
A Generic Inverted Index Framework for Similarity
Search on the GPU

Jingbo Zhou†, Qi Guo†, H. V. Jagadish#, Luboš Krčál†, Siyuan Liu§

Wenhao Luan†, Anthony K. H. Tung†, Yueji Yang†, Yuxin Zheng†
†National University of Singapore #Univ. of Michigan, Ann Arbor §Nanyang Technological University

†{jzhou, qiguo, krcal, luan1, atung, yueji, yuxin}@comp.nus.edu.sg
#jag@umich.edu, §sliu019@e.ntu.edu.sg

Abstract—We propose a novel generic inverted index frame-
work on the GPU (called GENIE), aiming to reduce the pro-
gramming complexity of the GPU for parallel similarity search
of different data types. Not every data type and similarity
measure are supported by GENIE, but many popular ones
are. We present the system design of GENIE, and demonstrate
similarity search with GENIE on several data types along with
a theoretical analysis of search results. A new concept of locality
sensitive hashing (LSH) named τ -ANN search, and a novel data
structure c-PQ on the GPU are also proposed for achieving
this purpose. Extensive experiments on different real-life datasets
demonstrate the efficiency and effectiveness of our framework.
The implemented system has been released as open source1.

I. INTRODUCTION

There is often a need to support a high throughput of
queries on index structures at scale. These queries could
arise from a multiplicity of “users”, both humans and client
applications. Even a single application could sometimes issue
a large number of queries. For example, image matching
is often done by extracting hundreds of high dimensional
SIFT (scale-invariant feature transform) features and matching
them against SIFT features in the database. Parallelization for
similarity search is required for high performance on modern
hardware architectures [1], [2], [3], [4].

A promising choice is to implement it on the Graphics Pro-
cessing Units (GPUs). GPUs have experienced a tremendous
growth in terms of computational power and memory capacity
in recent years. One advanced GPU in the consumer market,
the Nvidia GTX Titan X, has 12 GB of DDR5 memory at a
price of 1000 US dollars while an advanced server class GPU,
the Nvidia K80, has 24GB of DDR5 memory at a price of 5000
US dollars. Furthermore, most PCs allow two to four GPUs
to be installed, bringing the total amount of GPU memory in
a PC to be comparable with a regular CPU memory.

However, GPU programming is not easy. Effectively ex-
ploiting parallelism is even harder, particularly as we wor-
ry about the unique features of the GPU including the
Single-Instruction-Multiple-Data (SIMD) architecture, concur-
rent control, coherent branching and coalescing memory ac-
cess. While capable programmers could take their index struc-

§Siyuan Liu has done his work on the project as a research intern at National
University of Singapore.

1https://github.com/SeSaMe-NUS/genie

ture of choice and create a GPU-based parallel implementa-
tion, doing so will require considerable effort and skill.

Our goal is to address this parallel similarity search problem
on the GPU in a generic fashion. To this end, we develop
an efficient and parallelizable GPU-based Generic Inverted
Index framework, called GENIE (we also name our system
as GENIE), for similarity search using an abstract match-
count model we define. GENIE is designed to support parallel
computation of the match-count model, but the system is
generic in that a wide variety of data types and similarity
measures can be supported.

We do not claim that every data type and similarity measure
is supported by GENIE2 – just that many are, as we will
demonstrate in the paper, including most that we have come
across in practice. As an analogy, consider the map-reduce
model, implemented in a software package like Hadoop. Not
all computations can be expressed in the map-reduce model,
but many can. For those that can, Hadoop takes care of
parallelism and scaling out, greatly reducing the programmer’s
burden. In a similar way, our system, GENIE, can absorb the
burden of parallel GPU-based implementation of similarity
search methods and index structures.

Our proposed match-count model defines the common
operations on the generic inverted index framework which
has enough flexibility to be instantiated for different data
types. The insight for this possibility is that many data types
can be transformed into a form that can be searched by an
inverted-index-like structure. Such transformation can be done
by the Locality Sensitive Hashing (LSH) scheme under several
similarity measures [5], [6] or by the Shotgun and Assembly
(SA) [7], [8] scheme for complex structured data. We present
detailed discussion about this in Section II-B.

The first challenge of GENIE is to design an efficient
index architecture for the match-count model. We propose
an inverted index structure on the GPU which can divide the
query processing to many small tasks to work in a fine-grained
manner to fully utilize GPU’s parallel computation power.
GENIE also exploits GPU’s properties like coalescing memory
access and coherence branching during the index scanning.

2Note that we named our system as “generic inverted index”, but not
“general inverted index”.

We propose a novel data structure on the GPU, called
Count Priority Queue (c-PQ for short), which can significantly
reduce the time cost for similarity search. Due to the SIMD
architecture, another challenge of GENIE is how to select
the top-k candidates from the candidate set, which is widely
considered as a main bottleneck for similarity search on the
GPU in previous study [9], [4] (which is called k-selection
in [9] and short-list search in [4]). Existing methods usually
adopt a sorting method which is an expensive operation, or a
priority queue on the GPU which have warp divergence and
irregular memory movement. Our novel design of c-PQ can
keep only a few candidates on a hash table on the GPU, and
we only need to scan the hash table once to obtain the query
result. Therefore this major bottleneck for similarity search on
the GPU can be overcome.

We optimize the data placement on the GPU to improve the
throughput of GENIE. The novel structure of c-PQ can also
reduce the memory requirement for multiple queries, therefore
GENIE can substantially increase the number of queries within
a batch on the GPU. We propose a tailored hash table on
the GPU to reduce hash confliction. Besides, to overcome the
limited memory size of the GPU, we introduce a multiple
loading strategy to process large data.

We present how to process the data with LSH scheme
by GENIE. We propose a new concept, called Tolerance-
Approximate Nearest Neighbour (τ -ANN) search, which is in
the same spirit of the popular c-ANN search. Then we prove
that, GENIE can support the τ -ANN search for any similarity
measure who has a generic LSH scheme.

For complex data types without LSH transformation, anoth-
er choice is to adopt the SA scheme to process the data. We
will showcase this by performing similarity search on sequence
data, short document data and relational data using GENIE.

We summarize our contributions as follows:
• We propose a generic inverted index framework (GENIE)

on the GPU, which can absorb the burden of parallel
GPU-based implementation of similarity search for any
data type that can be expressed in the match-count model.

• We present the system design of GENIE. Especially,
we devise the novel data structure c-PQ to significantly
increase the throughput for query processing on the GPU.

• We exhibit an approach to adopting LSH scheme for
similarity search under GENIE. We propose the new
concept of τ -ANN, and demonstrate that GENIE can
effectively support τ -ANN search under the LSH scheme.

• We showcase the similarity search on complex data
structures by GENIE under the SA scheme.

• We conduct comprehensive experiments on different
types of real-life datasets to demonstrate the effectiveness
and efficiency of GENIE.

The rest parts are organized as follows. We will present an
overview in Section II, and expound system design in Section
III, then we will discuss similarity search on GENIE in Section
IV and Section V. We will discuss experiment result in Section
VI and related work in Section VII. We enclose all proofs and
supplementary materials in our technique report [10].

II. PRELIMINARIES AND OVERVIEW

In this section, we give an overview of GENIE including
its main concepts and computational framework. We use
relational data shown in Fig. 1 as a running example.

A. Match-count model
Given a universe U , an object Oi contains a set of elements

in U , i.e. Oi = {oi,1, ..., oi,r} ⊂ U . A set of such data objects
forms a data set DS = {O1, ...On}. A query Qi is a set of
items {qi,1, ..., qi,s}, where each item qi,j is a set of elements
from U , i.e. qi,j ⊂ U (qi,j is a subset of U). A query set is
defined as QS = {Q1, ..., Qm}.

ID count

O1 1

O2 3

O3 2

… …

key

Count Table
of Q1

Attr
ID

A B C

O1 1 2 1

O2 1 1 2

O3 2 2 3

… … … …

O1 = {(A,1), (B,2), (C,1)}
O2 = {(A,1), (B,1), (C,2)}
O3 = {(A,2), (B,2), (C,3)}

(A,1)

(A,2)

(A,3)

(B,1)

(B,2)

(B,3)

(C,1)

(C,2)

(C,3)

O1, O2

O3

NIL

O3O1,

NIL

O1

O2

O3

(A,[1,2])

(B,[1,1])

(C,[2,3])

O2

Fig:invIndex

Inverted Index

Postings lists

GPU

Q1 = {(A,[1,2]), (B,[1,1]), (C,[2,3])}

Q2 = {(A,[2,3]), (B,[1,1]), (C,[1,2])}
… …

Count Table
of Q2

ID count

O1 1

… …

Fig. 1. An example on a relational table.
Example 2.1: Given a relational table, the universe U is a set
of ordered pairs (d, v) where d is an attribute of this table
and v is a value of this attribute. An l−dimensional relational
tuple p = (v1, ..., vl) is represented as an object O =
{(d1, v1), ..., (dl, vl)}. As illustrated in Fig. 1, the O1 in the re-
lational table is represented as O1 = {(A, 1), (B, 2), (C, 1)}.

