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Abstract

Real datasets are often large enough to necessitate data
compression. Traditional ‘syntactic’ data compression meth-
ods treat the table as a large byte string and operate at the
byte level. The tradeoff in such cases is usually between the
ease of retrieval (the ease with which one can retrieve a single
tuple or attribute value without decompressing a much larger
unit) and the effectiveness of the compression. In this regard,
the use of semantic compression has generated considerable
interest and motivated certain recent works.

In this paper, we propose a semantic compression al-
gorithm called ItCompress ITerative Compression, which
achieves good compression while permitting access even at
attribute level without requiring the decompression of a larger
unit. ItCompress iteratively improves the compression ratio
of the compressed output during each scan of the table. The
amount of compression can be tuned based on the number of
iterations. Moreover, the initial iterations provide significant
compression, thereby making it a cost-effective compression
technique. Extensive experiments were conducted and the re-
sults indicate the superiority of ItCompress with respect to
previously known tehniques, such as ‘SPARTAN’ and ‘fasci-
cles’.

1 Introduction

Advances in information technology have necessitated the
creation of massive high-dimensional tables required for new
applications such as corporate data warehouses, network-
traffic monitoring and bio-informatics. The sizes of such ta-
bles are often in the range of terabytes, thereby making it a
challenge to store them efficiently. In order to reduce the re-
spective sizes of such tables, an obvious solution is the use of
traditional data compression methods which are statistical or
dictionary-based (e.g., Lempel-Ziv [17]). Such methods are
‘syntactic’ in nature since they view the table as a large byte
string and operate at the byte level.

More recently, compression techniques, which take seman-

tics of the table into consideration during compression [9, 1],
have received considerable attention. In general, these al-
gorithms first try to derive a descriptive model, � , of the
database by taking into account the semantics of the attributes
and then separate them into the following three groups with
respect to � :

1. Data values that can be derived from � .

2. Data values essential for deriving the data values in (1) us-
ing � .

3. Data values that do not fit � i.e., outliers.

By storing only the model � together with the second and
third groups of data values, compression is achieved since� typically takes up substantially less storage space than the
original database. Such semantic compression generally has
the following advantages over syntactic compression:

	 More Complex Analysis
Since the semantics of the data are taken into consideration,
complex correlation and data dependency between the data
attributes can be exploited in case of semantic compression
of data. Note that this is not supported in case of syntac-
tic compression methods since the database is viewed as a
large byte string in such methods. Further, the exploratory
nature of many data analysis applications implies that ex-
act answers are usually not needed and analysts may prefer
a fast approximate answer with an upper bound on the er-
ror of approximation. By taking into consideration the er-
ror tolerance that is acceptable in each attribute, semantic
compression can be used to perform lossy compression to
enhance the compression ratio. (The benefits can be sub-
stantial even when the level of error tolerance is low).

	 Fast Retrieval
Given a massive table, only certain rows of the table are
typically accessed to answer database queries. As such,
it is desirable to be able to decompress only certain tu-
ples in the database, while allowing the other tuples to re-
main uncompressed. Since syntactic compression methods,
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such as gzip, are unaware of the record boundary, it is usu-
ally not possible to do so without uncompressing the whole
database. In fact, it has even been suggested [12, 13] that
tables are better compressed column-wise. Separate com-
pression of individual tuples, and even individual attributes,
is possible. However, syntactic compression is usually not
effective on very small strings. As such, this sort of fine
granularity compression is not used frequently.

Semantic compression permits local reconstruction of se-
lected tuples and even attributes without having to recon-
struct the entire table. In fact, it is even possible to store
the compressed data in a relational database, thereby mak-
ing the query optimization and indexing techniques of rela-
tional databases available also for compressed data.

	 Query Enhancement
In addition to the compression itself, there could be intrin-
sic value in obtaining the descriptive model � for semantic
compression. For example, in [1] where � is a set of clas-
sification or regression trees, the following rule could have
been found “if � � � , then ����� with 100% accuracy”.
In such a case, for a query searching for tuples with � � �
and ���	� , an empty answer set could be returned very effi-
ciently. Such side benefits are not available when syntactic
compression is used.

Although semantic compression has several advantages
over syntactic compression, the two types of compression are
not mutually exclusive. In fact, it has been shown in [9] that
applying semantic compression before syntactic compression
results in better compression performance than from either
syntactic compression or semantic compression. (However,
syntactic compression used in the second phase will nullify
the fast retrieval benefit discussed earlier for semantic com-
pression.)

In this paper, we propose a new semantic compression
scheme based on the selection of representative rows. Each
tuple in the table is assigned to one of the representative rows
and its attribute values are defaulted to be the same with
the assigned representative rows unless the actual value dif-
fers from the default value by more than an acceptable er-
ror threshold. In such cases, outlying values are specifically
stored for the row. Our scheme is similar to clustering, with
each representative row considered like a cluster representa-
tive. However, there is a significant difference due to the out-
lying values that are possible. These attributes could have val-
ues in a row wildly different from its assigned representative
row. As such, by most standard metrics, the distance between
a row and its representative could be very large. Let us illus-
trate the concept with an example:

Example 1 Consider the table in Figure 1(a) which contains
5 attributes and 8 tuples. Let the acceptable error threshold for
the numeric attributes ��
 � , 
 � � ��� � and � 
�
�����
 be 5, 25,000
and 50,000 respectively, while no errors are allowed for cat-
egorical data. We show a selection of representative rows in
Figure 1(c) and the compressed table in Figure 1(b). As can
be seen, each row in the compressed table is associated with
one of the representative rows using a representative row ID

age salary assets credit sex
20 30,000 25,000 poor male
25 76,000 75,000 good female
30 90,000 200,000 good female
40 100,000 175,000 poor male
50 110,000 250,000 good female
60 50,000 150,000 good male
70 35,000 125,000 poor female
75 15,000 100,000 poor male

(a) An Example Table

RRid Bitmap Outlying Values
2 01011 20, 25,000
1 11011 75,000
1 11111
1 01100 40, poor, male
1 01111 50
1 01110 60, male
2 11110 female
2 11111

