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K-Anonymity for Crowdsourcing Database
Sai Wu, Xiaoli Wang, Sheng Wang, Zhenjie Zhang and Anthony K.H. Tung

Abstract—In crowdsourcing database, human operators are embedded into the database engine and collaborate with other
conventional database operators to process the queries. Each human operator publishes small HITs (Human Intelligent Task)
to the crowdsourcing platform, which consist of a set of database records and corresponding questions for human workers.
The human workers complete the HITs and return the results to the crowdsourcing database for further processing. In practice,
published records in HITs may contain sensitive attributes, probably causing privacy leakage so that malicious workers could link
them with other public databases to reveal individual private information.
Conventional privacy protection techniques, such as K-Anonymity, can be applied to partially solve the problem. However, after
generalizing the data, the result of standard K-Anonymity algorithms may render uncontrollable information loss and affects the
accuracy of crowdsourcing. In this paper, we first study the tradeoff between the privacy and accuracy for the human operator
within data anonymization process. A probability model is proposed to estimate the lower bound and upper bound of the accuracy
for general K-Anonymity approaches. We show that searching the optimal anonymity approach is NP-Hard and only heuristic
approach is available. The second contribution of the paper is a general feedback-based K-Anonymity scheme. In our scheme,
synthetic samples are published to the human workers, the results of which are used to guide the selection on anonymity
strategies. We apply the scheme on Mondrian algorithm by adaptively cutting the dimensions based on our feedback results on
the synthetic samples. We evaluate the performance of the feedback-based approach on US census dataset, and show that given
a predefined K, our proposal outperforms standard K-Anonymity approaches on retaining the effectiveness of crowdsourcing.
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1 INTRODUCTION

C URRENT crowdsourcing platforms, such as Amazon
AMT1 and Crowdflower2, adopt the new LaaS (Labor

as a Service) model. After the employer submits his job
to the crowdsourcing platform, thousands of registered
workers will become his candidate employees to provide
the labor on demand. Similar to the Cloud system, the
crowdsourcing platforms charge their users by the pay-
as-you-go model. They are now considered as the largest
online human resource providers.

The LaaS model in crowdsourcing allows us to exploit
the unlimited human workers to complete the complex
jobs, which are hard for the computers. The idea has been
introduced into the design of database systems [1][2][3][4]
to process similarity join, fuzzy search and aggregation.
In those systems, new database operators involving human
labors are implemented to utilize the power of the crowd.
The main function of the human operator is to generate
crowdsourcing jobs for the database tuples and collect the
answers from human workers, which will be transformed
and passed to the other database operators for processing.
The crowdsourcing jobs usually contain one or multiple
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database tuples and a question for the human workers.
The answers to the question are collected from all the
participated workers and the human operator can adopt
different models to merge the answers [4].

As an example, the HR agents, such as 51Job 3 and
ChinaHR 4, receive thousands of new requests from both
the users and companies per week. In particular, millions of
users register their curriculum vitae (CV) in the database,
and thousands of companies submit their job positions
to the agents. The HR agents need to link the users to
the appropriate positions based on their education level,
working experiences and other personal information. After
simple rule-based pruning on the CVs, the HR agents need
to go through a tedious process on every candidate CV
personally. It is challenging to design a good computer
algorithm to process the job linkage automatically, as some
attributes of the CV data (e.g., working experience) contain
complex semantics and different job positions could pose
different requirements. With the emergence of crowdsourc-
ing database techniques, such process could be replaced by
an alternative solution, by publishing the CVs and available
positions on a crowdsourcing platform. This potentially
reduces the huge cost of these HR agents, since human
workers on the Internet may provide equally good service
on candidate qualification review but with a tiny payment.

To support such HR applications, the human operator is
supposed to disclose individual information in the process
of crowdsourcing, which may lead to increasing concerns
on the privacy. Given the curriculum vitae data in Table
1 (eduction level is mapped to a numeric value and the

3. http://www.51job.com
4. http://www.chinahr.com/
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TABLE 1
An example database with CV records

ID Age Gender Zipcode Education Workclass Married Children Income($)
1001 23 F 345010 3 5 S 0 17,287
1002 28 F 345055 2 2 M 1 10,057
1003 31 M 333239 4 8 S 0 22,308
1004 35 F 333123 3 1 D 2 10,483
1005 43 M 333120 5 4 M 3 38,218
1006 38 F 333460 2 4 M 3 10,257

TABLE 2
The anonymized database after running K-Anonymity algorithm

ID Age Gender Zipcode Education Workclass Married Children Income($)
1001 [20-30] F [345xxx] 3 5 S 0 17,287
1002 [20-30] F [345xxx] 2 2 M 1 10,057
1003 [30-45] M [333xxx] 4 8 S 0 22,308
1004 [30-45] F [333xxx] 3 1 D 2 10,483
1005 [30-45] M [333xxx] 5 4 M 3 38,218
1006 [30-45] F [333xxx] 2 4 M 3 10,257

workclass only shows the previous work level), the human
operator needs to reveal the sensitive attributes, such as age,
gender and education, to the human workers in order to
get correct results. This may cause unexpected information
leakage and the malicious workers could retrieve the full
details of a specific person by joining the record in the job
with certain public database. The potential privacy threat
curbs the real systems on adopting such crowdsourcing
techniques.

In conventional database systems, K-Anonymity tech-
niques [5][6][7][8] are proposed to protect the privacy
of published data. After grouping and generalizing the
data, K-Anonymity guarantees that any tuple in the release
cannot be distinguished from at least another K-1 tuples. In
this way, the attacker cannot join the published data with
other public databases to reveal the identify of a specific
person. However, K-Anonymity affects the performance
of crowdsourcing, as generalization and grouping leads to
information loss. If we provide the anonymized data to
the human workers, they may fail to return the correct
answer. The system needs to address the tradeoff between
the privacy and accuracy. For example, Table 2 is one
anonymized version of Table 1. The records have been
grouped based on the age and zip attribute. If a position
requires to hire a female below 25, the human worker
cannot do a correct decision for anonymized data. If the
database system optimistically recommends the first two
records, only one out of the two candidates is actually
qualified.

In this paper, we first study the effect of K-Anonymity on
the crowdsourcing results. We formulate the problem using
a matrix representation. Each entry of the matrix denotes
the probability that human workers return certain answer on
a particular record. This model enables us to estimate the
lower bound and upper bound of the accuracy for the K-
Anonymity results. These bounds provide overall guidelines
on the possible reduction on the utility of K-Anonymity
before crowdsourcing the records.

