

2 ,...,T 0
n0

1 begin
2 let T 0

1 = T 0
2 = ... = T 0

n0
= ∅;

3 build the tag-level matrix M using the m topic hierarchies;
4 let Tunused = Tall ={1, 2, ...} be the set of all tag indexes in M ;
5 let u = |Tall|, v = max(n1, n2, ...nm);
6 compute weight(ti, lj) based on M according to Eq. 2 for all i

and j where 1 ≤ i ≤ u, 1 ≤ j ≤ v;
7 foreach level l ∈ {1, 2, ..., n0 − 1} do
8 while |T 0

l | < sl do
9 normalize weight(ti, l) such that∑

i weight
′(ti, l) = 1 for each i ∈ Tunused;

10 draw a tag i according to the normalized probabilities;
11 |T 0

l | = |T
0
l | ∪ {i};

12 Tunused = Tunused\{i};

13 let T 0
n0

= Tunused;

D. Ranking Merged Biclusters
Although the number of biclusters decreases after merging,

there are still many biclusters due to the abundance of various
topics emerging in social networks. Besides, users may want
to see the most interesting summaries, e.g., those discussed
by more people or providing more information. Below we
propose a score function so that users can rank all the
biclusters to find the most interesting ones according to their
preference by simply tuning a single parameter.

Score(T,C) = den(T,C) · log (|T ||C|) · (|C|/|T |)p (3)

where |T | and |C| are the numbers of tags and contents
respectively in a bicluster (T,C) and p is an integer tuning pa-
rameter. In the score function, the first two factors den(T,C)
and log (|T ||C|) indicate that biclusters with larger density
or size would be ranked higher. The third factor (|C|/|T |)p
incorporates users’ preference by tuning p ∈ {0,±1,±2, ...}.
For instance, users can set p = 1 in favor of biclusters with
more contents or set p = −1 in favor of biclusters with more
tags. The larger the absolute value of p, the stronger users
stress their preference. However, the absolute value of p should
not be very large to avoid the dominance of the third factor.

E. Mismatch Problem
Recall that biclusters are merged when the corresponding

partitions fall into the user-specified spatiotemporal parameters

Rtim and Rgeo. Since one partition can only be associated
with a certain date, it is easy to check whether a partition falls
within Rtim. Next we consider two different cases determining
whether a partition falls in Rgeo (dashed boxes in Fig. 5):
(1) the centroids of the partitions are within Rgeo and (2)
the partitions overlap Rgeo. Both cases can lead to mismatch
problem. In case one, biclusters in the shadowed partitions
are merged because their centroids fall in Rgeo. For instance,
although the top-left partition is not entirely included in Rgeo,
all the biclusters in it are merged with other partitions (false
positive). Similarly, although part of the bottom-left partition
is included in Rgeo, none of its biclusters are merged (false
negative). In case two, biclusters in the shadowed partitions
overlapping Rgeo are merged.

(a) Case one (b) Case two

Fig. 5. Two Cases of the Mismatch Problem

We cannot avoid the mismatch problem because a biclus-
ter formed by various contents in a partition has no geo-
coordinates in itself. Thus merging should be performed on
the basis of partitions rather than biclusters. However, we can
evaluate the degree of the mismatch for quality control and
use it as feedback to adjust the partitioning parameter δcnt.

Firstly, we consider case one in Fig. 5(a). Partitions covered
by Rgeo, either partially or entirely, form three different sets
Pfp, Pfn and Pen. The first two contain partitions partially
covered by Rgeo: Pfp contains those whose centroids fall in
Rgeo while Pfn contains those whose centroids do not. Pen

has partitions entirely falling in Rgeo. For partitions in Pfp

and Pfn, we estimate the number of mismatched biclusters
according to the coverage rate of the partitions as follows.

numfp =
∑

pa∈Pfp
num(pa) · (1− cov(pa))

numfn =
∑

pa∈Pfn
num(pa) · cov(pa) (4)

where num(pa) is the number of biclusters in partition pa
and cov(pa) is the percentage of pa covered by Rgeo. Thus
numfp is the estimated number of additional biclusters (false
positives) used in the merging phase while numfn is the
estimated number of missed biclusters (false negatives) falling
in Rgeo but omitted in the merging phase. Next we compute
the estimated number of biclusters in Rgeo by

numtp =
∑

pa∈P num(pa) · cov(pa) (5)

where P = Pfp ∪ Pfn ∪ Pen. With the above equations, we
can evaluate the quality of the PM scheme by approximating
the mismatch rate as follows.