(b) Table ���
RRid age salary assets credit sex

1 30 90,000 200,000 good female
2 70 35,000 100,000 poor male

(c) Representative Rows

Figure 1. Representative Rows and Com-
pressed Table

(RRid). A bitmap is assigned to each row to provide the posi-
tion for the outlying values. A ‘1’ at the � ��� bit indicates that
its � ��� attribute value is within an acceptable error tolerance
threshold of the � ��� attribute value for the representative row,
while a ‘0’ indicates otherwise. Thus from the bitmap in the
first row, we can see that the values for attribute “age” and “as-
sests” in that row are ‘20’ and ‘25,000’ respectively instead of
‘30’ and ‘200,000’ as indicated by its representative row. �

To compress data according to the scheme, the difficult is-
sue is to choose a good set of representative rows. For this pur-
pose, we develop an algorithm called ItCompress (ITerative
Compression) which iteratively improves the set of chosen
representative rows. From one iteration to the next, new repre-
sentative rows may be selected, and old ones discarded. A key
analytical result of this paper is the “convergence” theorem
showing that, even though the representative rows may keep
changing, each iteration monotonically improves the global
quality. In fact, for many cases, the rate of convergence is
high i.e., even a small number of iterations may be sufficient
to deliver significant compression performance. Furthermore,
each iteration of the algorithm requires only a single scan over
the data, leading to a fast compression scheme.

The rest of this paper is organized as follows. Section 2
gives a formal definition of the problem of semantic data com-
pression, while our proposed ItCompress algorithm is pre-
sented in Section 3. In Section 4, we briefly describe com-
peting approaches, and discuss their comparative merits. In
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Section 5, we present results from an extensive experimental
study comparing our approach with these approaches. Sec-
tion 6 describes other related work, while Section 7 concludes
with directions for future work.

2 Problem Description

Given a table � , which has � attributes � ����������� � 	 and �
rows, we use 
�� � 
�� to represent the value of ��
 for row 
 .
We denote the domain of attribute � 
 as ��� � � � 
�� . Our aim
is to perform a lossy compression on � such that the values
reconstructed from the compressed table satisfy certain error
tolerances for each column. We denote these error tolerances
as a vector � ��� ������������� ��	�� with ��
 being the error tolerance
for � 
 . The value ��
 is interpreted differently depending on
the (domain) type of � 
 . Our techniques are applicable irre-
spective of the specific definitions chosen for tolerance. For
instance, we could use edit distances for string types, or dis-
tance to the closest common ancestor for classification types.
To keep matters concrete, in all examples and experiments in
this paper, we focus on two of the most popular types: An at-
tribute � 
 is said to be numeric if the values in ��� � � � 
�� can
be ordered while attributes with unordered, discrete domain
values are said to be categorical. With these, we associate the
following tolerance rules:

1. Categorical
For a categorical attribute, the tolerance ��
 defines an upper
bound on the probability that the approximate value of � 

in ��� is different from the actual value in T. This means that
given � 
 ��� for a particular row in � and � 
 ��� � for the
same row in �!� , " � � �#��� �$� � � % & ' ��
 .

2. Numeric
Given that the value of an attribute � 
 is � in � and that � �
is it corresponding value in �!� , then the tolerance ��
 defines
the upper bound that � � can deviate from � . This means that
� should be within the range � � � ' ��
(�)� �+* ��
,� .

Given the error tolerance specifications, our aim is to de-
rive a compression scheme that minimizes total storage while
satisfying these criteria.

Definition 2.1 Compression Scheme
Given the table � , our basic compression scheme consists of
two parts, the set of representative rows " and the com-
pressed table �!�

1. Representative Rows
The set of representative rows " consists of a set of -
rows .#"/�����������)"1032 where each row "4
657�,��� � � � �8�9�;:
�,��� � � � <��9�;:=�����>�,��� � � � 	?�9� . We say that a row in 

matches a representative row "1
 on attribute � 
 if one of
the following conditions is true:

(a) "@� � 
�� ' ��
 A 
�� � 
�� B "@� � 
C� * ��
 if � 
 is numeric

(b) 
;� � 
,� �$"@� � 
�� if � 
 is categorical

2. Compressed Table
For each row 
 in � , the compressed table �D� has a corre-
sponding row which can be further split into the following
three parts:

(a) A representative row id, 
E
�F�� , which indicates that

 is most similar to representative row " G!G 
>H in the
set of representative rows.

(b) A bitmap which has a bit for every attribute. A bit
representing � 
 is set to 1 if " G!G IKJ?� � 
�� matches

 G!G 
CJ?� � 
�� and 0 otherwise.

(c) An outlying list which stores attribute values in 

that cannot be inferred satisfactorily from the repre-
sentative row id and bitmap.

Given our compression scheme, one obvious conclusion
is that if we can find a set of - representative rows, " �
.#"/�����������)"1032 such that all rows are fully matched by at least
one member from " , then the number of outlying values that
need to be stored will be zero giving rise to very good com-
pression ratio. However, this is not always possible and hence
our aim is to minimize the number of outlying values that need
to be stored using the notion of coverage.

Definition 2.2 Coverage
Let 
 be a row in � and let "4
 be a representative row in " .
We say that the coverage of "1
 on 
 , ����LM�,"4
(�K
?� is the number
of attributes � 
 in which 
;� � 
,� is matched by "@� � 
�� . �

As an example, the coverage of representative row "N� on
the second row of � in Example 1 is 4 since the age, salary,
credit, and sex attributes lie within the error tolerance.

Now let us define the total coverage of a set of representa-
tive rows " on a table � .