To generalize the records to enforce the privacy require-
ment as well as maximize the utility of crowdsourcing,
we show that our problem is consistent with previous K-
Anonymity approaches, i.e. [8][9], which target at mini-
mizing the information loss. Unfortunately, the problem
is proved to be NP-hard and only heuristic approach is
available. To provide a high quality anonymity strategy, the
second contribution of the paper is to propose a feedback
based K-Anonymity approach. Figure 1 summarizes the
idea. In particular, before anonymizing the records in the
database, data-independent random samples are generated
and sent to crowdsourcing platform for testing. Our scheme
thus exploits the results to the synthetic samples from the
crowd, during the optimization process when anonymizing
the real tuples in the database. In particular, we combine
our scheme with Mondrian Algorithm [8] to partition the
dimension (domain of each attribute) iteratively, where each
partition represents an anonymization group. We evaluate
the performance of the feedback-based approach on US
census dataset, and show that given a predefined K, our
proposal outperforms standard K-Anonymity approaches on
retaining the effectiveness of crowdsourcing.

The remainder of the paper is organized as follows. In
Section 2, we introduce the human operator and formalize
the K-anonymity requirement for the human operator. In
Section 3, we analyze the effect of anonymity on the results
of crowdsourcing. We present our matrix-based probabil-
ity model. In Section 4, we propose our feedback-based
approach, which adaptively partitions the space based on
the crowdsourcing results. Section 5 evaluates the proposed
approach using real dataset and Section 6 reviews previous
work on crowdsourcing and K-anonymity. We conclude the
paper in Section 7.

2 PRELIMINARIES
2.1 AMT and Human Operator
AMT is a crowdsourcing platform, allowing the users to
publish and accept jobs. The job in AMT is called HIT
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Fig. 1. Work Flow of Feedback-based K-Anonymity

(Human Intelligent Task) and currently, AMT has more
than 265K available HITs. One HIT can be assigned to
multiple workers and the HIT publisher is required to pay
the workers for accepting their answers. Besides, AMT also
charges the publisher some service fees for each HIT.

By default, the published HIT is accessible for all human
workers. However, the worker can only check the details of
the HIT after he accepts the job. The user can set the num-
ber of workers for each HIT, limiting the information leak-
age. In the example of job recommendation, we partition
the CV records into several groups. Each group contains
N records, which are published together as a HIT. Before
accepting the HIT, the workers only know that the HIT is
to recommend people some job positions, but they cannot
view the detailed CV data. The HIT is designed based on
the AMT’s template. In the head of the HIT, we list M
available positions and the corresponding requirements. In
the main part of the HIT, we list N questions, asking the
workers to select one most feasible position for each record.
Because different HITs have different set of workers and the
data are partitioned into multiple groups, each worker only
sees a small portion of the CV data and it is impossible for
him to recover the whole dataset. Even a group of malicious
workers collaborate to crawl some CV data, they are unable
to identify the record of a specific person, as the CV data
are protected by K-Anonymity property.

Generating and publishing HITs can be abstracted into
the human operator, which is built as a basic database
operator interacting with other operators. Given the user
data in Table 1, the corresponding query can be written as:

SELECT id, getposition(*) FROM user

getposition is a user-defined function (UDF) involving the
human operator, which can be defined formally as:

OPh : (T × q) → A

T denotes a set of tuples or partial results from other
database operators. A is the subset of the answers and q is
the question to the worker. In UDF getposition, T contains a
single tuple from the user table; q equals to “recommending
a job for the user”; and A just has one answer, selected from
a list of jobs.

Besides the simple select query, we can also apply the
human operator to handle the aggregation query:

SELECT getcandidate(*, Job) FROM user GROUP BY zip

The above query returns one user in each area, who is the
best candidate for a job. In UDF getcandidate, T contains
all tuples with the same zip code; q equals to “selecting
one best candidate for the Job”; and A provides a single
answer for the user ID.

The introduction of human operator does not affect the
database engine. It first generates the query plan, where
the human operator is normally used as the root of the
expression tree. The traditional database operators are pro-
cessed as before. Their partial results are then used as the
input for the human operators to generate questions to the
workers. The database engine is blocked to wait for the
workers’ answers from the AMT. When all HITs complete,
the database engine resumes the plan (if necessary) for
further processing.

2.2 K-Anonymity for Crowdsourcing Data

The human operator publishes a set of tuples to the crowd-
sourcing platform. If the tuple contains sensitive attributes,
due to privacy concern, we cannot adopt the crowdsourcing
techniques. In Table 1, age, gender and zipcode can be
used to join with other public databases to reveal the
identity of the user. They are quasi-identifiers. The rest
attributes (education, workclass, married and children) are
sensitive attributes. To guarantee the privacy requirement,
we can apply the K-Anonymity techniques [5]. Instead of
publishing the original data, the human operator generates
the crowdsourcing jobs using the anonymized data. For
example, Table 2 is the 2-anonymity results for Table 1.
As anonymity causes information loss, the accuracy of
crowdsourcing is affected. We need to design a new K-
Anonymity algorithm to achieve the optimal anonymity
strategy.

Definition 1: Optimal K-Anonymity for Crowdsourc-
ing
Given a dataset D, let S be its K-Anonymity version. S is
the optimal K-Anonymity strategy for D, if there is no other
K-Anonymity strategy S′, which leads to a better accuracy
than S for the human operator.

The accuracy of a K-Anonymity strategy is computed
as |A∩A′|

|A| , where A and A′ denote the answer sets of
human workers by publishing the original dataset and the
anonymized dataset respectively. If the accuracy is 100%,
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TABLE 3
Notations

Parameter Descriptions
Gi a group of tuples
Ni the number of tuples in Gi

ri a possible crowdsourcing result
returned by tuples in Gi

Pij the probability of returning rj as
a result by Gi

Si a multi-dimension data space
θ(t) the anonymized form of a tuple t

PSi(t → r, θ(t) → r) the probability that workers
return the same answer r for

both t and θ(t) in Si

the anonymity does not affect the decision of the human
workers.

2.2.1 Data Publication

In fact, not all attributes are required to be published. In the
example above, age, gender, zip, edu and work experience
are highly correlated with the job recommendation, while
married and children are not. To reduce the information
leakage, we do not need to publish the later two attributes.
In fact, this relationship can be caught by the function
dependency. Let job be the missing attribute of the table.
We have:

age, gender, zipcode, education,workclass → job

Formally, we define the core attribute set as:

Definition 2: Core Attribute Set
Let Cr be the result attribute. Attribute set C is the core
attribute set, if C → Cr and there is no C′ ⊂ C satisfying
C′ → Cr.

The function dependency is predefined before the query
is being processed and the human operator only needs to
publish the core attributes to the crowdsourcing platform. In
the following discussion, we only keep the core attributes.

