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Abstract —In previous studies, association rules have been proven to be useful in classification problems over high dimensional gene
expression data. However, due to the nature of such datasets, it is often the case that millions of rules can be derived such that many
of them are covered by exactly the same set of training tuples and thus have exactly the same support and confidence. Ranking and
selecting useful rules from such equivalent rule groups remain an interesting and unexplored problem.

In this paper, we look at two interestingness measures for ranking the interestingness of rules within equivalent rule group: Max-
Subrule-Conf and Min-Subrule-Conf. Based on these interestingness measures, an incremental Apriori-like algorithm is designed to
select more interesting rules from the lower bound rules of the group. Moreover, we present an improved classification model to fully
exploit the potential of the selected rules. Our empirical studies on our proposed methods over five gene expression datasets show
that our proposals improve both the efficiency and effectiveness of the rule extraction and classifier construction over gene expression
datasets.

Index Terms —Association Rules, Gene Expression Data, Incremental Mining Framework, Robust Classification.
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aim is to find rules that accurately associate a group of genebservations of gene expression data:
states with a certain class. From Table 1, we can see that tHgbservation 1: A set of genes is interesting if it gives much
rule abcde — ¢ is applicable to row, 7, ..., 74 (also refer  better prediction power than any of its subset.
to ascoveredby rq, rg, ..., r4) and thus has a support af Observation 1 is consistent with a widely accepted prin-
and confidence of00%. However, there are also many other ciple in the rule mining community that a rule is interesting
rules generated fromy,r,,..., 74 (eExample,abce — c¢g) have  only if it provides more prediction power than its sub-rules
the same support and confidencesdsde — co. We refer to  [14]. Biologically, this also makes sense since it is a well
this whole set of rules as a rule group and they are shown iknown biological fact that genes tend to perform a certain
the left hand side of Figure 1 organized as a lattice. function in a group and the absence of even one gene will
Given a rule group, it is proven in [7] that there is an mean that the function is unlikely to be performed. Assuming
unique upper bound rule (UBRY in the rule group such that some of these functions are important in determining
that its antecedent is a superset of the antecedent of &t oththe class of a sample, finding rules that exhibit behavior
rules~’ in the rule group. In this paper, we sayis a super- of such nature will be important. Thus our first proposed
rule of v/ or 4/ is a sub-rule ofy. In Figure 1,abcde — ¢ interestingness measure callddx-Subrule-ConfMaxSQ is
is the UBR of the example rule group since it is a super-rulegeared towards finding rules that have much higher predictio
of all other rules within the group. accuracy than their sub-rules. In such a scheme, an LBR will
Presentation wise, it makes sense to present an equivaldm¢ ranked high if the maximum confidence of its sub-rules
set of rules using its UBR, since it is difficult for human is low. We note thatMaxSCis actually equivalent to the
to interpret millions of rules that can be discovered from aMinimal-Confidence-Gaifil4].
gene expression dataset. However, since the UBR is the mo@bservation 2: Gene expression datasets can contain noise
specific rule in a rule group, it tends to contain large numbeand error which can invalidate Observation 1.
of items in its antecedent, making it difficult for the biolstp Gene expression datasets are well known to be noisy
to identify the important genes, and also increasing thelue to various factors like calibration of instruments, gaa
chance of over-training when the rules are used to construgtrocessing, etc. In such a case, an interesting rule asl state
a rule-based classifier [8], [7]. Observation 1 can be corrupted due to errors in the data. For
To overcome this problem, it is proposed in [8], [7] to €xample, in Table 1, if the item “d” is somehow erroneously
use a representative set of lower bound rules (LBRs) foteft out from rowrg, then the confidence of the ruiéd — co
the purpose of classification model construction and ruleavill be increased fron80% to 100%. Similarly, if the gene
interpretation. The LBRs in a rule group are a set of rulesstate “f” is somehow detected wrongly and added into row
such that none of their sub-rules are in the rule group. In our1, then a new ruleibede f — co with 100% confidence will
running examplegbc — ¢y, ae — ¢ anded — ¢ are LBRs of ~ be created. In both cases, rules with high confidence sub-
the rule groupG. Unlike UBRs, the number of LBRs in arule rules will be created which run counter to Observation 1. In
group can be rather huge due to the high dimensionality o¥iew of this, we propose a second interestingness measure
gene expression data and a representative set must beedeledvlin-Subrule-ConfMinSQ that captures this intuition. In a
from these LBRs for constructing classification model and fo scheme that appliesinSQ as an interestingness measure,
users’ interpretation. Since LBRs are the most generasrulean LBR will be ranked high if the minimum confidence of
in a rule group, each of them tends to contain fewer genesll its sub-rules is high.
in its antecedent. Thus, the problem of over-training can be While the semantic of the two interestingness measures
reduced and each rule can be more easily interpreted introduced above is important in their own right, we also ad-
To select representative LBRs from a rule group, Congfress otherimportantissues that come with the new measures
et al. [7] take the length of the rule into consideration andThese include (1) efficiency of rule extraction based on the
select the tope shortest LBRs from each rule group for the two measures and (2) usefulness of the extracted rules in a
construction of a classifier. This is based on the heuridtic oclassification model. We summarize our contribution toward
Occam’s Razor where the shortest rules represent the simplghese various issues as follows:
explanations. However, questions remain on whether such an « We identify the problem of ranking equivalent rules from
approach is the most appropriate and whether there are other a rule group. To the best of our knowledge, the problem
more effective measures that can rank a set of equivalesd rul has so far been evaded by experts in the area.
within a rule groups. « Based on our understanding on the characteristic of
In this paper, we give a positive answer to this question  gene expression datasets, we propose two new rule
by proposing two interestingness measures that allow us to  measures, namelax-Subrule-Confand Min-Subrule-
effectively and efficiently select representative LBRsnfra Conf effective for ranking rules within a rule group.
rule group. These interestingness measures are based on twa We propose a novel algorithm that searches for the top-
k rules based on our proposed interestingness measure.

_1. In fact, it is not clear whether 'it is easier to inte(prettﬂrique UBR Our search algorithm proceeds in an incremental “diag-
with large number of genes or multiple LBRs, each with a smafhber of I" fashi d . ..
genes. Most of the biologists we work with tend to prefer therd Using onal” fashion and makes use of various heuristics and

LBRs always gives better classification accuracy though. pruning methods to ensure efficiency.