Definition 2.3 Total Coverage
Let " be a set of representative rows "O�����������K"10 and let the
table � contain n rows 
P�����������K
RQ . For each row, 
E
 let
"S	UTWVX�,
�
�� be the representative row from " that gives the
maximum coverage among "1
 ( F A F A - ) to 
�
 . We de-
fine the total coverage of " on � to be �(��� � � �W��LY�,"N�9��� �Z 
>[4�)\ \ Q �W��LY�,"S	UTWV �,
R
��K�K
R
�� �

Maximizing the total coverage is equivalent to minimizing
the number of outlying values and thus we have the following
problem definition:

Definition 2.4 Maximum Coverage (MC) Problem
Given a table � , an error tolerance vector � and a user-
specified value - , find a set of - representative rows " which
maximizes �(��� � � �W��LM�,"U�9��� . �

For ease of reference, we show in Figure 2 the notations
used in this paper.

3 The ItCompress Algorithm

The MC problem is easily shown to be NP-hard since a
special case is equivalent to the k-center problem [5]. As such,
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Notation Description� error tolerance vector� � error tolerance for attribute
� �� � � � ���
	 � � � �
� the most frequent value/interval for at-

tribute
� � in group

	 � � � �	 � � � � a set of rows which have
� � as the best

match� number of attributes in a table� number of rows in a table�
a set of representative rows� � the ����� representative row in

�� � � � ��� value of attribute
� � for representative

row
� �� ��������� � the representative row that best matches

row
��

a row in a table �� � � ��� value of attribute
� � for row

�� � �"! representative row id� a table� � a compressed version of ��
a set of attributes

Figure 2. Notations

our solution to this problem is to find an efficient heuristic.
While optimality is not guaranteed for our algorithm, exper-
iments show that it gives a good compression ratio without
sacrificing efficiency.

The ItCompress (ITerative COMPRESSion) algorithm is
presented in Figure 3. The algorithm begins by picking a ran-
dom set of - representative rows from the table � . It then
iteratively improves this random choice with the objective of
increasing the total coverage over the table to be compressed.
There are two phases in each iteration:

Phase 1: (Step 3 of ItCompress) In this phase, each row 

in � is assigned to a representative row "1	UTWVX�,
?� that gives
the most coverage to 
 among the members of " . Let #;�," 
 �
denote the set of rows that are assigned to a representative row
"S
 .

Phase 2: (Steps 4 to 6 of ItCompress) In this phase, a new set
of representative rows is computed. Each new "1
 is computed
by setting each attribute value "1
K� � $8� to be %XLY� � $ ��#;�,"S
��9�
which denotes the most frequently occurring value/interval for
attribute � $ in #��,"S
�� .

For a categorical attribute, this can easily be done by
keeping count of the number of occurrences for each cate-
gorical value in #��,"4
�� during Phase 1. For a numeric at-
tribute, %XLY� � $ ��#;�,"S
 �9� is an interval of width � � ' �&$��9� * �'$W� ,
� 5 �+� � � � $#� that is most frequently matched by the rows in
#;�,"S
 � . An efficient mechanism is to partition the range for � $
into micro-intervals of size that are significantly smaller than
�'$ say �($*)+&&+ and keep track of the frequency of occurrence
of each such micro-interval in Phase 1. A sliding window of
size , - �'$ is then moved along these sorted micro-intervals to
find the range that is most frequently matched. This method
ensures a linear time algorithm for computing % LM� � $ ��#;�,"S
��9�
while ensuring that the error in estimating % LM� � $ �'#��,"S
��9� is
not more than the size of the micro-interval.

Algorithm ItCompress
Input: A table � , a user specified value . and an error tolerance
vector � .
Output: A compressed table � � and a set of representative rows� /10 � 2 ��343535� � 6�7

.

1. Pick a random set of representative rows
�

2. While 8 9 8;:=<�> 9 � � � � � � is increasing do
3.
0

For each row
�

in � , find
� ��������� �

4. Recompute each
� � in

�
as follow:

5.
0

For each attribute
� �

,
6.

� � � � ��� / � � � � � �
	 � � � �
�
7.

7
8.
7

Figure 3. The ItCompress Algorithm

The above two phases are repeated until there is no im-
provement in �(��� � � �W��LM�,"U�9��� . In some practical situations,
it can also be specified that termination will occur if the im-
provement in �(��� � � �W��LM�,"U�9��� is negligible in comparison to
the previous iteration. Example 2 demonstrates the running of
the ItCompress algorithm.

Example 2 Consider again the table in Figure 1 and let us
assume that the error tolerance vector � is . 5, 25000, 50000,
0, 0 2 . Assuming that - � , and that the first and second
row of the table are picked as the initial representative rows,
we depict the situation for the first iteration of ItCompress in
Figure 3. The representative rows " � and "1< are shown in
Figure 4(a) while Figure 4(b) and 4(c) show the rows that are
assigned to " � and " < respectively. We leave it to readers to
verify that each row is assigned to the representative row that
best matches it (arbitrarily breaking ties). Having done so, "N�
and "1< are recomputed by assigning to each attribute the most
frequently occurring value/interval (highlighted in bold).

This new set of representative rows is shown in Figure 5(a)
and we highlight the changes from the previous set of repre-
sentative rows in bold. With this change, the rows in the table
are again reassigned and only one of the row changes mem-
bership from #;�," <�� to #;�,"/�8� . Note that the total coverage
of the two representative rows improves from 25 to 31 as we
move through the two iterations. The iterative process contin-
ues until there is no improvement in �(��� � � �W��LY�,"N�9��� . �

Note that throughout the ItCompress algorithm, the error
bound for categorical attribute is not utilized as part of the op-
timization. However, this can be easily done at the end of the
algorithm. Given #;�,"4
 � , the set of rows which have "1
 as the
best match, we can compute for each categorical attribute � $ ,
the frequency of occurrence of "1
K� � $W� within #��,"4
 � . Let us
denote this frequency of occurrence as % � ��? �,"1
K� � $8� ��#;�,"S
 �9� .
Since we have an error tolerance of �&$ for � $ , we will re-
move up to �'$*) �(& ' �'$#� :@% � ��? �,"4
K� � $W� ��#;�,"S
 �9� outlying val-
ues from the rows in #;�,"4
 � as long as these outlying values
are in the domain of � $ . These removed outlying values can
be assumed to be "4
K� � $W� without invalidating the error-bound.
From here, we can see that ItCompress is indirectly utilizing
the error tolerance for categorical attributes by trying to max-
imize coverage and thus allowing more outlying values to be
removed.
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RRid age salary assets credit sex
1 20 30,000 25,000 poor male
2 25 76,000 75,000 good female

