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Abstract—Mapping mashups are emerging Web 2.0 applica-
tions in which data objects such as blogs, photos and videos from
different sources are combined and marked in a map using APIs
that are released by online mapping solutions such as Google
and Yahoo Maps. These objects are typically associated with
a set of tags capturing the embedded semantic and a set of
coordinates indicating their geographical locations. Traditional
web resource searching strategies are not effective in such an
environment due to the lack of the gazetteer context in the tags.
Instead, a better alternative approach is to locate an object by
tag matching. However, the number of tags associated with each
object is typically small, making it difficult for an object to
capture the complete semantics in the query objects.

}@comp.nus.edu.sg

« Various types of resources exist in the spatial database.
Existing search engines pay particular attention to
gazetteer terms derived from web documents. However,
other multimedia resources, such as photos and videos,
are not associated with such terms inherently. Without
the geographical context, traditional approaches may not
work well.

« Current geographic information systems typically rely
on the gazetteer information published by authorized
communities. In Web 2.0, users have contributed huge
amounts of useful contents collaboratively. A prominent

In this paper, we focus on the fundamental application of
locating geographical resources and propose an efficient tag-
centric query processing strategy. In particular, we aim to find
a set of nearest co-located objects which together match the
query tags. Given the fact that there could be large number of
data objects and tags, we develop an efficient search algorithm
that can scale up in terms of the number of objects and tags.  In this paper, we propose to adopt tagging as a way to build

Further, to ensure that the results are relevant, we also propose a a uniform data model for the mapped resources within the
geographical context zens'tg’@eo't‘("dféa“k'”g mech_amsm.lol;J_lr_ context of our Marcopolo system[6]. In Web 2.0, tagging is a
experiments on synthetic data sets demonstrate its scalability : : :
while the experiments using the real life data set confirm its popular means to annotate Va“_ous resources, including news,
practicality. blogs, speeches, photos and V|de.os. Use'rs'are encouraggd to
add extra textual terms as semantic description or summariza-
I. INTRODUCTION tion for the objects. With human intelligence involved, the tags
In Web 2.0, users are free to upload diverse kinds @fe Well phrased so that much cost can be saved from handling

resources and mark them in the map to indicate their relevalEm ambiguities. For example, “Denzel Washington” will be
to the area using open map APIs. Such a |arge amo[ﬁmated as a basic unit automatica.”y without applylng NLP or
of user-contributed materials constitute a luxuriant spatiif techniques. Although documents are essentially different
database that can provide immense mining opportunities. ffRm other media in textual context, tagging provides a means
this paper, we focus on the fundamental application of locatif@ build a uniform model to eliminate the difference:
geographical resources.

The topic of detecting geographic locations [8], [17], [16], Definition 1 (Uniform Mapped Resource Modelet S be

[1], [12], [14], [2] has been well studied in recent years. Efy,o ; gimensional geographical space arfi be the
fectlve_locatlon detectlrjg technique has S|'gn|f!cant commerc I8 space. Each object can be represented as —
_poten_tlal and can assist the sea_lrch engine in classifying pef, Cly oy Castry oo tn] Where[cr, ..,cal € S, t; € T and
indexing the web resources to improve the releyance (_)f_trgf is the reference to the object itself.
returned results. It also plays an important role in providing

the customers with local personalized services. Existing work

tackles this problem by mining and extracting phrases thatBased on this data model, the problem of locating mapped
contain geographical context in web documents or with the aiglsources is essentially a spatial tag matching problem. Given a
of hyperlink structures and query logs when the geographiapiery object, we aim to find a spatial location that best matches
context is not clear. The ambiguities on the location names dhe associated tags. Such a query also has great potential for
eliminated via NLP or IR technique to assign the correct scofcation service providers. The service can be considered as
so that the term such as “Washington” appearing in “Denzalnew type of mapped resource and represented in the form
Washington” will not be treated as a location name. Despité tags. For example, fans of Apple’s products can submit
considerably high accuracy, traditional methods still face witlapplestore subway” to locate a retailer store near the subway
new challenges in the Web 2.0 environment: for convenient purchase of the products. Figure I illustrates the

example is Wikipedia, the most widely used online
encyclopedia. There are abundant implicit geographic
information embedded and they should be fully exploited.
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to be uploaded around the Liberty Island. Therefore, instead®  applestore O  subway
of looking for one-to-one match, we allow one query object
to match multiple spatially correlated objects as long as the
union of their tags can match all the query tags.

In our earlier work [18], themCK(m closest keywords) of semantic relevancy by proposing a re-ranking mechanism

query is defined for finding a set of closest keywords in tq%r co-located tags that are found within the top-k closest

spatial database. Since we are able to apply it in our un'fo%ope. To this end, we have to take into account the geograph-

mapped resource model, we shall re-state the definition hqrcea'l context in the ranking process. There exist work in [8], [2]

Definition 2 (nCK Query Problem [18]):Given a d- that propose geo-ranking mechan_lsm using local popularlty.of
. ) ) web resources measured by citations. However, the hyperlink
dimensional spatial databasd) = {o|o = [c1, ca, ..., cq,t]}

d f K d structure among the resources is not available in our data
and a set ofm query keywordsQ = {tq,,tgs,---tq,, 1 .

. \ model. In the recent work of [7], Cong et al. propose to retrieve
the mCK  Query Problem is to findm tuples U the most relevant spatial web objects by considering both the
= {01,09,...,0m}, 0;.t € Q and o;.t # ot if ¢ £ j§, vant sp J et Ting X
and diém(’u) i7s minimumz2 J distance proximity and text relevance in the ranking function.