2.2.2 Prior Knowledge

Prior knowledge can help us improve the accuracy of the
result. For example, if we know that a specific job requires
females at 18-25 with height above 5.5 feet, we can just
apply the rule to find the candidates. However, if prior
knowledge is available or we can generate such knowledge
via data mining and machine learning algorithms, we do not
need to adopt the crowdsourcing approach. A sophisticated
computer algorithm can provide good enough results with
less cost. Therefore, in the rest of the paper, we assume
that no prior knowledge is available and the association
rules between the core attributes and the results are difficult
to discover (e.g, the relationship between work experiences,
educations and a specific job). For reference, Table 3 shows
the parameters used in this paper.
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driver

driver
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(a) Strategy 1
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Fig. 2. Demonstration of Anonymity Strategy
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teacher driver teacher driver driver driver
Fig. 3. Effect of Grouping

3 A PROBABILITY MODEL

In this section, we analyze how the anonymized data affect
the decision of human workers. We give a lower bound and
upper bound for the accuracy of crowdsourcing results. It
indicates that although previous K-Anonymity approaches
provide privacy guarantees, they may prevent the human
workers from generating the right answer. Therefore, in the
next section, we propose our new anonymity approach.

As mentioned before, different anonymity strategies have
various effects on the crowdsourcing accuracy. Figure 2
illustrates the idea. Tuples t0 to t5 represent the record-
s of Table 1. Suppose t0 and t1 are good candidates
for the teacher job, while the rest persons can work as
drivers. Let K be 2. Figure 2(a) generates two groups
{t0, t3} and {t1, t2, t4, t5}. The corresponding tuples will
be anonymized accordingly. For example, t0 will be trans-
formed into (1001, [23-35], F, 3xxxxx, 3, ...). Figure 2(a) is
not a good anonymity strategy, as each anonymized tuple
refers to the tuples that may have different recommended
jobs. Instead, Figure 2(b) shows a better solution by gen-
eralizing tuples differently. In fact, the strategy in Table
2 is the optimal solution. Our job is to search for the
optimal anonymity strategy given a predefined K. However,
note that the answer distribution (job distribution in our
example) is unknown before crowdsourcing. Therefore, we
need a model to estimate the quality of a K-Anonymity
strategy.

3.1 Matrix Model

In K-Anonymity technique, tuples are grouped and general-
ized, so that one tuple cannot be distinguished from at least
K-1 other tuples. Such transformation causes information
loss and may lead to incorrect result in crowdsourcing.
Figure 3 illustrates the effect of grouping tuples by the
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strategy of Figure 2(a). We have two groups, G0 and
G1. For a random tuple t in G1, t’s answer follows the
distribution of (25%: teacher, 75%: driver). If we further
generalize the tuples to G′, the answer distribution will
change to (50%: teacher, 50%: driver). Even if the human
worker knows the ground-truth answer for each tuple, he
cannot provide an accurate answer for the corresponding
group. Suppose the human worker is reliable and willing
to provide the correct answer (e.g., his answer is not
anticorrelated to the probability distribution), he has two
selections:

1) Always return the answer with the highest probability.
2) Return the answer based on the same probability

distribution in the grouping strategy.
For G1, in the first strategy, the worker will always return
driver. The probability of providing a correct answer is:

0.25× 0 + 0.75× 1 = 0.75

In the second strategy, the worker returns teacher and driver
with the probabilities of 25% and 75%, respectively. Thus,
the probability of providing a correct answer is:

0.25× 0.25 + 0.75× 0.75 = 0.625

More formally, for a group Gi and possible answers
(r0, ..., rm−1), let Pji denote the probability of a random
tuple in Gi returning rj as the result. The estimated
accuracy of the first strategy is P̄i = Pxy , where Pxy ≥ Pji

for any j and i, while The estimated accuracy of the second
strategy is:

Pi =

m−1∑
j=0

P 2
ji

P̄i is always higher than Pi. In fact, P̄i and Pi are the
upper-bound and lower-bound of the estimated accuracy
in the real systems, as human workers normally prefer a
comprised strategy between the above two strategies. In this
paper, we use Pi to estimate the accuracy. Our intuition is
to guarantee a good performance for the worst case.

By extending the idea, we can model the accuracy of
crowdsourcing as a probability matrix. Figure 4 shows the
idea. The matrix has m rows and n columns. m is the
number of possible answers and n is the number of groups
generated in the anonymity process. To guarantee the K-
anonymity property, each group should contain at least K
tuples. For the element Pij , it denotes the probability that
tuples in the jth group use the ith answer as the answer.

Obviously, there are two properties for the matrix. First,
the sum for the elements of the same column is 1. Namely,

m−1∑
i=0

Pij = 1

Second, suppose Pi denote the probability of selecting the
ith answer. Let N and Nj denote the total number of tuples
and the number of tuples in the jth group, respectively.
Given a random tuple, it belongs to the jth group with

teacher G0 G1 G2 G3 G4 G5
P00 P01 P02 P03 P04 P05
P10
P20
P30
P40
P50

…... …... …... …... …...

…... …... …... …... …...

…... …... …... …... …...

…... …... …... …... …...

…... …... …... …... …...

driverprogrammerresearcherchefwaiter
Fig. 4. Probability Matrix

a probability of Nj∑n−1
x=0 Nx

=
Nj

N . By summing up all
probabilities in a row, we have

n−1∑
j=0

NjPij

N
= Pi

The above two properties will be applied to estimate the
lower bound and upper bound of the accuracy.

3.2 Accuracy Bound

Based on our previous discussion, the crowdsourcing accu-
racy of the ith answer can be estimated as:

Xi =

n−1∑
j=0

NjP
2
ij

N
(1)

Xi follows the same form as Pi. In fact, we can apply the
Jensen’s inequality to link to two parameters.

We define a continuous function f : (0,∞) → (0,∞) =
x → x2. The second derivative of f exists and satisfies
f ′′ = 2x0 > 0 for all x > 0. So f is a strictly convex
function and according to Jensen’s inequality,

P2
i = (

n−1∑
j=0

NjPij

N
)2 = f(

n−1∑
j=0

NjPij

N
)

≤
n−1∑
j=0

Nj

N
f(Pij) =

n−1∑
j=0

NjP
2
ij

N
(2)

The accuracy of all the answers is estimated as:

Acc =
m−1∑
i=0

n−1∑
j=0

NjP
2
ij

N
≥

m−1∑
i=0

P2
i (3)

Equation 3 shows how to estimate the lower bound of
the accuracy. If we know the probability distribution of
the answers, we can compute the lower bound for any K-
anonymity algorithm. Interestingly, if no prior knowledge
is known, the lower bound is not correlated to K. It is
only affected by the number of possible answers. Suppose
we have two answers and the answer distribution is (80%,
20%). The lower bound of any K-anonymity algorithm
is 68%. However, if the two answers follow the uniform
distribution (50%, 50%), the lower bound is 50%.

Equation 3 also shows that if there are too many possible
answers, the K-anonymity algorithm may lead to a very low
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accuracy for the crowdsourcing. Therefore, in that case, we
need to carefully design our anonymity strategy.

