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What is Unequal among the Equals? Ranking
Equivalent Rules from Gene Expression Data

Ruichu Cai, Anthony K. H. Tung, Zhenjie Zhang, Zhifeng Hao

Abstract —In previous studies, association rules have been proven to be useful in classification problems over high dimensional gene
expression data. However, due to the nature of such datasets, it is often the case that millions of rules can be derived such that many
of them are covered by exactly the same set of training tuples and thus have exactly the same support and confidence. Ranking and
selecting useful rules from such equivalent rule groups remain an interesting and unexplored problem.
In this paper, we look at two interestingness measures for ranking the interestingness of rules within equivalent rule group: Max-
Subrule-Conf and Min-Subrule-Conf. Based on these interestingness measures, an incremental Apriori-like algorithm is designed to
select more interesting rules from the lower bound rules of the group. Moreover, we present an improved classification model to fully
exploit the potential of the selected rules. Our empirical studies on our proposed methods over five gene expression datasets show
that our proposals improve both the efficiency and effectiveness of the rule extraction and classifier construction over gene expression
datasets.

Index Terms —Association Rules, Gene Expression Data, Incremental Mining Framework, Robust Classification.
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1 INTRODUCTION

ALL ARE EQUAL, BUT SOME ARE MORE EQUAL THAN OTH-
ERS.

George Orwell, “Animal Farm”

Recent studies [5], [6], [7], [8], [22] have shown that
association rules are helpful in the analysis of the gene
expression data, especially for the reconstruction of gene
expression network and disease classification. As a form of
knowledge representation, association rules are also popular
among biologists due to their simplicity for interpretation.

However, because of the high dimensionality and limited
number of samples of gene expression data, association rules
discovered from these datasets tend to suffer from combina-
torial explosion. When millions of rules are discovered in the
gene expression data, it is important to provide a systematic
mechanism to select the most valuable ones. In our previous
work [8], [7], a partial solution is provided by grouping set
of rules into equivalent class called rule group. Rules within
the same rule group are derived from exactly the same set
of rows (or patient samples) and as a result have exactly the
same support and confidence.
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i ri class
1 a, b, c, d, e, g, h, i c0
2 a, b, c, d, e, f, h, i c0
3 a, b, c, d, e, f, g, i c0
4 a, b, c, d, e, f, g, h c0
5 a, c, f, g, h, i c0
6 a, b, d, f, g, h, i c1
7 b, c, f, g, h, i c1
8 b, c, e, f, g, h, i c1
9 b, d, e, f, g, h, i c1
10 b, d, f, g, h, i c1

TABLE 1
Example Dataset
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Fig. 1. Example Rule Group

Example 1:Consider the dataset in Table 1 which has 10
training samples each belonging to one of the two classesc0
and c1. Here, the alphabets “a”, ..., “i” represent the genes’
expression states that are either expressed or suppressed.Our
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aim is to find rules that accurately associate a group of gene
states with a certain class. From Table 1, we can see that the
rule abcde→c0 is applicable to rowr1, r2, ..., r4 (also refer
to ascoveredby r1, r2, ..., r4) and thus has a support of4
and confidence of100%. However, there are also many other
rules generated fromr1,r2,..., r4 (example,abce→ c0) have
the same support and confidence asabcde→c0. We refer to
this whole set of rules as a rule group and they are shown in
the left hand side of Figure 1 organized as a lattice.

Given a rule group, it is proven in [7] that there is an
unique upper bound rule (UBR)γ in the rule group such
that its antecedent is a superset of the antecedent of all other
rulesγ′ in the rule group. In this paper, we sayγ is a super-
rule of γ′ or γ′ is a sub-rule ofγ. In Figure 1,abcde→ c0
is the UBR of the example rule group since it is a super-rule
of all other rules within the group.

Presentation wise, it makes sense to present an equivalent
set of rules using its UBR, since it is difficult for human
to interpret millions of rules that can be discovered from a
gene expression dataset. However, since the UBR is the most
specific rule in a rule group, it tends to contain large number
of items in its antecedent, making it difficult for the biologists
to identify the important genes, and also increasing the
chance of over-training when the rules are used to construct
a rule-based classifier [8], [7].

To overcome this problem, it is proposed in [8], [7] to
use a representative set of lower bound rules (LBRs) for
the purpose of classification model construction and rules
interpretation. The LBRs in a rule group are a set of rules
such that none of their sub-rules are in the rule group. In our
running example,abc→c0, ae→c0 andcd→c0 are LBRs of
the rule groupG. Unlike UBRs, the number of LBRs in a rule
group can be rather huge due to the high dimensionality of
gene expression data and a representative set must be selected
from these LBRs for constructing classification model and for
users’ interpretation. Since LBRs are the most general rules
in a rule group, each of them tends to contain fewer genes
in its antecedent. Thus, the problem of over-training can be
reduced and each rule can be more easily interpreted1.

To select representative LBRs from a rule group, Cong
et al. [7] take the length of the rule into consideration and
select the top-k shortest LBRs from each rule group for the
construction of a classifier. This is based on the heuristic of
Occam’s Razor where the shortest rules represent the simplest
explanations. However, questions remain on whether such an
approach is the most appropriate and whether there are other
more effective measures that can rank a set of equivalent rules
within a rule groups.

In this paper, we give a positive answer to this question
by proposing two interestingness measures that allow us to
effectively and efficiently select representative LBRs from a
rule group. These interestingness measures are based on two

1. In fact, it is not clear whether it is easier to interpret anunique UBR
with large number of genes or multiple LBRs, each with a smallnumber of
genes. Most of the biologists we work with tend to prefer the later. Using
LBRs always gives better classification accuracy though.

observations of gene expression data:
Observation 1: A set of genes is interesting if it gives much
better prediction power than any of its subset.

Observation 1 is consistent with a widely accepted prin-
ciple in the rule mining community that a rule is interesting
only if it provides more prediction power than its sub-rules
[14]. Biologically, this also makes sense since it is a well
known biological fact that genes tend to perform a certain
function in a group and the absence of even one gene will
mean that the function is unlikely to be performed. Assuming
that some of these functions are important in determining
the class of a sample, finding rules that exhibit behavior
of such nature will be important. Thus our first proposed
interestingness measure calledMax-Subrule-Conf(MaxSC) is
geared towards finding rules that have much higher prediction
accuracy than their sub-rules. In such a scheme, an LBR will
be ranked high if the maximum confidence of its sub-rules
is low. We note thatMaxSC is actually equivalent to the
Minimal-Confidence-Gain[14].
Observation 2: Gene expression datasets can contain noise
and error which can invalidate Observation 1.

Gene expression datasets are well known to be noisy
due to various factors like calibration of instruments, image
processing, etc. In such a case, an interesting rule as stated in
Observation 1 can be corrupted due to errors in the data. For
example, in Table 1, if the item “d” is somehow erroneously
left out from rowr6, then the confidence of the ruleabd→c0
will be increased from80% to 100%. Similarly, if the gene
state “f” is somehow detected wrongly and added into row
r1, then a new ruleabcdef→c0 with 100% confidence will
be created. In both cases, rules with high confidence sub-
rules will be created which run counter to Observation 1. In
view of this, we propose a second interestingness measure
Min-Subrule-Conf(MinSC) that captures this intuition. In a
scheme that applies (MinSC) as an interestingness measure,
an LBR will be ranked high if the minimum confidence of
all its sub-rules is high.