' However, the text relevance is still between query keywords
and each single spatial web document. In this paper, we present

The closeness measutéum (L) is defined as the maximum X
distance between any two tuplestin The search algorithm in a more general ranking method that takes the nearby resources
nto account as well. We extend the widely us#ddf and

[18] shows good scalability in terms of the number of query . ;
keywords. However, the proposed bRee indexing structure PfOPOSE @ new ranking strategy, nangab-tf-idf to measure .
requires the storage of auxiliary information for each possibhéjw the tags are related to the area that they are located in.

tag and can therefore potentially incur high /O cost when the !N Summary, the main contributions of our paper include:

Fig. 1. Distribution of geo-tags “applestore, subway” in NYC

tag space’ is large. « We propose to use tags to build a general data model.
In this paper, we present a new and efficient index based Based on the model, we describe a system framework to
on the R-tree[5] and inverted list. A labelled *Rree is support co-location searches on various types of resources

constructed to provide spatial proximity information and the in Web 2.0 applications.

inverted list is used as a partition of the tag spafe e+ We develop an efficient indexing and searching strategy,
The augmented summary information is not stored but built Which is scalable in terms of both the number of query
dynamically during the search process to make the index light- tags and the data size of resources, to answer the queries
weighted. We design a bottom-up search algorithm to utilize ©of co-located tag matching.

the inverted index so that only the related lists will be accesseds We extend the widely accepteflidf method for the ge-
Since the 1/0 cost has been greatly reduced, the new indexing ographical context, called thgeo-tf-idf ranking method,

and searching technique can ensure scalability in terms of both to measure the relevancy of the geo-tags with respect to
the number of query tags: and the data size within a large  the area in which they are located.

tag space7 . « We conduct extensive experiments using synthetic and

In addition to the efficiency issue, we also address the issue real life data sets. The results confirm the effectiveness
and practicability of our proposal in the context of Web
IThe data set is derived from Flickr's geo-tagged photos and does not cover 2.0 applications.
all th_e Apple retail stores and subways in NYC. In this paper, we assume aThe remaining of this paper is organized as follows. Section
relatively complete geo-tag database has been built. . e . .
2A tuple o with multiple tags can be treated as multiple tuples at the san“adlscusses existing work on content based location searching

location: o = {o0;|0; = [c1, ¢, .. .,cq,ti]} and takes an overview of the work in answerin@K query .



Section Il introduces the general framework and the improvéacal users. In these work, a similar strategy with PageRank
index and search strategy. Section IV proposesgie-tf-idf was proposed to measure the local popularity using back
ranking mechanism. Section V presents our performance stk locations. To further emphasize the local importance,
on the synthetic and real life data sets. Finally, the papergsographic power and spread measurements are defined in
concluded in Section VI. different context. Geographic power refers to the popularity
of a page in a local area and is measured by the normalized
number of desired links to the page. Spread measures how
A. Content Based Location Searching uniform are the distribution of page’s back links. The back
Location detecting service has attracted great interest dinks of the resources are however not available in most cases.
has been well studied[8], [17], [16], [1], [12], [14], [2] in As such, a new geo-ranking mechanism is required to measure
recent years due to its commercial potential to the seartte relevance of geo-tags to the area that they locate in.
engine in providing local or personalized service to customers.
The works can be divided into two categories according B ThemCK query and relevant query processing
the source .used to compute the geographical scope. The firs,h our earlier work [18], we proposedhCK query for
category aims to extract and parse the addresses, localfing , closest keywords in the spatial database. To answer
name, placemark, telephone and zip code from the web f6ck query, a hybrid index based on the-Ree, the bR-
source. Such gazetteer-based information extraction is obviq*ge, was proposed. In the bfee, in addition to the the
and effective. Natural language processing and informatiggqe MBR, each node in the tree is augmented with addi-
retrieval techniques have been applied for more effectiygpg) summary information: keyword bitmap and keyword
retrieval pf the gazetteer term_s by eliminating the ambiguitigggr Keyword bitmap is bitmap structure indicating which
so as to improve the recognition accuracy. On the other hagyords are contained in the node and for each keyword, the
when the geographical content is implicit, other sources, SUPEE‘yword MBR gives the minimum bounding rectangle that
as hyperlinks of web pages and log files, are utilized to det§ffnds all resources that are associated with the keyword.
the web page’s location. A page that is popularly accessedis information provide a quick summary of the keywords
cited by other local pages or users is considered to be relevgpl how they are distributed within the node. Thus, compared
to a local area. Unfortunately, in many Web 2.0 applicationg, ihe R-tree, the bR-tree has better pruning power due to
these sources are not available in the database. this additional information being stored.

_Recently, several works have been proposed to handlerne chajlenge of answeringCK query is the exponential
different types of keyword queries in spatial databases[1Qbarch space that contains all the combinations of different
[9], [7], [18]. Hariharan et al. [10] introduce a spatial keyworgy\yords. Given an initial relatively small distandg, the
query with range constraints. Each spatial object returnedgg,nsed search process starts from the root node and traverses
required to intersect with the query MBR (Minimum Boundingy, v, the tree in a depth-first manner in order to find a good
Rectangle) and match all the user-specified keywords. Thew i as soon as possible. Upon reaching a leaf node, all the

propose a hybrid index of theRree and inverted index, ghiects are exhaustively checked based on the combinations
called the KR-tree, to answer the query. Felipe et al. [9)¢ yifferent keywords.