ratemis =
nummis

numtp
=
numfp + numfn

numtp
(6)

For case two in Fig. 5(b), Pfn is empty because biclusters
in any partition overlapping the geographic region Rgeo are
merged. However, the false positive partition set, denoted by
P ′fp, now contains all partitions partially overlapping Rgeo,
including those with centroids falling outside Rgeo. The mis-
match rate in this case is as follows.

ratemis =
num′fp
numtp

=

∑
pa∈P ′

fp
num(pa) · (1− cov(pa))

numtp
(7)

VI. SYSTEM IMPLEMENTATION

Based on the PM scheme, we build a system called Vesta
to browse and explore the top-ranked summaries interactively.

A. System Architecture����������������	
�
� ���
�������	�������	
����������
�����	
�	���������������
�����	
 �
��
�������
��������������
��	������������������
��������������������������������	�����������
Fig. 6. System Architecture

Fig. 6 shows our system architecture, consisting of data
crawling, processing and visualization components from bot-
tom to top. The data crawling component keeps crawling geo-
coded social network contents, cleaning and storing the data
in the database. The processing component is the core of the
system, including three parts which perform data partitioning,
offline pre-computation and online merging respectively. The
data partitioning part starts splitting the data into partitions
after the crawler finishes preparing the contents of each
day. Offline pre-computation is then performed to generate
summaries and topic hierarchies for the partitions. Note that
our PM scheme makes it possible that the pre-computation can
be done for different partitions in parallel. The summaries and
topic hierarchies in corresponding partitions will be merged
respectively in the online merging part once users specify
the spatiotemporal parameters. The merged summaries are
finally passed to the visualization component to be displayed
as hierarchical tag clouds according to their corresponding tag
hierarchies generated by merging topic hierarchies.

Although our system performs the partitioning and pre-
computation on a daily basis which leads to a one-day delay,
we can reduce the delay to make Vesta a semi-realtime system.
For instance, we can process the data every 3 hours and merge
the results gradually until all contents of the day is processed.

B. Visual Layout

Next we illustrate the layout of the hierarchical tag clouds
in the visualization component, which is built based on Google

Maps3 and D34. Recall the example in Fig. 1, the first-level
tags of the hierarchical tag clouds will be displayed first in the
largest font size. As users zoom in, tags in subsequent levels of
each tag cloud will be placed near and around their first-level
tags in smaller size level by level. To reduce the possibility of
overlap among tags in different tag clouds and leave enough
space to arrange tags of the same tag cloud close to each other,
we scatter the first-level tags evenly in two concentric circular
orbits. The radii of the two orbits can be adjusted to reduce
the overlap among tag clouds as much as possible. Collision
detection is performed to help determine the positions of the
tags in subsequent levels when they are placed around the
corresponding first-level tags.

VII. EXPERIMENTAL STUDY

A. Data Sets and System Environment

The experiments are conducted over the real-world geo-
coded tweets crawled using the Twitter Streaming API5. Each
tweet is associated with a pair of latitude-longitude coordinates
and a time. On average, we can receive 4.1M to 4.3M (million)
geo-coded tweets every day, among which about 0.7M are in
English. The four data sets used in the experiments contains
0.1M, 0.7M, 2.5M and 4.3M tweets respectively. As around
1% of tweets are geo-coded6, 4.3M is a proper approximation
of the number of geo-coded tweets published daily, given that
400M tweets are generated altogether per day.

All the source code is written in Java, and the Twitter data
is stored in MySQL 5.1.60. The experiments were conducted
on Windows Server 2003 Enterprise x64 Edition with 16-core
2.29GHz CPU, 64GB RAM and JRE6.

