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MAP-JOIN-REDUCE: Towards Scalable and
Efficient Data Analysis on Large Clusters
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Abstract—Data analysis is an important functionality in cloud computing which allows a huge amount of data to be processed
over very large clusters. MapReduce is recognized as a popular way to handle data in the cloud environment due to its excellent
scalability and good fault tolerance. However, compared to parallel databases, the performance of MapReduce is slower when
it is adopted to perform complex data analysis tasks that require the joining of multiple datasets in order to compute certain
aggregates. A common concern is whether MapReduce can be improved to produce a system with both scalability and efficiency.
In this paper, we introduce Map-Join-Reduce, a system that extends and improves MapReduce runtime framework to efficiently
process complex data analysis tasks on large clusters. We first propose a filtering-join-aggregation programming model, a natural
extension of MapReduce’s filtering-aggregation programming model. Then, we present a new data processing strategy which
performs filtering-join-aggregation tasks in two successive MapReduce jobs. The first job applies filtering logic to all the datasets
in parallel, joins the qualified tuples, and pushes the join results to the reducers for partial aggregation. The second job combines
all partial aggregation results and produces the final answer. The advantage of our approach is that we join multiple datasets in
one go and thus avoid frequent checkpointing and shuffling of intermediate results, a major performance bottleneck in most of
the current MapReduce based systems.
We benchmark our system against Hive, a state-of-the-art MapReduce based data warehouse on a 100-node cluster on Amazon
EC2 using TPC-H benchmark. The results show that our approach significantly boosts the performance of complex analysis
queries.

Index Terms—Cloud Computing, Parallel systems, Query processing.
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1 INTRODUCTION

C Loud computing is a service through which a
service provider delivers elastic computing re-

sources (virtual compute nodes) to a number of users.
This computing paradigm is attracting increasing in-
terests since it enables users to scale their applications
up and down seamlessly in a pay-as-you-go manner.
To unleash the full power of cloud computing, it is
well accepted that a cloud data processing system
should provide a high degree of elasticity, scalability
and fault tolerance.

MapReduce [1] is recognized as a possible means
to perform elastic data processing in the cloud. There
are three main reasons for this. First, the programming
model of MapReduce is simple yet expressive. A large
number of data analytical tasks can be expressed as
a set of MapReduce jobs, including SQL query, data
mining, machine learning and graph processing. Sec-
ond, MapReduce achieves the desired elastic scalabil-
ity through block-level scheduling and is proven to be
highly scalable. Yahoo! has deployed MapReduce on
a 4,000-node cluster [2]. Finally, MapReduce provides
fine-grained fault tolerance whereby only tasks on
failed nodes have to be restarted.
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With the above features, MapReduce has become a
popular tool for processing large-scale data analytical
tasks. However, there are two problems when MapRe-
duce is adopted for processing complex data analysis
tasks which join multiple datasets for aggregation.
First, MapReduce is mainly designed for performing
a filtering-aggregation data analytical task on a single
homogenous dataset [16]. It is not very convenient
to express the join processing in the map() and
reduce() functions [4].

Second, in certain cases, performing multi-way join
using MapReduce is not efficient. The performance is-
sue is mainly due to the fact that MapReduce employs
a sequential data processing strategy which frequently
checkpoints and shuffles intermediate results in data
processing. Suppose we join three datasets, i.e., R on
S on T , and conduct an aggregation on the join results.
Most MapReduce based systems (e.g., Hive, Pig) will
translate this query into four MapReduce jobs. The
first job joins R and S, and writes the results U into
a file system (e.g., Hadoop Distributed File System,
HDFS). The second job joins U and T and produces
V which will again be written to HDFS. The third job
aggregates tuples on V . If more than one reducers
are used in step three, a final job merges results
from reducers of the third job, and writes the final
query results into one HDFS file. Here, checkpointing
U and V to HDFS, and shuffling them in the next
MapReduce jobs incurs huge cost if U and V are
large. Although one can achieve better performance
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by allocating more nodes from the cloud, this “renting
more nodes” solution is not really cost efficient in
a pay-as-you-go environment like cloud. An ideal
cloud data processing system should offer elastic data
processing in the most economical way

This paper introduces Map-Join-Reduce, an ex-
tended and enhanced MapReduce system for simpli-
fying and efficiently processing complex data analysis
tasks. To solve the first problem described above, we
introduce a filtering-join-aggregation programming
model which is an extension of MapReduce’s filtering-
aggregation programming model. In addition to the
mapper and reducer, we introduce a third operation
join (called joiner) to the framework. To join multiple
datasets for aggregation, users specify a set of join()
functions and the join order. The runtime system
automatically joins multiple datasets according to the
join order and invoke join() functions to process
the joined records. Like MapReduce, a Map-Join-
Reduce job can be chained with an arbitrary number
of MapReduce or Map-Join-Reduce jobs to form a
complex data processing flow. Therefore, Map-Join-
Reduce benefits both end users and high-level query
engines built on top of MapReduce. For end users,
Map-Join-Reduce removes the burden of presenting
complex join algorithms to the system. For MapRe-
duce based high-level query engines such as Hive [5]
and Pig [6], Map-Join-Reduce provides a new building
block for generating query plans.

To solve the second problem, we introduce a one-to-
many shuffling strategy in Map-Join-Reduce. MapRe-
duce adopts a one-to-one shuffling scheme which
shuffles each intermediate key/value pair produced
by a map() function to a unique reducer. In addition
to this shuffling scheme, Map-Join-Reduce offers a
one-to-many shuffling scheme which shuffles each
intermediate key/value pair to many joiners at one
time. We show that, with proper partition strategy,
one can utilize the one-to-many shuffling scheme to
join multiple datasets in one phase instead of a set of
MapReduce jobs. This one-phase joining approach, in
certain cases, is more efficient than the multi-phases
joining approach employed by MapReduce in that it
avoids checkpointing and shuffling intermediate join
results in the next MapReduce jobs.

This paper makes the following contributions.
• We propose filtering-join-aggregation, a natural

extension of MapReduce’s filtering-aggregation
programming model. This extended program-
ming model covers more complex data analytical
tasks which require to join multiple datasets for
aggregation. The complexity of parallel join pro-
cessing is handled by the runtime system, thus
it is straightforward for both human and high-
level query planner to generate data analytical
programs.

• We introduce a one-to-many shuffling strategy
and demonstrate the usage of such a shuffling

strategy to perform filtering-join-aggregation
data analytical tasks. This data processing scheme
outperforms MapReduce’s sequential data pro-
cessing scheme since it avoids frequent check-
pointing and shuffling intermediate results.

• We implement the proposed approach on
Hadoop. We show that our technique is ready
to be adopted. Although our solution is intrusive
to Hadoop, our implementation is such that our
system is binary compatible with Hadoop. Exist-
ing MapReduce programs can run directly on our
system without modifications. This design makes
it very easy for users to gradually migrate their
legacy MapReduce programs to Map-Join-Reduce
programs for better performance.

• We provide comprehensive performance study of
our system. We benchmark our system against
Hive using four TPC-H queries. The results show
that the performance gap between our system
and Hive grows as more joins are involved and
more intermediate results are produced. For TPC-
H Q9, our system runs thrice faster than Hive.