We then apply the first property of the matrix model to
estimate the upper bound. The accuracy can be rewritten
as:

α =

m−1∑
i=0

n−1∑
j=0

NjP
2
ij

N
=

n−1∑
j=0

m−1∑
i=0

NjP
2
ij

N

=

n−1∑
j=0

Nj

N

m−1∑
i=0

P 2
ij ≤

n−1∑
j=0

Nj

N
= 1 (4)

The upper bound of the accuracy is obtained when for any
group Gi, there is a θ satisfying that

Pij =

{
1 if j = θ
0 otherwise

The above requirement, in fact, requires a perfect anonymi-
ty strategy, where each group only contains the tuples
with the same answer. Without prior knowledge, perfect
anonymity strategy is not possible and if such knowledge is
available, we can apply the classification techniques instead
of crowdsourcing. Hence, in this paper, we assume that the
perfect anonymity strategy is not possible.

3.3 Effect of Anonymity
In this section, we study how the anonymity affects the
accuracy. We follow the idea of hierarchical anonymity
approach. The tuples are generalized into groups and small
groups are combined into larger ones, until all groups
satisfy the K-Anonymity property. Consider the most basic
operation in the approach. Given n groups, we find that
there are two groups breaking the K-Anonymity and we
group them together. Let G0 and G1 be the corresponding
group. We use Ḡ and P̄i to denote the new group and its
element in the matrix. We have:

P̄i =
N0

N0 +N1
Pi0 +

N1

N0 +N1
Pi1 (5)

Before grouping, the accuracy of crowdsourcing is estimat-
ed as:

α =
m−1∑
i=0

n−1∑
j=0

NjP
2
ij

N
(6)

After grouping, it changes to

α′ =

m−1∑
i=0

(

n−1∑
j=2

NjP
2
ij

N
+

N0 +N1

N
P̄ 2
i ) (7)

So we need to estimate the effect (δ = α−α′) of grouping.

Lemma 1: The group operation decreases the accuracy
of crowdsourcing.

Proof: Combining Equation 6 and 7, we have

δN =
m−1∑
i=0

(N0P
2
i0 +N1P

2
i1 − (N0 +N1)P̄

2
i )

=
N0N1

N0 +N1

m−1∑
i=0

(P 2
i0 + P 2

i1 − 2Pi0Pi1)

≥ 0 (8)

S0

S1 S2 S3

S4 S5 S6 S7

Fig. 5. Grouping Tree

δ ≥ 0 indicates that after combining the two groups, the
expected accuracy of crowdsourcing decreases.

Theorem 1: Given two anonymity strategy S and S′, if
S′ can be generated from S by a set of grouping operations,
S will lead to a better accuracy for crowdsourcing than S′.

Proof: By applying the grouping operations, we can
show a path from S to S′ : S ⇀ S0 ⇀ S1... ⇀ Sn ⇀ S′.
We iteratively apply Lemma 1 and the accuracies follow
acc(S′) ≤ acc(Sn) ≤ ... ≤ acc(S). Therefore, in the
K-Anonymity algorithm, once we satisfy the K-Anonymity
property, we should stop the anonymity process to provide
a good accuracy.

Let S0 be the original dataset and Si be one of its
anonymity strategy. We can organize all the anonymity
strategies as a tree (strictly speaking, it is a directed graph).
Figure 5 shows an example. In the tree, the ancestor nodes
provide higher accuracies for the human operator than their
child nodes based on Theorem 1. But it is still difficult to
compare the qualities of sibling nodes (e.g., node S4 and
S5). If the probability matrix is available, we can estimate
the quality of different anonymity strategies via Equation 1.
However, that requires us to know the ground-truth results
of each tuple, which conflicts with our intuitions.

We find that the accuracy is, in fact, correlated to
the information loss. The human workers cannot provide
the correct answer, as some information are missing or
fuzzy. The goal of optimal K-Anonymity is consistent with
previous K-Anonymity algorithm: finding the anonymity
strategy with least information loss. There are many cost
models defining the information loss, such as discernability
metric [9], normalized average equivalence class size metric
[8] and classification metric [10]. However, for all K-
Anonymity algorithms investigated in the literature, the
optimal K-Anonymity problem in general settings is proven
NP-hard [7][11].

In the following, we analyze the difficulty of K-
Anonymity under crowdsourcing. By employing an ap-
propriate strategy, a conventional summation-based K-
Anonymity problem can be transformed to an equivalent K-
Anonymity crowdsourcing problem under our setting. This
intuition is formalized by the following theorem.

Theorem 2: Any standard summation-based K-
Anonymity problem in continuous space can be reduced to
a K-Anonymity problem under crowdsourcing by building
virtual human workers with designed answering strategy.

Proof: We model a standard K-Anonymity problem as
a bipartite graph. On the right side, each node represents
a personal record from {x1, x2, . . . , xN}, each of which is
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a person in the database. On the left side, each node is a
grouping Sj , which is connected to at least nj ≥ k personal
records on the right. We assume that the nodes on the left
side cover all possible groupings on the database. Each
grouping node is also associated with a cost Cj . Different
K-Anonymity problem may adopt different cost assignment
based on the criterion, e.g. the average distance between
the records in the group. The problem of K-Anonymity
is finding a subset of groups covering all records with
minimal cost summation on the selected groups. We then
construct the question-answering strategy as follows. When
a question on grouping Sj is asked on the crowdsourcing
platform, the human worker returns answer r0(resp. r1)
with probability P0j(resp. probability 1− P0j) such that

P 2
0j +

(
1− P 2

1j

)2
=

Cj

nj maxl Cl
.

There are two feasible solutions for P0j satisfying the
equation above. The sum of these two solutions is exactly
1. Either of the solutions works for our construction. By
applying Equation 1, it is straightforward to show that the
total error for prediction is

∑
Sϕj

Cϕj

maxl Cl
, if our algorithm

picks up t groupings as {Sϕ1 , . . . , Sϕt}. Therefore, the
error of K-Anonymity under crowrdsourcing is proportional
to the cost of original K-Anonymity problem. this completes
the proof of the theorem.

The theorem above implies the NP-hardness of the K-
Anonymity problem under crowdsourcing. In the rest of
the paper, we will show to exploit human workers’ feed-
backs and existing heuristics on conventional K-Anonymity
problems to improve the accuracy of the results.

4 FEEDBACK-BASED APPROACH

As mentioned in previous sections, K-Anonymity may
significantly degrade the quality of crowdsourcing results
and finding optimal K-Anonymity strategy is NP-complete.
Therefore, in this section, a heuristic approach, which
exploits the human workers’ feedbacks, is introduced to
maximize the accuracy of crowdsourcing.

