
MESA: A Map Service to Support Fuzzy Type-ahead Search
over Geo-Textual Data

Yuxin Zheng †, Zhifeng Bao ‡, Lidan Shou # and Anthony K. H. Tung †

† School of Computing, National University of Singapore, Singapore
‡ School of Engineering&ICT, HITLab AU, University of Tasmainia, Australia
College of Computer Science and Technology, Zhejiang University, China

†{yuxin, atung}@comp.nus.edu.sg, ‡zhifeng.bao@utas.edu.au, #should@zju.edu.cn

ABSTRACT
Geo-textual data are ubiquitous these days. Recent study on
spatial keyword search focused on the processing of queries
which retrieve objects that match certain keywords within
a spatial region. To ensure effective data retrieval, vari-
ous extensions were done including the tolerance of errors
in keyword matching and the search-as-you-type feature us-
ing prefix matching. We present MESA, a map application
to support different variants of spatial keyword query. In
this demonstration, we adopt the autocompletion paradigm
that generates the initial query as a prefix matching query.
If there are few matching results, other variants are per-
formed as a form of relaxation that reuses the processing
done in earlier phases. The types of relaxation allowed in-
clude spatial region expansion and exact/approximate pre-
fix/substring matching. MESA adopts the client-server ar-
chitecture. It provides fuzzy type-ahead search over geo-
textual data. The core of MESA is to adopt a unifying
search strategy, which incrementally applies the relaxation
in an appropriate order to maximize the efficiency of query
processing. In addition, MESA equips a user-friendly inter-
face to interact with users and visualize results. MESA also
provides customized search to meet the needs of different
users.

1. INTRODUCTION
With the proliferation of geographical applications, such

as Google Earth and Foursquare, geo-textual data are be-
coming ubiquitous these days. To retrieve such geo-textual
data effectively, recent studies focused on the processing
of spatial keyword queries which retrieve data objects that
match certain keywords within a spatial region [4]. Further
enhancements of spatial keyword search are conducted in
two ways. One is to support autocompletion using prefix
matching [2], which returns data objects that satisfy the
prefix matching condition within the query region. We refer
it as spatial prefix search. Another extension is to allow the
approximate matching, which tolerates the fuzzy matching

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08.

between query keywords and data objects [9]. However, the
fuzzy search applied in [9] modeled the approximate match-
ing at word level, which requires users to type at least one
full word in a query. This approach violates the concept of
autocompletion because real-time search engines should be
error-tolerant for autocompletion [3].

Goal: error-tolerant autocompletion in spatial key-
word search. Motivated by the error-tolerant autocomple-
tion feature in string matching [3], the scope of autocomple-
tion should also be extended to tolerate errors in the context
of spatial keyword search. The combination of autocomple-
tion and error tolerance improves the query efficiency and
user experience. It can also act as a hint in guiding users’
typing and reduce the probability of errors being produced.
This leads to our goal to support error-tolerant autocomple-
tion over geo-textual data.

Given a spatial prefix query, it is possible that no or few
data objects are returned due to the mismatches between
users’ domain knowledge and the underlying data: (1) the
query range is wrongly specified by the users, such as tourist-
s, who are not familiar with the query region; (2) the query
text does not match the prefix condition due to typos in the
query text or data. As a result, query relaxation must be
performed to ensure that useful answers are returned. Such
relaxation can be conducted in two directions: (1) expand
the spatial region to a larger region; (2) relax the prefix
condition to more general textual conditions.

The relaxation of the prefix matching condition can be
further divided into several degrees. The first natural choice
is to relax it to the substring query, which requires that the
query text be an exact substring of the textual content of a
spatial object. To handle the typo issue, the approximate
matching is adopted. This leads to the second type of re-
laxation by allowing mismatches in keywords but limiting
the matching to start at the prefix. This is called approx-
imate prefix query. If both of these types of relaxation fail
to produce sufficient number of results, we would then allow
approximate string matching to be applied to any part of
the textual content. This third type of relaxation is named
approximate substring query.

An ideal search engine should have the following features
to fulfil the error-tolerant autocompletion function, which
are also the motivations of our design.

Feature 1: the support for different types of relax-
ation. Different queries need different types and degrees of
relaxation. As a result, we need an integrated system that
can support all the aforementioned types of relaxation.

Feature 2: efficient query processing to achieve

1545

real-time human-computer interaction. Determining
what relaxation to perform and performing each type of re-
laxation efficiently are the major challenges. While existing
works handled some of these types of relaxation as a single
query [2, 9], performing all these different types of relaxation
means re-issuing a new query every time. This is inefficient
especially when these queries are answered using different
indexes proposed in different works. In addition, these ex-
tensions built their solutions by assuming that the relaxation
stops at a certain type of relaxed query.