B. Comparison of Different Summarization Methods

Firstly we compare our methods ours tag and ours content
based on FCA with two other biclustering methods (OABi-
cluster [18] and FLOC [13], [14]) and two topic modeling
methods (LDA [1] and hLDA [2], [3]). OABicluster was also
proposed for analyzing social network data based on FCA.
It generates formal concepts for each tag-content pair, with-
out guaranteeing the bicluster quality. FLOC was originally
proposed for expression data analysis. It first generates k
initial biclusters randomly and then improves their quality
iteratively, by allowing missing values which correspond to
the sparsity in social network content data. It uses the residue
and volume (i.e., the number of non-empty values [14]) in a
gain function to measure the bicluster quality. To make FLOC
comparable, we replace the residue in the gain function with
density instead, which does not affect the main procedure.
The two topic modeling methods generate topics which can
also be perceived as summaries. We use MALLET7 which has
implemented ParallelLDA and hLDA, where ParallelLDA is a
parallel version of LDA to accelerate the speed.

3https://maps.google.com/
4A JS library for data visualization (http://d3js.org/).
5https://dev.twitter.com/docs/streaming-apis
6http://www.scotthale.net/blog/?p=307
7A java package for machine learning (http://mallet.cs.umass.edu/).

For the first four biclustering methods, we set the minimum
density δden from 0.5 to 1.0 and the minimum size δsz
from 3 to 5. Since different values of δden do not affect the
performance obviously, we only report the results with δden
equal to 0.8 and δsz equal to 3 and 5. Note that δden and δsz
do not apply to ParallelLDA and hLDA. The execution time
and memory usage of ParallelLDA in Fig. 7 are duplicated for
different δsz for comparison purpose only. For ParallelLDA,
we set the topic number to 100 and thread number to 4. For
hLDA, we set the level number of the topic hierarchy to 5.
The iteration numbers for both are set to 1000.

��������������������
���� ���� ���� ���	
����
�������������������������������������� ������!"�

(a) Min size=3

������������������������ ���� ���� ����	
��� 	�� !�
(b) Min size=5

��������������
���
���� ���� ���� �	��
������ �������������
��������������������� �����!��� � "#�

(c) Min size=3

��������������
���
���� ���� ���� �	��
������ �������������
��������������������� �����!��� � "#�

(d) Min size=5

Fig. 7. Performance Comparison

1) Performance: Fig. 7 shows the performance of the above
methods over four data sets with different number of tweets.
We terminated FLOC and hLDA because they cannot finish
within 10 hours for any data set. They run slowly due to
the iterative nature. The density and volume parts of the gain
function also decelerate FLOC probably because the density
part tends to shrink the bicluster size while the volume favors
larger size. To accelerate FLOC and make the densities of the
initial biclusters increase faster, we remove the volume part
and denote the modified FLOC by FLOC modified. Although
we see some improvements, FLOC modified still cannot finish
within 10 hours. hLDA is even slower and cannot finish the
first 10 of 1000 iterations within 10 hours. Although we show
later that hLDA works for the offline topic hierarchy generation
in our system where it usually handles only thousands of
tweets for a partition, hLDA in itself cannot scale to larger
data sets containing hundreds of thousands of tweets. Thus
hLDA cannot be applied to large amounts of social network
data for topic hierarchy generation directly. We do not report
the results for FLOC, FLOC modified and hLDA here.

Fig. 7(a) and 7(b) show the execution time of the other four
methods. When δsz is 3, our proposed methods ours tag and
ours content outperform ParallelLDA by almost an order of
magnitude. When δsz is 5, the performance of ours tag almost
remains unchanged while the execution time of ours content

approaches that of ParallelLDA for tweet number larger than
0.1M. Note that ParallelLDA is set to generate only 100 topics.
It will take more time if generating as many as ours content
does. For both values of δsz , OABicluster can only finish
running within 10 hours when the tweet number is 0.1M.

Fig. 7(c) and 7(d) show the memory usage. Almost all
the methods consume more memory when the tweet number
gets larger, although some drops are observed for OABicluster
and ParallelLDA when the tweet number comes to 0.7M.
ParallelLDA uses less memory than other methods when the
tweet number is 4.3M. This is probably because we set the
topic number to 100 which is a relatively small value. The
memory usage of our proposed methods increases linearly,
which brings up concerns that they may not fit into memory
given even larger data sets. We will show later that our PM
scheme converts this memory-based problem to a disk-based
problem so that memory usage becomes manageable.