propose a similar query typ2e by combinitgNN query and |, 5qgition, anapriori-based strategy to search inside one
keyword search, and usei?®, a hybrid index of the R-tree 4o or across multiple nodes is applied. Two monotonic

and signature file, for query processing. Cong et al. proposg,siraints, namely the distance mutex and keyword mutex,
to take into account both location proximity and text relevanq;éere proposed as thepriori properties to be applied in the

during the ranking. They develop an efficient framework f0fo 5 ch process. The two properties have the formal definitions
top-k text retrieval. These work cannot be applied to seargg follow:

for co-located tags because they are looking for single objects

matching all the user-specified tags. The query tags can appeafefinition 3 (Distance Mutex [18]):A node set\ is dis-

in multiple tuples as long as these tuples are close and relagfce mutex if there exist two node¥, N’ ¢ N such that
in the geographical space. In [18], we address the problemaqgt(N’ N') > 6*.

finding closest keywords in spatial databases. Its performance

scales well in terms of the number of query keywords due to Definition 4 (Keyword Mutex [18]):Given a node set/ =

the proposed bR*-tree index and apriori-based search stratédy;, N,...,N,}, for any n different query keywords

However, since it requires the storage of auxiliary informatio@uqanz, ...,w,, ) in which w,, is uniquely contributed by

for each possible keyword in the indexing nodes, its index sia@de IV;, there always exist two different keywords,, and

can be enormous when a large number of tags are invol\@gj such thatdist(wg,, wy, ) > 6%, then\ is called keyword

and high I/O overhead may be incurred. On the other hanglutex.

no ranking mechanism is provided to capture the semantic

relevancy of the returned result. These two properties have been proven to be monotonic and
Geo-ranking mechanisms were proposed in [8], [2] tcan be used for efficient pruning. Although the experimental

assign higher ranking to web pages that are popular amaergults [18] show remarkable scalability in termsrofwhen

Il. RELATED WORK



R < LW g - 39°54'53” N and116°23'26” E. This location information can
. W el . be parsed as the spatial attribute of the article. In online photo
:> : Y i %2 sharing applications like Flickr and Google Web Picasa, APIs
. have been published to access the public albums, photos, tags
as well as their locations. Similarly, when users share their
videos in Youtube or other online video sharing websites, they
may mark in the map the location where the video was shot.
Hence, we are able to retrieve mapped resources of different
types to build our underlining database.

After the retrieval step, we need to combine the data sources.
We can use the uniform resource mapped resource model to
seamlessly integrate the articles, photos and videos. It can
provide a transparent access layer and benefit the indexing and
searching process. Our index structure is based*etrde and
inverted list.

answering thenCK query, such an index suffers from high 2) The Query Engine:Based on our uniform resource
/0 cost if the total number of keywords is large. If there are Model, the query interface allows users to submit query tags
keywords, the root node has to maintdin keyword MBRs. 1o find matching co-located geographical resources. The query
The internal nodes become overloaded and occupy a latgBut is a collection of the tags which are either associated with
amount of storage space. Such an index structure preventstfiferesources or created by users to identify relevant areas in
search algorithm from handling spatial database with masst map. For example, “wedding church New York” is a query
number of tags. In this paper, we propose a new ||ght_We|gm find the churches in New York that can hold a WEddlng
index based on Rtree and inverted index to reduce the I/cFeremony. Local search engine can benefit greatly from such

User Interface =

flickr =7
>

‘ @ geotags
B - —

o o

Fig. 2. The framework of location detecting in Web 2.0 applications

cost. queries as these can help them to provide better customized
service.

[Il. DESIGN OFTHE SEARCH ENGINE Meanwhile, the query engine also supports resource locating

A. Framework when a search boundary constraint is specified. The area can

. be either added by users manually or set as the current display
The emergence of Web 2.0 has resulted in the conceptrg ion in the map. Since the underlying index is actually

mashup where data objects from multiple external sources fiVerted list, all the elements that do not lie in the query region

F:omb|neq to create a. ”‘?W serylce. In other words, maSh\k'lﬂl be eliminated to ensure all the candidates are within the
is a hybrid web application built on top of resources frorﬂ?undary

different channels. In this section, we describe a new type 0 ) User Interface: The search engine is designed to be
mapping mashup that integrates data sources from various W? ple and friendly. The whole interface is map-based. Users

2.0 applications to support resource locating. We are curren@ n freely explore geo-resources in the area they are interested

building such a mashup framework within the context of O4h. The main search entry is only a simple textbox to accept
Marcopolo system [6]. The framework consists of:

) ) guery tags. All the related resources will be displayed directly
« A wide range of data sources from different Web 2.@, the map for further refinement.

applications are combined. _ _ Users are also allowed to specify the search area and
« All the resources are represented in a uniform data modgkource type during the search. They can specify the search
to facilitate the indexing and searching process. constraint by drawing a rectangle in the map and choose the

« A simple, map-based user interface is designed to prgasired resource type they are looking for. The resources that
vide users with satisfactory experience in searching aggs outside the search boundary or not compatible with the
browsing the geographical resources. query resource type will be filtered.

As shown in Figure 2, the system is designed to for usersto _

conveniently search and browse the resources. The framewBrkLight-weighted Index Structure

consists of three components) the index engine to crawl, In Web 2.0 context, users can continuously contribute new
integrate and index source dafj. query engine to find the resources to the map. On one hand, there will be increasing
location of the resource8) friendly interface to improve user number of locations. On the other hand, in each location, the
experience. number of associated tags will increase as well. Thus, it is

1) Index Engine:The index engine aims to support efficienessential for the proposed index structure to be scalable enough

tag matching on top of the combined data resources deriiedhandle large number of locations and tags. To achieve this
from other applications, such as Wikipedia, Flickr, Picasgoal, we do not maintain the additional summary information.