(a) Representative Rows

age salary assets credit sex
20 30,000 25,000 poor male
60 50,000 150,000 good male
70 35,000 125,000 poor female
75 15,000 100,000 poor male

(b) ��� � 2�� :Rows assign to � 2
age salary assets credit sex
25 76,000 75,000 good female
30 90,000 200,000 good female
40 100,000 175,000 poor male
50 110,000 250,000 good female

(c) ��� � � � :Rows assign to � �

Figure 4. Iteration 1 for Example 2

RRid age salary assets credit sex
1 70 30,000 125,000 poor male
2 25 90,000 175,000 good female

(a) Representative Rows

age salary assets credit sex
20 30,000 25,000 poor male
40 100,000 175,000 poor male
60 50,000 150,000 good male
70 35,000 125,000 poor female
75 15,000 100,000 poor male

(b) ��� � 2�� :Rows assign to � 2
age salary assets credit sex
25 76,000 75,000 good female
30 90,000 200,000 good female
50 110,000 250,000 good female

(c) ��� � � � :Rows assign to � �
Figure 5. Iteration 2 for Example 2

3.1 Convergence and Complexity

Given the ItCompress algorithm described above, we have
the following theorem:

Theorem 3.1 The total coverage of " on � is non-decreasing
for every iteration in ItCompress.

Proof: Our aim is to show that the �(��� � � �W��LY�,"N�)��� either in-
creases or remain the same in both Phases 1 and 2.
In Phase 1, this is trivial since each row is assigned a repre-
sentative row "4
 that provide the most coverage. If "1	NT�VX�,
�
 �
changed for a row 
�
 , then it means that
�W��LY�,
R
9�)"4	NT�V �,
�
 �9� has increased, otherwise without a

change in "4	NT�V �,
�
��K� �W��LM�,
�
9�)"S	UTWVX�,
�
��9� would have re-
mained the same. Since all rows either have the same or in-
creased coverage for the same set of " , �(��� � � �W��LY�,"N�9��� must
have increased or remained the same.
In Phase 2, we first observe that

Z G � � 	�

��� ����LM�,
 �K"S
 � is
equal to

Z $K[4�)\ \ 	 � � � ���D�;#;�,"S
 �K� � $�� where
� � � ���!�;#;�,"S
 �K� � $�� is the number of rows in #��,"4
�� that match
"S
 on attribute � $ . Since %XLY� � $ ��#;�,"S
 �9� is chosen such that
the number of rows from #;�,"4
 � that match "4
K� � $W� is maxi-
mum, we are also maximizing

Z G � � 	�
 � � �W��LY�,
 �)"S
�� . Since
this is done for each pattern "4
 5 " , we are thus increasing or
maintaining �(��� � � �W��LY�,"N�9��� .

As can be seen, both Phase 1 and 2 either increase or main-
tain �(��� � � �W��LY�,"N�9��� , thus proving the theorem. �

From Theorem 3.1, we can conclude that ItCompress will
eventually converge since �(��� � ������LM�,"N�)��� is finite.

We now look at the issue of efficiency. Since ItCompress
iteratively goes through the � rows in the table and matches
each of them against the - representative rows, the number
of rows compared is - � . Each row comparison requires , �
operations, where � is the number of columns. Thus, the
run-time complexity for Phase 1 is �@� - � � � � , where � is the
number of iterations. In Phase 2, computing each new " 
 re-
quires going through all the domain values/intervals of each
attribute. Assuming that the total number of domain val-
ues/intervals is � , then Phase 2 will have a run time complex-
ity of �@� -���� � . Thus, the total run time complexity of ItCom-
press is �;� - � � � * -+� � � . Since - , � , � and � are usually much
less than � , we infer that ItCompress has a linear running time
of �;� � � .

To further reduce the running time in practice, we run It-
Compress on a sample drawn from a large table and find a
set of representative rows " for the sample. The remain-
ing remaining rows in the table are then assigned to the best
matched member in " . Experiments in the next section will
show that a 5 � to 10 � sample is sufficient to produce good
compression in this manner.

4 Discussion

Two semantic compression algorithms [9, 1] have previ-
ously been suggested in the literature. Both these algorithms
are quite complex, and the ItCompress algorithm described
above appears to be much less sophisicated. While an ex-
tensive performance comparison will be presented in the next
section, here we will highlight some of the differences and
motivate some of the design choices made in ItCompress.

4.1 Previously Known Semantic Compression Al-
gorithms

In this section, we present a brief sketch of the two previ-
ously known semantic compression algorithms that we must
compare ourselves against.

The fascicles algorithm presented in [9] is the first seman-
tic compression algorithm developed for tables and relations.
Given a table of � columns and a user-specified value of �
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( � A � ), the algorithm extracts a model � consisting of
� fascicles, each of which is represented by a � -tuple. The
� columns are called compact attributes because these are
columns with very similar values (i.e., values within the er-
ror tolerance) for all the rows assigned to the fascicle.

While the fascicles algorithm determines the � compact
columns locally on a per fascicle basis, SPARTAN [1] tries to
separate the � columns into a set of predictor attributes and
a set of predicted attributes globally for the entire relation.
The model � , in this case, is simply the set of the predic-
tor attributes. SPARTAN identifies the predictor columns by
constructing Bayesian Network and CaRTs (classification and
regression trees).

As seen in the fascicle algorithm and SPARTAN, the key
aspects that differentiate one semantic compression algorithm
from another are the exact definition of the model � used to
compress the database and how it is constructed.

4.2 Simplicity and Directness

In both fascicles and SPARTAN, the process of compres-
sion can generally be separated into 2 steps.

Step 1: Finding a set of patterns or rules.
Step 2: Using the discovered patterns/rules in Step 1, form
the global model, � for compressing the database.