4.1 Samples and K-Anonymity

We adopt the DataSynth [12] to generate samples based
on the original dataset. DataSynth is a tool to generate
synthetic data for data masking. The samples follow the
same data distribution and correlations as the original
dataset. We publish the samples into the AMT to collect
the ground-truth results (e.g., which job position should
be recommended to the user). Publishing the samples will
not reveal the identifies of the user record, as they are
dummy records. As an example, Table 4 shows the dataset
that includes real tuples from Table 1 and the generated
synthetic samples (the red tuples are the synthetic samples).
In this table, the age, gender and zipcode are quasi-
identifiers and others are sensitive attributes. Table 5 is the
2-Anonymity result for Table 4.

a0 a1 a2 a3

S1 S2S3

X1 X2

A

B
b0

b1

Fig. 6. Alternative Partitions

The samples are anonymized and published into the
AMT to collect the new answers. The answers will be com-
pared to the ground-truth results to estimate the quality of
the anonymity approach. Suppose there is one job position,
which is specially appropriate for the women above 35.
If we publish the samples in Table 5, the human workers
cannot decide how to recommend the job position, as the
samples have the age range [30-45]. If the human workers
assume that the tuples are distributed in the range evenly,
they may recommend the job position in a probability of
0.667. By comparing the worker’s answer and the ground-
truth result, we can estimate the accuracy of the anonymity
strategy.

Generally, for a tuple t with m quasi-identifiers, we
define θ(t) as its anonymity result.

θ(t) = [l1, u1]× [l2, u2]× ...[lm, um]

where [li, ui] represents the partitioning strategy and if the
tuple is not partitioned in the ith dimension, we use [t[i]]
to denote it. In the above example, the quasi-identifiers
of the first sample are anonymized as [20, 30] × [F ] ×
[345000, 345999]. A straightforward solution is to iterate all
possible K-Anonymity strategies and evaluate each strategy
based on the samples. The one with maximal estimated
accuracy is adopted. However, due to the exponential num-
ber of strategies and high crowdsourcing cost, the simple
strategy is impractical. Therefore, we adopt a heuristic
approach by combining the sample-based feedbacks and
the multidimensional K-Anonymity approach [8].

4.2 Cost Model for Partitioning

In the multidimensional K-Anonymity approach, each di-
mension is partitioned iteratively, until no allowable cut
(cut that still guarantees the K-Anonymity property) is
available. However, for each dimension, we may have
multiple cut options. Figure 6 illustrates the idea for the
2-dimensional space. In the following discussion, we will
use Figure 6 as our example. But the techniques can be
applied to the more general case as well. Suppose we
want to generate 2-Anonymity results. Line X1 and X2

represent two possible cut strategies for the A attribute.
X1 generates two partitions, S1 = [a0, a1) × [b0, b1]
and S2 ∪ S3 = [a1, a3] × [b0, b1], while X2 generates
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TABLE 4
CV Data With Samples

ID Age Gender Zipcode Education Workclass Married Children Income($)
1000 25 F 345210 3 3 S 0 17,287
1001 23 F 345010 3 5 S 0 17,287
1002 28 F 345055 2 2 M 1 10,057
1003 31 M 333239 4 8 S 0 22,308
1004 35 F 333123 3 1 D 2 10,483
1005 43 M 333120 5 4 M 3 38,218
1006 38 F 333460 2 4 M 3 10,257
1007 40 M 333010 2 3 M 2 10,483
1008 35 F 333125 4 5 D 1 21,387

TABLE 5
Anonymized CV Data With Samples

ID Age Gender Zipcode Education Workclass Married Children Income($)
1000 [20-30] F [345xxx] 3 3 S 0 17,287
1001 [20-30] F [345xxx] 3 5 S 0 17,287
1002 [20-30] F [345xxx] 2 2 M 1 10,057
1003 [30-45] M [333xxx] 4 8 S 0 22,308
1004 [30-45] F [333xxx] 3 1 D 2 10,483
1005 [30-45] M [333xxx] 5 4 M 3 38,218
1006 [30-45] F [333xxx] 2 4 M 3 10,257
1007 [30-45] M [333xxx] 2 3 M 2 10,483
1008 [30-45] F [333xxx] 4 5 D 1 21,387

another two partitions, S1 ∪ S2 = [a0, a2) × [b0, b1] and
S3 = [a2, a3] × [b0, b1]. In [8], the cut that balances the
size of generated partitions is selected. But in our case, we
need to select the partitions that maximize the accuracy of
the crowdsourcing.

In particular, suppose the possible answer set is R, the
accuracy of partition S1 is estimated as:

Acc(S1) =
∑
∀r∈R

PS1(t → r, θ(t) → r) (9)

Given a sample t in S1, PS1((t → r) ∧ (θ(t) → r))
denotes the probability that t leads to the answer r in our
ground-truth result and its crowdsourcing result is also r for
the anonymity strategy θ(t). Acc(S1) can be computed via
the ground-truth results and the crowdsourcing feedbacks.
Similarly, we can compute Acc(S2∪S3), Acc(S1∪S2) and
Acc(S3). To compare the two partitions (X1 and X2), we
need to compute:

δ = Acc(S1) +Acc(S2 ∪ S3)−Acc(S1 ∪ S2)−Acc(S3) (10)

The first two terms estimate the K-anonymity accuracy by
partitioning the space via X1, while the second two terms
estimate the partitioning accuracy of X2. If δ ≥ 0, X1

generates a better anonymity result. Otherwise, X2 is better.
It is challenging to precisely estimate the value of δ.

However, note that as δ is only applied to guide our
partitioning algorithm, an approximation is good enough.
We first transform Equation 9 into

Acc(S1) =
∑
∀r∈R

(PS1(t → r)PS1(θ(t) → r)

+CovS1(t → r, θ(t) → r)) (11)

where PS1(t → r) is the probability that the sample
in S1 has r as its ground-truth result, PS1(θ(t) → r)

denotes the probability that the human workers return
r as the result given the anonymity form of θ(t), and
CovS1(t → r, θ(t) → r) is the correlation between the
tuple’s true result and the crowdsourcing result in S1. For
simplicity, CovS1(t → r, θ(t) → r) is estimated through all
available samples and thus is set to a constant. Combining
Equations 10 and 11, we have:

δ =
∑
∀r∈R

(PS1(t → r)PS1(θ(t) → r)

+PS2∪S3(t → r)PS2∪S3(θ(t) → r)

−PS1∪S2(t → r)PS1∪S2(θ(t) → r)

−PS3(t → r)PS3(θ(t) → r))

When computing the PS2∪S3(t → r)P (θ(t) → r), we
have θ(t) = [a1, a3]× [t[1]]. Without prior knowledge, the
human workers assume that the values of the first attribute
are uniformly distributed. Therefore, the first value of t lies
in [a1, a2] and [a2, a3] with probabilities of α1 = a2−a1

a3−a1
and

α2 = a3−a2

a3−a1
. We then estimate P (θ(t) → r) as:

α1PS2([a1, a2][t[1]] → r) + α2PS3([a2, a3][t[1]] → r) (12)

Similarly, we can compute P (θ(t) → r) for theta(t) =
[a0, a2] × [t[1]]. Let β1 = a1−a0

a2−a0
and β2 = a2−a1

a2−a0
. The

probability is calculated as:

β1PS1([a0, a1][t[1]] → r) + β2PS2([a1, a2][t[1]] → r) (13)

Combing Equation 10 to 13, we get the final estimation
for δ. Let xr, yr and zr denote Ps1([a0, a1]× [t[1]] → r),
Ps2([a1, a2] × [t[1]] → r) and Ps3([a2, a3] × [t[1]] → r),
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Fig. 7. Feedback Histogram

respectively. We have:

δ =
∑
∀r∈R

(xr(Ps1(t → r)− β1Ps1∪s2(t → r))

+yr(α1Ps2∪s3(t → r)− β2Ps1∪s2(t → r))

+zr(α2Ps2∪s3(t → r)− Ps3(t → r))) (14)

Except xr, yr and zr which are estimated from the crowd-
sourcing feedbacks, all the rest can be computed via the
ground-truth results of the samples. To find the optimal cut,
we need to maximize δ. However, given limited budget for
crowdsourcing, we cannot compute the three parameters
for all possible cuts. Therefore, we propose a feedback
histogram.