Web Albums, and Youtube. In Wikipedia, most of the articlesloreover, we do not integrate all the locations and tags into
with geographical context have been geo-located. For instanoee tree structure. Instead, we split them into two components:
the page “Forbidden City” is associated with coordinates spatial index and an inverted index, as shown in Figure 3.
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Fig. 4. Bottom-up construction of virtual/t*-tree

% 1o o ok o bgen qrdereq, it is conve_nient _to ret_rieve the list segment
—{ab [tocsf~{ab Jioctf | baftoctf{ bbioc] with this prefix. However, if the insertion occurs frequently,
® —|bb [loc7={bb [Iocg] ensuring correct label will be computationally expensive. As

we do not require accurate labelling in our search algorithm,
we can adopt a lazy approach in which we will delay the
updates of the labels. The location’s label is buffered before
This also ensures that the proposed index could be grafted ithe split operation. The affected part of the-Ree will be
existing commercial systems easily. updated in a batch manner using the buffered information to
The R-tree is used to index all the spatial locationensure an acceptable cost. The case of insertion of a new tag
associated with tags. It is constructed in the same manigmuch simpler. A new inverted list is created for the new tag
as described in [4] except that each node is assigned a ladedl its location and label are inserted into the list.
indicating the path to the root node. In our example, nodeln contrast to [18], such a light-weight index saves a large
Rs and R, are both labelled as “a” because they share tlgnount of I/O cost compared to indexing all the tags and
same path to the root node’s first entry. Similafg, and R  locations into one bRtree. Given a set of query tags, only
are labelled with “b”, which represents the second entry fhe relevant location lists will be retrieved. The following
the root node. Given a node label, we can judge where tigbsection will introduce how theCK query can be answered
node is located in the Rtree without accessing the tree. Twaoon top of the inverted lists without even accessing the spatial
locations close to each other probably have the same préfidex. The index can also be utilized to answer queries in
of node label. If they lie in the same internal node, they willvhich the user specifies a bounding region. We traverse down
be assigned the same label. Thus, the label can be usedhtR-tree as much as possible while ensuring that the node
approximate the spatial distance between the data points. MBR bounds the query region completely. Using the label of
An inverted index is built along with the *Riree. It main- such a node, we filter off all data points that are not prefixed
tains inverted lists for all the tags in the database. Eawlith the label. The retrieval cost is small as the labels in the
element in the list consists of the node label derived from tiists have been ordered. Then, a further check is performed to
construction of the Rtree and the actual location. Note thasee if the data point is within the query region so as to obtain
the list of locations are ordered by the label so that the ddt® correct result.
points close to each other in geographical space are probably
still close in the inverted lists. C.
Such an index is scalable in terms of both the number of Given m query tags, we retrieven lists of data points that
locations and tags. Each time a new location is marked fimatch the tags from the inverted index. A naive solution to
the map, it is inserted in the labelled*fee. The function this problem is to exhaustively examine all possible sets of m
ChooseSubtre@n [4] is first invoked to find a leaf node to tuples from different lists. This is prohibitively expensive when
accommodate the location. If there exist empty entries in tilee number of objects and/en is large. To take advantage
node, the location point is inserted and assigned with tloé the spatial information embedded in the label, we instead
node’s label. The inverted lists of the associated tags cpropose an elegant solution to construct a virtual-iee
also be updated at a small cost as the elements have beging the label and location of the data points.
ordered. Otherwise, split occurs in the overflowing node andThe virtual bR-tree is built level by level in bottom-up
the changes are propagated upward the tree. Besides the MB&ner as illustrated in Figure 4. At firsty inverted lists
adjustment, we need to update the label of nodes as wadrresponding to the query tags are retrieved and merged into
as the elements in the inverted lists assigned with the adde list ordered by the node label. The cost of this merge sort
label. Suppose the propagation stopped at nddéabelled is linear to the size of lists. We traverse the sorted list and
l1l5...1;, all the descendent nodes &f will be re-labelled. fetch all the data points with the same label. These points are
Meanwhile, the elements in the affected inverted index whoased to construct a new virtual node which has a counterpart
labels start with/;/5...l; are also updated. Since the lists havim the original R-tree. Note that the MBR of the virtual node

Fig. 3. The index of R-tree and inverted index

Bottom-Up Search Algorithm



is much smaller than its counterpart as it is built on the pointgore(k, D) will be assigned a higher value if keyworid
relevant to the query. For each virtual node, we maintain tloecurs frequently in documen® and infrequently in other
additional information: the keyword bitmap and the keywordocuments. Formula 1-5 shows the ranking mechanism with
MBR to summarize the keywords and their distribution insideormalization of document length and frequency taken into
the virtual node. Compared to the bitee proposed in [18], account:

the node size has been greatly reduced to save the 1/O cost and

allows the virtual bR-tree to handle a database with massive

number of possible tags. In addition, the a priori-based search score(Q, D)

Z weight(k, Q) * score(k, D) (1)

strategy can still be applied in the virtual biee. keQ
score(k,D) = M x idf (2)
Algorithm 1 Bottom-Up Search Strategy dl
Input: m query tags, inverted index tf(k, D) = 1+4In(1+In(freq(k,D))) 3)
Output: Distance and location of. closest keywords dl = (1—3s)+s%* di(D) (4)
1. Retrieve m inverted lists for each query tag avgdl
2. Merge the lists into one list. ordered by the label idf = In N (5)
3. Initialize a virtual nodecur_node af +1
4. while L.level <tree.height do The term weight ofc with respect tay is usually measured
5. for each elementnode in L do _ by the raw term frequency if). The documents with higher
6. if unode has the same label with its previous elemengnking scores will be considered as more relevant to the
then _ keywords. Similarly, we can define our score function of a
7. addvnode into cur-node geographical ared? with respect to queny, as shown in
8. else Formula 6.
9. SubsetSearch (cur_node)
10. add cur_node to List L'
11. movel' to L score(Q,R) = Z weight(k, Q) * score(k, R) (6)
keQ