To assess the usefulness of the patterns/rules in Step 1, cri-
teria like length of the patterns or accuracy of the rules are
used to guide the mining algorithms. There are however no
direct guarantee that the patterns/rules discovered using such
criteria are actually useful in forming a good global model for
compression. For example consider an example in which the
following 6 rules are found by SPARTAN:

	 Rule 1: � ��� � <#� � ��� � ���(&&+�+ ���
	 Rule 2: � � � � �#� � ��� � �3�(&&+�+ ���
	 Rule 3: � � � � � � � �	� � ��� 
 + ���
	 Rule 4: � � � � � � � �	� � �3� 
 + ���
	 Rule 5: � ��� � < � 
 + ���
	 Rule 6: � ��� � ��� 
 + ���

In this example, although both Rule 1 and 2 have 100%
prediction accuracy but utilizing them in the global compres-
sion model will require the storage of 6 predictor attributes
(i.e. � � ,..., � � ). On the other hand, Rule 3 to 6 allow us to
store only 4 predictor attributes (i.e. � � , � � , � � and � � ) al-
though more outliers are expected due to less accurate rules.
The tradeoff in performance between these two choices is not
entirely clear.

Based on this example, we can seen that it is entirely pos-
sible for SPARTAN to find excessive number of patterns/rules
that are not useful in constructing a good global compression
model while other potentially useful rules can be missed based
on the criteria adopted in Step 1. This conclusion seems un-
satisfactory considering that we much go through the complex

process of training Bayesian Network in SPARTAN (which
have a time complexity of �;� � � - � � [1], � being the num-
ber of columns and � the number of randomly sampled rows).
Likewise, fascicles suffers from similar difficulties since it too
has a two-stage process.

Furthermore, since the selection of the optimal set of pat-
terns/rules in the second step is NP-hard for both fascicles and
SPARTAN, greedy algorithms are used for this purpose, with
no guarantees on the quality of results obtained.

ItCompress on the other hand adopt a simple philosopy of
“direct optimization”. Since the aim of a compression algo-
rithm is to reduce the storage requirement for a database, It-
Compress directly use this as a optimization criteria and en-
sure that only patterns which improve the compression are
found in each step of its iterations � . While the optimiza-
tion problem is NP-hard in our case as well, the heuristic used
is an iterative hill-climbing technique that can recognize when
it has reached a (local) maximum. As mentioned earlier, this
simple approach result in a much lower time complexity com-
pared to SPARTAN.

4.3 Constraining the Optimization

If one views the compression task as an optimization prob-
lem, a question to ask is what constraints are imposed on fea-
sible solutions by virtue of the choice of solution technique.

SPARTAN imposes a constraint that each attribute must be
either a predicted or predictor attribute globally. In conse-
quence, SPARTAN is not able to exploit situations where there
is only local “column-wise” dependency in a dataset (i.e., ex-
hibited by a subset of the rows). For example, “age B 20”
could be a strong predictor for “assets B 50,000”. However
“age � 20” might give no good indication on a person’s assets.
In such a case, age is said to give only a “local” prediction for
assets and hence will not be suitable as a predictor attribute
since SPARTAN is constraining its compression model to use
only global dependency exhibited by all the rows.

Similarly, a fascicle has the constraint that there must be
� compact attributes which are matched completely by every
tuple in it. If even one tuple has a different value for one of
the � attributes, it cannot be retained in the fascicle.

ItCompress overcomes this problem by grouping rows
based on approximate matching to the representative row and
trying to maximize the number of matching columns without
any constraints.

4.4 Tuning Parameters

Every algorithm has engineering parameters that must be
specified for effective performance.

For instance, consider � , the number of compact attributes
required in a fascicle. For a fascicle with � rows, the saving
in term of storage will be in the order of �;��� � � . Because of
this, the result of the compression can be rather sensitive to
� . A small value of � will obviously give little compression
even when � is large. A large value of � will result in only a2

This philosopy is inspired by the proposal to have a microeconomic view
on data mining in [11]
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few rows in each fascile, making the value of the this product
small. There is no easy way to determine an optimum choice
for � .

Similarly, the parameters for the construction of Bayesian
Network and CARTs which is needed by SPARTAN are also
not easily selected. The is especially true for Bayesian Net-
work since the network structure must first be inferred before
any training can take place.

ItCompress, too has user-tunable parameters. However,
these parameters can be tuned more easily due to the simplic-
ity of the algorithm. One is the the number of representative
rows. Too large a number will result in little compression. Too
small a number may leave too many attribute values stored as
exception, again leading to little compression. Fortunately,
our experimental results show that there is a rather flat op-
timum region, and the quality of compression is not greatly
affected by the choice of value for this parameter.

Another parameter in ItCompress is the number of itera-
tions it is run for. Here, we know when to stop, since the im-
provement is easily measured from one iteration to the next.
As such, it is not necessary to have an a priori determination
of this parameter value.

5 Performance Study

In this section, we study the performance of ItCompress,
and evaluate its senstivity to various parameters. We also
compare its performance, not only against the fascicles and
SPARTAN algorithm, but also against gzip [17, 18], a well-
known syntactic compression algorithm.

Since the SPARTAN system is proprietary and the code is
non-trivial for us to reproduce from scratch, we decided to fol-
low the experiments reported in [1] and compare our results
against those described in it. We implemented and ran the
other three algorithms. Faithful reproduction of datasets pro-
vides a fair basis to compare the compression obtained by the
four algorithms. To compare running times, we performed
our experiments on a single processor PC with a 700Mhz
AMD Duron processor and 256MB of main memory, which
is clearly less superior to the system used in [1] that has four
Pentium 700Mhz processors and 1 GB of memory. This pro-
vides an advantage to SPARTAN over the other algorithms,
and ItCompress in particular.

Syntactic compression can optionally be applied after se-
mantic compression, since the two techniques are comple-
mentary. As such, in addition to running gzip by itself, we
also ran gzip on the results of the other algorithms. For It-
Compress and fascicles, we are able to report results both with
and without this final syntactic compression.

In the case of SPARTAN, the results in [1] are obtained
after applying gzip on top of the initial compression by fasci-
cles and SPARTAN < . As such, we do not have the numbers
for compression by SPARTAN alone, without the gzip that
follows.