A query on the relational table usually defines a set of
ranges R=([vL1 , v

U
1],..., [vLl , v

U
l]). Then it can be represented

as Q={r1, r2, .., rl}, where ri = (di, [v
L
i , v

U
i]) defines a set

of pairs (di, v) with value v ∈ [vLi , v
U
i]. As we can see from

Fig. 1, query Q1 to retrieve the tuples with conditions 1 ≤
A ≤ 2, 1 ≤ B ≤ 1 and 2 ≤ C ≤ 3 can be represented as
Q1 = {(A, [1, 2]), (B, [1, 1]), (C, [2, 3])}.

Informally, given a query Q and an object O, the match-
count model MC(·, ·) returns the number of elements oi ∈ O
contained by at least one query item of Q. We give a formal
definition of the match-count model as follows.
Definition 2.1 (match-count model): Given a query Q =
{r1, r2, .., rl} and an object O = {o1, ..., os}, we map each
query item ri to a natural integer using C : (ri, O) → N,
where C(ri, O) returns the number of elements oj ∈ O
contained by the item ri (which is also a subset of U).
Finally the output of the match-count model is the sum of
the integers MC(Q,O) =

∑
ri∈Q C(ri, O). For example,

in Fig. 1, for Q1 and O1 we have C((A, [1, 2]), O1) =
1, C((B, [1, 1]), O1) = 0 and C((C, [2, 3]), O1) = 0, then
we have MC(Q1, O1) = 1 + 0 + 0 = 1.

In GENIE, we aim to rank all the objects in a data set with
respect to the query Q according to the model MC(·, ·) to
obtain the top-k objects of query Q.

GENIE essentially is an inverted index on the GPU to
efficiently support the match-count model between objects
and queries. Fig. 1 shows an illustration of such high level
inverted index. We first encode attributes and all possible
values as ordered pairs (continuous valued attributes are first
discretized). Then we construct an inverted index where the

keyword is just the encoded pair and the postings list comprises
all objects having this keyword. Given a query, we can quickly
map each query item to the corresponding keywords (ordered
pairs). After that, by scanning the postings lists, we can
calculate the match counts between the query and all objects.
B. GENIE with LSH and SA

The inverted index with match-count model has flexibility
for similarity search of many data types. Though a prerequisite
for adopting GENIE is that its similarity search can be
supported by the match-count model, we find that many data
types can be supported after the transformation by LSH or SA,
which is demonstrated in this section.

Like map-reduce model cannot handle all computation
tasks, we do not expect that all data types can be supported.
However, at least many popular data types can make it with
LSH or SA. How to organize data structures as inverted in-
dexes has been extensively investigated by previous literatures
[2], [11], [12] and it is beyond the scope of this paper.

1) Transformed by LSH: The most common data type, high
dimensional point, can be transformed by an LSH scheme
[6]. In such a scheme, multiple hash functions are used to
hash data points into different buckets and points that are
frequently hashed to the same bucket are deemed to be similar.
Hence we can build an inverted index where each postings list
corresponds to a list of points hashed to a particular bucket.
Given a query point, ANN search can be performed by first
hashing the query point and then scanning the corresponding
postings list to retrieve data points that appear in many of these
buckets. Meanwhile, sets, feature sketches and geometries
typically have kernelized similarity functions [5], including
Jaccard kernel for sets, Radial Basis Function (RBF) kernel
for feature sketches, and Geodesic kernel for hyperplanes. We
present the index building method under LSH scheme and
theoretical analysis in Section IV.

2) Transformed by SA: The data with complex structure,
including documents, sequences, trees and graphs, can be
transformed with the SA [7], [8] scheme. Specifically, the
data will be broken down into smaller sub-units (“shotgun”),
such as words for documents, n-grams for sequences [2],
binary branches for trees [12] and stars for graph [11]. After
the decomposition, we can build an inverted index with a
postings list for each unique sub-unit. Data objects containing
a particular sub-unit are stored in the postings list. At query
time, query objects will also be broken down into a set of
small sub-units and the corresponding postings lists will be
accessed to find data objects that share common sub-units with
the query object. The match-count model returns the matching
result between the query and objects sharing keywords, which
is an important intermediate result for similarity search. This
approach has been widely used for similarity search of com-
plex structured data [2], [12], [11]. More discussion about it
is presented in Section V.

GENIELSH SA

Dimensional
Points

GENIE

Fig:lsh_genie_sa

Fig. 2. The relations among GENIE, LSH and SA.

III. INVERTED INDEX ON THE GPU
We first present the index structure and the data flow of

GENIE. Then we present Count Priority Queue (c-PQ for
short), which is a priority queue-like structure on the GPU
memory facilitating the search. Finally, we propose a multiple
loading method to handle large dataset.
A. Inverted index and query processing

The inverted index is resident in the global memory of
the GPU. Fig. 3 illustrates an overview of such an index
structure. All postings lists are stored in a large List Array
in the GPU’s global memory. There is also a Position Map in
the CPU memory which stores starting and ending positions
of each postings list for each keyword in the List Array. When
processing queries, we use the Position Map to look up the
corresponding postings list address for each keyword. This
look-up operation is only required once for each query and our
experiment also demonstrates that its time cost is negligible.

O1

List Array

GPU
key

(A,1)

(A,2)

(B,1)

(B,2)

(C,1)

(C,2)

(C,3)

O2
O3

O2

O1

O3

O1

O2

O3

Count Table / c-PQ

ID count

O1 1

… …

Fig:gpuIndex

Position Map

Blk 1 Blk s…

Q1 =(q1,1,…,q1,s)
q1,1 q1,s

Blk s+1 Blk 2s…

Q2 =(q2,1,…,q2,s)
q2,1 q2,s

… …

Search
Results

Fig. 3. Overview of the inverted index and data flow.
Fig. 3 shows the process of multiple queries on the GPU.

Each query has a set of items, which define particular ranges
on some attributes. When we invoke a query, we first obtain
its postings lists’ addresses by the Position Map, then we
use one block of the GPU (A block on the GPU organizes
a small batch of threads (up to 2048) and controls the
cooperation among the threads.) to scan the corresponding
postings lists for each query item, where the threads of each
block parallel access parts of the postings lists. For a query
Qi = {qi,1, qi,2, ..., qi,s} with s query items, if there are m
queries, there will be about m · s blocks working on the GPU
in parallel. During the process, after scanning an object in
the postings list, each thread will update the Count Table to
update the number of occurrences of the object in the scanned
postings lists. Therefore, the system works in a fine-grained
manner to process multiple queries which fully utilizes the
parallel computational capability of the GPU.

In the inverted index, there may be some extremely long
postings lists, which can be bottleneck of our system. We
also consider how to balance the workload for each block
by breaking long postings lists into short sub-lists. We refer
readers to [10] for more details about the load balance.
B. Count Priority Queue

We propose a novel data structure, called Count Priority
Queue (c-PQ for short) to replace the Count Table on the
GPU, which aims to improve the efficiency and throughput of
GENIE. c-PQ has two strong points: 1) Though how to retrieve
the top-k result from all candidates is the major bottleneck for
similarity search on the GPU [4], c-PQ can finish this task
with small cost; and 2) c-PQ can significantly reduce the space
requirement of GENIE.

One major obstacle of GENIE is how to select top-k count
objects from the Count Table. This problem is also considered
as a major bottleneck for similarity search on the GPU in
previous study [4]. It is desirable to use a priority queue
for this problem. However, the parallel priority queue usually
has warp divergence and irregular memory movement, which
cannot run efficiently on GPU architectures [13].

The key idea of c-PQ is to use a two-level data structure to
store the count results, and use a device to schedule the data
allocation between levels. Our novel design can guarantee that
only a few of candidates are stored in the upper level structure
while all objects in lower level structure can be abandoned.
Then we only need to scan the upper level structure to select
the query result. We will describe the structure and mechanism
of c-PQ, and prove all the claims in Theorem 3.1.

Another major problem of GENIE is its large space cost,
since the Count Table must allocate integer to store the count
for each object for each query. Taking a dataset with 10M
points as an example, if we want to submit a batch of one
thousand queries, the required space of the Count Table is
about 40 GB (by allocating one integer for count value, the size
is 1k(queries) × 10M(points) × 4(bytes) = 40GB), which
exceeds the memory limit of the current available GPUs.

To reduce space cost, first, we can use bitmap structure to
avoid explicitly storing id. Second, we only need to allocate
several (instead of 32) bits to encode the count for each object
in bitmap structure. The reason is that the maximum count for
each object is bounded (i.e. there is a maximum value of the
count) since the count value cannot be larger than the number
of postings lists in the index. Actually, we usually can infer a
much smaller count bound than the number of postings lists.
For example, for high dimensional points, the maximum count
value is just the number of its dimensions.