The detailed search algorithm is shown in Algorithm 1. The problem becomes how to measure the importance of
Each time a virtual node is constructed, it will be treated asaatag ¥ with respect to an are®. Inspired by the intuition
subtree and the pruning algorithBubsetSearch proposed behindtf-idf, we propose an extended ranking mechanism used
in [18] could be applied in this virtual node. The difference itn geographical context. A higher score will be assigned to
that the search space will exclude the single child node thabre(k, R) if the tag ¢ and areaR satisfy the following
matches all the query tags. As our search strategy is bottpnoperties:
up, the space within the node must have been eXplOfed. Flm) The tagt appears frequent|y around the arealbfFor
5 shows the order ofVodeSet candidates checked in the examp|e’ tourist trave”ing in Bemng will probab]y take
top-down and bottom-up search algorithm respectively. The 3 vyisit to Forbidden City. There will be many photos
bottom-up strategy can access the leaf nodes earlier than top-  and blogs tagged with “Forbidden City” uploaded in the

down method and get a smallé&t first. In overall summary, map. Thus, this tag is closely related to Beijing city.
the bottom-up search demonstrates better scalability becausg) The tagt is not frequently mentioned in areas other
it only accesses a small virtual bRree and in the meanwhile than R. Although “Forbidden City” may appear in
preserves the effective pruning strategy. other travel blogs not located in Beijing, such cases are
typically rare. Beijing will be assigned with a high score
Orcer 112 3 4 ° 6 with respect to “Forbidden City”.
Top-down R1 Rs3 Ro Rs R1R> R3Rs5 . . o .
Bottom-up | Rs | Rs | RiRs | RsRs In IR systems, the information unit is a document. While

in our uniform data model, the concept of document is

vague. Each location point is associated with a set of tags.
Distinct resources located at the same point can constitute a
IV. RANKING large virtual document with the tags merged. If there are no

The results returned by theiCK search algorithm only resources in the nearby area, we can apply traditiginef to
considers the spatial closeness while ignoring the geographeasure the weight between keywdrdnd locationp:

Fig. 5. Order ofNodeSet candidates checked

ical relevance. In this section, we propose a new ranking (e ) — k. D 7
mechanism, namelgeo-tf-idf which extends the classit- inw(k, p) = score(k, D) 0
idf ranking to be applied in a geographical context. .where D is the merged tag “document” located at point

tf-idf[3], [15], [11] has been widely adopted in searck. However, in real Web 2.0 applications, the resources are
engines to measure the importance of a keyword with reentributed and uploaded by users. The resources on the same
spect to a document in a collection or corpus. Intuitivelyppic will gather around the actual location. The score value on



a point locatiorp can not completely capture the geographicalan bound it. The degradation function no longer decreases

context. We need to take into account the nearby resourcesontinuously to0. Instead, as shown in Figure 7(b), we use
In order to measure the effect of tdgin location p to the grid cell as the basic unit. The weight of the grid that holds

its nearby areas, we build a degradation model as shopwint p is assigned with constant and the neighboring grids

in Figure 6(a). The keyword will affect mainly the nearbyare assigned with constafifl > « > ( > 0). The remaining

regions. The regions far away are considered irrelevant to tipéds are considered not relevant to the keyword. The weight

tag. We may use Gaussian function in Figure 6(b) to describékeyword k& with respect the cellC' becomes:

such degradation. Suppose tii@imensional space has been

normalized intof0, 1]%, the relevance of keywordl located at ax S inwk,p)+ 8+ S inw(k,p)
p with respect to are&® can be measured via the following peC ’ C’'ENC peC’ ’
formula: score(k, C') = 3d

(10)

Jyertinw(k, p)  f(dist(p, )} g) .whereNC are the neighboring cells af. Such a definition
1+ In(area(R)) will assign higher value tacore(k, C) if k frequently appear

, Where f is the degradation function. The intuition behindn C as well as its neighboring cells. Finally, a normalization

the definition is that if the area is small and close to therocess similar tadf is proposed to reduce the effect of the

keyword, a higher score will be assigned. If the area is largggneral tag that occurs all over the grid:

the effect of the keyword on the whole region will be scaled

score(k,p, R) =

down accordingly as well. Thus; is more relevant td than igf(k) = ln% (12)
R, in example of Figure 6(a). If there are multiple occurrences g(k) +
of keywordk in the spatial databasgD, the final score will | \yhere|G| is the total number of-dimensional grid cells and
sum up all the effect of: on the area of:: dg(k) is the number of grids containing the keyword. Given
score(k, R) = Z score(k, p, R) ) all these formulas, the ranking score /ofwith respect to its
’ 5 o location can be approximately defined as :
> score(k,C) xigf(k)
f CER
score(k, R) = (12)
1 ) ]
o D ,where R is approximated by a set of cell§. Such an
\ @ ) approximation takes the nearby documents into account. In our
\,@/ experiments, we will provide further analysis of the ranking
L mechanism.
DT - X

(a) Keyword weight degrada{b) Keyword weight degradation V. EXPERIMENT

tion model function This section provides an extensive performance study on
both synthetic and real data sets in order to evaluate the
scalability of our query processing strategy as well as its
practical utility.
A. Approximate Ranking Mechanism We incrementally generate large synthetic data sets to simu-
In real applications, it is expensive to calculate the exalete those from Web 2.0 applications. Meanwhile, real data sets
weight of a region with respect to a keyword. To savextracted from online photo sharing applications are used to
the computation cost, we propose an approximate scoritggtify the practical utility of thenCK query in local services
mechanism. and resource locating. All of our experiments are conducted on
a server with Quad-Core AMD Opteron(tm) Processor 8356,
128GB memory, running RHEL 4.7AS.