����������������������������������
��� ��� 	�
 ���������������� ��������������
��������������������� !�"�����#���""�"$%

(a) Min size=3

����������������������������������
��� ��� 	�
 ���������������� ��������������
��������������������� !�"�����#���""�"$%

(b) Min size=5

Fig. 8. Summary Detection Capability Comparison

2) Summary Detection Capability: Fig. 8 shows the number
of biclusters/topics each method can generate, which to some
extent reflects their capability of detecting various summaries.
Since OABicluster failed to finish within 10 hours for the
other three data sets, we report the number of biclusters it
had generated when we terminated it. We omit FLOC and
FLOC modified again since they cannot finish running within
10 hours for any data set. Upon termination, FLOC generated
no bicluster with density larger than 0.5 while FLOC modified
only generated several biclusters with density larger than 0.8
for the data set having 0.1M tweets. As the number of tweets
increases, it is intuitive that more summaries or topics will be
covered. Our methods conform to this intuition and generate
more biclusters for larger data sets. ParallelLDA generates 100
topics for all data sets since we set the topic number to 100.

We also conduct experiments given δden set to 0.5 to 1.0
over the 0.1M tweets where OABicluster can finish running
within 10 hours. OABicluster generates slightly more than
or comparable to the number of biclusters our methods gen-
erate when δden ranges from 0.5 to 0.7. The number of
biclusters generated by OABicluster decreases rapidly when
δden increases from 0.8 to 1.0, indicating that it tends to
miss many high-density biclusters. The number of biclusters
generated by our methods does not drop obviously as δden
increases. Because of space limitations, we omit to present
the figures. In addition, both OABicluster and FLOC may
lead to cases that a single bicluster covers multiple unrelated
summaries for small δden. For instance, given two biclusters
({t1, t2, t3}, {c1, c2, c3}) and ({t4, t5, t6}, {c4, c5, c6}), both

with density equal to 1, OABicluster and FLOC may generate
a bicluster ({t1, t2, t3, t4, t5, t6}, {c1, c2, c3, c4, c5, c6}) with
density equal to 0.5 but covering two unrelated summaries.
Our methods can avoid this problem since they first generate
“full-density” biclusters and related biclusters will be merged
if the density of the resultant bicluster is larger than δden.

3) Precision and Recall: Evaluating the quality of sum-
maries of social network contents quantitatively is often hard
because of the huge number of contents and lack of predefined
summaries or topics to compare against. Thus, we try to
sample a small set of tweets by hand and predefine summaries
using the tweets in order for the evaluation. Specifically,
we manually select 82 out of the 0.1M tweets discussing 4
different topics to verify whether these methods can generate
proper summaries for the topics. The tweets fall into 4 groups
according to the topics they belong to. Common tags in all
tweets of a group are chosen as the summary (or ground truth)
of that group. 18 other randomly selected tweets are added
as noise. All the 100 tweets are used to generate biclusters
using different methods and the results are compared with the
group truth. The number of true positive tags and tweets is
divided by that of all positive tags and tweets to obtain the
precision, and the former again is divided by the number of all
tags and tweets in the ground truth to obtain the recall. Since
ParallelLDA and hLDA cannot find the related tweets of the
generated topics, we exclude them from the comparison.

�������������������� ���� ���	 ���� ���� ��
������� ��� �!"#���$���
(a) Precision

�����������������������������
���� ���	 ���� ���� ���� ��
���� �� !�"#$���%���

(b) Recall

Fig. 9. Precision and Recall

Fig. 9 shows the results when δsz is 3 and δden varies
from 0.5 to 1. Since the results of ours tag and ours content
overlap, we denote them as ours for simplicity. The precision
and recall of our methods are stable and larger than those of
other methods for most δden values. The recall of OABicluster
is close to ours but drops suddenly when δden comes to 1. The
average precision of FLOC modified is competitive, however,
the precision fluctuates greatly and the recall is relatively low.
Besides, FLOC modified does not guarantee to find all four
topics every time. We do not report FLOC as it often discovers
only one topic and mixes other topics together.