4.3 Feedback Histogram

In the feedback histogram, we pre-generate some cuts and
anonymize the samples based on the cuts. The results are
published to the crowdsourcing platform to get the users’
feedbacks. The feedback is then used to estimate the three
parameters, xr, yr and zr.

Figure 7 illustrates the idea of feedback histogram. Each
cell of the histogram keeps two types of information. First,
it records the crowdsourcing results for all possible results.
Formally, for a cell ci = [l1, u1]× [l2, u2]× ...[lm, um] and
the result set R, we will keep the feedback of Pci([l1, u1]×
[l2, u2] × ...[lm, um] → rj) for all rj ∈ R. Pci([l1, u1] ×
[l2, u2]× ...[lm, um] → rj) is estimated using the samples
in the cell and their crowdsourcing answers. Second, we
also maintain the number of samples (Ns) and the number
of total tuples (N ) in the cell.

The histogram cells can be combined using Equation 12.
For example, the three cell of the first column in Figure 7
can be used to estimate Pc0∪c1∪c2([a0, a1]× [b0, b3] → r0):

0.1× b1 − b0
b3 − b0

+ 0.4× b2 − b1
b3 − b0

+ 0.5× b3 − b2
b3 − b0

In the partitioning process, we can exploit the histograms
to compute Equation 14. After iterating all possible cuts,
the optimal one is selected. In this strategy, the granularity
of the histogram affects the performance of the partitioning.
As a fine-grained histogram incurs too much overhead, we
adopt a greedy-based approach to build the histogram.

In particular, we cut the space iteratively by different
dimensions. Each cut will result in a set of new cells.
The samples in those cells are then anonymized based on
the cell ranges. We publish the anonymized samples as a
crowdsourcing job to collect the feedbacks for the cells. If
we generate a job for each cell, given limited budget, we
can only maintain a fixed number of cells.

The ground-truth results are correlated to the crowd-
sourcing results. Therefore, to build a good histogram, we
use the ground-truth results of the samples to partition the
space. For each cell, we have the following observation:
V = (v0, v1, ..., vn), where vi is the number of samples
that return ri as the result. The variance of the observation
is calculated as:

var(V ) =

∑n
i=0 v

2
i

n+ 1
− (

∑n
i=0 vi

n+ 1
)2

The variance indicates how skewness the result distribution
is in the cell. When only one vi has the none-zero value,
the variance reaches its maximal value. This is also our
optimal case for K-anonymity. Namely, all tuples in the
cell are expected to generate the same result.

Algorithm 1 BuildHistogram(double[] space,
Set samples, int cellLimit)
1: i = 0;
2: Vector[] cut = new Vector[space.length];
3: while existsCut(space, cut, cellLimit) do
4: d=i % space.length
5: Set sorted = sort(samples, d)
6: max=0
7: for j=0 to sorted.size() do
8: List cell = getAllCells(sorted.get(j))
9: if cell.size()≤ cellLimit then

10: double variance = computeVariance(cell)
11: if variance > max then
12: idx = j, max = variance
13: cut[d].add(idx)
14: i++
15: List cell = getAllCells(sorted.get(j))
16: publishJobs(cell)

Algorithm 1 summarizes the process. If there is available
allowable cut for samples and the total cell number is less
than the predefined threshold (line 3), we will iteratively
partition the space by different dimensions (line 4-14). The
definition of allowable cut is extended from [8]. For each
cut, we first sort the samples by the dth dimension (line
5). Then, every sample’s value in the dth dimension is
used to partition the space. The cut with maximal variances
is selected (line 7-12). Finally, we publish a job for each
histogram cell to collect the feedback (line 15-16).

Definition 3: Allowable Cut for Samples
In d-dimensional space, a cut perpendicular to the ith axis
is allowable, if there are at least K samples in the newly
generated cells.

4.4 Adaptive Partitioning
Finally, we present the idea of our adaptive partitioning

strategy in Algorithm 2. The process is split into two



10

Algorithm 2 Partition(double[] space,
Histogram H)
1: Set P = new Set(space);
2: while isSuperSetOfHistogram(P , H) do
3: Partition p = selectWorstPartition(P )
4: Set newpartition = getBestPartition(p, H)
5: if newpartition ̸= null then
6: P .replaceWithNewCells(newpartition)
7: Set result = new Set()
8: for i = 0 to P .size do
9: result.add(MondrianAlgorithm(P .get(i)))

10: return result

phases. In the first phase, the space is partitioned by the
feedback histogram (line 2-6). In particular, the partition
results are first initialized as the whole space (line 1). If
there is a partition that contains multiple histogram cells, we
can apply the feedbacks to further partition it (line 2). In the
partitioning process, we estimate the accuracy of existing
partitions and select the one with worst accuracy (line 3).
Based on the Equation 14, we find the optimal partition for
each dimension and the best partitioning strategy among
all dimensions is adopted (line 4). The old partition is then
replaced by the newly generated one (line 6).

In the second phase, the partial results of the first phase
are further partitioned by applying the conventional Mon-
drian Algorithm [8] (line 7-9). All the generated partitions
are used to guide the anonymity process.

5 EXPERIMENTS

5.1 Experimental Settings
To evaluate the performance of our proposed approach, we
use three datasets. Two real datasets, the US census dataset
in 1990 and the IPUMS census dataset, are obtained from
the UC Irvine Machine Learning Repository5. We configure
the two datasets similarly as the experiments reported in
[8]. E.g., using eight regular attributes, removing tuples
with missing values, and selecting the attribute ranges
which contain highly dense tuples. The resulting US dataset
contains 10,000 records6 and the IPUMS dataset contains
4,178 records. For the partitioning experiments, we impose
an intuitive ordering on each attribute, and eliminated all
hierarchical constraints for both approaches.

Another dataset is a synthetic dataset, derived from the
US census dataset in 1990. The data space is partitioned
into regions based on the ground-truth results. Tuples in the
same region must have the same ground-truth values. The
unsatisfied tuples are considered as noises and discarded.
The synthetic dataset has 10,000 tuples and denotes the
idea case, where the optimal K-anonymity approach can
maximize the crowdsourcing accuracy.