Fig. 6. Degradation of keyword spatial importance

B | A. Experiments on Synthetic Data Sets

geclgeclgoc]
geclpeclyos]

Synthetic data sets are generated to simulate real-life ap-
! plications in two aspects. First, in successful commercial
‘ applications, there are millions of users who created large

(a) Grid degradation model (b) Grid degradation function amounts of resources. Hence, the data size we generated must
be large scale. Second, the database expands continuously as
Fig. 7. Degradation of keyword spatial importance new resources are added in by different users. Thus, scalability

in terms of the number of locations and their associated tags
In our approximation model, the space is split into grid cellsecomes an essential issue. Our experiments are performed on
and regionk is approximated by a minimum set of cells thasynthetic data sets with millions of locations and thousands



of tags. All the spatial data points are generated im-a in data size can lead to remarkable expansion of the search
dimensional spacd0,1]? in a random manner. For mostspace. In contrast, our virtual BRree is able to scale in a
mapping applications] is usually set as two. Each data poinstable manner.
is randomly assigned with a fix number of tags.
We compare virtual bRtree against bRtree proposed in Vil bEles e
our earlier work [18] and MWSJ[13] in answeringCK query.
These two algorithms retain the same settings as before. T@e
average response time(ART) is used as our performance mét-
ric. In the following experiments, we compare the scalability —
in terms ofm, the number of locations and the associatedtags. 5 ¢ 7 & ° 10 5 6 7 8 9 10

10 10

—e— Vitural bR*tree —e—
MWS] -

nds)
ART(seconds)
N S o =)

NOA O ®

1) Scalability in terms of m: In this experiment, we ran- datnsize(10) datnsize(10)
domly generate two data sets with 5,000,000 and 10,000,000 (@ m=3 (bym=5
location points respectively. There are in tofaD00 tags in
the database and each point is associated svitndom tags. 50 VT —— 100 Vitural BRAtree —o—
The number of query tags submitted is varied frérto 8. g © M g WS .

Figure 8 illustrates the average running time of the threg ® . g o o
algorithms. The bRtree proposed in [18] shows reasonableg 2 e E ool
scalability asm increases. However, since the tree maintains W = ow
auxiliary information in each node, this lead to extremely high °c— 1 ole—e—r—t 2
I/O cost. The index occupies more thd®B disk storage data size(10°) data size(10°)

while our inverted index only takes up27MB for the data
set with5, 000, 000 points. The performance of MWSJ shows
the same pattern as in our previous paper. Wheis small, Fig. 9. Scalability in terms of the number of locations

the query can be answered efficiently. Whenis increased 3) Scalability in terms of the number of tags: In real

to larger values, the performance starts to degrade duegjgyjications, new tags can be added to describe a particular
the exponential expansion of the search space. Our virtygloyrce. In this experiment, synthetic data sets are generated
bR*-tree demonstrates much advantages over the other §4Qimuylate the growth in the number of tags. Here, we increase
algorithms. This is due to the improved index structure 3§e number of tags associated with each location fiorm 9.

well as the efficient pruning strategy. In the following tworpe spatial database contal®00, 000 data points and, 000
experiments, we only compare the performance with MWSgkerent tags in total.

as the original bRtree is not suitable for handling data set The two algorithms in Figure 10 present similar growth rate

c)m=7 (dm=8

with massive number of tags. with Figure 9 in term of response time. Their performance are
, . good whenm is small. However, MWSJ suffers from serious
Vitural bR*-tree —6— 1000 Vitural bR*-tree —e— . . 3
100 bReres 5 e degradation in handling large number of query tags because
N N . . 100 JO NP

it does not inherently support effective summarization of tag

locations. Our virtual bRtree on the other hand demonstrates

good scalability.

o Note that the virtual bRtree performs slightly better with

3 4 5 6 7 8 3 4 5 6 7 8 respect to the growth in the number of tags compared to the

growth in number of locations. The reason is that the virtual

node in the bR-tree maintains a bitmap indicating the query
Fig. 8. Scalability in terms ofn tags within. The insertion of a tag into an existing location

will only trigger the setting of the bit in the bitmap. However,
2) Scalability in terms of the number of locations: In  the insertion of new locations leads to a larger labelled R

order to simulate the real applications in which new resourcgge. Therefore, more virtual nodes will be created during the
are continuously marked in the map, we generate the synthefiGarch process.

data sets with the size increasing steadily fror00, 000 to

10,000, 000 data points. The number of tags associated with. Real Experiment

each point is fixed as. Figure 9 shows the performance trend o rea| data set is generated via the Flickr service3AP

as the data SIz€ InCreases. _ _.._and Picasa Web Albums Data APWe extracted all photos in
When m is small, both algorithms demonstrate similaye,, york that are tagged and geo-marked. Resources located

growth rate in running time. The spatial index did take effecl y,o same coordinates are merged into the same tag list. After

to suppress the expansion of search space. Howevem asomoying the infrequent tags, the database consisTd,af74
increases, the performance of MWSJ becomes sensitive to the

growth of data size. The reason is that the search space grovfp:/www.flickr.com/services/api/
substantially with the data size. A small amount of increasenttp://code.google.com/apis/picasaweb/overview.html