The rest of this paper is organized as follows: Sec-
tion 2 presents the filter-join-aggregation model and
describes MJR at high level. Section 3 discusses the
implementation details on Hadoop. Section 4 presents
optimization techniques. Section 5 reports experimen-
tal results. Section 6 reviews related work. We present
our conclusions in Section 7.

2 MAP-JOIN-REDUCE

This section presents filtering-join-aggregation, a nat-
ural extension of MapReduce’s filtering-aggregation
programming model and describes the overall data
processing flow in Map-Join-Reduce.

2.1 Filtering-Join-Aggregation

As described before, MapReduce represents a two-
phase filtering-aggregation data analysis framework
with mappers performing filtering logic and reducers
performing aggregation logic [16]. In [1], the signa-
tures of map and reduce functions are defined as
follows:

map (k1,v1) → list(k2,v2)
reduce (k2,list(v2)) → list(v2)

This programming model is mainly designed for
homogeneous datasets, namely the same filtering
logic, represented by the map() function, is ap-
plied to each tuple in the dataset. We extend this
model to filtering-join-aggregation in order to pro-
cess multiple heterogenous datasets. In addition to
map() and reduce() functions, we introduce a
third join() function i.e., joiner. A filtering-join-
aggregation data analytical task involves n dataset
and Di, i ∈ {1, . . . , n}, n − 1 join functions. The
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signatures of map, join and reduce functions are as
follows:

mapi (k1i,v1i)→ (k2i,list(v2i))
joinj ((k2j−1,list(v2j−1)),(k2j,list(v2j)))

→ (k2j+1,list(v2j+1))
reduce (k2,list(v2))→ list(v2)

The signature of map in Map-Join-Reduce is similar
to that of MapReduce except for the subscript i which
denotes that the filtering logic defined by mapi is
applied on dataset Di. The join function joinj , j ∈
{1, . . . , n − 1} defines the logic for processing the j-
th joined tuples. If j = 1, the first input list of joinj
comes from the mappers output. If j > 1 the first
input list is from the (j−1)-th join results. The second
input list of joinj must be from mapper output. From
a database perspective, the join chain of Map-Join-
Reduce is equivalent to a left-deep tree. Currently, we
only support equal join. For each function joinj , the
runtime system guarantees that the key of the first
input list is equal to the key in the second input list,
namely k2j−1 = k2j . The reduce function’s signature
is the same as MapReduce, we shall not explain fur-
ther. A Map-Join-Reduce job can be chained with an
arbitrary number of MapReduce or Map-Join-Reduce
jobs to form complex data processing flow by feeding
its output to the next MapReduce or Map-Join-Reduce
job. This chaining strategy is a standard technique
in MapReduce based data processing systems [1].
Therefore, in this paper, we only focus on presenting
the execution flow of a single Map-Join-Reduce task.

2.2 Example

We give a concrete example of the filtering-join-
aggregation task here. The data analytical task in
the example is a simplified TPC-H Q3 query [19].
This will be our running example for illustrating the
features of Map-Join-Reduce. The TPC-H Q3 task,
represented in SQL, is as follows:

select
O.orderdate, sum(L.extendedprice)

from
customer C, orders O, lineitem L

where
C.mksegment=’BUILDING’ and
C.custkey = O.custkey and
L.orderkey = O.orderkey and
O.orderdate < date ’1995-03-15’ and
L.shipdate > date ’1995-03-15’

group by
O.orderdate

This data analytical task requires the system to
apply filtering condition on all three datasets, i.e.,
customer, orders, and lineitem, join them and
calculate the corresponding aggregations. Schemas of
the datasets can be found in [19]. We intentionally
omit them for saving space. The Map-Join-Reduce
program that performs this analytical task is similar
to the following pseudo-code:

mapC(long tid, Tuple t):
// tid: tuple ID
// t: tuple in customer
if t.mksegment = ’BUILDING’
emit(t.custkey, null)

mapO(long tid, Tuple t):
if t.orderdate < date ’1995-03-15’
emit(t.custkey, (t.orderkey, t.orderdate))

mapL(long tid, Tuple t):
if t.shipdate > date ’1995-03-15’
emit(t.orderkey, (t.extendedprice))

join1(long lKey, Iterator lValues,
long rKey, Iterator rValues):

for each V in rValues
emit(V.orderkey, (V.orderdate))

join2(long lKey, Iterator lValues,
long rKey, Iterator rValues):

for each V1 in lValues
for each V2 in rValues
emit(V1.orderdate, (V2.extendedprice))

reduce(Date d, Iterator values):
double price = 0.0
for each V in values
price += V

emit(d, price)

To launch a Map-Join-Reduce job, in addition to the
above pseudo-code, one also needs to specify a join
order which defines the execution order of joiners.
This is achieved by providing a Map-Join-Reduce job
specification, an extension of original MapReduce’s
job specification, to the runtime system. Details of
providing job specification can be found in Section
3.1. Here, we only focus on presenting the logic of
map(), join() and reduce() functions.

To evaluate TPC-H Q3, three mappers, mapC ,
mapO, and mapL, are specified to process records in
customer, orders, and lineitem respectively. The
first joiner join1 processes the results of C on O,
i.e., customer and orders. For each joined record
pair, it produces a key/value pair with the orderkey
as the key and the (orderdate) as the value. The
result pair are then passed to the second joiner.
The second joiner joins the result tuple of join1

with lineitem and emits orderdate as key and
(extendedprice) as value. Finally, the reducer ag-
gregates extendedprice on each possible date.

2.3 Execution Overview

To execute a Map-Join-Reduce job, the runtime system
launches two kinds of processes: called MapTask, and
ReduceTask. Mappers run inside the MapTask process
while joiners and reducers are invoked inside the
ReduceTask process. The MapTask process and Re-
duceTask process are semantically equivalent to map
worker process and reduce worker process presented
in [1]. Map-Join-Reduce’s process model allows for
pipelining intermediate results between joiners and
reducers since joiners and reducers are run inside the
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Fig. 1. Execution Flow of First MapReduce Job

same ReduceTask process. The failure recovery strat-
egy of Map-Join-Reduce is identical to MapReduce.
In the presence of node failure, only MapTasks and
uncompleted ReduceTasks need to be restarted. Com-
pleted ReduceTasks do not need to be re-executed.
The process of task restarting in Map-Join-Reduce is
also similar to MapReduce except for ReduceTask. In
addition to re-run the reduce() function, when a
ReduceTask is restarted, all the joiners are also re-
executed.

Map-Join-Reduce is compatible with MapReduce.
Therefore, a filtering-join-aggregation task can be
evaluated by the standard sequential data processing
strategy described in Section 1. In this case, for each
MapReduce job, the ReduceTask process only invokes
a unique join() to process an intermediate two-way
join results. We shall omit the details of this data
processing scheme. Alteratively, Map-Join-Reduce can
also perform a filtering-join-aggregation task by two
successive MapReduce jobs. The first job performs
filtering, join and partial aggregation. The second job
combines the partial aggregation results and writes
the final aggregation results to HDFS 1.