Bitmap
Counter

001

011

010

…

Fig:countHeap

O1

O2

O3

Zipper
Array

1 2 3 4 5 6

k

Hash Table

key val

O1 1

O2 3

NIL NIL

… …Audit
Threshold

Gate

Fig. 4. An illustration of the c-PQ.

1) The structure and mechanism of c-PQ: Fig. 4 shows
the main structures of c-PQ which has three components. In
the lower level, we create a Bitmap Counter which allocates
several bits (up to 32 bits) for each objects whose id is
corresponding to the beginning address of the bits. In the upper
level, there is a Hash Table whose entry is a pair of object
id and its count value. Then, a pivotal device, called Gate,
determines which id-value pair in the Bitmap Counter will
be inserted into the Hash Table. The Gate has two members:
a ZipperArray and a threshold called AuditThreshold. In the
following context, we briefly denote the Bitmap Counter as
BC, the Hash Table as HT , the AuditThreshold as AT and
the ZipperArray as ZA.

The Gate has two functions. First, only a few objects in the
BC can pass the Gate to the HT, while all objects remaining
in the BC cannot be top k objects and thus can be safely

abandoned. Second, the AT in the Gate just keeps track of the
threshold for the top-k result, and we only need to scan the
HT once to select the objects with counter larger than AT −1
as top-k results (See Theorem 3.1).

The ZA and AT in the Gate work together to restrict objects
going from the BC to the HT. The size of the ZA in Gate
is equal to the maximum value of the count (based on the
count value bound). ZA[i](ZA is 1-based indexing array, i.e.
the index starts from 1) records the minimum value between
the number of objects whose count have reached i (denoted as
zci) and value k, i.e. ZA[i] = min(zci, k). The AT in Gate
records the minimum index of ZA whose value is smaller than
k (i.e. ZA[AT] < k and ZA[AT − 1] ≥ k).

The intuition behind the mechanism of the Gate is that,
if there are already k objects whose count has reached i (i.e.
ZA[i] == k) in the HT, there is no need to insert more objects
whose count is less or equal to i into the HT since there are
already k candidates if the top-k count threshold is just i.
Therefore, the AT increase by 1 when ZA[AT] == k.

We present the update process per thread on the GPU of
c-PQ in Algorithm 1, which is also illustrated in Fig. 4. For
each query, we use one block of the GPU to parallel process
one query item. For all inverted lists matched by a query item,
the threads of this block access the objects and update c-PQ
with Algorithm 1. Note that the add operation is atomic. When
the count of an object is updated in the BC, we immediately
check whether the object’s count is larger than the AT (line
3). If it is, we will insert (or update) an entry into the HT
whose key is the object id and whose value is the object’s
count. Meanwhile, we will update the ZA (line 5). If ZA[AT]
is larger than k, we also increase the AT by one unit (line 7).

Algorithm 1: Update on the Count Priority Queue
// For a thread in a block, it accesses

object Oi in the inverted index, then
makes following updates.

11 vali = BC[Oi] + 1
22 BC[Oi] = vali
3 if vali ≥ AT then
44 Put entry (Oi, vali) into the HT
55 ZA[vali]+ = 1
6 while ZA[AT] ≥ k do
77 AT+ = 1

We present Theorem 3.1 to elaborate the properties of c-P.
Theorem 3.1: After finishing scanning the inverted index and
updating c-PQ, the top-k candidates are stored in the HT, and
the number of objects in the HT is O(k ∗ AT). Suppose the
match count of the k-th object Ok of a query Q is MCk =
MC(Q,Ok), then we have MCk = AT − 1.

According to Theorem 3.1, we can select the top-k objects
by scanning the HT and selecting objects with match count
greater than (AT − 1) only. If there are multiple objects with
match count equal to (AT − 1), we break ties randomly.

We give an example to show update process of c-PQ with
data in Fig. 1 and the final result shown in Fig. 4.
Example 3.1: Given a data set {O1, O2, O3} and a query Q1

in Fig. 1, we want to find the top-1 result of Q1 from the

objects, i.e. k = 1. Since the number of attributes of the table is
3, the maximum value of count is 3. Initially we have AT = 1,
ZA = [0, 0, 0], BC = {O1 : 0, O2 : 0, O3 : 0} and HT = ∅.
For easy explanation, we assume the postings lists matched
by Q1 are scanned with the order of (A, [1, 2]), (B, [1, 1])
and (C, [2, 3]). (On the GPU they are processed with multiple
blocks in parallel with random order.)

As shown in Algorithm 1, when scanning the postings
list (A, [1, 2]), we first access O1 and get BC(O1) = 1.
Since BC(O1) ≥ AT (= 1), we have HT (O1) = 1 and
ZA[1] = 0 + 1 = 1 (note that ZA is 1-based array, thus
after the updating ZA = [1, 0, 0]). Since ZA[AT] ≥ k(k = 1
and AT = 1), then we have AT = 1 + 1 = 2. Then we
update BC(O2) = 1 and BC(O3) = 1 without changing
other parameters since both the values of O2 and O3 are
smaller than AT .

With the same method, after processing (B, [1, 1]), we only
have BC(O2) = 2 , HT (O2) = 2, ZA = [1, 1, 0], AT = 3
and BC = {O1 : 1, O2 : 2, O3 : 1}.

The last postings list to process is (C, [2, 3]). There is no O1

in it. For O2, we have BC(O2) = 3. Since BC(O2) ≥ AT ,
we have HT (O2) = 3, ZA = [1, 1, 1] and AT = 4. We also
have BC(O3) = 2.

Finally, we have HT = {O1 : 1, O2 : 3} and AT = 4.
By Theorem 3.1, we know that the count of top-1 result is 3
(AT-1=4-1=3). We can then scan the hash table HT to select
the object equal to 3 which is just O2.

2) Hash Table with modified Robin Hood Scheme: Here
we briefly explain the design of the HT. We propose a
modified Robin Hood Scheme to implement a hash table
on the GPU which is different from existing work [14].
According to Theorem 3.1, the size of the HT can be set as
O(k ∗max count value). We adopt a lock-free synchroniza-
tion mechanism studied in [15] to handle the race condition
problem. More details about the HT can be found in [10].

The vital insight to improve the efficiency of the Robin
Hood Scheme in the c-PQ is that all entries with values
smaller than (AT − 1) in the HT cannot be top-k candidates
(see Theorem 3.1). If the value of an entry is smaller than
(AT − 1), we can directly overwrite the entry regardless of
hashing confliction. Thus we can significantly reduce the probe
times of insertion of the HT, since many inserted keys become
expired with the increase of AT.

C. Indexing large data with multiple loadings
We also devise a multiple loading method to increase the

capacity of GENIE utilizing the advantage of the high GPU
memory bandwidth. There may be some cases that the data
index is too large to be fitted into the GPU memory. For this
problem, we split the whole data set into several parts, and then
build inverted index for each part in the CPU memory. When
a batch of queries is submitted, we transfer each index part
into the GPU memory in turn, and run the query processing
introduced before. After finishing a round, we collect all
results from each part, and merge them to get a final query
results. Some necessary computation is done in the CPU such

as finding the final top-k results among the top-k results of
each data part. Fig. 5 illustrates this multiple loading method.

data

Index 1

……

Part 1

……
GPU

Query Result
1

…… Final
result

data

Index nPart n
GPU

Result
n

result

fig:multiple_loadings

Fig. 5. An illustration of GENIE with multiple loadings.
D. The utility of the GPU for GENIE

The design of GENIE utilizes the property of the SIMD
architecture and the features of the GPU from several per-
spectives. First, GENIE divides the query process to sufficient
number of small tasks to fully utilizes the parallel computation
power of the GPU. We use one block to handle one query item
and use each thread of the block to process an object in the
postings list, therefore, the similarity search can be processed
in as fine-grained manner as possible, so that all the processors
on the GPU are highly utilized.

Second, c-PQ can finish the top-k selection task with a
small number of homogenous operations (scanning the Hash
Table only once) suitable for the SIMD architecture. This data
structure avoids the expensive operations like sort [4], [9] and
data dependent memory assess movement on the GPU [13]
for top-k selection. This point is clarified in the experiment of
Section VI-B1 and Section VI-C, with a discussion about its
competitors in Section VI-B4.

Third, the design of GENIE tries to perform coalescing
memory access and coherent branching. In c-PQ, most opera-
tions are limited in the BC and only a few data are passed to
the HT, which minimizes the branch divergence. Besides, since
we use many threads to process a postings list, the threads have
coalescing memory access patterns.

Fourth, the multiple loading method takes the advantage of
the high GPU memory bandwidth which is usually 5-10 times
higher than the CPU memory bandwidth. Our experiment in
Section VI-B3 also demonstrates that such index transfer step
only takes a very small portion of the total time cost.

IV. GENERIC ANN SEARCH WITH LSH
We first show that GENIE can support the ANN search for

any similarity measure which has an LSH scheme, followed
by an error bound analysis for ANN search on GENIE.
A. Building index for ANN search on GENIE

In this section, we show how to use GENIE to support
similarity search after processing data by LSH scheme.