=
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(a) 5,000,000 data points (b) 10,000,000 data points
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©m=7 (dm=8 restaurant, museum, shopping, recreation center, viewing site,
Fig. 10. Scalability in terms of the number of tags local news and so on. As shown in Figure 13, fifteen example
By T P ol queries are listed and the results are compared against Google
f D gl < Maps. These local service queries can be divided into three
categories:
[ Type | Tag Query | Google [ mCK |

| liberty statue
marc jacobs store

¥

1

Jescernvont
P

Fig. 11. Distribution of tag “zoo”

restaurant seafood sashimi
bar cocktalil jazz player
museum dinosaur fossil
tennis court Williams champion
Il weapon factory
river airplane crush
campus Barack Obama
park river fishing
recreation bowling billiard

location points from Flickr and, 729 points from Picasa Web.

square fountain roller skating

[ applestore subway
supermarket gas station

hotel church catholic historic

XL X R X X[ X | X[ X[
L X RR X PR XYY X X

There arel2, 636 tags in total.
Based on our observation, the geo-tag data set is of accept-
able quality. Most of the photos are assigned with relevant,
tags and are correctly marked in the map. The geo-tags
are usually distributed in the form of spatial clusters. These
clusters can be utilized to identify the locations of popular

Fig. 13. Example tag queries

The first type of queries is landmark query, such as
“Statue of Liberty” and “Marc Jacobs Store” in our

examples. Google Maps can answer this kind of queries
effectively as enormous number of landmarks have been

resources and events because related tags will emerge around correctly maintained in the database. Each time a query

that area. For instance, as shown in Figure 11, the tag “zoo”
is mainly distributed in three spatial clusters corresponding to
Bronx Zoo, Central Park Zoo and Queens Zoo Wildlife Center
respectively. Similarly, in Figure 12 there are a large number
of “USOPEN?" tags gathering around the Arthur Ashe Stadium
where the tennis match is held. This phenomenon provides us
with new opportunities to locate resources in more precise
geographical scale.

In the following experiments with real data set, we design a .
set of queries using tags or photos as the input. These queries
are mainly for locating local services.

1) Tag Query: In this experiment, users propose query
tags from the perspective of finding local service, including

is submitted, it will first look for gazetteer terms so as
to reduce the search space. @u€K query strategy can
correctly give the result for “Statue of Liberty” because
this is a famous viewing site in New York City and many
photos have been tagged and marked around the statue.
However, no result is returned for “Marc Jacobs Store” as
no geo-tagged photos about “Marc Jacobs” exist in our
data sets.

The second type of query is seeking for a subject as-
sociated with constraint features, persons or events that
users are interested in. If the association is common and
straightforward, such as a restaurant with seafood and
sashimi, a museum with dinosaur fossil and recreation



center with bowling and billiard, Google Maps is a goodmportant and prominent subjects or features in that location.
choice. However, this search engine is not suitable fédthough tags like “river” and “hotel” also appear frequently,
locating subjects with complicated features like “tennithey are not distinguishing enough. These tags spread round
court where Williams won the champion” and “bar withthe city and theigf(inverse grid frequency ) takes effect to
cocktail and jazz player”. In contrast, outtCK query assign lower scores to them. In addition, we can tell from
can answer most of the queries as long as the tardgle¢ figure that most feature tags are assigned with moderate
location is well tagged. For the infrequent tags in owscores.

data set, such as “sashimi”, “recreation”, “billiard”, it

is difficult for them to occur simultaneously with other ts ﬂrfg‘le 2593228 Mrg/ 3:97
query tags in the same location. Thus, no related results - hotel church— catholic historic
are returned. The other problem withCK query is that 114.849  214.979  685.173  45.2946