While the semantic of the two interestingness measures
introduced above is important in their own right, we also ad-
dress other important issues that come with the new measures.
These include (1) efficiency of rule extraction based on the
two measures and (2) usefulness of the extracted rules in a
classification model. We summarize our contribution towards
these various issues as follows:

• We identify the problem of ranking equivalent rules from
a rule group. To the best of our knowledge, the problem
has so far been evaded by experts in the area.

• Based on our understanding on the characteristic of
gene expression datasets, we propose two new rule
measures, namelyMax-Subrule-ConfandMin-Subrule-
Conf, effective for ranking rules within a rule group.

• We propose a novel algorithm that searches for the top-
k rules based on our proposed interestingness measure.
Our search algorithm proceeds in an incremental “diag-
onal” fashion and makes use of various heuristics and
pruning methods to ensure efficiency.
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• To make full use of the extracted rules, we investigate
various rule based classification schemes. Specificially,
we propose a new model IRCBT to choose the best
classifier among multiple rule-based classifiers for pre-
dicting the class of a sample.

• We test our proposals extensively on real life gene
expression datasets. The results indicate promising im-
provement over the existing methods.

2 RELATED WORKS

The development of micorarray technology [37] provides
the ability to measure the expression levels of tens of
thousands of genes in one single experiment. The generated
gene expression data helps us understand the mechanism of
biological processes, thus the analysis of gene expression
data has attracted a lot of attentions from the data mining
researchers.

The existing gene expression data analysis algorithms can
be partitioned into two categories: unsupervised and super-
vised. Among the unsupervised methods, clustering [36] is
commonly used to find co-regulated genes or similar samples;
Bayesian network is one of most popular models for gene
regulatory network reconstruction [38]; association rules are
also frequently used to find interesting gene expression pat-
terns [9], [22], [8], [7], reconstruct gene regulatory network
[39], [40] and discover functional modules [33].

For supervised methods, the common task is predicting
the state of gene expression samples, for example, cancer v.s.
normal. A lot of classification models are developed, for their
huge application potentials. Traditional statistical based meth-
ods, machine learning methods and association rule based
classifiers are three typical main categorical methods for this
task. The statistical based methods [34], [32], [38] usually
select the high ranked genes and the relation among genes
is not fully explored [9]. Though machine learning methods
take the relation between the genes into consideration, most
of them are ”black box” and hard to interpret. For example,
although SVM [4] achieves very high classification accuracy,
it remains hard to interpret the results. Our work belongs to
the association rule based classifier, taking the gene relation
into consideration but interpretable to the biologists.

Many association rule based gene expression analysis
methods have been proposed. [9] is the first work of applying
association rules to find some interesting gene expression
patterns. CARPENTER [22] is the first row enumeration
algorithm to find closed gene expression pattern. FARMER
[8] extends the work of CARPENTER by organizing the
association rules in rule groups and building classifier using
interesting LBRs. By using top-k pruning and a new classifi-
cation model, RCBT, TOP-K [7] improves the efficiency of
the mining procedure and the accuracy of the classifier. In
[13], the BST algorithm is proposed. Instead of generating
LBRs from the rule groups, BST maintains a list of UBRs
for each training row and classifies new record by compar-
ing them to these UBRs. The problem of equivalent rules
selection is not addressed there.

Among the association rule based classifiers, TOP-K[7]
is most related to our work. Our algorithm is different from
TOP-K in the following aspects. First, we propose two new
interestingness measures,MaxSC and MinSC. Second, an
incremental LBR mining framework is developed to mine
the interesting LBRs. Finally, we also propose improvement
strategies for the RCBT and IRCBT is used in our work.

Our work is closely related to those works on the in-
terestingness measure of the association rules.MCG [14]
is a pruning strategy in the dense dataset and very simi-
lar to MaxSC proposed in our work. Minimal Description
Length is firstly used in [17] to argue that generator is
better than the closed patterns. In addition, information gain
[5], [6], lift [3], significant [28], [29], entropy ranking,e.g.
CPAR[30],CMAR[18], all those interestingness measures are
based on the support and confidence. They do not work when
all the LBRs have the same support and confidence.

Our incremental LBR mining method is related to the
following association rule algorithms, Apriori [2], Depth
APRIORI [2], Vertical Mining [31] and GR-Growth [17].
Different from the first three methods, our incremental frame-
work makes full use of the top-k pruning by discovering
the interesting LBRs in early stage. GR-Growth explores a
fp-growth framework to discover the frequent generators in
the low dimension space. Moreover it is costly to evaluate
MaxSC and MinSC with them.

3 PRELIMINARIES

A gene expression datasetD consists ofn rows andm items.
We useR = {r1, ..., rn} andI = {I1, I2, ..., Im} to denote
the row set and item set respectively. Here, a rowri represents
the ith sample’s gene expression profile, and an itemIj is
a gene expression state. Each rowri consists of a subset
of items, i.e.ri ⊆ I. There is also a class label setC =
{c1, . . . , cl}. Each rowri is attached with one and only one
label fromC.

Given an itemsetI ′ ⊆ I, therow support of I ′, R(I ′) =
{ri ∈ R|I ′ ⊆ ri}, contains all rows covering the itemset
I ′. Likewise, theitem support of a rowsetR′ ⊆ R is the
set of itemsets contained by every row inR′, i.e. I(R′) =
∩ri∈R′{Ij ∈ I | Ij ⊆ ri}.

An association ruleγ, or rule for short, derived from
the datasetD, is represented asA → co, whereA ⊂ I
is the antecedent andco ∈ C is the consequent. Given an
association ruleγ, it can be interpreted as that the appearance
of itemsetA entails the class labelco over the row. The
support ofγ is defined as|R(A ∪ co)|, and its confidence is
the ratio |R(A ∪ co)|/|R(A)|. To simplify the notation, let
sup(γ) and conf(γ) denote the support and confidence of
the association ruleγ respectively.

Definition 1: Rule Group
A rule group is a set of association rulesG = {γ1, . . . , γr}
with row supportR′, iff (1)∀γ ∈ G, R(γ) = R′, and (2)
∀R(γ) = R′, γ ∈ G.

Two special types of rules exists in a rule group:upper
bound rules and lower bound rules:
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Notation Description

D gene expression dataset
R row set
I item set
C class label set ofD
ri ith row in R, which is a subset ofI
Ij jth item in I
co oth class label inC
n number of rows inR
m number of items inI

R(I′) row support of an item setI′

I(R′) item support of a row setR′

γ association rule
sup(γ) support of ruleγ
conf(γ) confidence of ruleγ

Li LBRs generated from{I1, I2, · · · , Ii}
Lj LBRs whose antecedent containj items
Li
j Lj ∩ Li

TABLE 2
Table of Notations

Definition 2: Upper Bound Rule (UBR)
Given a rule groupG, a ruleγ : A→co is an upper bound
rule of G if there is no rule inG, γ′ : A′→co thatA′ ) A.

Definition 3: Lower Bound Rule (LBR)
Given a rule groupG, a ruleγ : A→ co is a lower bound
rule ofG if there is no rule inG, γ′ : A′→co thatA′ ( A.