1) ANN search with LSH on GENIE: According to the
definition in [5], a hashing function h(·) is said to be locality
sensitive if it satisfies:

Pr[h(p) = h(q)] = sim(p, q) (1)

which means the collision probability is equal to the similarity
measure. Here sim(·, ·) is a function that maps a pair of points
to a number in [0, 1] where sim(p, q) = 1 means p and q are
identical. LSH is one of the most popular solutions for the
ANN search problem [16], [5], [17].

We can use the indexing method for relation table shown
in Fig. 1 to build inverted index for LSH. We treat each

hash function as an attribute, and the hash signature as the
value for each data point. The keyword in the inverted index
for point p under hash function hi(·) is a pair (i, hi(p))
and the postings list of the pair (i, hi(p)) is a set of points
whose hash value by hi(·) is hi(p) (i.e. hi(p′) = hi(p) if
p′ and p in the same postings list.). Given a query point q,
we also convert q with the same transformation process, i.e.
Q = [h1(q), h2(q), ..., hm(q)].

As we will prove in Section IV-B, the top result returned by
GENIE according to the match-count model on the inverted
index is just the ANN search result. Any similarity measure
associated with an LSH family defined by Eqn. 1 can be
supported by GENIE. For ANN search in high dimensional
space, we usually resort to (r1, r2, ρ1, ρ2)-sensitive hashing
function family. We give a special discussion about it in [10].
We will also analyze the error bound between the estimate ŝ
and the real similarity measure s = sim(p, q) in Section IV-B.

2) Re-hashing for LSH with large signature space: A
possible problem is that the hash signature of LSH functions
may have a huge number of values with acceptable error
by configuring parameters. For example, the signature of the
Random Binning Hashing function introduced later can be
thousands of bits by setting good parameters for search error.
But it is not reasonable to discretize the hash signature into a
set of buckets according to the definition of LSH in Eqn. 1.

To reduce the number of possible signatures, we propose a
re-hashing mechanism illustrated in Fig. 6. After obtaining the
LSH signature hi(·), we further project the signatures into a
small set of buckets with a random projection function ri(·).
Thus, we can convert a point to an object by the transforma-
tion: Oi = [r1(h1(pi)), r2(h2(pi)), ..., rm(hm(pi))]. Note that
re-hashing is not necessary if the signature space of selected
LSH can be configured small enough.

Fig:rehashing

LSH
signatures

p1

p2

pn

…

p1

p2 pn

Buckets
hi() ri()

Points

Fig. 6. Re-hashing mechanism
where h(·) is a LSH function and
r(·) is a random projection function.

Fig:s_vs_m

30

79

127

191

230 237 230

193

128

80

10

0

50

100

150

200

250

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n
u
m

b
e
r

o
f

L
S

H
 f

u
n
ct

io
n
s

:m

similarity: s

Fig. 7. Similarity (s) v.s. the number
of minimum required LSH functions
(m) with constraint Pr[|c/m−s| ≤
ε] ≥ 1− δ where ε = δ = 0.06.

3) Case study: ANN in Laplacian kernel space: We take
the ANN search on a shift-invariant kernel space as a case
study, which has important applications for machine learning.
The authors in [18] propose an LSH family, called Random
Binning Hashing (RBH), for Laplacian kernel k(p, q) =
exp(− ‖ p − q ‖1 /σ). Though this method is well-known
for dimension reduction, as far as we know, it has not been
applied to ANN search. One possible reason is that it has a
huge hash signature space. A brief introduction to RBH can be
found in [10]. In experiment, we demonstrate that GENIE can
support ANN search in Laplacian kernel space based on RBH.
To reduce the hash signature space, we use the re-hashing
mechanism to project each signature into a finite set of buckets.

B. Theoretical analysis
To integrate LSH methods into GENIE requires a theoretical

analysis for LSH under match-count model. For this purpose,
we propose a revised definition of the ANN search, called
Tolerance-Approximate Nearest Neighbor search (τ -ANN).
Definition 4.1 (τ -ANN): Given a set of n points P =
{p1, p2, .., pn} in a space S under a similarity measure
sim(pi, q), the τ -ANN search returns a point p such that
|sim(p, q) − sim(p∗, q)| ≤ τ with high probability where p∗

is the true nearest neighbor.
This concept is similar to the popular definition of c-ANN
[16] which is defined to find a point p so that sim(p, q) ≤
c ·sim(p∗, q) with high probability. Some existing works, like
[19], have also used a concept similar to Definition 4.1 though
without explicit definition.

1) Error bound and τ -ANN: We prove that the top return of
GENIE for a query q is the τ -ANN of q. Given a point p and
a query q with a set of LSH functions H = {h1, h2, ..., hm},
suppose there are c functions in H satisfying hi(p) = hi(q)
(where c is just the return of match-count model). We prove in
Theorem 4.1 that the return of match-count model on GENIE
can be probabilistically bounded w.r.t the similarity between
p and q, i.e. |c/m− sim(p, q)| < ε with high probability.
Theorem 4.1: Given a similarity measure sim(·, ·), an LSH
family h(·), we can get a new hash function f(x) = r(h(x)),
where r(·) is a random projection function from LSH signature
to a domain R : U → [0, D).

For a set of hash functions fi(·) = ri(hi(·)), 1 ≤ i ≤
m with m = 2 ln(3/δ)ε2 , we can convert a point p and
a query q to an object and a query of the match-count
model, which are Op = [f1(p), f2(p), ..., fm(p)] and Qq =
[f1(q), f2(q), ..., fm(q)], then we have |MC(Qq, Op)/m −
sim(p, q)| < ε+ 1/D with probability at least 1− δ.

Now we introduce an important theorem which claims that,
given a query point q and proper configuration of m stated
in Theorem 4.1, the top result returned by GENIE is just the
τ -ANN of q.
Theorem 4.2: Given a query q and a set of points
P = {p1, p2, .., pn}, we can convert them to the objects of
our match-count model by transformation Opi = [r1(h1(pi)),
r2(h2(pi)) , ..., rm(hm(pi))] which satisfies
|MC(Qq, Opi)/m − sim(pi, q)| ≤ ε with the probability at
least 1 − δ. Suppose the true NN of q is p∗, and the top
result based on the match-count model is p, then we have
|sim(p∗, q)−sim(p, q)| ≤ 2ε with probability at least 1−2δ.

2) Number of hash functions in practice: Theorem 4.1
provides a rule to set the number of LSH functions as O(1

ε2)
which may be very large. It is NOT a problem for GENIE to
support such a number of hash functions since the GPU is a
parallel architecture suitable for the massive quantity of simple
tasks. The question however is that: Do we really need such
a large number of hash functions in practical applications?

Before exploiting this, we first explain that the collision
probability of a hash function fi(·) can be approximated with
the collision probability of an LSH function hi(·) if D is large
enough. The collision probability of fi(·) can be factorized as:

collisions caused by hi(·) and collisions caused by ri(·):

Pr[fi(p) = fi(q)] = Pr[ri(hi(p)) = ri(hi(q))] (2)
≤ Pr[hi(p) = hi(q)] + Pr[ri(hi(p)) = ri(hi(q))] (3)
= s+ 1/D (4)

where s = sim(p, q). Thus, we have s ≤ Pr[fi(p) =
fi(q)] ≤ s+ 1/D. Suppose r(·) can re-hash hi(·) into a very
large domain [0, D), we can claim that Pr[fi(p) = fi(q)] ≈ s.
For simplicity, let us denote c = MC(Qq, Op). An estimation
of s by maximum likelihood estimation (MLE) can be [19]:

s = MC(Qq, Op)/m = c/m (5)

Eqn. 5 can be further justified by the following equation:

Pr[| c
m
− s| ≤ ε] = Pr[(s− ε) ∗m ≤ c ≤ (s+ ε) ∗m] (6)

=

d(s+ε)me∑
c=b(s−ε)mc

(
m

c

)
sc(1− s)m−c (7)

Eqn. 7 shows that the probability of error bound depends on
the similarity measure s = sim(p, q) [19]. Therefore, there is
no closed-form expression for such error bound.

Nevertheless, Eqn. 7 provides a practical solution to esti-
mate a tighter error bound of the match-count model. If we
fixed ε and δ, for a similarity measure s, we can infer the
number of required hash functions m subject to the constraint
Pr[|c/m − s| ≤ ε] ≥ 1 − δ according to Eqn. 7. Fig. 7
visualizes the number of minimum required LSH functions for
different similarity measure with respect to a fixed parameter
ε = δ = 0.06 by this method. A similar figure has also been
illustrated in [19]. Fig. 7 shows that the largest number of
hash functions, being m=237, appears at s = 0.5, which is
much smaller than the one estimated by Theorem 4.1 (which
is m = 2 ln(3/δ)ε2 = 2174). We should note that the result
shown in Fig. 7 is data independent. Thus, instead of using
Theorem 4.1, we can effectively estimate the actually required
number of LSH functions using the simulation result based on
Eqn. 7 (like Fig. 7).