« To make full use of the extracted rules, we investigate Among the association rule based classifiers, TP}
various rule based classification schemes. Specificiallyis most related to our work. Our algorithm is different from
we propose a new model IRCBT to choose the besTOP-K in the following aspects. First, we propose two new
classifier among multiple rule-based classifiers for predinterestingness measureglaxSC and MinSC  Second, an
dicting the class of a sample. incremental LBR mining framework is developed to mine

o We test our proposals extensively on real life genethe interesting LBRs. Finally, we also propose improvement
expression datasets. The results indicate promising imstrategies for the RCBT and IRCBT is used in our work.

provement over the existing methods. Our work is closely related to those works on the in-
terestingness measure of the association rlM&SG [14]
2 RELATED WORKS is a pruning strategy in the dense dataset and very simi-

The development of micorarray technology [37] provideslar to MaxSC proposed in our work. Minimal Description
the ability to measure the expression levels of tens otength is firstly used in [17] to argue that generator is
thousands of genes in one single experiment. The generat®gtter than the closed patterns. In addition, informatiaimg
gene expression data helps us understand the mechanism[8}, [6], lift [3], significant [28], [29], entropy rankinge.g.
biological processes, thus the analysis of gene expressidaPAR[30],CMAR[18], all those interestingness measures ar
data has attracted a lot of attentions from the data miningased on the support and confidence. They do not work when
researchers. all the LBRs have the same support and confidence.

The existing gene expression data analysis algorithms can Our incremental LBR mining method is related to the
be partitioned into two categories: unsupervised and supefollowing association rule algorithms, Apriori [2], Depth
vised. Among the unsupervised methods, clustering [36] i®\PRIORI [2], Vertical Mining [31] and GR-Growth [17].
commonly used to find co-regulated genes or similar sample®ifferent from the first three methods, our incremental feam
Bayesian network is one of most popular models for genavork makes full use of the top-pruning by discovering
regulatory network reconstruction [38]; association sudee  the interesting LBRs in early stage. GR-Growth explores a
also frequently used to find interesting gene expression patp-growth framework to discover the frequent generators in
terns [9], [22], [8], [7], reconstruct gene regulatory nety  the low dimension space. Moreover it is costly to evaluate

[39], [40] and discover functional modules [33]. MaxSC and MinSC with them.
For supervised methods, the common task is predictin
the state of gene expression samples, for example, cascer w3 ~PRELIMINARIES

normal. A lot of classification models are developed, foirthe A gene expression datasBtconsists of: rows andm items.
huge application potentials. Traditional statisticaldthmeth- ~ We useR = {r1,...,m,} andZ = {I1, I, ..., I,,,} to denote
ods, machine learning methods and association rule baselde row set and item set respectively. Here, a rovepresents
classifiers are three typical main categorical methodstiisr t the ith sample’s gene expression profile, and an itgmis
task. The statistical based methods [34], [32], [38] usuall a gene expression state. Each rewconsists of a subset
select the high ranked genes and the relation among genes$ items, i.e.r; C Z. There is also a class label sét =

is not fully explored [9]. Though machine learning methods{c, ..., ¢}. Each rowr; is attached with one and only one
take the relation between the genes into considerationt mogbel fromC.

of them are "black box” and hard to interpret. For example, Given an itemsef’ C Z, therow support of 7/, R(Z') =
although SVM [4] achieves very high classification accuyracy{r; € R|Z’ C r;}, contains all rows covering the itemset
it remains hard to interpret the results. Our work belongs taZ’. Likewise, theitem support of a rowsetR’ C R is the
the association rule based classifier, taking the gendaelat set of itemsets contained by every row !, i.e. [(R') =
into consideration but interpretable to the biologists. Nrer{l; €T | I; C i}

Many association rule based gene expression analysis An association ruley, or rule for short, derived from
methods have been proposed. [9] is the first work of applyinghe datasetD, is represented asl — c,, whereA C T
association rules to find some interesting gene expressias the antecedent and, € C is the consequent. Given an
patterns. CARPENTER [22] is the first row enumerationassociation ruley, it can be interpreted as that the appearance
algorithm to find closed gene expression pattern. FARMERof itemset A entails the class label, over the row. The
[8] extends the work of CARPENTER by organizing the support ofy is defined agR(A Uc,)|, and its confidence is
association rules in rule groups and building classifiengisi the ratio |R(A U ¢,)|/|R(A)|. To simplify the notation, let
interesting LBRs. By using tog-pruning and a new classifi- sup(y) and conf(v) denote the support and confidence of
cation model, RCBT, TOHs [7] improves the efficiency of the association rule respectively.
the mining procedure and the accuracy of the classifier. In Definition 1: Rule Group
[13], the BST algorithm is proposed. Instead of generatingA rule group is a set of association rulés= {~y,...,v.}
LBRs from the rule groups, BST maintains a list of UBRs with row supportR’, iff (1)Vy € G, R(y) = R/, and (2)
for each training row and classifies new record by comparyR(v) = R’, v € G.
ing them to these UBRs. The problem of equivalent rules Two special types of rules exists in a rule growgpper
selection is not addressed there. bound rules andlower bound rules:



[ Notation | Description | sub-ruley’ : A’ — ¢, that has as much prediction capability

g ?OewneS:tX pression dataset as~. This observation implies that the items ih— A’ are
7 item set very likely to be redundant. In addition, if the LBR contains
c class label set oD only one item on the antecedent, then it obviously contains
" “tr; :?é’rvn"l‘ng which is a subset of less redundant information than other LBRs in the same rule
o L clss el e group, thus theMaxSCof such LBRs is defined to be 0.
n number of rows iR Following the principle of minimizingMaxSC can ensure
”%/ number of 'teTS i — that more compact rules will be ranked higher.
?((R/; irt(;vrvnssuupg);or:toofa; rI(tnsvaZR/ MaxSC can be regarded as a special case Mih-
~ association rule Confidence-GaifMinCG), which is proposed in [14]. Let
sup(y) | support of ruley MinCG(vy) denote theMinCG of the rule~, it is straight-
CO”LfI(V) E‘é’gf;’;ﬁgtég'ﬁo T 3 forward to verify thatMinCG(y) = 1 — MazSC(y).
1,12, -+, 1; . . .
I LBRs whose antecedent contairitems Example 2:Given Figure 1, the rqle group with  UBR
LY LynL? abcde — co contains three LBRs includingbec — co,
TABLE 2 ae — cg and cd — c¢g. The values ofMaxSCon the LBRs

can be summarized a&faxzSC(abc — ¢9) = conf(ac —
co) = 1, MazSC(ae — cy) = conf(a — ¢y) = 5/6 and
MaxSC(cd — ¢9) = conf(c — ¢9) = 5/7. Since lower
MaxSCis preferred, the LBRs will be ranked in the order
Definition 2: Upper Bound Rule (UBR) cd—cg < ae—cy < abc— cy. Therefore, the rule
Given a rule grouf, a ru|efy i A—c, is an upper bound c¢d—co is considered more valuable thaa— ¢, according
rule of G if there is no rule inG, 7/ : A’— ¢, that A’ D A. to the current measure. Similarbe — ¢ is more valuable

Table of Notations

Definition 3: Lower Bound Rule (LBR) than abc— co.

Given a rule group?, a ruley : A— ¢, is a lower bound  An important property oMaxSCis monotonicity.

rule of G if there is no rule inG, o : A’ —¢, that A’ C A. Lemma 1:Given an association rukg, for any sub-ruley’
We summarize all notations in Table 2. of v, MaxSC(y) > MaxSC(') holds.