We summarize all notations in Table 2.
Classifier induction is an important task performed on

gene expression data. Towards this end, rule-based classifier
has been proposed for gene expression data [8], [7]. While
these works mostly emphasize on the efficient mining of
UBRs that uniquely represent rule groups, the efficiency and
effectiveness of LBRs extraction from the rule groups are
almost unexplored. Our paper here aims to address the latter
issue and our formal problem definition is as follows:

Given a gene expression datasetD and a set of rule groups
that had been extracted fromD, we aim to efficiently extract
a set of LBRs from these rule groups so as to construct a
classifier that can accurately predict the class of new, unseen
sample.

4 LATTICE STRUCTURE BASED INTERESTING
MEASURES

4.1 Max-Subrule-Conf

The first measure introduced in this section isMax-Subrule-
Conf, which intuitively explores the upper bound on the
confidence of all sub-rules.

Definition 4: Max-Subrule-Conf (MaxSC)
Given an association ruleγ : A → co, the Max-
Subrule-Conf of the rule is defined as:MaxSC(γ) =
maxA′(Aconf(A

′ → co). In cases where|A| = 1,
MaxSC(γ) = 0.

An LBR will be rankedhigher if it has a lower MaxSC.
Intuitively, such ranking helps to reduce the redundancy of
the selected rules, for the following reasons. Consideringthe
rule γ : A→ co, a highMaxSC(γ) means that there is a

sub-ruleγ′ : A′→co that has as much prediction capability
asγ. This observation implies that the items inA − A′ are
very likely to be redundant. In addition, if the LBR contains
only one item on the antecedent, then it obviously contains
less redundant information than other LBRs in the same rule
group, thus theMaxSC of such LBRs is defined to be 0.
Following the principle of minimizingMaxSC can ensure
that more compact rules will be ranked higher.

MaxSC can be regarded as a special case ofMin-
Confidence-Gain(MinCG), which is proposed in [14]. Let
MinCG(γ) denote theMinCG of the ruleγ, it is straight-
forward to verify thatMinCG(γ) = 1−MaxSC(γ).
Example 2:Given Figure 1, the rule group with UBR
abcde → c0 contains three LBRs includingabc → c0,
ae → c0 and cd → c0. The values ofMaxSCon the LBRs
can be summarized asMaxSC(abc → c0) = conf(ac →
c0) = 1, MaxSC(ae → c0) = conf(a → c0) = 5/6 and
MaxSC(cd → c0) = conf(c → c0) = 5/7. Since lower
MaxSC is preferred, the LBRs will be ranked in the order
cd → c0 ≺ ae → c0 ≺ abc → c0. Therefore, the rule
cd→c0 is considered more valuable thanae→c0, according
to the current measure. Similarlyae→ c0 is more valuable
thanabc→c0.

An important property ofMaxSCis monotonicity.
Lemma 1:Given an association ruleγ, for any sub-ruleγ′

of γ, MaxSC(γ) ≥ MaxSC(γ′) holds.
Proof: Assume thatγ : A→co andγ′ : A′→co with

A′ ⊂ A, then∀A′′ ⊂ A′, A′′ ⊂ A holds. Thus, any sub-rule
of γ′ must also be sub-rule ofγ and we haveMaxSC(γ) ≥
MaxSC(γ′).

4.2 Min-Subrule-Conf

While Max-Subrule-Confcan reduce the redundancy in the
top-k rules, we hereby propose another measure, calledMin-
Subrule-Conf, to improve the robustness of the rules.

Definition 5: Min-Subrule-Conf (MinSC)
Given an association ruleγ : A→ co, Min-Subrule-Conf of
the rule is:MinSC(γ) = minA′⊆Aconf(A

′→co).
Based on the definition ofMin-Subrule-Conf, a rule is

ranked higher if it has a higher value of MinSC. As
mentioned earlier,MinSC is designed to handle noisy gene
expression data where rules can be corrupted in such a way
that both super-rules and sub-rules can have high confidence.
Furthermore, adoptingMinSC ensures that the rules being
found are robust in the sense that even if some of the items are
missing from the antecedent of the rule, the particular class
at the consequent of the rule will still have a high chance of
being correct.

The adoption ofMinSC is also effective in removing rules
that are formed by combining some important items with
trivial items. Trivial item is the item that has low prediction
ability. In our example dataset, the following 5 itemsb, f , g,h
andi are all trivial items since each of them appears in almost
all the samples and thus is not useful for class prediction.
For high dimensional data, the number of such trivial items
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is large and they may form high confidence rules despite the
fact that they are trivial items.
Example 3:Take the rule group presented in Figure 1 for
example,MinSC of the lower bounds are listed as follows:
MinSC(abc→ c0) = conf(b→ c0) = 4/9, MinSC(ae→
c0) = conf(e→ c0) = 2/3, MinSC(cd→ c0) = conf(d→
c0) = 1/2. Based on the definition ofMinSC, the preference
order of the rules isae→c0 ≺ cd→c0 ≺ abc→c0.

We note thatmonotonicity also holds forMinSC.
Lemma 2:Given an association ruleγ, for any sub-ruleγ′

of γ, MinSC(γ) ≤ MinSC(γ′) holds.

5 INCREMENTAL MINING OF TOP-K LBR S

In this section, we will focus on the efficient mining of top-
k LBRs from a rule groupG, with respect toMaxSC or
MinSC. Our discussion here will be separated into three parts.
In Section 5.1, we present an incremental framework for
candidate LBR generation. In Section 5.2, we discuss how the
two interestingness measures can be used to efficiently reduce
the search space of the top-k rules. In Section 5.3, we propose
a heuristic item ordering to accelerate the mining procedure.
Finally, the complete mining algorithm is summarized in
Section 5.4.

Before delving into the details of the mining algorithm, we
first present an important property of LBR, which is similar
to the Apriori property of frequent pattern in transaction
database.

Lemma 3:A rule γ : A → co is an LBR, iff ∀A′ ⊂
A (|A′| = |A| − 1), the following two statements hold
(1) sup(A′→co) > sup(A→co)
(2) A′→co is an LBR.

Proof: ”=⇒”: According to the definition of LBR, we
havesup(A → co) < sup(A′ → co). If A′ → co is not an
LBR, then there must exist an itemI which satisfiessup(A′−
I → co) = sup(A′ → co). Let A′′ = A − I, thenR(A′′ →
c0) = R(A → co), which contradicts the fact thatA→ co is
an LBR. So,A′→co is an LBR.

”⇐=”: If A→co is not an LBR, there must exist a subset
A′′ ( A, which satisfiesR(A′′→co) = R(A→co). Because
A′′ ( A, there must exists an itemsetA′ which satisfies
|A′| = |A| − 1 andA′′ ⊆ A′ ⊆ A. Then the ruleA′ → co
(|A′| = |A| − 1) satisfiesR(A′ → co) = R(A→ co), which
contradicts with the conditionsup(A→co) < sup(A′→co).
So,A→co is an LBR.

The property intuitively shows that all the sub-rules of an
LBR are also LBRs with a larger support. This is similar to
the Apriori property used in the frequent pattern mining. As
such, Lemma 3 provides an efficient way to verify an LBR
by checking the support of its immediate sub-rules only. We
can thus generate the LBRs of a rule group by enumerating
through the lattice space consisting of its genes, as in the
Apriori algorithm[2] except that we only focus on the LBRs
instead of the frequent patterns.