it can not guarantee that the results returned are related to
the same subject. In the query “weapon factory”, Knitting
Factory, a music club and concert house, is returned. TheThe last essential issue about ranking is the weights of the
reason is that there are no available weapon factoriesgoery terms. In default, the query tags are assigned with equal
the database and it happens that there is a poster abgeights. When the results returned are not satisfactory, users
weapon on the door of the music club so that the tware allowed to adjust the weights to highlight the important
tags “weapon” and “factory” become connected. terms to better identify their intention. For example, given
« The third type of query differs in that spatial constrainuery tags “fountain, square”, a famous square with a fountain
is embedded. For example, “applestore subway” aims igay be returned as the square may be frequently tagged,
find the apple retail stores near the subway. Similarligading to a dominating score. If the user is actually searching
“supermarket gas station” intends to find a supermarkeh ornate fountain in a square, he can increase the weight of
and gas station close to each other. Google Maps is atisuntain”. If the fountain is the prominent scene, it is likely
to answer these two queries because the result returnede more frequently tagged than the locating square and the
happens to contain all the query tags. It can not captugemous fountains will be returned.
the spatial constraint so as to answer queries like “find a3) Accuracy: To further test the accuracy of the resource
historic catholic church with hotels nearby”. OutCK locating, we invite a group of volunteers to generate the local
in essence is proposed to answer this type of query. Thervice queries for us and verify whether the returned results
quality of the search result relies on the quantity of tagsre satisfactory or not. Since our data set is still too small to
contributed by users. meet with daily needs, we extract frequent tags and ask the
Figure 14 illustrates some results of example queries nlunteers to create the query from the combination of these
turned by mCK and Google Maps. We can observe thagags. All the50 queries are shown in Fig 16.
Google Maps pays more attention to tags with geographicalln this experiment, we first use the Flickr data set and later
context, such as college and church. The other keywords useldl in the Picasa Web data set to examine whether the idea
as features or spatial constraints are ignored. Thus, its resoltsnashup works. The accuracy results are shown in Fig 17.
can not capture the correct query subject or user's intentiohen there is only one data setCK query only performs
Our mCK query takes all the tags into account and find glightly better than Google Maps. The reason is thaZK
location matching all of them. Such a query mechanism $eks for a location matching the query tags but these tags are
able to capture the complete meaning and return satisfactpossible to be associated with different unrelated subjects. If
results. multiple data sources from other applications are combined, it
2) Ranking Mechanismin this part, we provide more in- is more likely for the related query tags to appear in the same
depth analysis of our ranking strategy. As mentioned, wecation and their distance becomés As such, we obtain
assign higher value tecore(k, R) if keyword k appears an improvement in accuracy when the Picasa Web data set is
frequently aroundR and infrequently in other locations. Suchincorporated.
keywords usually refer to the distinguishing and prominent 4) Photo Query: In this experiment, we discuss how to
entities. To achieve this goal, the primary issue is to determileeate a photo usingnCK query. Given a photo, the semantic
the size of the grid cell. The setting of this parameter is closebpjects as well as their features can be extracted via human
related to the specific services being provided. Precise locatiotelligence and represented as query tags. These tags are
at the level of a shop or sculpture desires a small cell sizdose to each other in the physical space. Google Maps is not
Otherwise, we can allow larger cells to save maintenansaitable to handle such queries because it is unable to capture
cost. Note that hierarchy grid structure can be designed tte spatial constraint. Thus, we try to solve the problem by
support locating services at different geographical scales. dabmitting anmCK query using the extracted tags.
our experiment on the New York data set, the grid is split into As different query tags extracted from the same photo may
500 x 500 cells. result in different matching locations, the selection of extracted
Fig 15 shows the ranking scores of query tags with respeéajs becomes an important issue. Based on our experiments
to the detected location. The bold tags “crash”, “catholic” aref the query photos in Fig 18, we observe that:

Fig. 15. Ranking score for the tags



Query Tags mCK Google Maps
/ & ) . 8 Yeshiva University Main Campus
i .
/g B )
L BarackObama %" Campus Description: 12 acre Yeshiva College
Columbia Univ-5chool of Engineering Lhak .
e campus Y @ %M B campus in uptown Manhattan Stern College
4
&@ o campus in midtown Manhattan Sy Syms School of
) e Business at both campuses... a2zcolleges.com
Columbia University -
OQK‘Q; @ Old St Patricks Cathedral School
= atricks Cathedral Schoo
@® hotel \ QQOO % ® |
@ church - %%6 )
0 catholic e - o QQ(%‘D e, Latin Catholic - 2 NYC Cathedrals The people
ey

) historic A 3 o 7 o usually known as ”Roman Catholics” - the historic

053.3_:£h. ® Church of the West under the immediate supervision

& 5 of the Pope ...fordham.edu
St Patrick’s Cathedral

Fig. 14. Example results returned byCK and Google Maps

sunrise hotel

hospital plaza

dinner movie

island waterfall

weapons factory

girls gold shoes shof

wedding church

gold sunset beach

rockband beer

waterfall ferry

weapon museum

911 monument

orange lamp library

historic architechture

historic museum

pizza plaza

sunset lake

japanese restaurants

waterfalls hotel

fireworks square

bridge train

river fishing

dogs pet shop

vocation island

garden cafe

monument square

movie theatre

kids playground

dinner plaza chicken

ice stadium

baseball stadium

sunset skyline

sunset boat sed

tennis usopen

iphone gallery

park band bass

beach guitar moon

dance rock band

fish market

fashion jewelry shop

architecture museum historic movie theater

sexy girls

flower exhibition

bronze statue

towers lamp

ice cafe pizza

museum pizza

island moon

bowling beer dinner
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Local service queries

tags from the image to eliminate false positive. For
instance, in the first photo query, all the four query tags

are widely distributed in New York City. Their spatial

constraint assists us in detecting the correct location.
Missing any of the query tags could lead to a false result.

Other types of resources, such as blogs, news and videos,
can also be located in a similar manner. As long as the resource
is concerned with a local area, their associated tags are likely

to spread around that area. ThereforeCK is a useful query
in the location detection of mapped resources.

In this paper, we have addressed the new emerging problem

« Distinguishing tags are preferred as they can help @ locating mapped resources in Web 2.0. We have proposed
reduce the search space. For example, in the secdoadise tags to build a general data and query model to support
query, “skyscraper” is a frequent tag that appears around-location searches by tag matching. The data resources from
the downtown of New York City and leads to manydifferent applications can be combined and integrated into the
candidates. However, “mast” is a distinguishing keyworlhbelled R-tree and inverted index. Efficient search strategies
as it is found in limited locations. The search space came developed to effectively answer the tag matching query.

VI. CONCLUSIONS

be further reduced through the spatial constraint that thée have also proposed a neyeo-tf-idf ranking mechanism
skyscraper is near the mast.

to measure the geographical relevance. Extensive experiments
« The number of candidate locations can be reduced bging both synthetic and real life data sets confirm the feasi-
adding new query tags. When there are no distinguishibgity and efficiency of our proposed design in the Web 2.0

features embedded in the photo, users can provide meravironment.
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