Classifier induction is an important task performed on Proof: Assume thaty : A—c, andy’ : A’ — ¢, with
gene expression data. Towards this end, rule-based aassifiA’ C A, thenvVA” C A’, A” C A holds. Thus, any sub-rule
has been proposed for gene expression data [8], [7]. Whilef 4/ must also be sub-rule of and we havelf axSC(vy) >
these works mostly emphasize on the efficient mining ofMazSC(v'). O
UBRs that uniquely represent rule groups, the efficiency and
effectiveness of LBRs extraction from the rule groups are, , \vio subrule-Conf
almost unexplored. Our paper here aims to address the latter
issue and our formal problem definition is as follows: While Max-Subrule-Confcan reduce the redundancy in the

Given a gene expression datagaind a set of rule groups {OP- rules, we hereby propose another measure, cilied
that had been extracted fro, we aim to efficiently extract Subrule-Confto improve the robustness of the rules.

a set of LBRs from these rule groups so as to construct a Definition 5: Min-Subrule-Conf (MinSC)
classifier that can accurately predict the class of new, ense Given an association rule : A — c,, Min-Subrule-Conf of
sample. the rule is:MinSC(vy) = minarcaconf(A’ —co).
Based on the definition oMin-Subrule-Conf a rule is

4 LATTICE STRUCTURE BASED INTERESTING ranked higher if it has a higher value of MinSC As
MEASURES mention_ed earlierMinSC is designed to handle _noisy gene

expression data where rules can be corrupted in such a way
4.1 Max-Subrule-Conf that both super-rules and sub-rules can have high confidence
The first measure introduced in this sectiorMax-Subrule- Furthermore, adoptind/inSC ensures that the rules being
Conf, which intuitively explores the upper bound on the found are robust in the sense that even if some of the items are

confidence of all sub-rules. missing from the antecedent of the rule, the particularsclas
Definition 4;: Max-Subrule-Conf (MaxSC) at the consequent of the rule will still have a high chance of

Given an association ruley : A — ¢, the Max- being correct.

Subrule-Conf of the rule is defined as/axSC(y) = The adoption oMinSCis also effective in removing rules

mazacaconf(A” — ¢,). In cases wherelA| = 1, that are formed by combining some important items with

MaxSC(vy) = 0. trivial items. Trivial item is the item that has low prediuti

An LBR will be rankedhigher if it has alower MaxSC  ability. In our example dataset, the following 5 itelms, g,h
Intuitively, such ranking helps to reduce the redundancy ofandi are all trivial items since each of them appears in almost
the selected rules, for the following reasons. Considettieg all the samples and thus is not useful for class prediction.
rule v : A— c¢,, a highMaxSC(~) means that there is a For high dimensional data, the number of such trivial items



is large and they may form high confidence rules despite th&aditional search strategies, such as breadth-first apthde
fact that they are trivial items. first search, are no longer sufficiently efficient. The under-
Example 3:Take the rule group presented in Figure 1 forlying reason is that frequent patterns span across the whole
example,MinSC of the lower bounds are listed as follows: lattice space on all levels, while LBRs of the target group
MinSC(abc— cp) = conf(b— o) = 4/9, MinSC(ae—  typically lies at high levels of the lattice. Therefore, @hdth-

cp) = conf(e—cp) = 2/3, MinSC(ed— cy) = conf(d—  first search starting at the bottom of the lattice results in
¢p) = 1/2. Based on the definition dflinSC the preference large amount of processing on the intermediate levels even

order of the rules isie—c¢y < cd—cy < abc— cp. though they contain no LBR of the target rule group. This
We note thaimonotonicity also holds forMinSC leads to ineffective pruning, since pruning is usually only
Lemma 2:Given an association rukg for any sub-ruley’ plausible when sufficient LBRs of the target group have

of v, MinSC(v) < MinSC(v") holds. been discovered. On the other hand, depth-first search [31]

on the lattice prevents the verification of the LBRs, since

5 INCREMENTAL MINING OF TOP-K LBRS the sub-rules must be available during the Apriori pruning
_ _ _ - - approach based on Lemma 3. To overcome these difficulties,

In this section, we will focus on the efficient mining of top- we introduce a novel incremental LBR generation framework

k LBRs from a rule groupG, with respect toMaxSC or in the next section.

MinSC Our discussion here will be separated into three parts.

In Section 5.1, we present an incremental framework for, .
: ' ) : . .1 Incremental LBR Generation

candidate LBR generation. In Section 5.2, we discuss how thg ¢ _e enta Generatio ) ) _

two interestingness measures can be used to efficientlgeedu The new incremental LBR generation framework is a mixture

a heuristic item ordering to accelerate the mining procedur N traditional lattice search strategies, the lattice spac

Finally, the complete mining algorithm is summarized in split into levels according to the number of items involved.

Section 5.4. Consider a UBRTZ' — ¢,, without loss of generality, we

Before delving into the details of the mining algorithm, we 8SSUMEL’ = {I1, I, -, [iz,\}. The lattice space covered

first present an important property of LBR, which is similar bY this UBR consists of level$L, Lo, .. ., Lz }. EachL,
to the Apriori property of frequent pattern in transaction contains sub-rules with exactlygenes. Our new framework,

database. however, partitions the lattice space in a diagonal way.
Lemma 3:A rule v : A — ¢, is an LBR, iff VA’ C Specifically, given the same UBR of rule groGp we useL’
A (|A'| = |A| - 1), the following two statements hold to denote the set of LBRs, whose antecedents only contain

firsti genes, i.eL! = {A—c, | AC{L,I,...,I;}}. Each
L? can be further divided into sub-leve{d.¢, L}, ..., Li},

with eachL;ﬂ contains rules inL? with exactlyj genes. The
new incremental generation algorithm thus iterates frlom

(1) sup(A’—co) > sup(A—c¢o)
(2) A’ —¢, is an LBR.

Proof: "=—": According to the definition of LBR, we
have sup(A — ¢,) < sup(4A’ = ¢,). If A" — ¢, is not an

LBR, then there must exist an itehwhich satisfiesup(4'—  t© Lifl until i = |Z7], and utilizes the diagonal partition for
I—c,) = sup(A' —c,). Let A” = A — I, thenR(A” —  €ffective pruning. _

co) = R(A — ¢,), which contradicts the fact that —c, is In Algorithm 1, we present an incremental framework to
an LBR. So0,4’ —¢, is an LBR. discover all LBRs of a target rule group represented by a

"e—" If A—c, is not an LBR, there must exist a subsetu”iq“e UBR~ : I’ — ¢,. The framework generatds' first,