To achieve efficient query processing, we adopt a unify-
ing search strategy to perform a query. We first process a
query as a spatial prefix query. If few results are returned,
we relax the query in two directions. The relaxation is ap-
plied incrementally: the relaxation on the spatial region is
first processed, then the relaxation of the prefix matching
condition is performed. When relaxing the string condition,
the substring matching is first applied, followed by the ap-
proximate prefix matching, then the approximate substring
matching.

Based on the above observations, we design our solution
in a progressive way. We first design an index that serves
two purposes: it can support the processing of each type
of relaxation, and it can provide backup for optimizations
to accelerate the query processing. Then we observe that
different types of relaxation share much common query pro-
cessing and their results can be reused to save computation
cost. By ordering these types of relaxation in an appropri-
ate order, we can use the dependencies between them to
optimize our query processing via reuse of previous results.

Feature 3: a user-friendly interface to interact
with users and visualize results. In addition, differ-
ent types of relaxation are required for different queries. We
need to have a proper way to visualize these results such
as diversifications of results returned from different types
of relaxation. Moreover, the interface should provide cus-
tomized search components to meet the needs of different
users. For example, advanced users can control which type
of relaxation to perform for a particular query.

Integrating all the above features, we demonstrate a map-
based search system, called MESA (Map sErvice for relax-
ation of SpAtial Prefix Query). The major advantages of
MESA are summarized as follows:

1. MESA provides error-tolerant autocompletion in the
context of spatial keyword search such as the approximate
prefix matching and the approximate substring matching.

2. MESA builds a one-size-fits-all index to support the
spatial prefix query and different types of relaxation.

3. MESA optimizes the query processing using a unifying
incremental relaxation strategy to achieve real-time human-
computer interaction.

4. MESA provides a user-friendly map-based interface to
interact with users and visualize the results in a proper way.

2. CORE TECHNIQUES OF MESA
When building MESA, two major challenges are repre-

sented: (1) we need a one-size-fits-all index that can support
the spatial prefix search and its different types of relaxation;
and (2) we need an efficient way to process queries.

2.1 Challenge 1: A One-size-fits-all Index
Quadtree [5] is widely adopted to achieve fast retrieval of

objects in geographical space. Each node of a two-dimensional

Quadtree represents a bounding box covering some part of
the space, while a Hilbert curve [1] is a space-filling curve,
which maps multi-dimensional data to one dimension. The
sequential order of a cell in a Hilbert curve is identified by
its Hilbert code.

Definition 1 (Hilbert Code). Given a Quadtree n-
ode n, its Hilbert code hc is a concatenation of the Hilbert
code of its parent node and n’s local order. The Hilbert code
of the root node is set null. A Hilbert code hc1 is defined
to be ahead of hc2, if hc1 has a smaller value at the first
different bit of hc1 and hc2.

We combine the Hilbert curve with the Quadtree as in [1].
The cells of a Quadtree are sequentialized using the Hilbert
curve to retrieve objects in a given region efficiently. We
call this a Hilbert-encoded Quadtree. of which an example is
shown in Figure 1.

Hilbert
code: 0

1.0

1.1 1.2

1.3 2.0

2.1

2.3

2.2

3

Hilbert curve

0 1 2 3

0 1 2 3 0 1 2 3

root

Figure 1: A Hilbert-encoded Quadtree

Based on the Hilbert-encoded Quadtree, we build our gen-
eral index. In text search, building an inverted index on
q-grams is a common choice [6]. To support the answering
of a spatial prefix query and its different types of relaxation,
we propose a two-level inverted index, which is an adaption
of the inverted index from the granularity of q-gram to a
finer level of granularity called spatial q-gram.

Definition 2 (Spatial q-gram). A spatial q-gram ζ
= (hc, tk) contains a Hilbert code hc and a q-gram tk.

The essence of spatial q-grams is to combine a q-gram
with a node of a Quadtree. It is a projection of a q-gram
over a spatial region, which bridges the gap between the s-
patial information and the textual information. Based on
the spatial q-gram, we propose a two-level inverted index
that can support all types of relaxation that we have men-
tioned. The proposed structure has an object-level index to
support functionalities and a node-level index to accelerate
query processing.

On the one hand, to obtain the geo-textual information
of an object, we build an inverted index at the object level
by setting a spatial q-gram as the key and the objects con-
taining the spatial q-gram as the value. We denote such an
index as an object-level inverted index.

On the other hand, to quickly filter the nodes that cannot
satisfy the string condition, we build a coarse-grained index,
called node-level inverted index. We attach a count to each
leaf node of the Quadtree to record the number of objects
containing a particular q-gram in a node. Similar to the
inverted index built to compute the tf-idf score [8], we build
the node-level inverted index by setting a q-gram as the key
and a list of (Hilbert-code, count) pairs as the value.