Despite of the Apriori property on the LBRs, it remains
challenging to discover all LBRs from a rule group, since

traditional search strategies, such as breadth-first and depth-
first search, are no longer sufficiently efficient. The under-
lying reason is that frequent patterns span across the whole
lattice space on all levels, while LBRs of the target group
typically lies at high levels of the lattice. Therefore, a breadth-
first search starting at the bottom of the lattice results in
large amount of processing on the intermediate levels even
though they contain no LBR of the target rule group. This
leads to ineffective pruning, since pruning is usually only
plausible when sufficient LBRs of the target group have
been discovered. On the other hand, depth-first search [31]
on the lattice prevents the verification of the LBRs, since
the sub-rules must be available during the Apriori pruning
approach based on Lemma 3. To overcome these difficulties,
we introduce a novel incremental LBR generation framework
in the next section.

5.1 Incremental LBR Generation

The new incremental LBR generation framework is a mixture
of depth-first and breadth first search in the LBR lattice space.
In traditional lattice search strategies, the lattice space is
split into levels according to the number of items involved.
Consider a UBRI ′ → co, without loss of generality, we
assumeI ′ = {I1, I2, · · · , I|I′|}. The lattice space covered
by this UBR consists of levels{L1, L2, . . . , L|I′|}. EachLj

contains sub-rules with exactlyj genes. Our new framework,
however, partitions the lattice space in a diagonal way.
Specifically, given the same UBR of rule groupG, we useLi

to denote the set of LBRs, whose antecedents only contain
first i genes, i.e.Li = {A→co | A ⊆ {I1, I2, . . . , Ii}}. Each
Li can be further divided into sub-levels{Li

1, L
i
2, . . . , L

i
i},

with eachLi
j contains rules inLi with exactlyj genes. The

new incremental generation algorithm thus iterates fromLi

to Li+1 until i = |I ′|, and utilizes the diagonal partition for
effective pruning.

In Algorithm 1, we present an incremental framework to
discover all LBRs of a target rule group represented by a
unique UBRγ : I ′ → co. The framework generatesL1 first,
which has only one LBRγ : {I1} → co. The algorithm then
iterates toLi+1 on the basis ofLi. On the generation ofLi+1,
a traditional breadth-first strategy is adopted, by constructing
from Li+1

1 to Li+1
i+1 in order.

To constructLi+1
1 , all LBRs inLi

1 can be directly included
with a new LBRγ : {Ii+1} → co. Note that the new rule
γ must be an LBR by the definition. Based on the LBRs in
Li+1
1 , higher levelsLi+1

j (1 < j ≤ i + 1) can be generated
recursively by the following formula,

Li+1
j+1 = Li

j+1 ∪ {γ | γ : A∪Ii+1→co, γ is an LBR} (1)

whereA→co ∈ Li
j.

The correctness of the Equation 1 is the key to the success
of the incremental LBR generation framework, which is
ensured by Lemma 4.

Lemma 4:Li+1
j+1 = Li

j+1 ∪ {γ|γ : A ∪ Ii+1 →
co, γ is an LBR}, whereA→co ∈ Li

j .
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Algorithm 1 Incremental LBR Generation Framework

Input: D: data set;U, I ′ → co: upper bound rule;
Output: LS: LBR set in rule group ofU

1. SetLS = φ,L0 = φ;
2. for eachi from 1 to |I ′| do
3. Set j = 0 andLi

0 = {φ → co};
4. while Li

j 6= φ do
5. Li

j+1=UpdateLevel(Li−1
j ,Ii, U ,S);

6. j = j + 1;
7. ReturnLS;
8. function: UpdateLevel(Li−1

j ,Ii,U ,S);
9. Li

j+1 = Li−1
j+1;

10. for eachA→co ∈ Li−1
j do

11. Generate ruleγ : A ∪ Ii → co;
12. if γ is an LBR according to Lemma 3then
13. if sup(γ) = sup(U) then
14. Insertγ into LS;
15. else
16. Insertγ into Li

j+1;
17. ReturnLi

j+1;

Proof: : First, it’s obvious thatLi
j+1 ⊂ Li+1

j+1 and{γ|γ :

A ∪ Ii+1 → co, γ is an LBR} ⊂ Li+1
j+1. So Li

j+1 ∪ {γ|γ :

A ∪ Ii+1 → co, γ is an LBR} ⊂ Li+1
j+1 holds.

Moreover, letγ : A1 → co denote an LBR inLi+1
j+1. We

will show γ ∈ Li
j+1 ∪{γ|γ : A∪ Ii+1 → co, γ is an LBR}.

If Ii+1 /∈ A1, according to the definition ofLi
j+1, we have

γ ∈ Li
j+1. Otherwise, letA = A1 − Ii+1, then A → co

is a sub-rule ofγ. According to Lemma 3,A → co must
be an LBR andA → co ∈ Li

j holds. So∀γ ∈ Li+1
j+1, γ ∈

Li
j+1 ∪ {γ|γ : A ∪ Ii+1 → co, γ is an LBR} holds.
So, we haveLi+1

j+1 = Li
j+1 ∪ {γ|γ : A ∪ Ii+1 →

co, γ is an LBR}, which finishes the proof.
The above lemma shows thatLi+1

j+1 consists of two parts,
Li
j+1 and {γ|γ : A ∪ Ii+1 → co, γ is an LBR}. The first

part consists of the LBRs that are of lengthj + 1 generated
from the firsti items. The second part is the newly generated
LBRs by taking the new itemsIj+1 into consideration. In the
incremental framework, we only need to focus on the newly
generated LBRs from the second part.

The new candidateγ : A→ co needs to be confirmed as
a new LBR. The level-wise structure of the LBRs provides
an efficient way to determine whether a candidate is an LBR
by checking the conditions as Lemma 3. With the help of a
hash table ofLj , the testing can be done in constant time. If
γ′ is an LBR of the target rule groupG, it is unnecessary to
further iterate fromγ′, since any super-rule ofγ′ cannot be
an LBR ofG any more.

Figure 2 gives a running example illustrating the incremen-
tal mining of LBRs from the rule group presented with UBR
abcde→co. The LBR levels{L1, L2, . . . , L5} are generated
in order from Figure 2(a) to Figure 2(e), to find the LBRs
of the target rule group. To facilitate a simpler presentation
without ambiguity, we use the antecedents to denote the rules

in the following descriptions.
Figure 2(a) shows initialization of the levelL1, which

consists of only one rule, i.e.L1 = {a}, by definition. In
Figure 2(b),L2 is generated on the basis ofL1. First, for
j = 1, a new LBRb is generated and added toL2

1. When
j = 2, the new candidateab is generated by adding the new
item b to the rulea. The algorithm verifies the validity of
ab as an LBR through Lemma 3, by comparing its support
with those ofa and b. The ruleab is thus inserted intoL2

2.
In Figure 2(b), two generated nodes,b and ab, are marked
in the shaded areas in the figures. Figure 2(c) shows the
construction ofL3. Similarly, whenj = 1, c is automatically
generated and added toL3

1; for j = 2, the ruleac (resp.bc) is
extended from rulea (resp.b) by adding another itemc. For
j = 3, the valid LBRabc is constructed by addingc to theab.
Again, the new nodes forL3 are marked in the shaded area
of Figure 2(c). Since the support of the ruleabc is exactly
the same as that ofabcde, the ruleabc is an LBR of the
target group and thus marked in dark color. By continuing
the algorithm toL4 andL5, another two LBRs of the target
group{cd, ae} are discovered in Figure 2(d) and Figure 2(e)
respectively.

Note that this algorithm generates all LBRs without per-
forming any ranking. A naive implementation of top-k rule
selection is to rank the LBRs of the target group after the
iteration process discovers all of them. In the next section,
we discuss some pruning strategies to improve the efficiency
of top-k LBR mining.