V. SEARCHING ON DATA WITH SA
GENIE also provides a choice of adopting the “Shotgun

and Assembly” (SA) scheme for similarity search. Given a
dataset, we split each object into small units. Then we build
inverted index where each unique unit is a keyword, and the
corresponding postings list is a list of objects containing this
unique unit. When a query comes, it is also broken down as
a set of such small units. After that, GENIE can effectively
calculate the number of common units between the query
object and data objects.

The return of match-count model can either be a similarity
measure (e.g. document search where the count is just the
inner product between the space vector of documents), or be
considered as a lower bound of a distance (e.g. edit distance) to
filter candidates [2], [12]. We will demonstrate how to perform
similarity search on sequence data, short document data and
relational data using GENIE.

A. Searching on sequence data
In this section, we show how to use GENIE to support

similarity search by the SA scheme with an example of
sequence similarity search under edit distance.

1) Shotgun – decomposition and index: We first decompose
the sequence S into a set of n-grams using a length-n sliding
window. Given a sequence S and an integer n, the n-gram is
a length-n subsequence s of S. Since the same n-gram may
appear multiple times in a sequence, we introduce the ordered
n-gram, which is a pair (n-gram,i) where i denotes the i-th
same n-gram in the sequence. Therefore, we decompose the
sequence S into a set of ordered n-gram G(S). In GENIE,
we build an inverted index by treating the ordered n-gram as
a keyword and putting its sequence id in the postings list.
Example 5.1: For a sequence S = {aabaab},
the set of ordered 3-grams of S is G(S) =
{(aab, 0), (aba, 0), (baa, 0), (aab, 1)} where (aab, 0) denotes
the first subsequence aab in S, and (aab, 1) denotes the
second subsequence aab in S.

2) Assembly – combination and verification: During query
process, we also decompose a query sequence Q into a set of
ordered n-grams using sliding windows, i.e. G(Q). GENIE
can retrieve candidates with top-k large count in the index.
We first introduce the following lemma:
Lemma 5.1: Suppose the same n-gram sin appears cis times
in sequence S and ciq times in sequence Q, then the result
returned by the match-count model is MC(G(S), G(Q)) =∑
sin
min{cis, ciq}.

With respect to the edit distance, the result of the match-
count model satisfies the following theorem.
Theorem 5.1: If the edit distance between S and Q is τ , then
the return of the match-count model has MC(G(S), G(Q)) ≥
max{|Q|, |S|} − n+ 1− τ ∗ n. [20]

According to Theorem 5.1, we can use the result of the
match-count model as an indicator for selecting candidates
for the query. Our strategy is to retrieve K candidates from
GENIE according to match count with a large K(K >> k).
Then we can employ a verification process to calculate the
edit distance between the query Q and the K candidates to
obtain the k-th most similar sequence Sk′ . The detail of the
verification process is shown in Algorithm 2 in [10].

With this method, we can know whether the real top-
k sequences are correctly returned by GENIE, though we
cannot guarantee the returned top-k candidates are the real
top-k data sequence for all queries. In other words, after the
verification, we can know whether Sk′ is the real k-th most
similar sequence of Q accroding to the following theorem.
Theorem 5.2: For the K-th candidates SK returned by
GENIE according to count, suppose the match count between
SK and query Q is cK = MC(G(SK), G(Q)). Among the K
candidates, after employing the verification algorithm, we can
obtain the edit distance between k-th most similar sequence
(among the K candidates) and Q is τk′ = ed(Q,Sk′). If
cK < |Q| − n + 1 − τk′ ∗ n, then the real top-k results are
correctly returned by GENIE.

A possible solution for sequence similarity search is to
repeat the search process by GENIE with larger K, until the
condition in Lemma 5.2 is satisfied. In the worst case it may
need to scan the whole data set before retrieving the real top-
k sequences under edit distance. However, as shown in our
experiment, it can work well in practice for near edit distance
similarity search in some applications.

B. Searching on short document data
In this application, both query documents and object doc-

uments are broken down into “words”. We build an inverted
index with GENIE where the keyword is a “word” from the
document, and the postings list is a list of document ids.

We can explain the result returned by GENIE on short doc-
ument data by the document vector space model. Documents
can be represented by a binary vector space model where each
word represents a separate dimension in the vector. If a word
occurs in the document, its value in the vector is one, otherwise
it is zero. The output of the match-count model, which is the
number of word co-occurring in both the query and the object,
is just the inner product between the binary sparse vector of
the query document and the one of the object document.

C. Searching on relational data
GENIE can also be used to support queries on relational

data. In Fig. 1, we have shown how to build an inverted
index for relational tuples. For attributes with continuous
value, we assume that they can be discretized to an acceptable
granularity level. A range selection query on a relational table
is a set of specific ranges on attributes of the relational table.

The top-k result returned by GENIE on relational tables
can be considered a special case of the traditional top-k
selection query. The top-k selection query selects the k tuples
in a relational table with the largest predefined ranking score
function F (·) (SQL ORDER BY F (·)). In GENIE, we use
a special ranking score function defined by the match-count
model, which is especially useful for tables having both
categorical and numerical attributes.

VI. EXPERIMENTS

A. Settings
1) Datasets: We use five real-life datasets to evaluate our

system. Each dataset corresponds to one similarity measure
respectively introduced in Section IV and Section V.

[OCR]3 This is a dataset for optical character recognition. It
contains 3.5M data points and each point has 1156 dimensions.
The size of this dataset is 3.94 GB. We randomly select 10K
points from the dataset as query/test set (and remove them
from the dataset). We use RBH to generate the LSH signature,
which is further re-hashed into an integer domain of [0,8192).

[SIFT]4 This dataset [21] contains 4.5M SIFT features
which are 128-dimensional points. Its total size is 1.49 GB.
We randomly select 10K features as query set and remove
them from the dataset. We select the hash functions from
E2LSH family [6] and each function transforms a feature into

3http://largescale.ml.tu-berlin.de/instructions/
4http://lear.inrialpes.fr/∼jegou/data.php

67 buckets. The setting of bucket width follows the routine in
[6]. We use this dataset to evaluate the ANN search in high
dimensional space.

[SIFT LARGE] 5 To evaluate the scalability of our system,
we also extract 36 millions SIFT features by ourselves from
the ILSVRC-2010 image dataset. The size of this dataset is
14.75 GB. We use the same method as described above for
SIFT to process the data.

[DBLP]6 This dataset is obtained by extracting article titles
from the DBLP website. The total number of sequences is
5.0M and the size of this dataset is 0.94 GB. We randomly
choose 10K sequences as a test data, and then modify 20%
of the characters of the sequences. This dataset is to serve
the experiment of sequence similarity search in Section V-A.
Specially, we set K = 32 and k = 1 by default.

[Tweets]7 This dataset has 6.8M tweets. We remove stop
words from the tweets. The dataset is crawled by our collab-
orators from Twitter for three months by keeping the tweets
containing a set of keywords.8 The data size is 0.46 GB. We
reserve 10K tweets as a query set. It is used to study the short
document similarity search (see Section V-B).

[Adult]9 This dataset has census information [22] which
contains 49K rows with 14 attributes (mixed of numerical
and categorical ones). For numerical data, we discretize all
value into 1024 intervals of equal width. We further dupli-
cate every row 20 times. Thus, there are 0.98M instances
(with size being 5.8 GB). We select 10K tuples as queries.
For numerical attributes, the query item range is defined as
[discretized value− 50, discretized value+ 50]. We use it
to study the selection from relational data (see Section V-C).

2) Competitors: We use the following competitors as base-
lines to evaluate the performance of GENIE.

[GPU-LSH] We use GPU-LSH [4], [23] as a competitor
of GENIE for ANN search in high dimensional space and its
source code is publicly available10. Furthermore, since there
is no GPU-based LSH method for ANN search in Laplacian
kernel space, we still use GPU-LSH method as a competitor
for ANN search of GENIE. We configure the parameters of
GPU-LSH to make sure its ANN search results have similar
quality as GENIE, which is discussed in Section VI-D1. We
only use 1M data points for GPU-LSH on OCR dataset since
GPU-LSH cannot afford more data points.

[GPU-SPQ] We implemented a priority queue-like method
on GPU as a competitor. We first scan the whole dataset to
compute match-count values between queries and all points,
and store these computed results in an array. Then we use
a GPU-based fast k-selection [9] method to extract the top-
k candidates from the array for each query. We name this
top-k calculation method as SPQ (which denotes GPU fast

5http://image-net.org/challenges/LSVRC/2010/index#data
6http://dblp.uni-trier.de/xml/
7https://dev.twitter.com/rest/public
8The keywords include “Singapore”, “City”, “food joint” and “restaurant”, etc. It is

crawled for a research project.
9http://archive.ics.uci.edu/ml/datasets/Adult
10http://gamma.cs.unc.edu/KNN/

k-selection from an array as a priority queue). We give an
introduction to SPQ in [10]. Note that for ANN search, we
scan on the LSH signatures (not original data).