A" C A, which satisfiesR(A” - c,) = R(A—c,). Because which has only one LBRy : {11} — ¢,. The algorithm then
A" C A, there must exists an itemset’ which satisfies [terates taL*! on the basis of.. On the generation afi*!,

|A’| = |A] — 1 and A” C A’ C A. Then the ruled’ — ¢, a traditional breadth-first strategy is adopted, by cowsing
= = . i+1 i+l
(|A'| = |A| — 1) satisfiesR(A’ — ¢,) = R(A— c,), which ~ from Ly to Liﬁlm order. . .
contradicts with the conditioBup(A— c,) < sup(A’— c,). To constructL; ™, all LBRs in L} can be directly included
S0, A—¢, is an LBR. 7 with a new LBR~ : {I;;1} — c,. Note that the new rule
The property intuitively shows that all the sub-rules of an’Yz_TIUSt_be an LBR %fhe definition. Based on the LBRs in
LBR are also LBRs with a larger support. This is similar to L1 > higher levelsL;™" (1 < j < i+ 1) can be generated
the Apriori property used in the frequent pattern mining. Asécursively by the following formula,
such, Lemma 3 provides an efficient way to verify an LBR ji+1 _ yi | cAULt —sc. ~is an LBRY (1
by checking the support of its immediate sub-rules only. We 7+ %! {7 1 e b
can thus generate the LBRs of a rule group by enumeratinghere A—c, € L.
through the lattice space consisting of its genes, as in the The correctness of the Equation 1 is the key to the success
Apriori algorithm[2] except that we only focus on the LBRs of the incremental LBR generation framework, which is
instead of the frequent patterns. ensured by Lemma 4.
Despite of the Apriori property on the LBRs, it remains Lemma 4:L§f1 = Li, U {vly + AU L1 —
challenging to discover all LBRs from a rule group, sincec,,v is an LBR}, whereA—c, € Lj.



Algorithm 1 Incremental LBR Generation Framework

Input: D: data setlU,Z’ — ¢,: upper bound rule;
Output: LS: LBR set in rule group ot/

1. SetLS = ¢,L° = ¢;

2. for eachi from 1 to |Z’| do

3. Setj=0andLj={¢p— co};

4. while L} # ¢ do

5. L%, ,=UpdateLevelL; ', I;, U,S);
6. J=J+1L

7. ReturnLS;

8. function: UpdateLevelL!',1;,U,S5);
9. Liy, = L§'+11;

Iy
o

. for eachA—c, € L' do

11. Generate ruley: AU I; — c,;

12. if v is an LBR according to Lemma then
13. if sup(y) = sup(U) then

14. Inserty into LS,

15. else

16. Inserty into L;'-H;

17. ReturnL’;;

Proof: : First, it's obvious thatl} , C L7t} and{y|y:
AUIi41 — ¢o,7v is an LBR} C Lﬁ_ll So Lk, U{yly:
AUIi41 — ¢,y is an LBR} C L;fl holds.

Moreover, lety : A; — ¢, denote an LBR ijfl We
will show y € L? , U{y]y: AUTi11 — ¢o, 7 is an LBR}.
If I _g;‘ Ay, according to the definition OL;-H, we have
v € L;.H. Otherwise, letA = A; — I;;1, then A — ¢,
is a sub-rule ofy. According to Lemma 34 — ¢, must
be an LBR andA — ¢, € L} holds. Sovy € Lit], v €
L U{vly: AU Lty = co,7 is an LBR} holds.

So, we haveLt} = Li,, U{yly : AULy —
o, 18 an LBR}, which finishes the proof. O

The above lemma shows that’} consists of two parts,
L,y and{y]y : AU Liy1 — ¢, is an LBR}. The first
part consists of the LBRs that are of length- 1 generated

in the following descriptions.

Figure 2(a) shows initialization of the levdl!, which
consists of only one rule, i.el! = {a}, by definition. In
Figure 2(b),L? is generated on the basis &f. First, for
j = 1, a new LBRb is generated and added 1. When
j =2, the new candidateb is generated by adding the new
item b to the rulea. The algorithm verifies the validity of
ab as an LBR through Lemma 3, by comparing its support
with those ofa andb. The ruleab is thus inserted intd 3.

In Figure 2(b), two generated nodésand ab, are marked

in the shaded areas in the figures. Figure 2(c) shows the
construction ofZ.3. Similarly, whenj = 1, c is automatically
generated and added &g; for j = 2, the ruleac (resp.bc) is
extended from rule (resp.b) by adding another item. For

j = 3, the valid LBRabc is constructed by addingto theab.
Again, the new nodes fok® are marked in the shaded area
of Figure 2(c). Since the support of the ruléc is exactly
the same as that afbcde, the ruleabc is an LBR of the
target group and thus marked in dark color. By continuing
the algorithm toL* and L°, another two LBRs of the target
group{cd, ae} are discovered in Figure 2(d) and Figure 2(e)
respectively.

Note that this algorithm generates all LBRs without per-
forming any ranking. A naive implementation of téprule
selection is to rank the LBRs of the target group after the
iteration process discovers all of them. In the next section
we discuss some pruning strategies to improve the efficiency
of top-k LBR mining.

5.2 Pruning With Interestingness Measures

In Algorithm 1, all LBRs of a specified rule group are

generated. When only the tdpLBRs with respect to the

interestingness measures are required, most of the CPEscycl
of Algorithm 1 are wasted on the computation of useless
LBRs. In this subsection, we present some pruning straegie
in the incremental generation framework, generating Aop-
LBRs of the target group without iterating all LBRs. Gener-

from the firsti items. The second part is the newly generatecflly SPeaking, an intermediate rule discovered in Alganith

LBRs by taking the new items;_, ; into consideration. In the

is useful only when the extensions from it can possibly lead

incremental framework, we only need to focus on the newlyl® SOMe rules that are ranked high with respedttexSCor

generated LBRs from the second part.

The new candidate : A — ¢, needs to be confirmed as

(MinSQ.
Assume we have already discovered_.BRs of the rule

a new LBR. The level-wise structure of the LBRs providesgroup, denoted a&sS. If all super-ruley” generated fromy

an efficient way to determine whether a candidate is an LBRS N0 more interesting than the current LBRs [uf, then
by checking the conditions as Lemma 3. With the help of aY |s_not mterestlng_anymore :_:md_can be pruned safely. This
hash table off;, the testing can be done in constant time. If MOtivates our pruning strategies introduced below.

~" is an LBR of the target rule grou@, it is unnecessary to

further iterate fromm’, since any super-rule of cannot be
an LBR of G any more.