5.2 Pruning With Interestingness Measures

In Algorithm 1, all LBRs of a specified rule group are
generated. When only the top-k LBRs with respect to the
interestingness measures are required, most of the CPU cycles
of Algorithm 1 are wasted on the computation of useless
LBRs. In this subsection, we present some pruning strategies
in the incremental generation framework, generating top-k
LBRs of the target group without iterating all LBRs. Gener-
ally speaking, an intermediate rule discovered in Algorithm 1
is useful only when the extensions from it can possibly lead
to some rules that are ranked high with respect toMaxSCor
(MinSC).

Assume we have already discoveredk LBRs of the rule
group, denoted asLS. If all super-ruleγ′ generated fromγ
is no more interesting than the current LBRs inLS, then
γ is not interesting anymore and can be pruned safely. This
motivates our pruning strategies introduced below.

5.2.1 Pruning With Max-Subrule-Conf

For MaxSC, we define the interestingness threshold as below:
θ = maxγ∈LS MaxSC(γ). Given an LBRγ, if all super-
rules γ′ generated fromγ satisfyMaxSC(γ′) ≥ θ, γ can
be pruned. Thus, we are interested in thelower bound of
MaxSC(γ′), in the pruning strategy.

Consider the following sub-rules ofγ′, A′−I→co, where
I ∈ A. According to the definition of the confidence, we have
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Fig. 2. A Running Example of the Incremental LBR Mining Method

conf(A′ − I → co) = |R((A′ − I) ∪ co)|/|R(A′ − I)|. Let
x1 = |R((A′ − I) ∪ co) − R(A′ ∪ co)| andx2 = |R(A′ −
I)−R(A′)−R(co)|, we have,

conf(A′−I → co) =
|R(A′ ∪ co)|+ x1

|R(A′)|+ x1 + x2
≥

|R(A′ ∪ co)|

|R(A′)|+ x2

BecauseI ⊂ A andA ⊂ A′, x2 ≤ |R(A − I) − R(A) −
R(co)| holds. So we have

MaxSC(γ) ≥ conf(A′−I → co)

≥
|R(A′ ∪ co)|

|R(A′)|+ |R(A− I) −R(A)−R(co)|
(2)

Moreover, due to the monotonicity ofMaxSC, we have

MaxSC(γ′) ≥ MaxSC(γ) (3)

Combining Equation 2 and Equation 3, we obtain a lower
bound of MaxSC of the ruleγ′ as below:

Lemma 5:Given an LBRγ : A→co and an LBR of target
groupG generated fromγ, γ′ : A′→co, the lower bound of
MaxSC(γ′) is as below.

max{max
I∈A

|R(A′ ∪ co)|

|R(A′)|+ |R(A−I)−R(A)−R(co)|
,MaxSC(γ)}

(4)
Intuitively, the lower bound ofMaxSC(γ′) is determined

by two portions: the first portion is the lower bound on the
confidence ofA′ − I → co and the second portion is the
MaxSCof the current sub-rule being processed. The above
lemma shows that theMaxSCof all the LBRs in a target rule
group generated from the rule is bounded by Equation 4 and
we can use this bound to prune off LBRs in the early stage
if we can evaluate it in an efficient way.

For any two itemsetsI1 ⊂ I2 ⊂ A, we haveR(A−I1) ⊂
R(A−I2), which means that the lower bound generated from

theI1 is tighter than that ofI2. Thus, we only need to focus
on the 1-item itemsetI ⊂ A. When |I| = 1, |R(A−I)|
can be efficiently obtained by looking up the corresponding
candidate inL|A|−1. Moreover, |R(A′)| and |R(A′ ∪ co)|
are constants according to the definition of rule group. So,
the lower bound ofMaxSC(γ′) can be efficiently estimated
during our level-wise LBR generation.

To evaluate the second portion of the lower bound,
MaxSC(γ) needs to be evaluated. In the level-wise enu-
meration of LBRs, this can be efficiently evaluated as in
Equation 5, as the maximal over the confidence of all
immediate sub-rules and theirMaxSC.

MaxSC(γ) = max
γ′

{max{conf(γ′),MaxSC(γ′)}} (5)

whereγ′ is A′→co, A′ ⊂ A and |A′| = |A| − 1.

5.2.2 Pruning With Min-Subrule-Conf

The interestingness threshold forMinSC is defined as below:
θ = minγ∈LS MinSC(γ). Given a candidate LBRγ, if it
is guaranteed that all super-ruleγ′ generated fromγ satisfy
MinSC(γ′) ≤ θ, then the LBRγ can be pruned since we
aim to find the top-k LBRs with the highestMinSC. Thus,
we are interested in theupper bound of MinSC(γ′).

For MinSC, a rule often has a minimal confidence on the
one-item sub-rules. As such, we pay more attention to the
confidence of the single item for boundingMinSC(γ′). Let
R′ = R(γ)−R(γ′) = {r1, r2, · · · rk}, any rowr ∈ R′ must
contain one of the following itemsI(r) = {I|I /∈ r}, and
MinSC(γ′) is bounded by the minimal confidence of those
items,MinSC(γ′) ≤ maxI∈I′(r) conf(I). Since the above
inequality holds for all the rowsr ∈ R′, so we have a tighter
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upper bound onMinSC(γ′) as follows:

MinSC(γ′) ≤ min
r∈R′

max
I∈I(r)

conf(I) (6)

Moreover, due to the monotonicity ofMinSC, we have

MinSC(γ′) ≤ MinSC(γ) (7)

Combining Equation 6 and Equation 7, we have the upper
bound ofMinSC(γ′) as follows:

Lemma 6:Given an LBRγ : A→ co and an LBR of the
target rule group generated from this LBR,γ′ : A′→co, the
upper bound ofMinSC(γ′) is:

min{min
r∈R′

max
I∈I(r)

conf(I),MinSC(γ)} (8)

whereR′ = R(γ)−R(γ′) andI(r) = {I|I /∈ r}.
The first part shows that the upper bound ofMinSC is

determined by some single items in the rule. The second part
shows that the LBRs of the target rule group are bounded by
the MinSCof its sub-rules.

We next discuss how Equation 8 can be evaluated effi-
ciently. The value ofmaxI∈I(r) conf(I) can be calculated
in a preprocessing procedure and thus the first part of the
bound can be estimated very efficiently especially for gene
expression data which have small number of rows.

For the second part,MinSC of the candidate can be
efficiently updated in the level-wise structure, similar tothat
of MaxSC.

MinSC(γ) = min
γ′

{min{conf(γ′),MinSC(γ′)}} (9)

whereγ′ is A′→co, A′ ⊂ A and |A′| = |A| − 1.

5.3 Heuristic Item Ordering

In the above incremental LBR mining framework, the ef-
ficiency of the algorithm greatly depends on the order of
items: a proper ordering of the items ensures that high ranked
LBRs are found in the early stage and makes the process
more efficient through better pruning. Here, a heuristic item
ranking method is developed by exploring the importance and
the interestingness of the items.

Our heuristic item ordering is inspired by the following
observations: given a rule groupG with upper boundI ′ →
co, if ∃r ∈ R − R(I ′) (R is the universal row set) which
satisfiesr ∩ I ′ = I ′ − {I}, then this itemI must be found
in each LBR of the rule groupG. Because∀S ⊂ I ′ − {I},
R(S) ⊃ R(A) ∪ r andS → co can’t be LBR. Considering a
generalized case, ifr ∩ I ′ = I ′ − {I1, I2, · · · , Ik}, the LBR
of G must contain one of thesek items, and we can define
the importance of an item based on these observations.