[CPU-Idx] We implemented an inverted index on the CPU
memory. While accessing the inverted index in memory, we
use an array to record the value of match-count model for each
object. Then we use a partial quick selection function (with
Θ(n+klogn) worst-case performance) in C++ STL to get the
k largest-count candidate objects.

[CPU-LSH] We use CPU-LSH [24] for ANN search in high
dimensional space as a competitor after obtaining its source
code from authors’ website11. We use the suggestion method
in the paper to determine the parameters.

[AppGram] This is one of the state-of-the-art methods for
sequence similarity search under edit distance on the CPU [2].
We use AppGram as a baseline for comparing the running time
of GENIE for sequence similarity search. Note that AppGram
and GENIE are not completely comparable, since AppGram
tries its best to find the true kNNs, while GENIE only does
one round search process in the experiment. Thus some true
kNNs may be missed (though we know which queries do not
have true top-k, and another search process can be issued to
explore the true kNNs). We give more discussion about this
in Section VI-D2.

[GEN-SPQ] This is a variant of GENIE but using SPQ
instead of c-PQ. We still build inverted index on the GPU
for each dataset. However, instead of using c-PQ (see Section
III-B), we use SPQ (which is the same with the one for GPU-
SPQ) to extract candidates from the Count Table.

3) Environment: We conducted the experiments on a CPU-
GPU platform. The GPU used is NVIDIA GeForce GTX
TITAN X with 12 GB memory. GPU codes were implemented
in CUDA 7. Other programs were in C++ on CentOS 6.5
server (with 64 GB RAM and the CPU of Intel Core i7-3820).

Unless otherwise specified, we set k = 100 and set the
submitted query number per batch to the GPU as 1024. All
the reported results are the average of running results of ten
times. By default, we do not enable the load balance function
since it is not necessary when the query number is large for one
batch process (the experiment about load balance can be found
in [10]). For ANN search, we use the method introduced in
Section IV-B1 to determine the number of LSH hash functions
with setting ε = δ = 0.06, therefore the number of hash
functions is m = 237.

B. Efficiency of GENIE
1) Search time for multiple queries: We compare the run-

ning time among GENIE and its competitors. We do not
include index building time for all competitors since index
building can be done offline. The index building time of
GENIE is discussed in Section VI-B2.

We show the total running time with respect to different
numbers of queries in Fig. 8 (y-axis is log-scaled). Our method
outperforms GPU-SPQ by more than one order of magnitude,
and it can achieve more than two orders of magnitude over

11http://ss.sysu.edu.cn/∼fjl/c2lsh/C2LSH Source Code.tar.gz

TABLE I
TIME PROFILING OF DIFFERENT STAGES OF GENIE FOR 1024

QUERIES (THE UNIT OF TIME IS second).

Stage OCR SIFT DBLP Tweets Adult
Index build 81.39 47.73 147.34 12.10 1.06

Index transfer 0.53 0.34 0.20 0.088 0.011

Query
transfer 0.015 0.018 0.0004 0.0004 0.0004
match 2.60 7.04 0.85 1.19 1.82
select 0.004 0.003 0.11* 0.003 0.009

*This includes verification time which is the major cost.

GPU-SPQ and AppGram for sequence search. Furthermore,
GPU-SPQ can only run less than 256 queries in parallel
(except for Adult dataset) for one batch process, but GENIE
can support more than 1000 queries in parallel.

As we can see from Fig. 8, GENIE can also outperform
GPU-LSH about one order of magnitude. The running time of
GPU-LSH is relatively stable with varying numbers of queries.
This is because GPU-LSH uses one thread to process one
query, thus, GPU-LSH achieves its best performance when
there are 1024 queries (which is the maximum number of
threads per block on the GPU). Note that we only use 1M
data points for GPU-LSH on OCR dataset.

Fig. 9 conveys the running time of GENIE and its com-
petitors with varying numbers of data points for each dataset.
Since most of the competitors cannot run 1024 queries for one
batch, we fix the query number as 512 in this experiment. The
running time of GENIE is gradually increased with the growth
of data size. Nevertheless, the running time of GPU-LSH is
relatively stable on all datasets with respect to the data size.
The possible reason is that GPU-LSH uses many LSH hash
tables and LSH hash functions to break the data points into
short blocks, therefore, the time for accessing the LSH index
on the GPU becomes the main cost of query processing.

Fig. 11 shows the running time of GENIE and GPU-LSH
for a larger number (up to 65536) of queries on SIFT data.
Though GPU-LSH can support ten thousands of queries per
batch, GENIE can also support such large number of queries
with breaking query set into several small batches. With setting
1024 queries as a batch for GENIE, we can see that the time
cost of GPU-LSH to process 65536 queries with one batch is
1329 seconds, while GENIE can process the same number of
queries (with 64 batches) in 441 seconds.

2) Time profiling: Table I shows the time cost for different
stages of GENIE. The “Index-build” represents the running
time to build the inverted index on the CPU. This is an one-
time cost, and we do not count it in the query time. The
“Index-transfer” displays the time cost to transfer the inverted
index from the CPU to the GPU. The rows of “Query” display
the time for similarity search with 1024 queries per batch.
The “Query-transfer” is the time cost to transfer queries and
other information from the CPU to the GPU. The “Query-
select” contains the time for selecting candidates from c-PQ
and sending back the candidates to the CPU (For DBLP data,
it also includes the time of verification). The “Query-match”
is the time cost for scanning inverted index which dominates
the cost for similarity search. This confirms our design choice
of using GPU to accelerate this task.

 0.1

 1

 10

 100

 1000

32 64 128 256 512 1024

T
o
ta

l
R

u
n
n
in

g
 T

im
e
 (

s
)

Query Number

GENIE
GPU-SPQ
GPU-LSH

CPU-Idx
CPU-LSH

 0.1

 1

 10

 100

 1000

 10000

32 64 128 256 512 1024

T
o
ta

l
R

u
n
n
in

g
 T

im
e
 (

s
)

Query Number

GENIE
GPU-SPQ
GPU-LSH

CPU-Idx
CPU-LSH

 0.1

 1

 10

 100

 1000

 10000

32 64 128 256 512 1024

T
o
ta

l
R

u
n
n
in

g
 T

im
e
 (

s
)

Query Number

GENIE
GPU-SPQ

AppGram

 0.01

 0.1

 1

 10

 100

 1000

32 64 128 256 512 1024

T
o
ta

l
R

u
n
n
in

g
 T

im
e
 (

s
)

Query Number

GENIE
GPU-SPQ

CPU-Idx

 0.01

 0.1

 1

 10

 100

 1000

32 64 12
8

25
6

51
2

10
24

20
48

40
96

T
o
ta

l
R

u
n
n
in

g
 T

im
e
 (

s
)

Query Number

GENIE
GPU-SPQ

CPU-Idx

(a) OCR (b) SIFT (c) DBLP (d) Tweets (e) Adult
Fig. 8. Total running time for multiple queries.

 1

 10

 100

 1000

500k 1m 2m 3.5m

T
o
ta

l
R

u
n
n
in

g
 T

im
e
 (

s
)

Cardinality

GENIE
GPU-SPQ
GPU-LSH

CPU-Idx
CPU-LSH

 0.1

 1

 10

 100

 1000

 10000

500k 1m 2m 4m

T
o
ta

l
R

u
n
n
in

g
 T

im
e
 (

s
)

Cardinality

GENIE
GPU-SPQ
GPU-LSH

CPU-Idx
CPU-LSH

 0.1

 1

 10

 100

 1000

 10000

500k 1m 2m 4m 5m

T
o
ta

l
R

u
n
n
in

g
 T

im
e
 (

s
)

Cardinality

GENIE
GPU-SPQ

AppGram

 0.01

 0.1

 1

 10

 100

 1000

500k 1m 2m 4m 7m

T
o
ta

l
R

u
n
n
in

g
 T

im
e
 (

s
)

Cardinality

GENIE
GPU-SPQ

CPU-Idx

 0.1

 1

 10

 100

 1000

500k 1m 2m 4m 8m

T
o
ta

l
R

u
n
n
in

g
 T

im
e
 (

s
)

Cardinality

GENIE
GPU-SPQ

CPU-Idx

(a) OCR (b) SIFT (c) DBLP (d) Tweets (e) Adult
Fig. 9. Varying data size for multiple queries (The query number is 512).

TABLE II
RUNNING TIME OF GENIE WITH MULTIPLE LOADINGS ON

SIFT LARGE DATASET FOR 1024 QUERIES(UNIT: SECOND)

SIFT LARGE 6M 12M 24M 36M
GENIE 4.32 8.62 17.26 25.90

GPU-LSH 47.71 48.82 (97.64)* (146.46)*
CPU-LSH 2817 5644 12333 20197

*It is estimated with multiple loading method.