5.2.1 Pruning With Max-Subrule-Conf
For MaxSC we define the interestingness threshold as below:

Figure 2 gives a running example illustrating the incremen# = max,crs MaxzSC(vy). Given an LBR~, if all super-
tal mining of LBRs from the rule group presented with UBR rules ' generated fromy satisfy MaxSC(y") > 6, v can
abede— c,. The LBR levels{ L', L?,... L5} are generated be pruned. Thus, we are interested in tbeer bound of
in order from Figure 2(a) to Figure 2(e), to find the LBRs MaxSC('), in the pruning strategy.

of the target rule group. To facilitate a simpler preseotati

Consider the following sub-rules ef, A’ —Z — c¢,, where

without ambiguity, we use the antecedents to denote the ruleZ € A. According to the definition of the confidence, we have



Fig. 2. A Running Example of the Incremental LBR Mining Method

conf(A' =T —c,) = |R((A —T)Uc,)|/|R(A —TI)|. Let  theZ; is tighter than that of;. Thus, we only need to focus

21 = |R((A' —=T)Uc,) — R(A'Uc,)| andzy = |R(A’ —  on the l-item itemsef C A. When |Z| = 1, |R(A-T)|
Z) — R(A’") — R(c,)|, we have, can be efficiently obtained by looking up the corresponding
IR(A’ Uc,)| + a1 IR(A' Ucy)| candidate inL;4_;. Moreover,|R(A")| and |[R(A" U c,)|

conf(A'—=T — ¢,) are constants according to the definition of rule group. So,

- / = ’
[R(AD] + 2 425 = [R(A)| + 22 the lower bound of\/azSC(+') can be efficiently estimated

Becausel C AandA C A', z3 < |[R(A—I)— R(A) —  during our level-wise LBR generation.
R(co)| holds. So we have To evaluate the second portion of the lower bound,
MazSC(y) > conf(A' =T — ¢,) MaxSC(v) needs to be evaluated. In the level-wise enu-
IR(A' Uc,)| merati_on of LBRs, this can be efficiently ev:_:lluated as in
> Equation 5, as the maximal over the confidence of all

—_ ! _ _ .
[R(AY)] + |R(A - I) — R(4) R(C")|(2) immediate sub-rules and théitaxSC

Moreover, due to the monotonicity dflaxSGC we have MazSC(v) = max{max{conf(y'), MaxSC(v")}} (5)
,YI

MazSC(v') > MaxzSC(v) 3
- . . . h "is A ,AC Aand|A'| = |A| - 1.
Combining Equation 2 and Equation 3, we obtain a IowerW erey s A =G C Aand|A’ = 4]
bound of MaxSC of the rule’ as below:
Lemma 5:Given an LBRy : A— ¢, and an LBR of target  5.2.2 Pruning With Min-Subrule-Conf
groupG generated fromy, v’ : A’ —c¢,, the lower bound of

MaxSC(v') is as below. The interestingness threshold fdinSCis defined as below:
IR(A’ Uey)| 6 = min,crs MinSC(v). Given a candidate LBRy, if it
maX{IInEai( RO T |R(A—I)—R(A)—R(co)|’Mamsc(w} is guaranteed that all super-rujé generated fromy satisfy

(4 MinSC(y') < 6, then the LBRy can be pruned since we
Intuitively, the lower bound of\/azSC(v') is determined ~aim to find the topk LBRs with the highesMinSC Thus,

by two portions: the first portion is the lower bound on thewe are interested in thepper bound of MinSC(v').

confidence ofA’ — I — ¢, and the second portion is the  For MinSC a rule often has a minimal confidence on the

MaxSCof the current sub-rule being processed. The abovene-item sub-rules. As such, we pay more attention to the

lemma shows that thilaxSCof all the LBRs in a target rule confidence of the single item for boundiddginSC(v). Let

group generated from the rule is bounded by Equation 4 an®’ = R(vy) — R(y') = {r1,72,--ri}, any rowr € R’ must

we can use this bound to prune off LBRs in the early stageontain one of the following items(r) = {I|I ¢ r}, and

if we can evaluate it in an efficient way. MinSC(+') is bounded by the minimal confidence of those
For any two itemsetd; C 7, C A, we haveR(A-Z;) C  items, MinSC(v') < max;cyp () conf(I). Since the above

R(A-I,), which means that the lower bound generated frominequality holds for all the rows € R’, so we have a tighter



upper bound onV/inSC(+') as follows: with high probability. Thus, the items are heuristicallpkad
, , ) in descending order according to the importance. In additio
MinSC(v') < min et conf(I) ©) it two items have the same importance, the item with higher
Moreover, due to the monotonicity &linSC we have confidence is given higher priority.
MinSC(y') < MinSC(v) (7)y 54 Algorithm
By integrating the tope pruning strategies and the heuristic
ftem ordering with the incremental LBR generation frame-
work, we give the complete algorithm in Algorithm 2.
The algorithm takes three input parametef3:is the
discretized gene expression datadétjs the UBR of rule
groupG; k is the number of the LBRs need to be discovered.

Combining Equation 6 and Equation 7, we have the uppe
bound of MinSC(v') as follows:

Lemma 6:Given an LBR~ : A— ¢, and an LBR of the
target rule group generated from this LBRR,: A’ —c,, the
upper bound oM inSC(v') is:

min{min max conf(I), MinSC(y)} (8) First, the items are heuristically ordered according tdrthe
reR Iel(r) importance; then algorithm incrementally generates Ehe
where R’ = R(v) — R(vy') and I(r) = {I|I ¢ r}. for the first i items of the UBR by calling subfunction

The first part shows that the upper boundMinSCis  UpdateLevel .
determined by some single items in the rule. The second part During the generation of}, the subfunctiorCheckCandi-
shows that the LBRs of the target rule group are bounded bgateis called to check the_ state of new candidate: the inter-
the MinSC of its sub-rules. esting LBRs are added tb}; LBRs that is more interesting
We next discuss how Equation 8 can be evaluated effithat previously found LBRs is added to the lower bound set
ciently. The value ofmax;c (. conf(I) can be calculated LS and the interestingness threshold is updated accordingly.
in a preprocessing procedure and thus the first part of th
bound can be estimated very efficiently especially for gen CLASSIFICATION SCHEMES
expression data which have small number of rows. We will describe two classifier induction methods: RCBT [7]
For the second partMinSC of the candidate can be and IRCBT. RCBT is the state of art rule based classifier
efficiently updated in the level-wise structure, similarthat ~ induction method, which has been proposed in previous
of MaxSC works [7]. IRCBT is an improved version of RCBT by

. . . , , , reducing the risk of using trivial classifier to classify thew
MinSC(y) = Hﬂn{mm{confw ), MinSC(v)}} (9) coming samples, and we will give more details.

wherey’ is A’ —¢,, A’ C A and|A’| = |4] — 1. 6.1 RCBT

o ) RCBT is a rule-based classification model, first proposed in

5.3 Heuristic ltem Ordering [7]. By using a set of LBRs to make collective decision and
In the above incremental LBR mining framework, the ef- building standby classifiers, RCBT reduces the chance that a
ficiency of the algorithm greatly depends on the order ofsample is classified by the default classifier.
items: a proper ordering of the items ensures that high chnke RCBT hasl classifiersC L1, CLo,...,CL;. The classifier
LBRs are found in the early stage and makes the procesSL; is built from the rule group seRG;, where RG; is
more efficient through better pruning. Here, a heuristimite the union set of thgth covering rule group for each sample.
ranking method is developed by exploring the importance anéfor each rule group, RCBT finds thieshortest LBRs, those
the interestingness of the items. lower bounds will make collective decision to for@iL ;.