Definition 6: Item’s replaceability and importance
Given a rule groupG with UBR I ′ → co, the replaceability
of an item, I ∈ I ′, is defined asREP (I) = min{|I ′ −
r ∩ I ′| | I ∈ r, r ∈ R − R(I ′)}, and the importance is the
reciprocal of the replaceabilityIMP (I) = 1

REP (I) .
Intuitively, an item with low replaceability is more impor-

tant for that is contained in the LBRs of the target rule group

with high probability. Thus, the items are heuristically ranked
in descending order according to the importance. In addition,
if two items have the same importance, the item with higher
confidence is given higher priority.

5.4 Algorithm
By integrating the top-k pruning strategies and the heuristic
item ordering with the incremental LBR generation frame-
work, we give the complete algorithm in Algorithm 2.

The algorithm takes three input parameters:D is the
discretized gene expression dataset;U is the UBR of rule
groupG; k is the number of the LBRs need to be discovered.
First, the items are heuristically ordered according to their
importance; then algorithm incrementally generates theLi

for the first i items of the UBR by calling subfunction
UpdateLevel.

During the generation ofLi
j , the subfunctionCheckCandi-

date is called to check the state of new candidate: the inter-
esting LBRs are added toLi

j; LBRs that is more interesting
that previously found LBRs is added to the lower bound set
LS and the interestingness threshold is updated accordingly.

6 CLASSIFICATION SCHEMES

We will describe two classifier induction methods: RCBT [7]
and IRCBT. RCBT is the state of art rule based classifier
induction method, which has been proposed in previous
works [7]. IRCBT is an improved version of RCBT by
reducing the risk of using trivial classifier to classify thenew
coming samples, and we will give more details.

6.1 RCBT
RCBT is a rule-based classification model, first proposed in
[7]. By using a set of LBRs to make collective decision and
building standby classifiers, RCBT reduces the chance that a
sample is classified by the default classifier.

RCBT hasl classifiersCL1, CL2, ..., CLl. The classifier
CLj is built from the rule group setRGj , whereRGj is
the union set of thejth covering rule group for each sample.
For each rule group, RCBT finds thek shortest LBRs, those
lower bounds will make collective decision to formCLj .

For a test samplet, the classifiers are run in a certain order
to predict the class oft. Given a classifierCLj , it evaluates
the score of the sample with respect to each class, and the
class with highest score will be the prediction result fort.
The scoring function of the sample for labelco is as below:

Score(t ∈ co) =

∑
γ∈Γ(co,r)

conf(γ)sup(γ)
∑

γ∈Γ(co)
conf(γ)sup(γ)

(10)

whereΓ(co) is the rule set with consequentco, andΓ(co, t)
is a subset ofΓ(co) which are covered by the samplet.

If any class label claims better score than any other labels,
this label is returned as final result and the prediction process
is terminated. Otherwise, next classifierCj+1 will be invoked.
If no deterministic result is available afterCLl is consumed,
the sample is assigned as the default label which is the major
class of the training samples.
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Algorithm 2 Incremental Top-k LBRs Mining Algorithm

Input: D: data set;U, I ′ → co: upper bound rule;
Output: LS: LBR set in rule group ofU

1. Heuristic item ordering ;
2. SetLS = φ,L0 = φ;
3. Initialize Interestingness Thresholdθ;
4. for eachi from 1 to I ′ do
5. Set j = 0 andLi

0 = {φ → co};
6. while Li

j 6= φ do
7. Li

j+1=UpdateLevel(Li−1
j ,Ii, U ,S);

8. j = j + 1;
9. Return:LS;

10. function: UpdateLevel(Li−1
j ,Ii,U ,LS);

11. Li
j+1 = Li−1

j+1;
12. for eachA′→co ∈ Li−1

j do
13. Generate ruleγ : A′ ∪ Ii → co;
14. if CheckCandidate(γ,Lj−1,θ,U ) then
15. if R(γ) = R(U) then
16. UpdateLS with γ;
17. Updateθ;
18. else
19. Insertγ into Li

j+1;
20. Return:Li

j+1;
21. function: CheckCandidate(A→co, Lj−1, θ, U );
22. for eachA′ ⊂ A (|A′| = |A| − 1) do
23. if A′→co /∈ Lj−1 then
24. Return: FALSE;
25. if sup(A′→co) = sup(A→co) then
26. Return: FALSE;
27. if A′→co is prunable withθ then
28. Return: FALSE;
29. Estimate lower bound ofMaxSC(A→co);
30. /*or Estimate lower bound ofMinSC(A→co))*/
31. if Prunable with interestingness boundthen
32. Return: FALSE;
33. else
34. Return: TRUE;

6.2 Improved RCBT

Although RCBT shows promising results in practice, it
always employs the first successful classifier to classify the
sample, possibly wasting the information contained in other
classifiers. Furthermore, although the terminating classifier is
able to distinguish between the best label from other labels,
the confidence of the classifier may not be sufficiently high.
More often than not, we observe that classifiers that are
ranked lower can often predict the classification result with
higher confidence.
Example 4:Table 3 shows the score for a test sample on 5
classifiers of the DLBCL [25] dataset. When using RCBT
to classify the sample, the algorithm stops atCL1 and it is
classified as classc1. But we can see that the score difference
betweenc0 andc1 is trivial. Considering this test sample in
all five classifiers, it’s more reasonable to classify it as class

c0 based onCL2, CL3 andCL4 since the sample has much
higher score on classc0 thanc1.

TABLE 3
A test sample’s score on 5 classifiers

Classifier CL1 CL2 CL3 CL4 CL5

c0 0.19 0.68 0.8 0.51 0.45
c1 0.21 0.53 0.31 0.42 0.53

The example shows that we should avoid using classifiers
with trivial score difference to classify the test sample, for
the result of such classifier is not statistically significant. As
such, in the improved RCBT (IRCBT) scheme we propose to
employ the classifier with the highest confidence to predict
the class label for the given sample. For a given test sample
t and thel classifiers constructed with the same rule-based
technique, all of thel classifiers are run to evaluate the
classification score on the sample. The result of the most
significant classifier is selected as the final result.

Definition 7: Given a classifierCL and a samplet, assum-
ing CL’s score of the sample is the order:S(t ∈ c1) > S(t ∈
c2) · · ·S(t ∈ c|B|), then thesignificanceof the classifier is
S(t ∈ c1)− S(t ∈ c2).

The significance of a classifier’s result on samplet is given
in Definition 7, which is the score difference between the top
two classes as predicted by the classifier. The definition is
based on the observation that most of the misclassified cases
take place between the top two classes with the highest score.

As an example, in Table 3, the significance of classifier
CL3 is 0.49, and the sample is classified as class 0 according
to classifierCL3.

7 EXPERIMENTS

In this section, the efficiency of the incremental LBR mining
algorithm and the usefulness ofMaxSC and MinSC are
studied. All Algorithms are developed in the Visual C++
6.0 environment. The binary code of MaxSC, MinSC and
the IRCBT classification model is available at [41]. The
experiments are run on a server with a Quad-Core AMD
Opteron(tm) Processor 8356 (2.29GHz*16), and 127GB of
RAM. In the experiments, only one CPU is used.