Our target application is the recommendation service.
Given a person’s profile, we ask the human workers in
Amazon AMT to recommend a job. In our experiments,
we use the five categories of occupations from the census

5. http://archive.ics.uci.edu/ml/datasets.html
6. We select limited number of records due to the high monetary cost

of crowdsourcing.

TABLE 6
Occupation Labels

CAT ID Occupation categories
CAT 0 Managerial and professional specialty occupations
CAT 1 Technical, officical, sales, and support occupations
CAT 2 Service occupations
CAT 3 Repair occupations
CAT 4 Operators, fabricators, and labors

TABLE 7
Parameter settings

Parameter Range
K 50,100,150,200,300
Cell number 100,200,300,400
Sample ratio 5,10,15,20,30
Attribute number 2,3,4,5
Result number 2,3,4,5

dataset as our ground-truth results for the people’s jobs.
The categories are described in Table 6. We list some
descriptions for the human workers to understand the re-
quirement for different occupations. Note that even without
anonymity, the crowdsourcing answers may be different
from the ground-truth ones. However, the accuracy model
of crowdsourcing is beyond the scope of this paper. We
only focus on the effect of anonymity. Our metric is the
accuracy ratio, which is defined as:

r =

∑n
i=0 f(g(ti), g

′(ti))

n+ 1

where ti is a tuple in our dataset, g(ti) and g′(ti) denote
the crowdsourcing answers of ti before and after anonymity
respectively, and f(x, y) returns 1 or 0 depending on
whether x equals to y.

In our model, we use the samples to build the feedback
histogram. The samples are randomly selected from the
datasets, and we tag the ground-truth result for each sample
using the original value of the occupation attribute. In
the diagram, we use FKA (Feedback K-Anonymity) to
denote our approach. For comparison, we also implement
the original Mondrian Algorithm [8]. Table 7 lists the
experiment parameters and their corresponding ranges. The
default value is marked in bold font.

Based on the five occupation categories, we summarize
the detailed statistics of the real datasets respectively in
Tables 8 and 9. The statistics show the average value of
each attribute in the datasets. For example, the average
age in CAT 0 of the US dataset is 43 and the average
value of gender is 0.3 that means 70% are males. The
two datasets demonstrate different data distributions. In the
IPUMS dataset, all categories have similar average values,
except for the gender attribute, whereas in the US dataset,
we can clearly distinguish each category from the others
via the average values. This difference leads to different
experiment results as discussed below.

5.2 Accuracy of Varied K
We first study the effect of K in the anonymity process.
Parameter K represents the privacy requirement, but a larger
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TABLE 8
Statistics in US dataset

Occup. Age Gender Education Workclass Income($)
CAT 0 43 0.3 13.3 2.3 38,218
CAT 1 33 0.5 11 1.9 22,308
CAT 2 25 0.5 9.5 1.6 10,483
CAT 3 38 0.1 9.6 1.6 17,287
CAT 4 26 0.4 9.1 1.2 10,057

TABLE 9
Statistics in IPUMS dataset

Occup. Age Gender Education Workclass Income($)
CAT 0 38 0.4 8.8 1.8 22,673
CAT 1 42 0.1 8.5 1.8 28,376
CAT 2 38 0.5 7.4 1.9 18,680
CAT 3 38 0.03 6.3 1.8 19,986
CAT 4 36 0.3 5.4 1.9 15,314

K always causes a lower accuracy for the crowdsourcing
results. In the experiment, we fix the values of other param-
eters as the default values shown in Table 7. For comparison
purpose, besides Mondrian, we also include the results
of the Datafly [13] and Incognito [14]. Interestingly, we
observe very different results for the three datasets.

In Figure 8, although the accuracies of both approaches
drop for a larger K, our FKA performs much better than
the other approaches. This is because the synthetic dataset
represents the idea case, where the histogram can effective-
ly catch the distribution of crowdsourcing results. On the
contrary, in Figure 10, FKA only obtains a slightly higher
accuracy than the other anonymity approaches. It is because
in the IPUMS dataset, the tuples of different categories
follow the similar distribution as shown in Table 9. The
results of US dataset lie between the synthetic dataset and
the IPUMS dataset. It represents a more realistic dataset,
where people can be grouped into different categories, but
different categories do have some overlaps.

Except the synthetic dataset, Mondrian performs better
than Datafly and Incognito. Datafly achieves a good per-
formance for the synthetic dataset, as data follow uniform
distribution in the synthetic dataset and Datafly generates
the anonymity groups uniformly. In the remaining exper-
iments, we use the results of Mondrian, as it performs
better for the real datasets.

5.3 Accuracy of Varied Cell Number

The key technique in our FKA approach is to exploit
the feedback histogram to evaluate the quality of dif-
ferent anonymity approaches. The histogram guides the
anonymity algorithm to partition the space adaptively. If
the histogram cannot provide an accurate description for
the answer distribution, our approach may fail to generate
an anonymity strategy, which is crowdsourcing friendly. In
these experiments, we study how the histogram affects the
performance of crowdsourcing.

In Figure 11 to 13, we vary the number of histogram
cells and test the result accuracy for different datasets.
More histogram cells lead to a better understanding of the
answer distribution, but it also incurs high overhead for the

crowdsourcing, as we need to publish a job for each cell
to collect the feedbacks.When the histogram cell number
increases, both the synthetic dataset and the US dataset get
a better accuracy. This is because the histograms for the
two datasets can precisely reflect the answer distribution.
On the other hand, the histogram granularity does not affect
the performance of IPUMS dataset, as in this dataset, the
crowdsourcing answer is not only determined by the quasi-
identifiers. The values of sensitive attributes are more cor-
related to the crowdsourcing answers. Another observation
is that the when the histogram is precise enough, increasing
the histogram cells will not benefit the anonymity strategy
any more.

5.4 Accuracy of Different Sample Ratios
Besides the cell number, another parameter that affects the
histogram quality is the sample size. We randomly select
the samples from the datasets and tag them with ground-
truth results. The samples are then published into the
crowdsourcing platform to collect the feedbacks. Similar to
the cell number, more samples lead to a better histogram.
In Figure 14 to Figure 16, the sample rate varies from
5% to 20%. For the IPUMS dataset, we find that its
performance is not affected much by the samples. For the
other two datasets, the accuracy improves significantly for
a larger sample size. This, in fact, is consistent with the
observation in the last experiment on the cell number. A
precise histogram can help the anonymity algorithm find a
better anonymity strategy.

Figure 17 shows the monetary costs in the sampling
process. We group 100 sample questions into one HIT
(Human Intelligent Task) and assign each HIT to 5 workers.
We pay each worker $0.2 for a HIT and 30% management
fee for the AMT. More budgets lead to more feedback
answers for FKA and thus a better anonymity result.