In the first MapReduce job, the runtime system
splits the input datasets into chunks in a per-dataset
manner and then launches a set of MapTasks onto
those chunks with one being allocated to each chunk.
Each MapTask executes a corresponding map func-
tion to filter tuples, and emits intermediate key-value
pairs. The output is then forwarded to the combiner,
if a map-side partial aggregation is necessary, and to
the partitioner in turn. The partitioner applies a user
specified partitioning function on each map output
and creates corresponding partitions for a set of re-
ducers. We will see how Map-Join-Reduce partition
the same intermediate pair to many reducers. For
now, we simply state that the partition is to ensure
that each reducer can independently perform all joins
on the intermediate results that it receives. Details
of partitioning will be presented later. Finally, the
intermediate pairs are sorted by the key and then

1. Strictly speaking, if only one reducer is used in the first job, the
second merge job is unnecessary. However, in real-world workload,
a number of reducers are required in the first job to speed up data
processing. Therefore, the second job is needed to produce the final
query results.

<1, null>

Customer

<1, (0, 1995-03-01 )>

<0, 120.34>

Order

Lineitem

<0, 120.34>

R0: <0,0>

<1, null>

<1, (0, 1995-03-01 )>

<0, 120. 34>

R1: <0,1>

R2: <1,0>

<1, null>

R3: <1,1>

Fig. 2. Process of partition customer, orders, and lineitem

written to local disks.
When the MapTasks are completed, the runtime

system launches a set of ReduceTasks. Each reducer
builds a join list data structure which links all joiners
as the user specified join order. Then, each Reduc-
eTasks remotely reads (shuffles) partitions associated
to it from all mappers. When a partition is successfully
read, the ReduceTask checks whether the first joiner
is ready to perform. A joiner is ready if and only
if both its first and second input datasets are ready,
either in memory or on local disk. When the joiner is
ready, ReduceTask performs a merge-join algorithm
on its input datasets and fires its join function on
the joined results. ReduceTask buffers the output of
the joiner in memory. If the memory buffer is full,
it sorts the results and writes the sorted results to
disk. ReduceTask repeats the whole loop until all the
joiners are completed. Here, the shuffling and join
operations overlap with each other. The output of
the final joiner is then fed to the reducer for partial
aggregation. Figure 1 depicts the execution flow of the
first MapReduce job. In Figure 1, the datasets D1 and
D2 are chopped into two chunks. For each chunk, a
mapper is launched for filtering qualified tuples. The
output of all mappers are then shuffled to joiners for
join. Finally, the output of the final joiner is passed to
reducer for partial aggregation.

When the first job is completed, the second MapRe-
duce is launched to combine the partial results (typ-
ically via applying the same reduce function on the
results) and present the final aggregation results to
HDFS. The second job is a standard MapReduce job,
and thus, we omit its execution details.

2.4 Partitioning
Obviously, to make the framework described above
work, the important step is to properly partition the
output of mappers so that each reducer can join all
datasets locally.

This problem is fairly easy to solve if the analytical
task only involves two datasets. Consider we join two

datasets, R
R.a=S.b
on S. To partition R and S to nr

reducers, we adopt a partition function H(x) = h(x)
mod nr, where h(x) is a universal hash function to
each tuple in R and S on the join column, and
take the output of H(x) as the partition signature
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that is associated to a unique reducer for processing.
Therefore, tuples that can be joined with each other
will eventually go to the same reducer. This technique
is equivalent to a standard parallel hash join algorithm
[20] and is widely used in current MapReduce based
systems. The scheme is also feasible for multiple
datasets (more than two) join if each dataset has
a unique join column. As an example, to perform

R
R.a=S.b
on S

S.b=T.c
on T , we can also apply the same

partition function H(x) on the join columns R.a, S.b,
and T.c, and partition R, S and T to the same nr

reducers to complete all joins in one MapReduce job.
However, if a data analytical task involves a dataset

that has more than one join column, the above tech-
nique will not work. For example, if we perform

R
R.a=S.a
on S

S.b=T.c
on T , it is impossible to use a single

partition function to partition all three datasets to
the reducers in one pass. Map-Join-Reduce solves this
problem by utilizing k partition functions to partition
the input datasets where k is the number of connected
components in the derived join graph of the query.

We will first give a concrete example; general rules
for data partitioning will be provided later. Recall
the previous simplified TPC-H Q3 query. The query
performs C on O on L for aggregation where C, O
and L stand for customer, orders and lineitem
respectively. The join condition is C.custkey =
O.custkey and O.orderkey = L.orderkey.

To partition the three input datasets into nr =
4 reducers, we use two partition functions <
H1(x), H2(x) > with H1(x) to partition columns
C.custkey and O.custkey and H2(x) to partition
columns O.orderkey and L.orderkey. Function
H1(x) is defined as H1(x) = h(x) mod n1. Function
H2(x) is defined as H2(x) = h(x) mod n2. To facil-
itate discussion, we assume that the universal hash
function h(x) is h(x) = x. The point is that the
partition number n1 and n2 must satisfy the constraint
n1 · n2 = nr. Suppose we set n1 = 2 and n2 = 2. Each
reducer is then associated with a unique partition
signature pair among all possible outcomes. In this
example, reducer R0 is associated with < 0, 0 >, R1

is associated with < 0, 1 >, R2 is associated with
< 1, 0 >, and R3 is associated with < 1, 1 >.

Now, we use < H1(x), H2(x) > to partition the
datasets. We begin with customer relation. Suppose
the input key-value pair t is < 1, null > where 1 is
the custkey. The partition signature of this custkey
is calculated as H1(1) = 1. Since customer has no
column that belongs to the partition function H2(x),
all possible outcome of H2(x) is considered. There-
fore, t is partitioned to reducers R2 :< 1, 0 > and
R3 :< 1, 1 >.

The same logic is applied to relations orders and
lineitem. Suppose the input pair of orders o is
< 1, (0, ’1995-03-01’) >, then o is partitioned to R2 :<
H1(1) = 1,H2(0) = 0 >. The input pair of lineitem

C.custkey O.custkey

O.orderkey L.orderkey

Fig. 3. Derived Join Graph for TPC-H Q3

l :< 0, 120.34 > is partitioned to R0 :< 0,H2(0) = 0 >
and R2 :< 1,H2(0) = 0 >. Now, all three tuples can be
joined in R2. Figure 2 shows the whole partitioning
process.

The above algorithm is correct. Clearly, for any
tuples from three datasets that can be joined, namely
C(x, null), O(x, (y, date)) and L(y, price), these tuples
will eventually be partitioned to the same reducer
Ri :< H1(x),H2(y) >.

In general, to partition n datasets to nr reducers for
processing, we first build k partition functions:

H(x) =< H1(x), . . . , Hk(x) >

Each partition function Hi(x) = h(x) mod ni, i ∈
{1, . . . , k} is responsible for partitioning a set of join
columns. We call the join columns that Hi(x) operates
on, the domain of Hi(x) denoted by Dom[Hi]. The
constraint is that parameters, i.e., ni in all partition
functions must satisfy Πk

i=1ni = nr.
When k partition functions are built, the parti-

tioning process is straightforward, as shown by the
previous TPC-H Q3 example. First, we associate each
reducer with a unique signature, a k-dimensional vec-
tor, from all possible partition outcomes. The reducer
will then process intermediate mapper output that
belongs to the assigned partition.

For each intermediate output pair, the k dimen-
sional partition signature is calculated by applying
all k partition functions in H on the pair in turn.
For Hi(x), if the intermediate result contains a join
column c that falls in Dom[Hi], the i-th value of the k
dimensional signature is Hi(c); otherwise all possible
outcomes of Hi(x) are considered.