� For fascicle, gzip is applied on the whole compressed dataset while for
SPARTAN, gzip is applied on the predictor attributes.

Real-life Data Sets. As in the experiments in the SPARTAN
paper[1], we select the following three real-life datasets for
experiments.	 Corel.(http://kdd.ics.uci.edu/databases/CorelFeatures)

This dataset consists of 32 numerical attributes and con-
tains 68,040 tuples. Since only a 10.5MB subset is used
out of the 20MB dataset in [1], we followed likewise and
randomly selected twenty such subsets in order to reduce
the error due to variations in the sample. Experiments show
that the difference in performance over the twenty subsets
is negligible. Each subset consists of around 35,000 tuples.

	 Forest-cover. (http://kdd.ics.uci.edu/databases/covertype)
This dataset was also downloaded from the given website.
It is a 75.2MB dataset containing 581,000 tuples with 10
numeric and 44 categorical attributes describing the eleva-
tion, slope, soil type etc for a forest cover.

	 Census. (www.bls.census.gov)
This dataset is obtained directly obtained from the authors
of [1]. It consists of 7 categorical attributes and 7 numeric
attributes selected from a census dataset. There are 676,000
tuples in the dataset and it takes up a storage of 28.6 MB.

Default Parameter Settings. For SPARTAN, we used the
default parameter values used in [1]. To obtain the result for
fascicles without gzip, we also used the optimal settings pro-
vided in [1]. For ItCompress, the default value for error toler-
ance was fixed at 0 for all categorical attributes. For a numeric
attribute � 
 , we specified ��
 as a percentage of the width of the
range of � 
 values in the table, and we had set this percentage
to 1% by default. For other parameters, the default value of -
was fixed at 300 and the sampling rate was 10%. The number
of iterations for ItCompress was limited to 3, unless otherwise
stated.

5.1 Effect of Random Initialization

The initialization of ItCompress is based on a random se-
lection of representative rows. We investigated the variation
in compression performance produced by ItCompress due to
this random selection. For this purpose, we performed 5 sets
of experiments using a different set of initial representative
rows each time. To see if this random choice becomes more
significant when more or fewer representatives are chosen, we
varied - , and again repeated the experiment five times with
different random initial representative rows for each value of
- . For the same reason, we also repeated the experiment with
different datasets. Our results are shown in Figure 6 where
each column of the table represents one set of five repetitions
for a chosen dataset and specified value of - . As can be seen,
all values in any column are almost identical, indicating that
the variance in compression ratio due to different random ini-
tializations is insignificant for all the three datasets with the
value of - ranging from 50 to 500. We thus have reason to be-
lieve that the compression ratio of ItCompress is stable despite
the random initialization. To be doubly sure, all our readings
for ItCompress in the next two sections are reported as the av-
erage over 5 runs. Note that we did not observe a significant
variance between runs in any of these cases.
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Forest-Cover Corel Census
Exp. No. . /���� . /������ . /������ . /���� . /������ . /������ . /���� . /������ . /������

1 0.451 0.283 0.271 0.538 0.431 0.421 0.505 0.281 0.270
2 0.455 0.281 0.270 0.529 0.430 0.419 0.492 0.277 0.268
3 0.447 0.279 0.270 0.528 0.430 0.420 0.501 0.284 0.270
4 0.443 0.281 0.269 0.533 0.431 0.420 0.503 0.275 0.272
5 0.447 0.285 0.270 0.535 0.430 0.421 0.497 0.281 0.272

Figure 6. Compression Ratio Under Random Initialization

5.2 Empirical Comparison of Algorithms
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Figure 7. Error Threshold vs Compression Ra-
tio.

We next compare ItCompress with the other compression
algorithms in terms of both effectiveness and efficiency. In
Figure 7, we vary the error tolerance threshold from its de-

fault value and look at the compression ratio achieved by the
various algorithms on the three datasets. From the graphs in
Figure 7, we make the following observations:

	 Combining syntactic and semantic compression generally
gives better performance than pure syntactic or semantic
compression. The only exceptional case is noted for the
Corel dataset in which ItCompress by itself outperforms
fascicle(gzip) when the error tolerance threshold is high.

	 For pure semantic compression, the compressed tables pro-
duced by ItCompress are around 1.2 to 1.7 times smaller
than those produced by fascicles for the smallest error tol-
erance threshold (i.e. 0.05%) while the difference increases
to 2 to 3 times for larger thresholds. ItCompress exhibits
a much steeper improvement in compression ratio as the
error tolerance threshold is increased as compared to fas-
cicles. This result clearly shows that ItCompress, which
dynamically switches the membership of a row to a group
that best matches it, is able to give better compression than
fascicle which fixes the membership of row once it is as-
signed to a particular group.

	 For “combined” algorithms involving both semantic com-
pression and gzip, ItCompress(gzip) always yields better
compression except on the Forest Cover dataset where
SPARTAN(gzip) is only slightly better for small error tol-
erance threshold. For other datasets, however, ItCom-
press(gzip) is always the clear winner producing com-
pressed tables that are 1.5 to 3 times smaller than the closest
competitor. This again illustrates that the underlying strat-
egy of ItCompress, which simply aims to maximize the to-
tal coverage of its representative rows, is a more effective
method than other semantic compression algorithms.

Given the impressive compression ratio that is achieved by
ItCompress, the natural question to ask is whether this is done
by paying a price in term of efficiency.