The following five datasets are used in the experiments:
Bortezomib [21], DLBCL [25], Leukemia [11], Lung Cancer
[12], and Prostate [26]. The general information of the five
datasets is summarized in Table 4.

TABLE 4
General Information of Gene Expression Datasets

Dataset #Gene Class Num.
Bortezomib 44928 R: NR 108

DLBCL 7129 DLBCL:FL 77
Leukemia 7129 ALL:AML 72

Lung cancer 12533 MPM:ADCA 181
Prostate 12600 tumor:normal 136

Discretization is a necessary preprocess before conducting
association rule mining on gene expression data, which
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converts the continuous gene expression data to discretized
item set. Same as [7], the entropy based discretion method is
used in our work. The entropy based discretization benefits
our work from the following two aspects: 1) discretization
performs some kind of noise reduction, which is important
in the noisy data; 2) most part of the label’s information are
maintain in the entrop based discretization procedure.

All experiments below are done by repeating the 3-fold
cross validation procedure [16] is repeated multiple timesto
obtain average readings. In 3-fold cross validation approach,
the dataset is randomly partitioned into three sets of equal
size and the algorithm is executed three times, each time
using one of the folds as the test set and the remaining two
as the training set.

7.1 Efficiency

We first look at the efficiency of rule extraction. Two issues
will be studied here, first the effectiveness of the pruning
strategies and heuristic item ordering, then a comparison with
the short rule first approach (we shall refer to this algorithm as
Short)in [7]. The experimental results are based on repeating
the 3-fold cross validation 50 times.
Efficiency of the Pruning Strategies:Four different variants
of the incremental LBR mining algorithm are compared:B
(basic method without pruning and heuristic item ordering),
H (only with heuristic item ordering),P (only with prun-
ing) andHP (heuristic + pruning). In the experiments, the
algorithm is stopped if it can’t finish in 10000 seconds.

Figure 3 shows the running time of the four variants with
varying k when we want to find the top-k LBRs based on
MaxSC. For the Prostate dataset only theHP variant can mine
out the top-k LBRs in reasonable time (10000seconds) and
thus we skip the comparison on this dataset. For the other
four datasets, the time is reported if it can complete in 10000
seconds. From the graphs, we can see that both the pruning
strategy and the heuristic item ordering strategy improve the
efficiency of the algorithm dramatically.HP improves the
efficiency of the basic incremental LBR mining algorithm
by about 2 orders of magnitude. Moreover, theH variant
generally spends more time thanP. This is because, though
H can find some interesting LBRs in the early stage, those
LBRs can’t be used to prune non-interesting candidates and
the search space is still very large.

Figure 4 shows the running time of the four variants with
varying k when we want to find the top-k LBRs based
on MinSC. Similar to the experimental results ofMaxSC,
only theHP variant can complete in reasonable time on the
Prostate dataset, and only the experimental results on the
other four datasets are presented. Figure 4 shows thatHP
improves the efficiency of the basic incremental LBR mining
algorithm by about 2 orders of magnitude in all datasets.
Comparisons with other methods: We next compare the
running time of our algorithm with that ofShort [7]. The
computational time on the five datasets is presented in
Table 5. In all the experiments here, we try to find the top

20 LBRs from 10 UBRs. The UBRs are extract using the
algorithm in [7].

On Bortezomib, Leukemia and Prostate,MinSC is the
fastest among the three algorithms. ThoughShort works
efficiently on the DLBCL and Lung Cancer dataset, it is
extremely inefficient on other two datasets. For example,
for Prostate, it takes almost a day to finish. This is due
to the fact that the LBRs on Prostate are actually much
longer than that of other datasets and the breath-first search of
Shortbecomes very inefficient. For example, one of the top-1
UBR of Prostate dataset contains 392 items, and the shortest
LBR of this rule group contains 9 items. This means that
the breadth-first search adopted byShort needs to generate
O(3928) candidates before discovering the first LBR of the
target rule group.

Though MaxSC works slower thanShort in several
datasets, it can mine out the LBRs within 10 minutes for all
of them. This is still acceptable in real application. Among
the algorithms,MinSC is the most efficient one.

TABLE 5
Running Time (seconds)

Dataset Short MaxSC MinSC
Bortezomib 669.10 469.14 2.33

DLBCL 2.78 99.73 6.77
Leukemia 17.24 17.58 0.80

Lung Cancer 13.53 501.99 84.61
Prostate 90459.11 501.72 27.84
Average 18232.35 318.03 24.47

7.2 Classification Accuracy and Complexity

Next, we compare the classification accuracy of the three
rule selection criteria:Short[7], MinSC andMaxSC. For the
classification model, we compare IRCBT with the state of art
RCBT.

Note that the combination,Short+RCBT, corresponds to
the Top-K method proposed in [7]. For the purpose of
fair comparison, the top-10 covering rule groups of each
sample are discovered and top-20 LBRs are generated for
each rule group. These are the optimal parameter settings
of Short+RCBT [7]. In addition, our method is compared
with the state of art classifier SVM which is implemented
based onlib-SVM version 2.87 [1]. To keep the comparisons
fair, SVM is run using the same genes selected by entropy
discretization, but with normalized real values of the gene
expression data. The parameter of SVM is tuned with 3-fold
cross validation on the training data.

Table 6 shows the classification accuracy of the 7 variants
on the five datasets. All results are based on the average of 50
3-fold cross validation. The deviation from the average are
also recorded in Table 6. The best classification accuracy of
each dataset is presented in bold. Generally,MinSC+IRCBT
achieves the best performance among all variants with the
highest average accuracy and is also the top performance for
four out of five datasets. Furthermore, its deviation from the
average is also comparable to all the other variants. In fact, for
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Fig. 4. Efficiency of the Pruning Strategies for MinSC

TABLE 6
Classification Accuracy (%)

Interestingness Measure Short [7] MaxSC MinSC
Classifier SVM RCBT IRCBT RCBT IRCBT RCBT IRCBT

Bortezomib 66.10±4.22 64.37±3.94 66.46±4.16 63.81±4.48 65.91±3.55 65.19±4.10 66.52±3.81
DLBCL 88.42±3.52 84.42±4.70 86.91±4.85 81.79±3.87 84.81±3.63 84.75±4.30 86.88±3.33

Leukemia 91.41±4.11 83.53±4.26 87.08±3.64 83.47±4.21 87.06±3.61 93.69±2.38 95.28±2.04
Lung Cancer 95.92±0.33 97.86±0.95 98.50±0.72 92.00±1.85 92.88±0.42 98.84±0.56 99.13±0.42

Prostate 76.41±5.21 73.38±3.15 75.00±3.92 73.97±3.57 76.69±3.95 76.18±3.94 77.28±3.82
Average 83.65 80.71 82.79 79.01 81.47 83.73 85.02

TABLE 7
Complexity of Classifiers

Interestingness Measure Short [7] MaxSC MinSC
Length Num. of Genes Leng. of Rules Num. of Genes Leng. of Rules Num. of Genes Leng. of Rules

Bortezomib 212.20±30.74 4.50±0.29 80.85±12.80 7.10±0.50 55.15±4.10 6.06±0.40
DLBCL 145.67±20.67 2.80±0.26 148.52±28.76 3.83±0.52 70.71±10.50 3.50±0.29

Leukemia 144.00±28.26 2.91±0.73 144.44±27.80 4.08±0.36 63.53±7.07 3.05±0.18
Lung Cancer 121.07±19.58 2.70±0.28 125.23±23.07 5.91±0.63 58.95±6.52 3.17±0.24

Prostate 192.6±13.82 7.83±0.63 97.90±24.27 8.22±0.64 84.70±15.71 8.14±0.80

the Lung Cancer dataset where it has always 99% prediction
accuracy, its deviation from the mean accuracy is the lowest.