The remaining questions of partitioning are: 1) how
to build k partition functions for a query; 2) how
to determine the domain for each partition function
Hi(x); and 3) given nr, what are the optimal values
for partition parameters {n1, . . . , nk}. We solve the
first two problems in this section. The optimization
problems are discussed in Section 4.

We build a derived join graph for a data analytical
task according to the following definition:

Definition 1: A graph G is called a derived join
graph of task Q if each vertex in G is a unique
join column involved in Q and each edge is a join
condition that joins two datasets in Q.

Definition 2: A connected component Gc of a de-
rived join graph is a subgraph in which any vertices
are reachable by path.

Figure 3 shows the derived join graph of TPC-H Q3.
We only support queries whose derived join graphs
have no loops. Even with this restriction, we will see
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this model covers many complex queries including
those of TPC-H.

We build H(x) as follows: First, we enumerate
all connected components in the derived join graph.
Suppose k connected components are found, we build
a partition function for each connected component.
The domain of the partition function is the ver-
tices (join columns) in the corresponding connected
component. For example, the derived join graph of
TPC-H Q3 has two connected components as shown
in Figure 3. So, we build two partition functions
H(x) =< H1(x),H2(x) >. The domains of partition
functions are vertices (join columns) in each connected
component, namely:

Dom[H1] = {C.custkey,O.custkey}
Dom[H2] = {O.orderkey,L.orderkey}

Currently, we rely on users to manually build parti-
tion functions as we have done in the experiments. In
the longer term, we plan to introduce an optimizer
for automatically building derived join graph and
partition functions.

2.5 Discussion

In Map-Join-Reduce, we only shuffle input datasets to
reducers and do not checkpoint and shuffle interme-
diate join results. Instead, intermediate join results are
pipelined between joiners and reducer either through
in-memory buffer or local disk. In general, if join
selectivity is low, a common case in real-world work-
load, it is less costly to shuffle input datasets than
intermediate join results. Furthermore, shuffling and
join operations overlap in the reducer side to speed up
query processing. A joiner is launched immediately if
both its input datasets are ready.

Although Map-Join-Reduce is designed for multi-
way join, it can also be used together with existing
two-way join techniques. Assume we want to perform
S on R on T on U . If S is quite small and can be
fitted into the memory of any single machine, we can
join R with S in the map-side by loading S into the
memory of each mapper launched on R as described
in [14]. In this case, mappers of R emit joined tuples
to reducers and perform a normal Map-Join-Reduce
procedure to join with T and U for aggregation. Also,
if R and S are already partitioned on join columns
among available nodes, we can also use a map-side
join, and shuffle the results to reducers for further
processing. In the future, we will introduce a map-side
joiner, which runs a joiner inside MapTask process,
and transparently integrate all these two-way join
techniques in Map-Join-Reduce framework.

The potential problem of Map-Join-Reduce is that it
may consume more memory and local disk space to
process a query. Compared to the sequential process-
ing strategy that we described in Section 1, reducers

in Map-Join-Reduce receive more portions of input
datasets than reducers in MapReduce. In MapReduce,
datasets are partitioned with the full number of re-
ducers, namely each dataset will be partitioned into
nr portions, but in Map-Join-Reduce, the dataset may
be partitioned into a small number of partitions. In
the TPC-H Q3 example, customer and lineitem
are both partitioned into two partitions although the
total number of available reducers is 4. Therefore,
compared to sequential query processing, the reducers
of Map-Join-Reduce may need a larger memory buffer
and more disk space to hold input datasets. One
possible solution to solve this problem is to allocate
more nodes from the cloud and utilize those nodes to
process the data analytical task.

Even in environments with a limited number of
compute nodes, we still have some ways to solve the
problem. First, given a fixed number of reducers, we
can use the technique presented in Section 4 to tune
the partition number ni of each partition function to
minimize the input dataset portions that each reducer
receives. Second, we can compress the output of
mappers and operate the data in compressed format,
a technique which is widely used in column-wise
database systems to reduce disk and memory cost
[21]. Finally, we can adopt a hybrid query processing
strategy. For example, suppose we need to join six
datasets but the available computing resources only
allow us to join four datasets once, we can first launch
a MapReduce job to join four datasets, write the
results to HDFS and then launch another MapReduce
job to join the rest of the datasets for aggregation. This
hybrid processing strategy is equivalent to the ZigZag
processing in parallel database [22].

3 IMPLEMENTATION ON HADOOP
We implement Map-Join-Reduce on Hadoop 0.19.2, an
open source MapReduce implementation. Although
large-scale data analysis is an emerging application of
MapReduce, not all MapReduce programs are of this
kind; some of them build inverted-indexing, perform
large-scale machine learning, and conduct many other
data processing tasks. Therefore, it is important that
our modifications do not damage the interface and
semantics of MapReduce to the extent that those non-
data analysis tasks fail to work. That is, we must
make sure that the resulting system should be binary
compatible with Hadoop and existing MapReduce
jobs can run on our system without any problems.
Fortunately, based on the experiences from building
this implementation, such a requirement does not
introduce huge engineering efforts. This section de-
scribes these implementation details.

3.1 New APIs
We introduce new APIs to Hadoop for new features
of Map-Join-Reduce. Since MapReduce is mainly de-
signed for processing a single homogeneous dataset,
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the API that Hadoop provides only supports speci-
fying one mapper, combiner and partitioner for each
MapReduce job

In Map-Join-Reduce, the mapper, combiner and
partitioner is defined in a per-dataset manner. Users
specify a mapper, combiner and partitioner for each
dataset using the following API:
TableInputs.addTableInput(path, mapper, combiner,

partitioner)

In the above code, path points to the location
in the HDFS that stores the dataset while mapper,
combiner and partitioner define the Java class
that the user creates to process the dataset. The re-
turn value of addTableInput() is an integer which
specifies the dataset id (called table id in Map-Join-
Reduce). Table id is used to specify the join input
datasets, and is used for the system to perform
various per-dataset operations, e.g., launching cor-
responding mappers and combiners, which will be
discussed in the following subsections.

Following Hadoop’s principle, joiner is also im-
plemented as a Java interface in Map-Join-Reduce.
Users specify join processing logic by creating a joiner
class and implementing join() functions. Joiners are
registered to the system as follows:

TableInputs.addJoiner(leftId, rightId,
joiner)

The input datasets of joiner are specified by leftId
and rightId. Both Ids are integers either returned
by addTableInput() or addJoiner(). The return
value of addJoiner() represents the resulting table
id. Therefore, joiners can be chained. As stated previ-
ously, to simplify implementation, the right input of
a joiner must be a source input, namely the dataset
added by addTableInput(); only the left input can
be results of a joiner. As an example, the specifications
of TPC-H Q3 query is described as follows:

C = TableInputs.addTableInput(CPath, CMap,
CPartitioner)

O = TableInputs.addTableInput(OPath, OMap,
CPartitioner)

L = TableInputs.addTableInput(LPath, LMap,
CPartitioner)

tmp = TableInputs.addJoiner(C, O, Join1)
TableInputs.addJoiner(tmp, L, Join2)

3.2 Data Partitioning
Before the MapReduce job can be launched, datasets
need to be partitioned into chunks. Each chunk
is called a FileSplit in Hadoop. We imple-
ment a TableInputFormat class to split multi-
ple datasets for launching Map-Join-Reduce jobs.
TableInputFormat walks through the dataset list
produced by addTableInput(). For each dataset,
it adopts conventional Hadoop code to split files
of the dataset into FileSplits. When all the
FileSplits for the processing dataset are collected,
TableInputFormat rewrites each FileSplit into

a TableSplit by appending additional information
including table id, mapper class, combiner class, and
partitioner class. When TableSplits of all datasets
are generated, TableInputFormat sorts these splits
first by access order, then by split size. This is to
ensure that datasets that will be joined first will have
a bigger chance to scan first 2.