C. Partition-and-Merge Scheme Evaluation
Next we evaluate the effectiveness of our PM scheme,

including assumption validation and mismatch evaluation.
1) Assumption Validation: We validate the assumption pro-

posed in section V-B1 that globally interesting summaries are
also interesting in certain partitions. In terms of biclusters,
those generated without partitioning the data space and highly
ranked can also be generated in some partitions of the data
space. The validation can prove the validity of our PM scheme.

The validation is performed over the data set of 0.7M tweets.
We first partition the data space and generate biclusters by
running ours tag and ours content for each partition. δcnt,
the largest number of contents in a partition, is set to 1000
or 1500. The biclusters in all partitions form set Bpar. Then
we generate biclusters, which form set Bno, directly without
partitioning and test whether the most interesting biclusters in
Bno also exist in Bpar. To find the most interesting biclusters
in Bno, we rank them according to our proposed score function
with p set to 0. δsz for biclusters in Bpar and Bno is set to
the same value which is 3 or 5. We do not set δden as all
biclusters in Bpar and Bno are “full-density”.

��������������
���
�������������������	��
����������������������� �������������������

 �!"�#� ���"���� �!"�#� ���"���� �!"�#� ���"���� �!"�#� ���"����
(a) Number of top biclusters

������������
����
��� ��� ��� �	� ���
�������������������

�����
�������� !����� ����"!#$�%�"���$����"!#$�%�"���$����"!#$�%�"���$����"!#$�%�"���$����

(b) Half-matched percentage

Fig. 10. Assumption Validation

����������������������������
����

�����	���
�����������������	����
�� �����������������	���������
������������������� �� !���"
��������������#�����������������

Fig. 11. Mismatch Evaluation

Fig. 10 validates our assumption. In Fig. 10(a), we choose
the top 50 biclusters from Bno and compare them against
biclusters in Bpar. For each bicluster b from the top 50, we
find a bicluster b′ in Bpar which shares the largest number
of common tags with b. The match percentage is the ratio
between the number of common tags and the number of tags in
b, reflecting to what extent an interesting summary generated
without partitioning can also be discovered when partition-
ing is performed. Fig. 10(a) shows, for different parameter
settings, most of the top 50 biclusters from Bno can find a
bicluster in Bpar which shares all the tags in the top biclusters,
indicating that many of them can be rediscovered using the
partitioning scheme. A high match percentage between 50%
and 100% can also indicates that a summary is quite likely to
be rediscovered. Fig. 10(b) shows the percentage of the top
k biclusters that have match percentage more than 50% when
k is set to 10, 20, 30, 40 and 50. All the top 30 biclusters
have match percentage more than 50%. As k increases, the
half-matched percentage begins to decrease. However, there
are still more than 90% of the top 50 biclusters whose match
percentage is over 50%, meaning summaries associated with
more than 45 out of 50 biclusters are highly likely to be
discovered using the partitioning scheme. We also note that the
results would be even better if biclusters in Bpar are merged.

2) Mismatch Evaluation: Below we take a fixed geographic
region containing 0.1M tweets as an example to explain the

mismatch problem. Fig. 11 shows the mismatch rate ratemis

and bicluster number as δcnt varies when δsz = 3 and δden =
1. Note that ratemis for either case of the mismatch in Fig. 5
can be larger than 1, indicating that a severe mismatch occurs.

From Fig. 11, we can see that ratemis for either mismatch
case decreases as δcnt drops and that the first case leads to
a smaller ratemis. There are three stages for the decrease,
namely when δcnt is larger than 700, between 700 and 500,
and smaller than 500, where more obvious is the second stage.
When δcnt decreases from 1500 to 700, ratemis reduces in a
relatively fast speed, which means that any value between 1500
and 700 may not be proper for δcnt since ratemis is not stable
enough. When δcnt comes from 700 to 500, ratemis decreases
less dramatically, indicating it is a reasonable value range for
δcnt. After δcnt drops below 500, ratemis decreases rapidly
again. The instability of ratemis in this stage is probably
because δcnt becomes too small. A very small ratemis is not
always meaningful. It may cause loss of biclusters due to very
small partitions, which is reflected by the green bicluster num-
ber line in Fig. 11. Another strategy is to choose a value, 500
in Fig. 11 for instance, for δcnt when the number of biclusters
reaches its peak. This is also consistent with choosing between
700 and 500, and more practical in case the second stage is less
detectable. Consequently, users do not have to set δcnt blindly
by themselves. As δcnt can be determined automatically by
conducting the mismatch evaluation, different values of δcnt
can be set for different geographic regions adaptively.