Our heuristic item ordering is inspired by the following For a test samplg the classifiers are run in a certain order
observations: given a rule group with upper boundZ’ —  to predict the class of. Given a classifieC'L;, it evaluates
o, If Ir € R — R(Z') (R is the universal row set) which the score of the sample with respect to each class, and the
satisfiesr N Z' = I’ — {I}, then this itemI must be found class with highest score will be the prediction result for
in each LBR of the rule groug’. Becausev’S ¢ 7' — {I},  The scoring function of the sample for lahel is as below:
R(S) D R(A)Ur andS — ¢, can't be LBR. Considering a > er ey conf (V)sup(y)

generalized case, ifNZ' =7’ — {1, I, -+ , I}, the LBR Score(t € ¢,) = (20)

of G must contain one of these items, and we can define 2over(e, conf (1) sup(y)

the importance of an item based on these observations.  whereI'(¢,) is the rule set with consequeat, andT'(c,,t)
Definition 6: Item’s replaceability and importance is a subset of'(¢,) which are covered by the sample

Given a rule groupgz with UBR Z’ — ¢,, the replaceability If any class label claims better score than any other labels,

of an item,I € 7', is defined asREP(I) = min{|Z’ — this label is returned as final result and the prediction @ssc

rNZ'| | I €r,re R— R(T)}, and the importance is the is terminated. Otherwise, next classifir;, will be invoked.

reciprocal of the replaceabilityM/ P(I) = #P(I). If no deterministic result is available aftéfL; is consumed,

Intuitively, an item with low replaceability is more impor- the sample is assigned as the default label which is the major
tant for that is contained in the LBRs of the target rule groupclass of the training samples.



Algorithm 2 Incremental Topt LBRs Mining Algorithm

Input: D: data setlU,Z’ — ¢,: upper bound rule;
Output: LS: LBR set in rule group ot/

co based orC Ly, CL3 andC L4 since the sample has much
higher score on clasg thanc;.

TABLE 3

1. Heuristic item ordering ;

2. SetLS = ¢,L° = ¢; J A test sample’s score on 5 classifiers

3. Initialize Interestingness Threshof Classifier | CL; | CLs | CLs | CLs | CLs

4. for eachi from 1 to 7’ do co 019 | 068 | 0.8 | 051 | 0.45

5. Setj=—0andLi— {6 — c); c1 021 | 053 | 0.31 | 0.42 | 0.53

s. thllf szuija?gLeve(lLifl L. U.S): The example shows that we should avoid using classifiers

8: jJ:“j T g s with trivial score difference to classify the test samplex, f

9. Return:LS: ' the re_sult of_such classifier is not statistically significaks

10. function: UpdateLevell~!,1,,U,L.S); such, in the |mprq\{ed RQBT (IRQBT) schen_1e we proposelto

11 i il J employ the classifier Wl_th the highest confld_ence to predict
A Iy il the class label for the given sample. For a given test sample

12. for eachA’—¢, € L; do ¢ and thel classifiers constructed with the same rule-based

13. Generate rulq ATV L = co; technique, all of thel classifiers are run to evaluate the
14. it CheckCandidate.L;-,.0,U) then classification score on the sample. The result of the most
15 it R(y) = R(U>. then significant classifier is selected as the final result.

16. UpdateL5 with +; Definition 7: Given a classifieC' L and a samplé, assum-

17 Updated; ing C'L’s score of the sample is the ordéi{t € ¢1) > S(t €

18. else . . c2)---S(t € ¢p)), then thesignificance of the classifier is

19. Inserty into LY ,; S(t€er) — S(t€ ca).

20. Ret“?”iLéﬂ? ) The significance of a classifier’s result on sampie given

21. function: CheckCandidal —c,, L;1, 0, U); in Definition 7, which is the score difference between the top

N
N

. for eachAd’ c A (|JA'| = |A|—1) do

two classes as predicted by the classifier. The definition is

23. if A’=c, ¢ Lj—1 then based on the observation that most of the misclassified cases
24 Returr): FALSE; take place between the top two classes with the highest.score
25. if sup(A'—c,) = sup(A—c,) then As an example, in Table 3, the significance of classifier
26. . Return: FALSE; ) CL3 is 0.49, and the sample is classified as class 0 according
27. if A’—c¢, is prunable withd then to classifierC L.

28. Return: FALSE;

29. Estimate lower bound oM axzSC(A— c,);

7 EXPERIMENTS

30. /*or Estimate lower bound offinSC(A—c,))*/

31. if Prunable with interestingness boutin In this section, the efficiency of the incremental LBR mining
32. Return: FALSE; algorithm and the usefulness dflaxSC and MinSC are
33. else studied. All Algorithms are developed in the Visual C++
34. Return: TRUE; 6.0 environment. The binary code of MaxSC, MinSC and

the IRCBT classification model is available at [41]. The
experiments are run on a server with a Quad-Core AMD
Opteron(tm) Processor 8356 (2.29GHz*16), and 127GB of
6.2 Improved RCBT RAM. In the experiments, only one CPU is used.

Although RCBT shows promising results in practice, it The following five datasets are used in the experiments:
always employs the first successful classifier to classiéy th Bortezomib [21], DLBCL [25], Leukemia [11], Lung Cancer
sample, possibly wasting the information contained in othe[12], and Prostate [26]. The general information of the five
classifiers. Furthermore, although the terminating diesss datasets is summarized in Table 4.

able to distinguish between the best label from other labels TABLE 4

the confidence of the classifier may not be sufficiently high. _ i
More often than not, we observe that classifiers that are General Information of Gene Expression Datasets

ranked lower can often predict the classification resulhwit Dataset #Gene Class Num.
i i Bortezomib | 44928 R: NR 108
higher conf}dence. DLBCL 7129 | DLBCLFL 77
Example 4:Table 3 shows the score for a test sample on 5 Teukemia | 7129 | ALLAML 75
classifiers of the DLBCL [25] dataset. When using RCBT Lung cancer| 12533 | MPM:ADCA | 181
to classify the sample, the algorithm stopscat; and it is Prostate [ 12600 | tumor:normal| 136

classified as class . But we can see that the score difference
betweency andc; is trivial. Considering this test sample in
all five classifiers, it's more reasonable to classify it asssl

Discretization is a necessary preprocess before conductin
association rule mining on gene expression data, which
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converts the continuous gene expression data to disaletiz€0 LBRs from 10 UBRs. The UBRs are extract using the
item set. Same as [7], the entropy based discretion method &gorithm in [7].

used in our work. The entropy based discretization benefits On Bortezomib, Leukemia and ProstatéinSC is the
our work from the following two aspects: 1) discretization fastest among the three algorithms. Thoughort works
performs some kind of noise reduction, which is importantefficiently on the DLBCL and Lung Cancer dataset, it is
in the noisy data; 2) most part of the label's information areextremely inefficient on other two datasets. For example,
maintain in the entrop based discretization procedure. for Prostate, it takes almost a day to finish. This is due

All experiments below are done by repeating the 3-foldto the fact that the LBRs on Prostate are actually much
cross validation procedure [16] is repeated multiple tinees longer than that of other datasets and the breath-firstiseérc
obtain average readings. In 3-fold cross validation apgrpa Shortbecomes very inefficient. For example, one of the top-1
the dataset is randomly partitioned into three sets of equdlBR of Prostate dataset contains 392 items, and the shortest
size and the algorithm is executed three times, each timeBR of this rule group contains 9 items. This means that
using one of the folds as the test set and the remaining twthe breadth-first search adopted &iort needs to generate
as the training set. 0(392%) candidates before discovering the first LBR of the
target rule group.