3.3 MapTask

When MapTask is launched, it first reads the
TableSplit that is assigned to it, then parses the in-
formation from the TableSplit, and launches map-
per, combiner and partitioner to process the dataset.
Overall, the workflow of MapTask is the same as
the original MapReduce except for partitioning. There
are two problems here. First, in Map-Join-Reduce,
the partition signature of an intermediate pair is
a k-dimensional vector. However, Hadoop can only
shuffle an intermediate pair based on a single value
partition signature. Second, Map-Join-Reduce requires
shuffling the same intermediate pair to many reduc-
ers. However, Hadoop can only shuffle the same
intermediate pair to only one reducer.

To solve the first problem, we convert our k-
dimensional signature into a single value. Given the
k-dimensional partition signature S =< x1, . . . , xk >
and the k partition functions parameters {n1, . . . , nk},
the single signature value s is calculated as follows:

s = x1 +
k∑

i=2

xi · ni−1

For the second problem, a naive method involves
writing the same intermediate pair to disk several
times. Suppose we need to shuffle an intermediate
key-value pair I to m reducers, we can emit I for
m times in map functions. Each Ii is associated with
a different partition vector. Hadoop then is able to
shuffle each Ii to a unique reducer. Unfortunately, this
method dumps I to disk m times and introduces a
huge I/O overhead at map-side.

We adopt an alternative solution to rectify this
problem. First we extend Hadoop’s Partitioner
interface to TablePartitioner interface and add
a new function that can return a set of reducers ids
as shuffling targets. The new function is as follows:

int[] getTablePartitions(K key, V value)

MapTask then collects and sorts all the intermediate
pairs. The sorting groups pairs that will be shuffled
to the same set of reducers into partitions based on
the returned information of getTablePartition()
function, and orders pairs in each partition according
to keys. Using this approach, the same intermediate

2. In MapReduce, there is no method to control dataset access
order. Here, we only give a hint to the Hadoop scheduler for
scheduling MapTask to process datasets.
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pair is only written to disk once and thus will not
introduce additional I/Os.

3.4 ReduceTask
The structure of ReduceTask is also similar to the
original Hadoop version. The only difference is that
it holds an array of counters for a multiple datasets
job, one for each dataset. For each dataset, the counter
is initially set to the total number of mappers that
the reducer needs to connect for shuffling data. When
a partition is successfully read from a certain map-
per, ReduceTask decreases the corresponding counter.
When all the needed partitions for a dataset are
read, ReduceTask checks the joiner at the front of the
joiner list. If the joiner is ready, ReduceTask performs
the merge join algorithm and calls the joiner’s join
function to process the results.

4 OPTIMIZATION

In addition to the modifications described in the
previous section, three optimization strategies are also
adopted. We present them here.

4.1 Speedup Parsing
Following MapReduce, Map-Join-Reduce is designed
to be storage independent. As a result, users have
to decode the record stored in the value part of the
input key/value pair in map() and reduce() func-
tions. Previous studies show that this runtime data
decoding process introduces considerable overhead
[12], [10], [11].

There are two kinds of decoding schemes: im-
mutable decoding and mutable decoding. The im-
mutable decoding scheme transforms raw data into
immutable objects, i.e., read-only objects. Using this
approach, decoding 4 millions records results in 4
millions immutable objects and thus introduces huge
CPU overhead. We found that the poor performance
of data parsing reported in previous studies is due
to the fact that all these studies adopt the immutable
scheme.

To reduce the record parsing problem, we adopt a
mutable decoding scheme in Map-Join-Reduce. The
idea is straightforward, to decode records from a
dataset D, we create a mutable object according to
the schema of D and use that object to decode all
records belonging to D. Therefore, no matter how
many records will be decoded, only one mutable
object is created. Our benchmarking results show that
the performance of mutable decoding outperforms
immutable decoding by a factor of four.

4.2 Tuning Partition Functions
In Map-Join-Reduce, an intermediate pair could be
shuffled to many reducers for join. To save network

bandwidth and computation cost, it is important to
ensure that each reducer receives only a minimal
number of intermediate pairs to process. This section
discusses this problem.

Suppose a filtering-join-aggregation task Q involves
n datasets D = {D1, . . . , Dn}. The derived join graph
includes k connected components and the correspond-
ing partition functions are H = {H1(x), . . . , Hk(x)},
with partition numbers {n1, . . . , nk}. For each dataset
Di, mi partition functions Hi = {Hm1(x), . . . , Hmi(x)}
are used to partition the join columns. Furthermore,
we assume that there is no data distribution skew for
the time being. Data skew is our future work. The
optimization problem is to minimize the intermediate
pairs that each reducer receives:

minimize F (x) =
∑n

i=1
|Di|

Π
mi
j=1nj

subject to Πk
i=1ni = nr

ni ≥ 1 is an integer

In the above problem formulation, nr is the number
of ReduceTasks specified by the user. Like MapRe-
duce, the number nr is often set to a small multiple of
the number of slave nodes [1]. The optimization prob-
lem is equivalent to a non-linear integer programming
program. In general, non-linear integer programming
is an NP-hard problem [23], and there is no efficient
algorithm to solve it. However, in this case, if the
number of reducers nr is small, we can use a brute-
force approach which enumerates all possible feasi-
ble solutions to minimize the object function F (x).
However, if nr is large, say 10,000, finding optimal
partition numbers for four partition functions requires
O(1016) computations, which makes the brute-force
approach infeasible.

If nr is large, we use a heuristic approach to solve
the optimization problem and produce an approxima-
tion solution that works reasonably well. For a very
large nr, we first round it to a number n′r ≤ nr with
n′r = 2d. Then we replace nr with n′r and rewrite the
constraint as:

Πk
i=1ni = n′r

It is easy to see that after constraint rewriting, each
ni must be of the form ni = 2ji , where ji is an integer.
So, the constraint can further be written as:

k∑

i=1

ji = d

Now, the brute-force approach can be used to find
optimal ji, i ∈ {1, . . . , k} to minimize the object func-
tion. The computation cost is reduced to O(dk).

We now build a cost model and analyze the I/O
costs of evaluating a filtering-join-aggregation task
by: 1) a standard sequential data processing strategy
employed by original MapReduce and 2) the alter-
native data processing strategy introduced by Map-
Join-Reduce. We regard the whole cluster as a single
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computer and estimate the total I/O costs for both ap-
proaches. The difference between the two approaches
lies in the method of joining multiple datasets. The
final aggregation step is the same. Therefore, we only
consider the joining phase.

For the sequential data processing, the multi-way
join is evaluated by a set of MapReduce jobs. The
I/O cost Cs is the sum of I/O costs of all map() and
reduce() functions, which is equivalent to scanning
and shuffling the input datasets and intermediate join
results:

Cm = 2




n∑

i=1

|Di|+
n−1∑

j=1

|Jj |



where |Jj | is the size of j-th join results. The coefficient
is two since both the input datasets and intermediate
results are first read from HDFS by mappers and then
shuffled to reducers for processing. Thus, two I/Os
are introduced.