D. System Scalability Analysis

Vesta adopts the PM scheme which converts the in-memory
biclustering to a disk-based approach and makes it possible
to parallelize the approach. Next we analyze the system
scalability for the partitioning and merging phases.

����������������������������
���� ���	 ���
 ��������� ��������������

����������������������� �������!��������� �������!
(a) Time

��������������
�	�

���� ���	 ���� ����������� ������������������������������

(b) Memory

Fig. 12. Offline Scalability

1) Offline Scalability: The offline partitioning phase in-
cludes data space partitioning and pre-computation of biclus-
ters and topic hierarchies. We plot the execution time and
memory usage over different data sets in Fig. 12 when δsz , δcnt
and the number of iterations for hLDA are set to 3, 1000, 1000
respectively. The blue line shows the execution time increases
almost in proportion to the data set size while most of the
time is consumed by hLDA (the red line) to generate topic
hierarchies. The green line indicates a significant improvement
when we parallelize the partitioning phase using 4 threads.
Because we simply add up the time consumed by hLDA in all
threads without considering the overlap, the hLDA time under
parallelism (the brown line) gets very large. This indicates

that hLDA can be parallelized to greatly accelerate the process.
Through parallelism, the overall time of the partitioning phase
reduces from two and a half hours to less than an hour for the
data set with 4.3M tweets, which approximate the number of
geo-coded tweets published every day in reality.

Fig. 12(b) shows the memory usage which decreases greatly
compared with that in Fig. 7(c) and 7(d). The memory usage
does not always increase as the data set gets larger. Note that
the amount of memory recorded here is the peak value which is
mainly caused by hLDA when faced too many tweets as input.
That value often drops after a short while during execution.
Again, the parallelism also leads to less memory usage. Thus
Fig. 12 indicates that the offline partitioning phase can scale
to even larger data sets especially through parallelism.

���������������������	�
�
����
�� ��� ��� ��� ��� ������������
���

�������������� ������������������
����� !"����#�$�%�&�'"����(� ������� !"����#�$�%�&�'"����(� ��

(a) Time

���������������������������
�� ��� ��� ��� ��� �����	
����������� ���������
���������������� �����!�
�������
���������������� �����!�
��

(b) Bicluster number decrease

Fig. 13. Online Scalability

2) Online Scalability: The online merging phase is done at
runtime when users specify the spatiotemporal ranges. The
solid lines in Fig. 13(a) show the response time for three
geographic areas on different scales w.r.t. various time ranges.
The dotted lines show the corresponding number of tweets
involved in certain ranges. δden is set to 0.5, which is the
lower bound density of merged biclusters. Given a geographic
area, the response time increases linearly with the number
of days (also the number of biclusters to merge or tweets).
The response time is often small (e.g., 2 seconds for L.A. or
5 seconds for California & Nevada over 30 days) when the
geographic area is on a city or state scale. When it comes
to countries such as the entire USA, the response time is
relatively longer because of the huge number of tweets.

Although the number of biclusters to merge is often large,
that of the merged biclusters decreases greatly. This is exhib-
ited in Fig. 13(b) where solid (or dotted) lines represent the
number before (or after) merging, showing that this number
can be reduced by 63% ∼ 81%. It means that a large part of
biclusters from different partitions can be merged together and
thus validates again the effectiveness of our PM scheme.

VIII. CONCLUSION

In this paper, we proposed a system called Vesta which
enables interactive exploration of different regions by summa-
rizing and browsing social network contents via hierarchical
tag clouds. We proposed to generate summaries by biclustering
the contents based on FCA and then extended the approach
by introducing a disk-based PM scheme for better scalability.
For visualization purpose, we adopted hLDA to generate topic
hierarchies and merge them to form a tag hierarchy for each

summary. The experimental study demonstrated the efficiency
and effectiveness of our methods. Future work includes the ex-
tension of Vesta to a truly realtime system through incremental
update and the emerging event prediction in SNSs.