Though MaxSC works slower thanShort in several
datasets, it can mine out the LBRs within 10 minutes for all
We first look at the efficiency of rule extraction. Two issuesof them. This is still acceptable in real application. Among
will be studied here, first the effectiveness of the pruningthe algorithmsMinSCis the most efficient one.
strategies and heuristic item ordering, then a comparistim w

7.1 Efficiency

the short rule first approach (we shall refer to this algonitis TABLE 5

Shor)in [7]. The experimental results are based on repeating Running Time (seconds)

the 3-fold cross validation 50 times. Dataset Short | MaxSC | MinSC
Efficiency of the Pruning Strategies:Four different variants Bortezomib | 669.10 | 469.14 | 233
of th.e increment_al LBR miping algorithm are compar@j: th‘sgn&ia 127'_7284 2%2 8:;8
(basic method without pruning and heuristic item ordering) Cung Cancer| 1353 | 501.09 | 84.61
H (only with heuristic item ordering)P (only with prun- Prostate | 90459.11| 501.72 | 27.84
ing) andHP (heuristic + pruning). In the experiments, the Average | 18232.35| 318.03 | 24.47

algorithm is stopped if it can’t finish in 10000 seconds.

Figure 3 shows the running time of the four variants with
varying k when we want to find the top-LBRs based on 7.2 Classification Accuracy and Complexity
MaxSC For the Prostate dataset only tHE variant can mine  Next, we compare the classification accuracy of the three
out the topk LBRs in reasonable time (10000seconds) andule selection criteriaShor{7], MinSC and MaxSC For the
thus we skip the comparison on this dataset. For the otheflassification model, we compare IRCBT with the state of art
four datasets, the time is reported if it can complete in D000 RCBT.
seconds. From the graphs, we can see that both the pruningNote that the combinatiorShor#-RCBT, corresponds to
strategy and the heuristic item ordering strategy imprtnée t the Top-K method proposed in [7]. For the purpose of
efficiency of the algorithm dramaticallfdP improves the fair comparison, the top-10 covering rule groups of each
efficiency of the basic incremental LBR mining algorithm sample are discovered and top-20 LBRs are generated for
by about 2 orders of magnitude. Moreover, tHevariant  each rule group. These are the optimal parameter settings
generally spends more time th&n This is because, though of Short+RCBT[7]. In addition, our method is compared
H can find some interesting LBRs in the early stage, thoseith the state of art classifier SVM which is implemented
LBRs can't be used to prune non-interesting candidates anbased orib-SVM version 2.87 [1]. To keep the comparisons
the search space is still very large. fair, SVM is run using the same genes selected by entropy

Figure 4 shows the running time of the four variants with discretization, but with normalized real values of the gene
varying £ when we want to find the top-LBRs based expression data. The parameter of SVM is tuned with 3-fold
on MinSC Similar to the experimental results &1axSC  cross validation on the training data.
only the HP variant can complete in reasonable time on the Table 6 shows the classification accuracy of the 7 variants
Prostate dataset, and only the experimental results on then the five datasets. All results are based on the average of 50
other four datasets are presented. Figure 4 showsHRat 3-fold cross validation. The deviation from the average are
improves the efficiency of the basic incremental LBR miningalso recorded in Table 6. The best classification accuracy of
algorithm by about 2 orders of magnitude in all datasets. each dataset is presented in bold. GenerMinSC+IRCBT
Comparisons with other methods: We next compare the achieves the best performance among all variants with the
running time of our algorithm with that oShort[7]. The  highest average accuracy and is also the top performance for
computational time on the five datasets is presented ifour out of five datasets. Furthermore, its deviation from th
Table 5. In all the experiments here, we try to find the topaverage is also comparable to all the other variants. Infiact
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TABLE 6
Classification Accuracy (%)
Interestingness Measurg Short[7] MaxSC MinSC
Classifier SVM RCBT IRCBT RCBT IRCBT RCBT IRCBT
Bortezomib 66.10+-4.22 | 64.3A4-3.94 | 66.46t4.16 | 63.814+-4.48 | 65.913.55 | 65.19+4.10 | 66.52£3.81
DLBCL 88.42+-3.52 | 84.42+4.70 | 86.91+4.85 | 81.79+3.87 | 84.81:3.63 | 84.75-4.30 | 86.88£3.33
Leukemia 91.41+4.11 | 83.53+4.26 | 87.08:3.64 | 83.4A-4.21 | 87.06£3.61 | 93.69:2.38 | 95.28£2.04
Lung Cancer 95.92+0.33 | 97.86+0.95 | 98.50G+0.72 | 92.00+1.85 | 92.88:0.42 | 98.84-0.56 | 99.13£0.42
Prostate 76.41+5.21 | 73.38:3.15 | 75.00:£3.92 | 73.9A4-3.57 | 76.69:3.95 | 76.18:3.94 | 77.28£3.82
Average 83.65 80.71 82.79 79.01 81.47 83.73 85.02
TABLE 7
Complexity of Classifiers
Interestingness Measurg Short[7] MaxSC MinSC
Length Num. of Genes| Leng. of Rules| Num. of Genes| Leng. of Rules| Num. of Genes| Leng. of Rules
Bortezomib 212.20t30.74 4.50+0.29 80.85+-12.80 7.10+0.50 55.15+4.10 6.06+0.40
DLBCL 145.6720.67 2.80+0.26 148.52+28.76 3.83+0.52 70.71:10.50 3.50+0.29
Leukemia 144.00E28.26 2.914+0.73 144.44+27.80 4.08+0.36 63.53+7.07 3.05+0.18
Lung Cancer 121.0419.58 2.70+0.28 125.23+23.07 5.914+-0.63 58.95+6.52 3.1H40.24
Prostate 192.6+13.82 7.83+0.63 97.90£24.27 8.22+-0.64 84.70+15.71 8.144+0.80