For the one-phase join processing, the input
datasets are first read by mappers and then replicated
to multiple reducers for joining. Thus the total I/O
cost Cp is

Cp =
n∑

i=1

|Di|+
n∑

i=1

Hj 6∈Hi∏
(nj · |Di|)

Comparing Cs and Cp, it is obvious that if the
intermediate join results is huge and thus the I/O
cost of checkpointing and shuffling those intermediate
results is higher than replicating input datasets on
multiple reducers, one-phase join processing is more
efficient than sequential data processing.

4.3 Speeding Up the Final Merge

In Map-Join-Reduce, in order to calculate the final
aggregates, the second MaReduce job often needs to
process a large number of small files. This is because
the first MapReduce job launches a huge number of
reducers for processing join and partial aggregation
and produces a partial aggregation results file for each
reducer.

Currently, Hadoop schedules mappers in per-file
manner, one mapper for each file. If there are 400
files to process, there will be at least 400 mappers
to launch. This per-file assignment scheme is quite
inefficient for the second merging job. After join and
partial aggregation, the partial results files produced
by the first job are quite small, several KBs typically.
However, we observe that the start-up cost of a map-
per in a 100-node cluster is around 7∼10 seconds,
thousands times larger than actual data processing
time.

To speed up the final merging process, we adopt an-
other scheduling strategy for the second MapReduce
job. Instead of scheduling mappers in a per-file man-
ner, we schedule a mapper to process multiple files in

order to enlarge the payload. Particularly, we schedule
a mapper to process 128MB data consolidated from
multiple files. Using this approach, the number of
mappers needed in the second job is significantly
reduced. The typical merging time, based on our
experiments on TPC-H queries, is around 15 seconds,
which approaches the minimal cost of launching a
MapReduce job.

5 EXPERIMENTS

In this Section, we study the performance of Map-
Join-Reduce. Our benchmark consists of five tasks.
In the first task, we evaluate the performance of our
tuple parsing technique and study whether our ap-
proach could reduce the CPU cost in runtime parsing.
Then, we benchmark Map-Join-Reduce against Hive
with four analytical tasks drawn from the TPC-H
benchmark.

5.1 Benchmark Environment

We run all benchmarks on Amazon EC2 Cloud with
large instances. Each instance has 7.5 GB memory, 4
EC2 Compute Units (2 virtual cores), 420 GB instance
storage, and runs 64-bit platform Linux Fedora 8 OS.
Interestingly, in the data sheet, Amazon claims that a
large instance has 850GB instance storage (2 × 420 GB
plus 10 GB root partition). However, when we login
to the instance and check the system with df -h, we
found out only one 420 GB disk was installed. The raw
disk speed of a large instance is roughly 120MB/s,
and the network bandwidth is about 100MB/s. For
analysis tasks, we benchmark the performance with
cluster sizes of 10, 50, and 100 nodes 3. We imple-
mented Map-Join-Reduce on Hadoop v0.19.2 and use
the enhanced Hadoop to run all benchmarks. The Java
system we used is 1.6.0 16.

5.1.1 Hive Settings

There are two important reasons that we choose
Hive as the system to benchmark against. First, Hive
represents state-of-the-art MapReduce based system
that processes complex analytical workloads. Second,
but more importantly, Hive has already benchmarked
itself using the TPC-H benchmark and released its
HiveQL, an SQL like query declaration language,
scripts and Hadoop configurations [25]. This simpli-
fies our effort in setting up Hive to run and tune the
parameters for better performance. We assume that
the HiveQL scripts that Hive provides are well tuned
and use them without modifications.

We carefully follow the Hadoop configurations
used by Hive for the TPC-H benchmarking. We only
make a few small modifications. First, we set each

3. These nodes are slave nodes. To make Hadoop run, we use an
additional master node to run NameNode and JobTracker.
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slave node to run two MapTasks and two Reduc-
eTasks concurrently instead of four since we only have
two cores in each slave node. Second, we set the sort
buffer to 500MB to ensure that MapTask could hold all
intermediate pairs in memory. This setting makes both
systems, Map-Join-Reduce and Hive, run a little faster.
Third, we set the HDFS block size to 512MB instead
of 128MB that Hive used in the TPC-H benchmarking.
This is because we observe that although Hive set
block size to 128MB, it manually sets the minimal
chunk split size to 512MB in each query. This setting
is in line with our observation that MapTask should
process reasonable sized data chunk to amortize the
startup cost. So, we directly use 512MB block size.
Hive enables map output compression in its bench-
mark. At present, we do not support compression and
therefore we disable it. Disabling compression will
not significantly affect the performance. According
to another benchmarking results published by Hive,
enabling compression only improves the performance
by less than 4% [26]. The final modification is to
enable JVM task reuse.

5.1.2 Map-Join-Reduce Settings
Map-Join-Reduce shares the same common Hadoop
settings with Hive. Furthermore, we set joiner output
buffer to 150MB.

5.2 Performance Study of Tuple Parsing
This benchmark studies whether MapReduce’s run-
time parsing cost can be reduced. Since Hive is a
system, we have no method to only test its pars-
ing component. Therefore, we compare our parsing
library (called MJR approach) with the code that is
used in [10] (called the Java approach). The differences
between the two approaches is that our code does not
create temporary objects in splitting and parsing while
Java code does.

We create a one-node cluster and populate HDFS
with 725MB lineitem dataset. We run two MapRe-
duce jobs to test the performance. The first job extracts
the tuple structure by reading a line from the input
as a tuple and then splitting it into fields accord-
ing to the delimiter, ’—’. The second job splits the
tuple into fields and parses two date columns, i.e.,
l_commitdate and l_receiptdate, to compares
which date is early. Here, the computation is merely
for testing purpose. We are interested in whether the
parsing cost is acceptable. Both jobs only have map
functions and do not produce output into HDFS.
The minimal file split size is set to 1GB so that the
mapper will take the whole data set as input. We
only report the execution time of the mapper and
ignore the startup cost of the job. Figure 4 plots the
results. In Figure 4, the left two columns represents
the time MJR code used to split and parse the tuple.
The right two columns records the execution time of

Java code. We can see that our split approach runs
about four timers faster than Java code. Furthermore,
parsing two columns actually only introduces very
little overhead (less than one second). The results
confirm our claim made in Section 4.1. The cost in
the runtime parsing is mainly due to the creation of
temporary java objects. By proper and careful coding,
much of the cost can be removed.

5.3 Analytical Tasks

We benchmark Map-Join-Reduce against Hive. The
original Hive’s TPC-H benchmark [25] runs on a 11-
node cluster with ten slaves to process a TPC-H 100GB
dataset, with 10GB data per node. Each slave node
has 4 cores, 8GB memory, 4 hard disks with 1.6TB
space. However, our EC2 instance only has 2 cores,
7.5GB memory, and 1 hard disk. Therefore, to enable
the benchmark to be completed within a reasonable
time frame, we process 5GB data in each node. With
the use of 10, 50, 100-node clusters, we subsequently
have three datasets of 50GB, 250GB and 500GB. Un-
fortunately, Hive fails to perform all four analytical
queries using the 500GB dataset. The JVM throws var-
ious runtime exceptions, such as “GC overhead limits
exceeded” during query processing. This problem is
not due to our modifications to the Hadoop since the
same problem occurred when we ran Hive on the
standard Hadoop v0.19.2 release. Therefore, for the
500GB dataset, we only report results of Map-Join-
Reduce. Instead, for the 100-node cluster, we reduce
the dataset size to 350GB so that Hive can complete
all four queries.