To answer this question, we compare the running time of
ItCompress, fascicles and SPARTAN in Figure 8 for an error
tolerance of 1%. We expect error tolerance to have insignif-
icant impact on the running time of the three algorithms and
we pick an error tolerance of 1% since the running time for
SPARTAN is taken from [1] which uses the same error tol-
erance threshold. Note that for SPARTAN, running time is
dependent on the CaRT selection algorithm that is being used.
There are three such algorithms, Greedy, WMIS(Parent) and
WMIS(Markov). For each dataset, we take SPARTAN ’s
running time to be the minimum one among the three algo-
rithms. As can be seen from the table, fascicles always has
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Data Set Running Time(sec)
ItCompress Fascicles SPARTAN

Forest-Cover 169.66 151.00 670.00
Corel 23.29 20.12 80.73
Census 57.93 50.51 153.00

Figure 8. Comparison of Running Time

the best running time among the three algorithms. Compared
to fascicles, ItCompress ’s running time is around 10% to 15%
more. We feel that this small increase in running time is justi-
fiable compared to the large gain in compression ratio. More-
over, one can always trade off the compression ratio slightly
by running fewer iterations of ItCompress to substantially re-
duce the running time. Please see Figures 9(c) and 10(c).
For SPARTAN, its running time is almost 2.5 to 4 times more
than ItCompress. This clearly indicates that ItCompress can
achieve comparable compression ratio with SPARTAN while
maintaining a significant advantage in terms of running time.

5.3 Effect of Parameter Settings

Having compared ItCompress to the other compression al-
gorithms, we will next investigate the effect that different pa-
rameter settings have on ItCompress. To keep the number of
parameter setting combinations small, we will only vary the
setting for one parameter at a time, while keeping the setting
for other parameters to their default values. Experiments are
conducted on all three real-life datasets.

5.3.1 Effect of Parameter Settings on Compression Ratio

We will first look at how the setting of parameters affects the
compression ratio of ItCompress.

Varying number of representative rows. In Figure 9(a), we
vary - , the number of representative rows, from 0 to 500 and
look at the compression ratio achieved by ItCompress and It-
Compress(gzip) on the three datasets. From the graph, we can
see that increasing - will improve the compression ratio of It-
Compress and ItCompress(gzip), but the improvement is only
marginal from - � &�+ + onwards. This improvement is due to
the fact that with higher value of - , each row is more likely
to be allocated to a representative row that could match it on
higher number of attributes. This results in fewer outlying
values and reduces the total storage needed for them.

However, we also note that the storage for representative
rows will increase with - . Thus if - is subsequently increased
to an extreme value where the reduction in outlying values is
not enough to offset the additional storage need for the rep-
resentative rows, then the compression ratio will increase in-
stead.

Although this situation does not occur easily as evident
from our experiments, we will still try to start with a small
value for - when we are trying to optimize the performance
of ItCompress. This can then be increased gradually to a point
where the increase in compression ratio is negligible. As we
had observed earlier, this is not too difficult since there is a
large range of values for - where there is no significant in-
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Figure 9. Parameter Settings vs Compression
Ratio.

crease or decrease in the compression ratio.

Varying Sampling Ratio. We next vary the sampling ratio
from 1% to 20% to see its effect on ItCompress’s perfor-
mance. From Figure 9(b), we observe that while increasing
the sampling ratio improves the compression ratio for both It-
Compress as well as ItCompress(gzip), this improvement is
negligible. Among the three datasets, ItCompress seems to be
most affected by the sampling ratio when it is run on the For-
est Cover dataset. This is due to the higher dimensionality of
the dataset which means that a higher sampling rate is needed
to capture the distribution of the data.

Varying Number of Iterations. Finally, we investigate how
the compression ratio of ItCompress improves with the num-
ber of iterations. In Figure 9(c), we plot the compression ratio
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Figure 10. Parameter Settings vs Running Time.

for ItCompress and ItCompress(gzip) against the number of
rounds that ItCompress is allowed to iterate. Note that we
consider the number of iterations to be 0 when we randomly
pick - representatives and assign the remaining rows to the
best matched representative. From the graph, we see that the
first 1 to 3 iterations of ItCompress bring about the most im-
provement in compression ratio, while the performance levels
off for higher number of iterations. Among the three datasets,
the Forest Cover dataset takes the most number of iterations
for the performance to level off. Once again, this is due to its
high dimensionality which gives more room for performance
improvement in terms of the number of matched attribute val-
ues which a database row shares with the closest representa-
tive rows.

From this, we can conclude that ItCompress does not need
too many iterations in order to achieve good compression.

This is important since many scans through the table will re-
sult in loss of efficiency.

5.3.2 Effect of Parameter Settings on Running Time

Having seen how the parameter settings affect the compres-
sion ratio of ItCompress, we will examine the effect of pa-
rameter settings on the running time of ItCompress. Note that
we leave out ItCompress(gzip) in this section since the gzip al-
gorithm takes up a negligible amount of running time as com-
pared to ItCompress and thus we will see no difference be-
tween the running time of ItCompress and ItCompress(gzip)
on the same dataset. Also all running times in this section are
obtained from the same set of experiments as in the previous
section. Thus, readers should feel free to compare the tradeoff
in compression ratio and running time by performing a direct
mapping between the two sets of graphs.
Varying - . Figure 10(a) depicts the running time of ItCom-
press against - . The graph confirms our analysis in the earlier
section that the running time of ItCompress is linear with re-
spect to - . By comparing this graph with Figure 9(a), we see
that the running time of ItCompress can, in fact, be improved
by selecting - to be 100 without sacrificing too much on com-
pression ratio. This also means that the running time we have
shown in Figure 8 can be improved without any significant ef-
fect on the compression ratio.

Varying Sampling Ratio. As shown in Figure 10(b), the run-
ning time of ItCompress is also linear with respect to the sam-
pling ratio. Note that the running time does not tend to zero to-
gether with the sampling ratio since our running time is based
on the total time that ItCompress takes to run on the sample
and the time taken to allocate each row in the table to the best
matched representative row at the end of the run. In fact, we
can see from the graph that the total running time is dominated
mainly by the time taken to allocate each row in the table to
the best matched representative at the end while the time spent
on discovering representative rows from the sample is gener-
ally less significant.

Varying Number of Iterations. From Figure 10(c), we can
see that the running time of ItCompress is also linear with re-
spect to the number of iterations. This is consistent with our
analysis in Section 3. By comparing Figure 10(c) with Figure
9(c), we can see that the time spent on the 3rd iteration and
beyond will not bring significant improvement in compres-
sion ratio, thus justifying our default value for the number of
iterations that we allow ItCompress to run through.