TABLE III
EXTRA RUNNING TIME COST OF GENIE WITH MULTIPLE

LOADINGS (UNIT: SECOND)

SIFT LARGE 6m 12m 24m 36m
Index transfer 0.50 1.03 2.01 3.02
Result merge 0 0.04 0.10 0.22
GENIE total 4.32 8.62 17.26 25.90

3) Searching on large data with multiple loadings: If the
data set is too large to be processed with limited GPU memory,
we adopt a multiple loading method (see Section III-D). Table
II shows the scalability of GENIE with different data sizes on
SIFT LARGE dataset. In this experiment, we set the data part
for each loading as 6M data points. By resorting to multiple
loadings, GENIE can finish the query process for 1024 queries
with 25.90 seconds on 36M SIFT data points. It also shows
that GENIE with multiple loadings can scale up linearly with
the number of data points. Since GPU-LSH cannot handle
datasets with larger than 12M points, we estimate the running
time of GPU-LSH on 24M and 36M data points with the same
multiple loading method but without including index transfer
and result merge time. We can see that GPU-LSH has almost
six times of running time of GENIE for the same dataset.

GENIE with multiple loadings has two extra steps: 1)
transferring index of each data part into the GPU memory
and 2) merging the query results of each data part to obtain
the final result. The running time cost of each extra step is
shown in Table III. We can see that the extra steps only take
a small portion of the total time cost.

4) Discussion: Here we give a brief discussion about the
root causes that GENIE outperforms other methods. It is not
surprising that GENIE can outperform all the CPU-based al-
gorithms like CPU-LSH, CPI-Idx and AppGram significantly.

The key reason that GENIE can outperform GPU-LSH is

TABLE IV
MEMORY CONSUMPTION PER QUERY (UNIT: MB)

dataset OCR SIFT DBLP Tweets Adult
GENIE 4.9 6.5 7.2 10.2 1.4

GEN-SPQ 41.0 49.1 47.3 61.4 8.8

due to the novel structure of c-PQ for candidate selection. The
main bottleneck of GPU-LSH is to select top-k candidates
from the candidate set generated by LSH, whose method
essentially is to sort all candidates which is an expensive
computation. Meanwhile, c-PQ can obtain the candidates by
scanning the small Hash Table once.

GENIE outperforms GPU-SPQ with similar reasons. GPU-
SPQ uses a k-selection algorithm on the GPU which requires
multiple iterations to scan all candidates. Whereas GENIE only
needs to scan the Hash Table once whose size (which is O(k∗
AT)) is much smaller than the candidate set of GPU-SPQ.

C. Effectiveness of c-PQ
c-PQ can significantly reduce the memory requirement and

the running time cost for GENIE. In Fig. 10, GEN-SPQ
represents the running time of GENIE without c-PQ. We can
see that, when the number of queries is the same, with the help
of c-PQ the running time of GENIE decreases significantly
since it avoids selecting candidates from a large Count Table.

From Table IV we can see that GENIE reduces memory
consumption per query to 1/5 ∼ 1/10 of the one of GEN-
SPQ. To evaluate the memory consumption, with fixing the
data size, we gradually increase the number of queries to find
the maximum query number handled by our GPU, then we
calculate the memory consumption per query by using 12 GB
to divide the maximum query number.

D. Effectiveness of GENIE
In this section, we evaluate the effectiveness of GENIE

under the LSH scheme and the SA scheme.
1) ANN Search with GENIE: Here we discuss the quality

of the ANN search with GENIE and GPU-LSH. The used
evaluation metric is approximation ratio, which is defined
as how many times farther a reported neighbor is compared
to the real nearest neighbor. When to evaluate the running
time, we configure the parameters of GPU-LSH and GENIE
to ensure that they have similar approximation ratio. A detailed

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

32 64 128 256 512 1024

T
o
ta

l
R

u
n
n
in

g
 T

im
e
 (

s
)

Query Number

GENIE GEN-SPQ

 0

 2

 4

 6

 8

 10

32 64 128 256 512 1024

T
o
ta

l
R

u
n
n
in

g
 T

im
e
 (

s
)

Query Number

GENIE GEN-SPQ

 0

 0.5

 1

 1.5

 2

32 64 128 256 512 1024

T
o
ta

l
R

u
n
n
in

g
 T

im
e
 (

s
)

Query Number

GENIE GEN-SPQ

 0

 0.5

 1

 1.5

 2

32 64 128 256 512 1024

T
o
ta

l
R

u
n
n
in

g
 T

im
e
 (

s
)

Query Number

GENIE GEN-SPQ

 0

 1

 2

 3

 4

 5

 6

 7

 8

32 64 12
8

25
6

51
2

10
24

20
48

40
96

T
o
ta

l
R

u
n
n
in

g
 T

im
e
 (

s
)

Query Number

GENIE GEN-SPQ

(a) OCR (b) SIFT (c) DBLP (d) Tweets (e) Adult
Fig. 10. The effectiveness of c-PQ.

TABLE V
PREDICTION RESULT OF OCR DATA BY 1NN

method precision recall F1-score accuracy
GENIE 0.8446 0.8348 0.8356 0.8374

GPU-LSH 0.7875 0.7730 0.7738 0.7783

description of approximation ratio and the parameter setting
method can be found in [10].

 0

 200

 400

 600

 800

 1000

 1200

 1400

2048 4096 8192 16384 32768 65536

T
o

ta
l
R

u
n

n
in

g
 T

im
e

 (
s
)

Query Number

GENIE GPU-LSH

Fig. 11. Running time with a large
number of queries on SIFT data

 1

 1.2

 1.4

 1.6

 1.8

 2

1 2 4 8 16 32 64

A
v
g

.
R

a
ti
o

Value of k

GENIE GPU-LSH

Fig. 12. Approximation ratio v.s.
value of k on SIFT data

Fig. 12 shows the approximation ratio of GPU-LSH and
GENIE, where GENIE has stable approximation ratio with
varying k; whereas GPU-LSH has large approximation ratio
when k is small. The increase of approximation ratio of GPU-
LSH with smaller k is a common phenomenon which also
appears in some pervious LSH methods like [25]. The reason
is that these methods usually adopt some early-stop conditions,
thus with larger k they can access more points to improve the
approximation ratio [25].

We use a similar method to determine the parameters for
GPU-LSH and GENIE on the OCR dataset. GPU-LSH uses
GPU’s constant memory to store random vectors for LSH.
Thus, the number of hash functions on OCR data cannot be
larger than 8 otherwise the constant memory overflows. We use
only 1M data points from the OCR dataset for GPU-LSH since
it cannot work on a larger dataset. We increase the number
of hash tables (with fixing the number of hash functions
as 8) until it can achieve similar prediction performance as
GENIE as reported in Table V where the number of hash
tables for GPU-LSH is set as 100. Note that the prediction
performance of GPU-LSH is slightly worse than the one of
GENIE. It is possible to improve the performance of GPU-
LSH by increasing the number of hash tables, which will
dramatically increase the running time for queries.

2) Sequence similarity search with GENIE: After finishing
the search on GENIE, we can identify that some queries do
not obtain real top-k results (see Section V-A). Table VI shows
the percent of the queries obtaining correct top-1 search results
with one round of the search process for 1024 queries. As we
see from Table VI, with less than 10% modification, GENIE
can return correct results for almost all queries. Even with 40%
modification, GENIE can still return correct results for more
than 95% of queries. A typical application of such sequence

TABLE VI
ACCURACY OF TOP-1 SEARCH ON DBLP DATASET ON GENIE

(QUERY LENGTH=40 AND K = 32)
Percent of modified 0.1 0.2 0.3 0.4

Accuracy 1.0 0.999 0.995 0.954
Latency tiem (s) 1.3 1.2 1.1 1.2

similarity search is (typing) sequence error correction, where
GENIE can return the most similar words (within minimum
edit distance in a database) for the 1024 queries with a
latency time of 1 second (as shown in Fig. 8 and Table I).
Note that the one second is the whole latency time for 1024
queries including index transfer, query transfer, matching in
GENIE and verification. AppGram may do this job with better
accuracy, but it has much larger latency. A discussion on
multiple round search and how to set K is in [10].

VII. RELATED WORK

A. Similarity search on different data
Due to the “curse of dimensionality”, spatial index methods

provide little improvement over a linear scan algorithm when
dimensionality is high. It is often unnecessary to find the exact
nearest neighbour, leading to the development of LSH scheme
for ANN search in high dimensional space [16]. We refer
interested readers to a survey of LSH [17].

The similarity between Sets, feature sketches and geome-
tries is often known only implicitly, thus the computable kernel
function is adopted for similarity search. To scale up the
similarity search, the LSH-based ANN search in such kernel
spaces has drawn considerable attention. Charikar [5] inves-
tigates several LSH families for kernelized similarity search.
Wang et al. [17] give a good survey about the LSH scheme on
different data types. GENIE can support the similarity search
in an arbitrary kernel space if it has an LSH scheme.