We choose four TPC-H queries for benchmarking,
namely Q3, Q4, Q7 and Q9. Each query is executed
three times and the average of three runs is reported.
For Hive, we use the latest 0.4.0 release. HiveQL
scripts are also used for query submission. For Map-
Join-Reduce, all the programs are hand coded. For
each query, we specify the same join order with Hive.
We set HDFS replication factor r = 3, when the
dataset and results are replicated twice. That is, three
copies of the data are stored. The effect of replication
on performance is studied in Section 5.3.5 when no
replication is used. Data are generated by TPC-H
DBGEN tool and are loaded to HDFS as text files. We
do not report loading time since both systems directly
perform queries on files.

It is useful to list each query’s SQL and HiveQL
script. However, the full list will run out of our
space limit. Therefore, we only present each query’s
execution flow in Hive. The details of the SQL query
and HiveQL scripts can be found in [19] and [25].
Hive is able to dynamically determine the number of
reducers to use based on the input size. Map-Join-
Reduce, however, gives the user more freedom to
specify the number of reducers to be used. To make a
fair comparison, we set the number of reducers to be
no more than the total number of reducers that Hive
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used in processing the same query. For example, if
Hive uses 50 reducers to process a query, we will set
the number of reducers to no more than 50 in Map-
Join-Reduce. We could not set the number of reducers
to be same with Hive since some reducer number,
e.g., a prime number, makes us fail to build partition
functions.

5.3.1 TPC-H Q4
This query joins lineitem with orders and counts
the number of orders based on order priority. Hive
uses four MapReduce jobs to evaluate this query.
The first job writes the unique l_orderkeys in
lineitem to HDFS. The second job joins the unique
l_orderkeys with orders and writes the join re-
sults to HDFS. The third job aggregates joined tuples
and writes the aggregation results to HDFS. The forth
job merges results into one HDFS file.

Map-Join-Reduce launches two MapReduce jobs to
evaluate the query. The first job performs the ordi-
nary filtering, joining and partial aggregation tasks
on lineitem and orders. The second job combines
all partial aggregation results and produce the final
answers to HDFS. The partition function for this
query is straight forward. Since there are only two
datasets involved in the query, one partition function
is sufficient. It partitions tuples from lineitem and
orders to all available reducers. We set the number
of reducers to the be sum of reducers in the first and
second jobs that Hive launched.

Figure 5 presents the performance of each system.
In general, Map-Join-Reduce runs twice faster than
Hive. The main reason for Hive to be slower than
Map-Join-Reduce is because Hive uses two MapRe-
duce jobs to join lineitem and orders. This plan
causes the intermediate results, namely the unique
keys of lineitem produced by J1, to be shuffled
again, for joining, in J2. Actually, to speed up writing
unique l_orderkeys to HDFS, Hive already parti-
tions and shuffles these keys to all reducers in J1. If
this shuffling can also be applied to orders in J1 and
thus shuffles all qualified orders tuples to reducers
for joining, we think Hive is able to deliver the same
performance as Map-Join-Reduce.

5.3.2 TPC-H Q3
Hive runs Q3 using five MapReduce jobs. The first job
J1 joins the qualified tuples in customer and orders
and produce the join results I1 to HDFS. The second
job J2 joins I1 and lineitem, writes join results I2

to HDFS. The third job J3 aggregates I2 on the group
keys. The fourth job J4 sorts the aggregation results in
decreasing order of revenue. The final job J5 limits
the results to top ten orders with the largest revenues
and writes these ten result tuples into HDFS.

Map-Join-Reduce can process the query with two
jobs. The first job scans all three datasets and shuffles
qualified tuples to reducers. At the reducer side,
two joiners are chained to join all tuples. The join
order is the same as Hive’s, namely first joining
orders and customer, followed by joining the re-
sults with lineitem. In partial aggregation, the re-
ducers in the first job maintain a heap to hold the
top ten tuples with the largest revenues. Finally, the
second job combines partial aggregations and pro-
duces the final query answers. Two partition func-
tions are built for the first job to partition inter-
mediate pairs. The domains of the partition func-
tions are Dom[H1] = {c_custkey,o_custkey} and
Dom[H2] = {l_orderkey,o_orderkey}. We set
the number of reducers employed in the first job to
be close to the sum of reducers Hive used in J1,
J2, and J3. The partition numbers in each partition
function are tuned by the brute-force search algorithm
described in Section 4.2.

Figure 6 illustrates the results of this benchmark
task. Although Map-Join-Reduce can perform all joins
within one job, it only runs twice faster than Hive.
This is because the intermediate join results are small
(relative to the input). Therefore checkpointing in-
termediate join results and shuffling those results
in the complete job does not introduce too much
overhead. In 350GB dataset, the first job of Hive only
writes 1.7GB intermediate results into HDFS which is
much smaller than the input datasets. Since Map-Join-
Reduce may need more memory and disk space in
each processing node, this observation suggests that
if the computation resources are inadequate and the
intermediate results are small, sequential processing
should be used instead without too much perfor-
mance degradation.

5.3.3 TPC-H Q7

Hive compiles this query to ten MapReduce jobs.
The first four jobs perform a self-join on nation to
find out desired nation key pairs with the given
nation names. The key pairs that have been found
are written to HDFS as temporary results I1. Then
another four jobs are launched to join lineitem,
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Fig. 12. TPC-H Q9 (r=1)

orders, customer, supplier, and I1. Finally two
additional jobs are launched to compute aggregations,
order result tuples and store them into HDFS.

In contrast to the complexity of Hive, Map-Join-
Reduce only needs two MapReduce jobs to evaluate
the query. The simplicity of Map-Join-Reduce
is its strong point and as expected, Map-Join-
Reduce is much easier to use than MapReduce
to represent complex analysis logic. This feature
becomes important if users prefer to write programs
to analyze the data. In the first MapReduce job,
mappers scan the datasets in parallel. We load
nation into the memory of mappers which scan
supplier and customer for map-side join. The
logic of reducer side is as per normal. Three
joiners, linked as Hive’s join order, join the tuples
and push the results to reducer for aggregation.
Three partition functions are also built. Their
domains are Dom[H1] = {s_suppkey,l_suppkey},
Dom[H2] = {c_custkey,o_custkey}, and
Dom[H3] = {o_orderkey,l_orderkey}. The
partial aggregates ordered by group key are combined
in the second job to generate the final query result.
We also use the brute-force search method for
parameters tuning.

Figure 7 presents the performance of both systems.
On average, Map-Join-Reduce runs nearly three times
faster than Hive. We attribute this significant perfor-
mance boost to the benefit of avoiding checkpointing
and shuffling. In the test with 350GB dataset, Hive
needs to write more than 88GB data to HDFS. All
these data need to be shuffled again in the next
MapReduce job. Frequent shuffling of such large vol-
ume of data incurs huge performance overhead. Thus,
Hive is significantly slower than Map-Join-Reduce.