Surprisingly, despite the fact thatMaxSC is the most
widely accepted interestingness measure [14], none of the
variants involving it came out top in the performance. Our
explanation for this interesting result is that the noisy nature
of gene expression data in fact renders the statistical and
biological reasoning behindMaxSC useless and that more
work must be done to take noise into account when designing
interestingness measure for ranking rules.
Sensitivity to parameter settings: Figure 5(a) shows the
effect of varying number of LBRs and UBRs on the classifi-
cation accuracy for dataset DLBCL. Studies on other datasets
give similar result. Generally, the algorithms are robust to the
number of LBRs and the number of UBRs.

In detail, Figure 5(a) shows that when the number of LBRs

is very small, increasing the number of LBRs improves the
accuracy of all methods. This is because when there are
too few LBRs, the important information of the training
dataset cannot be captured. When the number of LBRs is
larger than 10, the classifier has already captured the main
information of the dataset and adding more LBRs won’t
improve the accuracy of the algorithms. Moreover, when too
many LBRs are selected, some less interesting LBRs will be
selected which will have negative effect to the accuracy of the
classifier. The decreasing ofMinSC+IRCBT’s accuracy when
80 LBRs are selected, verifies such property. This pheromone
also shows the necessary of LBR selection.

Figure 5(b) shows the change of the accuracy with the
number of UBRs. When the number of UBRs is very small,
increasing the number of UBRs improves the accuracy. When
the number of UBRs is large, the accuracies of IRCBT
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increase with the number of UBRs. This doesn’t happen to
RCBT because RCBT only uses the first covering classifier
to classify the testing samples. If a testing sample can be
handled by a small set of classifiers, the increasing of standby
classifiers has no effect on the classification accuracy. IRCBT
on the other hand uses the most significant classifier to
classify the testing sample, and all the classifiers’ information
is explored before making prediction.
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Fig. 5. Sensitivity to the Parameters

Complexity of the Classifiers: We next look at the com-
plexity of the classifiers that are being built. Table 7 shows
the average number of genes and the average length of the
rules that are involved in the classifiers for each of the
interestingness measure. Note that since RCBT and IRCBT
use exactly the same set of rules, there is no need to
distinguish between these two classification schemes.

As expected, sinceShortalways chooses the shortest rules,
the average length of the rules selected byShort is always
lower thanMaxSCand MinSC. Short follows the belief of
Occam’s Razor that using the shortest rule in a rule-based
classifier results in a much simpler classification model [19].

However, when we measure the complexity of the model
using the average number of genes involved in the classifier,
this conventional belief does not hold anymore. As can be
seen from Table 7, whenMinSCis used as the interestingness
measure, the number of genes that involved in a classifier is
substantially lower when compared toShort. For example,
given the Leukemia dataset, the classifier built usingMinSC
involved on average 63.53 genes. WhileShort used around
144.00 genes to build a classifier that lost out substantially to
MinSC in term of prediction accuracy. Compared toMaxSC,
MinSC’s advantage is slightly reduced but is still substantial.

Note that involving a small number of genes in the
classifier is also important in this case to biologists as they
can focus on a smaller set of genes for investigation.

7.3 Biological Interpretation
One motivation for extracting rules from gene expression
datasets is the ease of interpretation by the biologists. Here,
we show some interesting results on the DLBCL dataset to
illustrate this fact. The task on DLBCL is to classify two sub-
class of lymphoma (immune system cancer), Diffuse Large
B-Cell lymphoma (DLBCL) and Follicular Lymphoma (FL).

We would like to emphasize that our problem is different
from traditional ranking based methods. Instead of discover-
ing the strongest rules, our method tries to find the optimal

combinations of rules to maximize the prediction quality.
Therefore, some rules with weak individual prediction ability,
which may be ranked low in most rule analysis, can play
important role on performance improvements. In this group
of the sections, we will illustrate some example rules with
low rank but high biological interestingness.

The mutual information based gene ranking [20] is used
as the benchmark of the ranking based algorithms. The high
ranked genes are generally considered more interesting than
others and attract a lot of attentions, such as the genes MCM7,
RCH1, CIP2 and CD69 in the DLBCL dataset [25]. However,
as mentioned in Observation 1 in the introduction section,
genes often perform certain function as a group and might
not exhibit correlation with the class attribute in an isolated
manner. Here, we will illustrate how such genes can be
derived by adopting our interestingness measures and mining
methodology.

We focus on genes that occur very often in the rules that
we extracted based onMaxSCand MinSC. The genes are
listed (heuristically, occur in more than 50 rules for both the
measures) are listed in Table 8 together with their ranking
based on mutual information. As can be seen, except for
the first gene, all the other three genes are ranked low.
Furthermore, these genes do not occur that frequently when
the shortest rule measure is being used. We will next look at
the biological significance of these genes.

TABLE 8
Common Frequent Genes of MaxSC and MinSC

Gene Rank Frequency Frequency Frequency
in Short in MaxSC in MinSC

MCM7 1 64 64 64
RPL26 89 27 56 56

STRA13 184 18 89 122
NR1D2 494 11 94 56

Among all the genes, MCM7 is ranked the most significant
based on both mutual information and our proposed inter-
estingness measures. This is hardly surprising since MCM7
is homologeous to the DNA replication licensing factor
CDC47 and is known to be highly associated with cellular
proliferation and related to DLBCL[25].

The other three genes are RPL26, STRA13 and NR1D2
which are all ranked low based on mutual information. Those
genes are not well known in the research on DLBCL and FL.
However, there are extensive biological evidences showing
that these three genes are related to DLBCL or FL. RPL26,
Ribosomal Protein L26, is found to control p53 translation
and induction after DNA damage[27] and DNA damage
is considered as the most possible inducement of B-cell
lymphoma [10]. As stated in [23], [24], STRA13 expression
is developmentally regulated during B cell differentiation
procedure, highly related to DLBCL and FL. NR1D2 is a
member of nuclear receptor subfamily 1, which is found to
be a new immune regulatory gene[15] and highly related to
immune system cancer.

Finally, we see the three genes discovered by our algorithm
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are with low rank by traditional method, but with high
biological interestingness. This verifies our motivation and
implies the advantage of our rule based method.

8 CONCLUSIONS

In this paper, we propose two interestingness measures,
MaxSC and MinSC, to rank LBRs within the same rule
group. Considering the lattice structure of the LBRs, these
two interestingness measures provide more information of
the LBRs than traditional measures. An incremental top-k
LBR mining framework is also developed to find the most
interesting LBRs with respect toMaxSC or MinSC. This
framework discovers interesting LBRs in the early stage
of enumeration which maximizes the effectiveness of top-
k pruning. Although the framework focuses on efficient
mining of the top-k LBRs with the proposed measures, it
can be easily extended to mining top-k patterns and rules
with different interestingness measures. To make full use of
the extracted rules, we introduce an additional classification
scheme called IRCBT on the basis of traditional RCBT
scheme. Experiments on various gene expression datasets
show the efficiency and effectiveness of our proposals.
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