There is a wealth of literature concerning similarity search
on complex structured data, and a large number of indexes
have been devised. Many of them adopt the SA scheme [7],
[8]. Different data types are broken down into different types
of sub-units. Examples include words for documents, n-grams
for sequences [2], binary branches for trees [12] and stars
for graphs [11]. Sometimes, a verification step is necessary
to compute the real distance (e.g. edit distance) between the
candidates and the query object [2], [11], [12].

B. Parallelizing similarity search
Parallelism can be adopted to improve the throughput for

similarity search. There are also some proposed index struc-
tures on graphs and trees that can be parallelized [26], [11].
However, indexes tailored to special data types cannot be
easily extended to support other data types. There are a few
GPU-based methods for ANN search using LSH. Pan et al. [4],

[23] propose a searching method on the GPU using a bi-level
LSH algorithm, which specially designed for ANN search in
the lp space. However GENIE can generally support LSH for
ANN search under various similarity measures.

C. Data structures and models on the GPU
There are some works [3], [27] about inverted index on the

GPU to design specialized algorithms for accelerating some
important operations on search engines. An inverted-like index
on the GPU is also studied for continuous time series search
[28]. As far as we known, there is no existing work on inverted
index framework for generic similarity search on the GPU.

Tree-based data structures are also investigated to utilize
the parallel capability of the GPU [1]. Some GPU systems for
key-value store are also studied [29], [30].

D. Frequent item finding algorithm
Some previous work related to Count Priority Queue (c-PQ)

of GENIE is frequent item finding algorithm [31], which can
be categorized as counter-based approach (like LossyCounting
[32] and SpaceSaving [33]) and sketch-based approach (like
Count-Min [34] and Count-Sketch [35]). However, both ap-
proaches are approximation methods, whereas c-PQ can return
the exact top-k frequent items. Moreover, several frequent
item finding algorithms (like SpaceSaving and Count-Min)
require priority queue-like operations, making them nontrivial
be implemented on the GPU.

VIII. CONCLUSION

In this paper, we presented GENIE, a generic inverted index
framework, which tries to reduce the programmer burden by
providing a generic fashion for similarity search on the GPU
for data types and similarity measures that can be modeled
in the match-count model. Several techniques are devised to
improve the parallelism and scaling out of the GPU, like c-
PQ to reduce the time cost and the multiple loading method
for handling large datasets. We also proved that GENIE can
support τ -ANN search for any similarity measure satisfying
the LSH scheme, as well as similarity search on original data
with the SA scheme. In particular, we investigated how to
use GENIE to support ANN search in kernel space and in
high dimensional space, similarity search on sequence data
and document data, and top-k selection on relational data.
Extensive experiments on various datasets demonstrate the
efficiency and effectiveness of GENIE.

REFERENCES

[1] L. Luo, M. D. Wong, and L. Leong, “Parallel implementation of r-trees
on the gpu,” in ASP-DAC, 2012, pp. 353–358.

[2] X. Wang, X. Ding, A. K. Tung, and Z. Zhang, “Efficient and effective
knn sequence search with approximate n-grams,” PVLDB, vol. 7, no. 1,
pp. 1–12, 2013.

[3] S. Ding, J. He, H. Yan, and T. Suel, “Using graphics processors for high
performance ir query processing,” in WWW, 2009, pp. 421–430.

[4] J. Pan and D. Manocha, “Fast gpu-based locality sensitive hashing for
k-nearest neighbor computation,” in GIS, 2011, pp. 211–220.

[5] M. S. Charikar, “Similarity estimation techniques from rounding algo-
rithms,” in STOC, 2002, pp. 380–388.

[6] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in SoCG, 2004, pp.
253–262.

[7] S. Aparicio, J. Chapman, E. Stupka, N. Putnam, J.-m. Chia, P. Dehal,
A. Christoffels, S. Rash, S. Hoon, A. Smit et al., “Whole-genome
shotgun assembly and analysis of the genome of fugu rubripes,” Science,
vol. 297, no. 5585, pp. 1301–1310, 2002.

[8] X. She, Z. Jiang, R. A. Clark, G. Liu, Z. Cheng, E. Tuzun, D. M. Church,
G. Sutton, A. L. Halpern, and E. E. Eichler, “Shotgun sequence assembly
and recent segmental duplications within the human genome,” Nature,
vol. 431, no. 7011, pp. 927–930, 2004.

[9] T. Alabi, J. D. Blanchard, B. Gordon, and R. Steinbach, “Fast k-selection
algorithms for graphics processing units,” Journal of Experimental
Algorithmics (JEA), vol. 17, pp. 4–2, 2012.

[10] J. Zhou, Q. Guo, H. V. Jagadish, L. Krčál, S. Liu, W. Luan, A. Tung,
Y. Yang, and Y. Zheng. (2017) A generic inverted index framework for
similarity search on the gpu, techincal report. http://www.comp.nus.edu.
sg/∼atung/gl/geniegputr17.pdf.

[11] X. Yan, P. S. Yu, and J. Han, “Substructure similarity search in graph
databases,” in SIGMOD, 2005, pp. 766–777.

[12] R. Yang, P. Kalnis, and A. K. Tung, “Similarity evaluation on tree-
structured data,” in SIGMOD, 2005, pp. 754–765.

[13] X. He, D. Agarwal, and S. K. Prasad, “Design and implementation of a
parallel priority queue on many-core architectures,” in HiPC, 2012, pp.
1–10.

[14] I. Garcı́a, S. Lefebvre, S. Hornus, and A. Lasram, “Coherent parallel
hashing,” ACM TOG, vol. 30, no. 6, p. 161, 2011.

[15] M. Moazeni and M. Sarrafzadeh, “Lock-free hash table on graphics
processors,” in SAAHPC, 2012, pp. 133–136.

[16] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards
removing the curse of dimensionality,” in STOC, 1998, pp. 604–613.

[17] J. Wang, H. T. Shen, J. Song, and J. Ji, “Hashing for similarity search:
A survey,” arXiv:1408.2927, 2014.

[18] A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” in NIPS, 2007, pp. 1177–1184.

[19] V. Satuluri and S. Parthasarathy, “Bayesian locality sensitive hashing for
fast similarity search,” PVLDB, vol. 5, no. 5, pp. 430–441, 2012.

[20] E. Sutinen and J. Tarhio, “Filtration with q-samples in approximate string
matching,” in Combinatorial Pattern Matching, 1996, pp. 50–63.

[21] H. Jegou, M. Douze, and C. Schmid, “Hamming embedding and weak
geometric consistency for large scale image search,” in ECCV, 2008,
pp. 304–317.

[22] M. Lichman. (2016) UCI machine learning repository. http://archive.ics.
uci.edu/ml.

[23] J. Pan and D. Manocha, “Bi-level locality sensitive hashing for k-nearest
neighbor computation,” in ICDE, 2012, pp. 378–389.

[24] J. Gan, J. Feng, Q. Fang, and W. Ng, “Locality-sensitive hashing scheme
based on dynamic collision counting,” in SIMOD, 2012, pp. 541–552.

[25] Y. Sun, W. Wang, J. Qin, Y. Zhang, and X. Lin, “Srs: solving c-
approximate nearest neighbor queries in high dimensional euclidean
space with a tiny index,” PVLDB, vol. 8, no. 1, pp. 1–12, 2014.

[26] S. Tatikonda and S. Parthasarathy, “Hashing tree-structured data: Meth-
ods and applications,” in ICDE, 2010, pp. 429–440.

[27] N. Ao, F. Zhang, D. Wu, D. S. Stones, G. Wang, X. Liu, J. Liu,
and S. Lin, “Efficient parallel lists intersection and index compression
algorithms using graphics processing units,” PVLDB, vol. 4, no. 8, pp.
470–481, 2011.

[28] J. Zhou and A. K. Tung, “Smiler: A semi-lazy time series prediction
system for sensors,” in SIGMOD, 2015, pp. 1871–1886.

[29] K. Zhang, K. Wang, Y. Yuan, L. Guo, R. Lee, and X. Zhang, “Mega-kv:
A case for gpus to maximize the throughput of in-memory key-value
stores,” PVLDB, vol. 8, no. 11, pp. 1226–1237, 2015.

[30] T. H. Hetherington, T. G. Rogers, L. Hsu, M. O’Connor, and T. M.
Aamodt, “Characterizing and evaluating a key-value store application
on heterogeneous cpu-gpu systems,” in ISPASS, 2012, pp. 88–98.

[31] G. Cormode and M. Hadjieleftheriou, “Finding the frequent items in
streams of data,” CACM, vol. 52, no. 10, pp. 97–105, 2009.

[32] G. S. Manku and R. Motwani, “Approximate frequency counts over data
streams,” in VLDB, 2002, pp. 346–357.

[33] A. Metwally, D. Agrawal, and A. E. Abbadi, “An integrated efficient
solution for computing frequent and top-k elements in data streams,”
TODS, vol. 31, no. 3, pp. 1095–1133, 2006.

[34] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
the count-min sketch and its applications,” Journal of Algorithms,
vol. 55, no. 1, pp. 58–75, 2005.

[35] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” TCS, vol. 312, no. 1, pp. 3–15, 2004.