ACKNOWLEDGEMENT

This work was partially supported by the FRC Grant R-
252-000-486-112 and the SeSaMe Centre sponsored by the
Singapore NRF under its IRC@SG Funding Initiative and
administered by the IDMPO.

REFERENCES

[1] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of Machine Learning Research, vol. 3, 2003.

[2] D. M. Blei, T. L. Griffiths, M. I. Jordan, and J. B. Tenenbaum,
“Hierarchical topic models and the nested chinese restaurant process,”
in NIPS, 2003.

[3] D. M. Blei, T. L. Griffiths, and M. I. Jordan, “The nested chinese restau-
rant process and bayesian nonparametric inference of topic hierarchies,”
J. ACM, vol. 57, no. 2, 2010.

[4] D. Ramage, S. T. Dumais, and D. J. Liebling, “Characterizing mi-
croblogs with topic models,” in ICWSM, 2010.

[5] B. Ganter, R. Wille, and R. Wille, Formal concept analysis. Springer
Berlin, 1999.

[6] J. Poelmans, P. Elzinga, S. Viaene, and G. Dedene, “Formal concept
analysis in knowledge discovery: A survey,” in ICCS, 2010.

[7] Y. Cheng and G. M. Church, “Biclustering of expression data,” in ISMB,
2000.

[8] S. C. Madeira and A. L. Oliveira, “Biclustering algorithms for biological
data analysis: A survey,” IEEE/ACM Trans. Comput. Biology Bioinform.,
vol. 1, no. 1, 2004.

[9] A. W. Rivadeneira, D. M. Gruen, M. J. Muller, and D. R. Millen,
“Getting our head in the clouds: toward evaluation studies of tagclouds,”
in CHI, 2007.

[10] K. Bielenberg and M. Zacher, “Groups in social software: Utilizing
tagging to integrate individual contexts for social navigation,” Master
Thesis, 2005.

[11] M. Dubinko, R. Kumar, J. Magnani, J. Novak, P. Raghavan, and
A. Tomkins, “Visualizing tags over time,” in WWW, 2006.

[12] J. Hartigan, “Direct clustering of a data matrix,” Journal of the american
statistical association, vol. 67, no. 337, 1972.

[13] J. Yang, W. Wang, H. Wang, and P. S. Yu, “delta-clusters: Capturing
subspace correlation in a large data set,” in ICDE, 2002.

[14] J. Yang, H. Wang, W. Wang, and P. S. Yu, “Enhanced biclustering on
expression data,” in BIBE, 2003.

[15] M. Rege, M. Dong, and F. Fotouhi, “Co-clustering documents and words
using bipartite isoperimetric graph partitioning,” in ICDM, 2006.

[16] Y. Song, S. Pan, S. Liu, F. Wei, M. X. Zhou, and W. Qian, “Constrained
coclustering for textual documents,” in AAAI, 2010.

[17] I. S. Dhillon, S. Mallela, and D. S. Modha, “Information-theoretic co-
clustering,” in KDD, 2003.

[18] D. Gnatyshak, D. I. Ignatov, A. Semenov, and J. Poelmans, “Gaining
insight in social networks with biclustering and triclustering,” in BIR,
2012.

[19] D. M. Blei and M. I. Jordan, “Modeling annotated data,” in SIGIR, 2003.
[20] C. Lin and Y. He, “Joint sentiment/topic model for sentiment analysis,”

in CIKM, 2009.
[21] Z. Ma, A. Sun, Q. Yuan, and G. Cong, “Topic-driven reader comments

summarization,” in CIKM, 2012.
[22] B. Dai, E. Lim, and P. Prasetyo, “Topic discovery from tweet replies,”

in MLG, 2012.
[23] C. Li, A. Sun, and A. Datta, “Twevent: segment-based event detection

from tweets,” in CIKM, 2012.
[24] G. Gierz, K. Hofmann, K. Keimel, J. Lawson, M. Mislove, and D. Scott,

Continuous lattices and domains. Cambridge University Press, 2003,
vol. 93.

[25] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, 1975.

[26] R. A. Finkel and J. L. Bentley, “Quad trees a data structure for retrieval
on composite keys,” Acta informatica, vol. 4, no. 1, 1974.