5.5 Accuracy of Varied Attribute Number
The anonymized attributes cause information loss. When
publishing the data for crowdsourcing jobs, the human
workers must infer the results based on the incomplete
information. In these experiments, we study how the
anonymized attributes affect the accuracy of crowdsourcing.

In Figure 18 and 19, we vary the number of attributes
used in anonymity processing. In particular, besides the
quasi-identifiers, we also anonymize the sensitive attributes,
such as education and income. In the anonymity process,
we always adopt the same K value. Namely, the privacy
level is not changed. We observe that the human worker’s
performance degrades, when the number of anonymized
attributes increases. This indicates that anonymized at-
tributes generate ambiguous information for the workers
and may confuse them for their decisions. To provide a
high accuracy crowdsourcing results, we should anonymize
as fewer attributes as possible.

The performance gap between FKA and Mondrian be-
comes larger as well. This might be caused by the different
partitioning strategies. The FKA approach preserves some
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Fig. 8. Accuracy of Varied K (Synthetic
dataset)
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Fig. 9. Accuracy of Varied K (US dataset)
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Fig. 10. Accuracy of Varied K (IPUMS
dataset)
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Fig. 11. Accuracy of Varied Cell Number
(Synthetic dataset)
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Fig. 12. Accuracy of Varied Cell Number (US
dataset)
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Fig. 13. Accuracy of Varied Cell Number
(IPUMS dataset)
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Fig. 14. Effect of Sample Ratios (Synthetic
dataset)
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Fig. 15. Effect of Sample Ratios (US dataset)
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Fig. 16. Effect of Sample Ratios (IPUMS
dataset)
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Fig. 17. Monetary Cost for Sampling
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Fig. 18. Effect of Varied Attributes (US
dataset)
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Fig. 19. Effect of Varied Attributes (IPUMS
dataset)

distribution features for the anonymized attributes by the
histogram, while the Mondrian blindly groups the tuples.
We discard the diagram of the synthetic data, as in the idea
case, the accuracy is not affected much by the attribute
number.

Another observation is that if an attribute, which has
low correlation with the ground-truth values, is selected
in the anonymity process, the result accuracy will not
be affected significantly. It suggests that if we know the
correlations between the crowdsourcing result and different
attributes, we can select the attributes with lower correlation
to anonymize. This strategy can provide a higher accuracy
in the crowdsourcing.

5.6 Accuracy vs Result Number
Based on our analysis in Section III, the accuracy lower
bound of any K-Anonymity approach is determined by

the result distribution. If the human operator only has few
valid results and the result distribution is skewed, we can
get a good lower bound. Otherwise, the estimated lower
bound indicates that some K-Anonymity strategies can lead
to extremely low accuracies in the crowdsourcing. In this
experiment, we filter the datasets by discarding the tuples of
some occupations. In this way, the datasets only include tu-
ples of limited ground-truth results. Correspondingly, when
designing the crowdsourcing job, only the involved jobs are
used as the selections for the human workers. Figure 20
and 21 show the accuracies for the two datasets. In both
datasets, when increasing the number of possible results,
the accuracy of crowdsourcing drops, which verifies our
estimation for the lower bound. The FKA performs better
than the Mondrian, as it can catch the result distribution
via the feedback histograms. The diagram of the synthetic
data is discarded for the same reason as the last experiment
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Fig. 20. Lower Bound Test (US dataset)
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Fig. 21. Lower Bound Test (IPUMS dataset)

on the attribute number.

6 RELATED WORK

6.1 Crowdsourcing System
Instead of designing sophisticated computer algorithms, the
crowdsourcing system leverages human workers to solve
the problems with rich semantics. Example applications
include image annotation [15], natural language processing
[16][17] and sentiment analysis [18]. In crowdsourcing sys-
tems, the quality of the results relies on the human workers.
Mason and Watts [19] studied the effect of compensation on
performance. They found that increased incentives increase
the number of returned answers, but not the quality of
the answers. In [20], an economic model is proposed to
catch the relationship between the workers’ wages and their
working hours. The model found that the wage follows
the normal distribution in log scale approximately. The
crowdsourcing system normally assigns the same job to
multiple human workers, who may return different answers.
To resolve the conflictions between human workers, differ-
ent models [4][21] are introduced, which are all based on
the probability theory.

In database system, crowdsourcing techniques are em-
bedded as a specific database operator [1][2], which collab-
orates with other database operators to process queries. To
enable the users to express their crowdsourcing tasks, a new
query language, hQuery [22], is introduced by extending
the original SQL. Basic database algorithms, such as sort
and join, can be redesigned with the help of human com-
putations [23]. Some more complicated algorithms, such
as graph search [24], also benefit from the crowdsourcing
techniques.

6.2 K-Anonymity
To protect the privacy of individuals, the outsourced da-
ta are anonymized before publishing. The most popular
technique is K-Anonymity [5], which guarantees that each
person contained in the release cannot be distinguished
from at least k-1 individuals. In K-Anonymity, the basic
operations are generalization and suppression. General-
ization can be conducted on the attribute level [9] and
cell level [25], while suppression can be applied to the
tuple level [10] and cell level [26]. Besides the privacy
concern, the K-Anonymity approach tries to reduce the
information loss as much as possible. But as shown in many
studies [26][27], finding the optimal K-Anonymity strategy

is a NP-hard problem. Most solutions adopt the greedy-
based heuristic approaches. In this paper, we tailor a new
heuristic approach based on the workers’ feedbacks for the
crowdsourcing system. Our approach exploits the human
worker’s computation to improve the quality of anonymity.

Sometimes, K-Anonymity is not enough for guaranteeing
the privacy and hence, l-diversity is proposed to address the
problem [28]. Our solution is orthogonal to the l-diversity
and in fact, we can enforce the l-diversity in our feedback
algorithm. We will study the effect of the l-diversity to the
crowdsourcing accuracy in our future work.

7 CONCLUSION
To integrate the crowdsourcing techniques into the database
engine, we must address the privacy concern, as each
crowdsourcing job requires us to publish some sensitive
data to the anonymous human workers. In this paper, we s-
tudy how to guarantee the data privacy in the crowdsourcing
scenario. A probability-based matrix model is introduced to
estimate the lower bound and upper bound of the crowd-
sourcing accuracy for the anonymized data. The model
shows that K-Anonymity approach needs to solve the trade-
off between the privacy and the accuracy. Different from
the conventional K-Anonymity approaches, the anonymity
scheme for the crowdsourcing system must maximize the
expected accuracy of crowdsourcing. Therefore, we propose
a novel K-Anonymity approach, which exploits the crowd-
sourcing answers from the human workers progressively.
In particular, we build a feedback histogram by repeatedly
submitting the crowdsourcing jobs to collect the human’s
opinions. We then adaptively adjust the anonymity approach
to maximize the estimated accuracy. Experiments on three
different datasets show that our solution can maintain high
accuracy results for the crowdsourcing jobs.
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