5.3.4 TPC-H Q9
Hive compiles this query into seven MapReduce
jobs. Five jobs are to join lineitem, supplier,
partsupp, part, and orders. Hive also joins
nation with supplier in the map side. Then,

two additional jobs are launched for aggregation
and ordering. Map-Join-Reduce still performs the
query over two MapReduce jobs. The procedure is
similar to the previous queries. Therefore, we only
list partition functions and omit other details. The
domain of partition functions are Dom[H1] =
{s_suppkey,l_suppkey,ps_suppkey},
Dom[H2] = {l_partkey,ps_partkey,p_partkey},
and Dom[H3] = {o_orderkey,l_orderkey}. We
also join supplier with nation on the map-side.

Figure 8 plots the result of this benchmark. This
query shows the largest performance gap between
the two systems. Map-Join-Reduce runs nearly four
times faster than Hive. This is because Hive needs to
checkpoint and shuffle a huge amount of intermedi-
ate results. In the test with 350GB dataset with 100
nodes, Hive needs to checkpoint and shuffle more
than 300GB intermediate join results. Although Map-
Join-Reduce also incurs more than 400GB disk I/O
accesses in the first job’s reducers for holding input
dataset and join results, it is less costly to read and
write data to the local disks than to shuffle those
results over the network. Therefore, the significant
performance boost is mainly due to the ability of Map-
Join-Reduce in joining all datasets locally, which is its
another strong point.

5.3.5 Effect of Replication
We also set the replication factor r = 1 to study how
replication affects the performance. In this setting, the
datasets and intermediate results are not replicated by
HDFS and thus have only one copy. Since Hive failed
to process 500GB dataset, we only conduct this test
on 350GB dataset in a 100-node cluster.

Figures 9, 10, 11, and 12 present the results of this
benchmark. We do not see significant performance
improvements for both systems. It is reasonable for
the performance of Map-Join-Reduce to be insensi-
tive to replication since replication only affects the
data volume that are written to HDFS, and Map-
Join-Reduce only writes small partial aggregations to
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HDFS. We also observe that in some settings, Map-
Reduce-Join runs a little slower than the version that
runs with three replications setting. This is because
fewer replications increase the chance of JobTracker
to schedule non-data local map tasks.

For the tasks that produce small intermediate re-
sults, i.e., Q3 and Q4, there is also no performance im-
provement in Hive. However, for queries producing
large intermediate results, i.e., Q9, setting replication
to one improves the performance of Hive by 10%.

6 RELATED WORK

There are two kinds of systems that are able to
perform large-scale data analysis tasks on a shared-
nothing cluster: 1) Parallel Databases, and 2) MapRe-
duce based systems.

The research on parallel databases started in the
late 1980s [7]. Pioneering research systems include
Gamma [8], and Grace [9]. A full comparison between
parallel databases and MapReduce are presented in
[10] and [11]. The comparison shows that main differ-
ences between the two systems are performance and
scalability. The scalability issues of the two systems
are further studied in [12].

Efficient join processing is also extensively studied
in parallel database systems. The proposed work can
be categorized as two classes: 1) two-way join algo-
rithms and 2) schemes for evaluating multi-way joins
based on two-way joins. Work in the first category
include parallel nested loop join, parallel sort-merge
join, parallel hash join, and parallel partition join [8].
All these join algorithms have been implemented in
MapReduce based systems in one form or another
[13], [14], [12]. Although Map-Join-Reduce targets a
multi-way join, these two-way joins techniques can
also be integrated in our Map-Join-Reduce frame-
work. We discuss this problem in Section 2.5.

Parallel database systems evaluate multi-join
queries through a pipelined processing strategy.
Suppose we are to perform a three-way join
R1 on R2 on R3. Typical pipelined processing works as
follows: First, two nodes N1 and N2 scan R2 and R3

in parallel and load them into an in-memory hash
table if the tables can fit in memory. Then, the third
node N3 reads tuples from R1 and pipelines the read
tuples to N2 and N3 to probe R2 and R3 in turn and
produce the final query results. Pipelined processing
is proven to be superior to sequential processing [15].
However, pipelined processing suffers from node
failure since it introduces dependencies between
processing nodes. When a node (say N2) fails, the
data flow is broken and thus the whole query needs
to be resubmitted. Therefore, all MapReduce based
systems adopt the sequential processing strategy.

MapReduce is introduced by Dean et al. for sim-
plifying construction of inverted indexes [1]. But it
was quickly found that the framework is also able

to perform filtering-aggregation data analysis tasks
[16]. More complex data analytical tasks can also
be evaluated by a set of MapReduce jobs [1], [10].
Although join processing can be implemented in
a MapReduce framework, processing heterogenous
datasets and manually writing a join algorithm is
not straightforward. In [3], Map-Reduce-Merge is pro-
posed for simplifying join processing by introducing
a Merge operation. Compared to this work, Map-Join-
Reduce aims to not only alleviate development effort
but also improve the performance of multi-way join
processing. There are also a number of query pro-
cessing systems that are built on top of MapReduce,
including Pig [6], Hive [5] and Cascading [17]. These
systems provide a high-level query language and
associated optimizer for efficient evaluating complex
queries which may involve multiple joins. Compared
to this work, Map-Join-Reduce provides built-in sup-
port for multi-way join processing and processes join
in system level rather than application level. There-
fore, Map-Join-Reduce can be used as a new building
block (in addition to MapReduce) for these systems
to generate an efficient query plan.

During preparation of the paper, we noticed that
the work presented in a newly accepted paper [18]
is closely related to ours. In [18], the authors pro-
pose an efficient multi-way join processing strategy
for MapReduce system. The basic idea of the join
processing strategy is similar to ours. Our work is
an independent work. Compared to [18], our work
not only targets at efficient join processing but also
aims to simplify developing complex data analytical
tasks. For the join processing technique, the differ-
ences between their work with ours lies in technical
details. First, we adopt a derived join graph approach
for generating k-partition function and consider every
join column. Contrary to our approach, their work
do not provide a concrete method for constructing
partition functions. The join columns that are included
in partition functions are determined by Lagrangean
optimization process. Not every join column will be
included. Second, to optimize parameters in parti-
tion functions, we adopt a heuristic solution to solve
an integer programming problem. This heuristic so-
lution guarantees feasible parameters (satisfying all
constraints) can be always be found although the
parameters may not be optimal. Contrary to our
approach, their Lagrangean optimization technique
dost not guarantee feasible parameters can always be
found. In cases where no feasible parameters are re-
turned, they employ alternative strategies for deriving
parameters. Finally, we provide a working system and
a comprehensive benchmarking performance study of
the proposed approach.

7 CONCLUSION
In this paper, we present Map-Join-Reduce, a system
that extends and improves the MapReduce runtime
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system to efficiently process complex data analyt-
ical tasks on large clusters. The novelty of Map-
Join-Reduce is that it introduces a filtering-join-
aggregation programming model. This programming
model allows users to specify data analytical tasks
that require joining multiple datasets for aggregate
computation with a relatively simple interface offer-
ing three functions: map(), join() and reduce().
We have designed a one-to-many shuffling strat-
egy and demonstrated the usage of such a shuf-
fling strategy in efficiently processing filtering-join-
aggregation tasks. We have conducted a benchmark-
ing study against Hive on Amazon EC2 using the
TPC-H benchmark. The benchmarking results show
that our approach significantly improves the perfor-
mance of complex data analytical tasks, and confirm
the potential of the Map-Join-Reduce approach.
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