5.4 Performance on Noisy Datasets

In all previous experiments, our tests are performed on the
original datasets. One aspect of real-life datasets however is
the existence of random noise which might result in a degra-
dation of performance for all the semantic compression algo-
rithms. In this section, we will look at how ItCompress is
affected by the amount of random noise that is presented in
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Algorithm Corrupt
Input: A table � , a user specified corrupt level, >�< � � � <�� . Output:
A corrupted table � � with a noise level of >
< � � � <�� .

1. For each row
�

in � ,
2. For each attribute

� � ,
3. If ��: � ! � ��� >�< � � � <��
4. corrupt

� � � � �
5. Output corrupt row

� � to � �

Figure 11. Algorithm for Dataset Corruption

the datasets � . Figure 11 illustrates the algorithm for corrupt-
ing the datasets. The algorithm essentially goes through every
row in the table and attempts to corrupt each in turn. Each at-
tribute in a row have a (corruption level) � � ��L ��� � probability
of being changed to a random value within the domain of the
attribute.

We ran ItCompress on the datasets with corruption level of� � to
� + � and compare it against the fascicle algorithm. De-

fault values are used for the parameter settings of ItCompress
while the parameters for fascicles are tuned to give the best
performance. As shown in Figure 12, the compressed file size
for ItCompress increases linearly with the corruption level for
all datasets while the performance of the fascicle algorithm
degrades sharply even with a small corruption level (though it
levels off afterwards).

This behavior can be explained by our earlier observation
in Section 4 that the compression scheme adopted by ItCom-
press is less restrictive than that of fascicles algorithm which
requires a perfect match for all the compact attributes for the
rows in a fascicle. In the presence of noise, a perfect block
of fascicle can break down rapidly especially when the num-
ber of compact attributes is large as in the case of the Forest
Cover and Census datasets. This is because the probability of
having a perfect match in the presence of noise drops expo-
nentially with the number of compact attributes considered.
As evidenced from Figure 12(a) and 12(c), a large number of
compact attributes which orginally bring better compression
performance now become a liability to the fascicle algorithm
when noises are introduced.

While we are unable to perform any comparison to SPAR-
TAN due to reasons mentioned earlier, we note that SPAR-
TAN makes use of rules that are of the form “ � � � ” in
order to perform its compression. Such rules also require per-
fect match for all the attributes involved in both their L.H.S.
and R.H.S. As such, we have every reason to believe that the
performance of SPARTAN will also degrade substantially like
the fascicle algorithm when noises are introduced.

6 More Related Work

Since we have compared ItCompress to both fascicles and
SPARTAN in earlier sections, we have only one additional
issue to raise in term of decompression efficiency. Since It-
Compress essentially finds a best match representative for
every row, uncompressing a row is relatively simple and is

�
While the original datasets might already contain noises, this is not mea-

surable from our perspective.
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Figure 12. Noise Level vs Compression Ratio.

performed by first extracting the particular best matched rep-
resentative row and then substituting the outlying attribute
values from the outlying list. The computational complex-
ity of such an operation is �;� � � . Datasets compressed by
SPARTAN do not enjoy this advantage. Since each predicted
attribute value is only available after passing the predictor
values through the classification and regression trees, a row
which has � attributes could take �;� � < � time to be uncom-
pressed in the worst case.

As with other semantic compression algorithms, ItCom-
press can provide lossy compression within the specified er-
ror tolerance. The rearrangement of columns in a relation has
been shown to affect the compression achieved in previous
studies [13, 12]. Under the proposed scheme, this idea is car-
ried further since the outlying attributes are determined on a
per tuple basis with respect to its representative row.

To achieve scalable spatial clustering, it is common prac-
tice to reduce the size of the dataset by grouping points into
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micro-clusters [16, 6, 15, 14] and then perform the actual clus-
tering on the compressed dataset. However, no error tolerance
threshold is allowed along each dimension and the technique
is applicable only to numerical attributes. Since ItCompress
adopts an iterative refinement approach for compression, in
some sense it can be compared to the - -means algorithm [7].
We note however that the - -means algorithm is also not appli-
cable here since it does not give any guaranteed error bounds
and converges only on Euclidean distance. Our contribution
lies in the development of a semantic compression scheme in
which the iterative refinement technique(with convergence)
is applicable and in which error tolerance is observed for
datasets involving both categorical as well as numerical at-
tributes.

An important aspect of ItCompress is dimensionality re-
duction (which leads to compression). “Feature reduction” is
a fundamental problem in machine learning and pattern recog-
nition. There are many well-known statistical techniques for
dimensionality reduction, including Singular Value Decom-
position (SVD) [4] and Projection Pursuit [3]. The key dif-
ference here is that dimensionality reduction is applied to
the entire dataset. In contrast, ItCompress handles the addi-
tional complexity of finding different subsets of the data, all
of which may permit a reduction on different subsets of di-
mensions. The same comment extends to FastMap [2], the
SVDD technique [10], and the DataSphere technique [8].

7 Conclusion

In this paper, we have presented a simple and general
semantic compression algorithm, ItCompress, and demon-
strated it to be remarkably effective over a variety of datasets.
ItCompress works by choosing random representative rows
and then improving upon this choice iteratively. We thus have
the possibility of trading off the running time of the compres-
sion algorithm for compression ratio. The good news is that
the asymptotic compression limit is approached after only a
few iterations.

Like other semantic compression algorithms, ItCompress
is complementary with respect to byte-oriented syntactic com-
pression. Syntactic compression techniques may be applied to
the results of ItCompress to obtain additional compression.

As part of our future work, we are currently looking at how
the compressed database and semantic model of ItCompress
can be used to speed up more complex mining tasks such as
Bayesian Network building or CaRTs construction. Achiev-
ing these could mean that more complex semantic models can
be discovered efficiently and such models could provide even
better semantic compression. ItCompress can thus be used as
a “bootstrap” compression algorithm for entering into a posi-
tive loop where compression enhances mining and mining, in
turn, enhances compression. This is a different form of itera-
tive compression.
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