the Lung Cancer dataset where it has always 99% predictiois very small, increasing the number of LBRs improves the
accuracy, its deviation from the mean accuracy is the lawestccuracy of all methods. This is because when there are
Surprisingly, despite the fact tha¥laxSCis the most too few LBRs, the important information of the training
widely accepted interestingness measure [14], none of thdataset cannot be captured. When the number of LBRs is
variants involving it came out top in the performance. Ourlarger than 10, the classifier has already captured the main
explanation for this interesting result is that the noisjura  information of the dataset and adding more LBRs won't
of gene expression data in fact renders the statistical anidnprove the accuracy of the algorithms. Moreover, when too
biological reasoning behinlaxSC useless and that more many LBRs are selected, some less interesting LBRs will be
work must be done to take noise into account when designingelected which will have negative effect to the accuracyef t
interestingness measure for ranking rules. classifier. The decreasing BinSCG+HIRCBT’s accuracy when
Sensitivity to parameter settings: Figure 5(a) shows the 80 LBRs are selected, verifies such property. This pheromone
effect of varying number of LBRs and UBRs on the classifi-also shows the necessary of LBR selection.
cation accuracy for dataset DLBCL. Studies on other degaset Figure 5(b) shows the change of the accuracy with the
give similar result. Generally, the algorithms are robodtie  number of UBRs. When the number of UBRs is very small,
number of LBRs and the number of UBRs. increasing the number of UBRs improves the accuracy. When
In detail, Figure 5(a) shows that when the number of LBRsthe number of UBRs is large, the accuracies of IRCBT
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increase with the number of UBRs. This doesn’t happen t@wombinations of rules to maximize the prediction quality.
RCBT because RCBT only uses the first covering classifieTherefore, some rules with weak individual prediction il

to classify the testing samples. If a testing sample can bahich may be ranked low in most rule analysis, can play
handled by a small set of classifiers, the increasing of §tand important role on performance improvements. In this group
classifiers has no effect on the classification accuracyBIRC of the sections, we will illustrate some example rules with
on the other hand uses the most significant classifier téow rank but high biological interestingness.

classify the testing sample, and all the classifiers’ infation The mutual information based gene ranking [20] is used
is explored before making prediction. as the benchmark of the ranking based algorithms. The high
ranked genes are generally considered more interestimg tha

e [ parscincer ~o— others and attract a lot of attentions, such as the genes MCM7

g5 | MINSC+RCBT %

MinSCHRCST & RCH1, CIP2 and CD69 in the DLBCL dataset [25]. However,

as mentioned in Observation 1 in the introduction section,
genes often perform certain function as a group and might
not exhibit correlation with the class attribute in an iseth

L s 10 0 40w L5 10 0 4w manner. Here, we will illustrate how such genes can be

Accuracy (%)
Accuracy (%)

e o e derived by adopting our interestingness measures and gninin
(a) Varying Num. of LBRs (b) Varying Num. of UBRs methodology.
Fig. 5. Sensitivity to the Parameters We focus on genes that occur very often in the rules that

we extracted based oMaxSCand MinSC The genes are
Complexity of the Classifiers: We next look at the com- listed (heuristically, occur in more than 50 rules for bdtle t
plexity of the classifiers that are being built. Table 7 showsmeasures) are listed in Table 8 together with their ranking
the average number of genes and the average length of tf@sed on mutual information. As can be seen, except for
rules that are involved in the classifiers for each of thethe first gene, all the other three genes are ranked low.
interestingness measure. Note that since RCBT and IRCBfFurthermore, these genes do not occur that frequently when
use exactly the same set of rules, there is no need tthe shortest rule measure is being used. We will next look at

distinguish between these two classification schemes. the biological significance of these genes.
As expected, sinc8hortalways chooses the shortest rules,
the average length of the rules selectedSiortis always TABLE 8 ]
lower thanMaxSCand MinSC Short follows the belief of Common Frequent Genes of MaxSC and MinSC
Occam’s Razor that using the shortest rule in a rule-based Gene | Rank | Frequency| Frequency| Frequency
classifier results in a much simpler classification mode].[19 e in 220” in 'V('Sixsc in |\gi:sc
However, when we measure the complexity of the model RPL26 | 89 57 5 5
using the average number of genes involved in the classifier, STRAL3 | 184 18 89 122
this conventional belief does not hold anymore. As can be NR1D2 | 494 11 94 56

seen from Table 7, wheMinSCis used as the interestingness

measure, the number of genes that involved in a classifier is Among all the genes, MCM7 is ranked the most significant

substantially lower when compared &hort For example, based on both mutual information and our proposed inter-

given the Leukemia dataset, the classifier built usiigSC  estingness measures. This is hardly surprising since MCM7

involved on average 63.53 genes. Wh8tortused around is homologeous to the DNA replication licensing factor

144.00 genes to build a classifier that lost out substaptiall CDC47 and is known to be highly associated with cellular

MinSCin term of prediction accuracy. ComparedNtaxSG  proliferation and related to DLBCL[25].

MinSCs advantage is slightly reduced but is still substantial. The other three genes are RPL26, STRA13 and NR1D2
Note that involving a small number of genes in thewhich are all ranked low based on mutual information. Those

classifier is also important in this case to biologists ay the genes are not well known in the research on DLBCL and FL.

can focus on a smaller set of genes for investigation. However, there are extensive biological evidences showing
S _ that these three genes are related to DLBCL or FL. RPL26,
7.3 Biological Interpretation Ribosomal Protein L26, is found to control p53 translation

One motivation for extracting rules from gene expressiorand induction after DNA damage[27] and DNA damage
datasets is the ease of interpretation by the biologistse,He is considered as the most possible inducement of B-cell
we show some interesting results on the DLBCL dataset ttymphoma [10]. As stated in [23], [24], STRA13 expression
illustrate this fact. The task on DLBCL is to classify two sub is developmentally regulated during B cell differentiatio
class of lymphoma (immune system cancer), Diffuse Largerocedure, highly related to DLBCL and FL. NR1D2 is a
B-Cell lymphoma (DLBCL) and Follicular Lymphoma (FL). member of nuclear receptor subfamily 1, which is found to
We would like to emphasize that our problem is differentbe a new immune regulatory gene[15] and highly related to
from traditional ranking based methods. Instead of discove immune system cancer.
ing the strongest rules, our method tries to find the optimal Finally, we see the three genes discovered by our algorithm



are with low rank by traditional method, but with high [15]
biological interestingness. This verifies our motivatiamda
implies the advantage of our rule based method.

(16]

8 CONCLUSIONS

In this paper, we propose two interestingness measuregg;
MaxSC and MinSG to rank LBRs within the same rule
group. Considering the lattice structure of the LBRs, thesél
two interestingness measures provide more information obg)
the LBRs than traditional measures. An incremental kop-
LBR mining framework is also developed to find the most[Zl]
interesting LBRs with respect tMaxSC or MinSC This
framework discovers interesting LBRs in the early stage
of enumeration which maximizes the effectiveness of top12
k pruning. Although the framework focuses on efficient 23]
mining of the topk LBRs with the proposed measures, it
can be easily extended to mining téppatterns and rules
with different interestingness measures. To make full dse o
the extracted rules, we introduce an additional classifinat
scheme called IRCBT on the basis of traditional RCBT 2!
scheme. Experiments on various gene expression datasets
show the efficiency and effectiveness of our proposals. [26]

(17]

[24]

[27]
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