Such index design serves two main purposes: it can sup-
port the processing of any type of relaxation, and it can

1546

provide backup for query optimization. Based on the pro-
posed index, we then present the second challenge, which is
efficient query processing.

2.2 Challenge 2: Efficient Query Processing
When a user issues a spatial prefix query, he/she usual-

ly prefers to have exact matching results before accepting
approximate results. This serves as an intuitive guideline
to process a query. Correspondingly, we propose a unifying
search strategy in accordance with this intuitive guideline.

Based on the above one-size-fits-all index, our search s-
trategy can be implemented in an efficient yet seamless way.
We observe that different types of relaxation share much
common query processing and their results can be reused
to save cost. In our system, we adopt the autocompletion
paradigm that generates the initial query as a prefix match-
ing query. If few results are returned, other variants are
performed as a form of relaxation that reuses the processing
done in earlier phases. We order them carefully to maximize
query reusability.

In addition, users usually input a query character by char-
acter, and newly typed characters are appended to the pre-
vious query forming a new query at any moment [7]. We call
this type of query as appending query. Processing of append-
ing queries is important to achieve the search-as-you-type
paradigm for real-time search. It is obvious that an append-
ing query can be handled by issuing it as a new query, but
doing so will be inefficient. In contrast, we consider how
query processing done for the initial query and relaxation
can be reused in such instances.

Our system processes the spatial prefix query in the fol-
lowing way, as shown in Figure 2. Given an incoming query,
we first check whether the incoming query Q′ is an append-
ing query of a previously-issued query Q.

SP |Res| return
≥ θ

SPR

SAP

SS |Res|

SAS

return

< θ

|Res|

< θ

|Res|

≥ θ

< θ

≥ θ

< θ

≥ θ
return

Q’

Q’ appends Q

Q

return

Reuse
result of Q

Q stops at

yes

no

SP

SPR

SS

SAP

SAS

SP
SPR

SS

SAP

SAS

Notation

Spatial prefix

Spatial prefix in relaxed region

Spatial substring

Spatial approximate prefix

Spatial approximate substring

Meaning

Q

Q’

|Res|

θ

Incoming query

Previously-formed query

Result size

Result size threshold

Figure 2: Search Strategy

Case 1: If the incoming query Q′ is not an appending
query, we process it as a new spatial prefix query. If the re-
sult size is not less than a certain threshold, the results are
returned. Otherwise, the relaxation is applied incremental-
ly: the relaxation on the spatial region is first processed,
then the relaxation of the prefix matching condition is per-
formed. When relaxing along the string dimension, the sub-
string matching is first applied, followed by the approximate
prefix matching, then the approximate substring matching.

Case 2: If the incoming query Q′ is an appending query,
we process it from where the previously-processed query Q
stops. If sufficient results have been found, processing of the
incoming query Q′ stops; otherwise, we further relax it in
an incremental way as what we have done in Case 1.

In Case 1, the incremental relaxation for a non-appending
query may contain several phases. We identify the common-
ality among relaxation at different levels. This motivates us
to reuse the results of the less relaxed queries (computed in
earlier phases) to process the query in a new phase. In Case
2, the reuse brings another optimization opportunity: we do
not process the appending query from scratch; instead, we
process it from where the previously-processed query stops.
Compared to existing works which processed different vari-
ants of spatial keyword queries as new queries over different
indexes, our approach offers a more compelling solution to
efficient and effective spatial keyword search.

3. SYSTEM ARCHITECTURE
MESA adopts the client-server architecture to build the

system. The system architecture is shown in Figure 3. On
the client side, when a user issues a query, he/she would first
zoom in a particular spatial region that he/she is interested
in. Together with the text typed by the user, the query is
sent to the server side for processing. After the query is
processed, the results are sent back and displayed.

POI Database

Inverted
Index

Query
Processor

User-friendly
Interface

Local Query
Processor

Se
rv

er

C
lie

n
t

Figure 3: System Architecture

On the server side, MESA contains two major compo-
nents: (1) the proposed one-size-fits-all index that can an-
swer the spatial prefix query and its different types of relax-
ation; (2) a query processor to handle queries issued from
the client side. The query processor adopts the proposed
search strategy, which is presented in Section 2.2, to process
a query. The server is built using JSP and Apache Tomcat.

On the client side, it includes two main components: (1)
a user-friendly map interface to provide interactive search
and result display, which is implemented using Google Maps
API; (2) a local query processor to answer appending queries
if the appending queries can be answered using the local
cached results to save computational cost. The client side is
implemented in JavaScript.

3.1 User-friendly Interface
The user-friendly Interface is used to provide interactive

search and result display. For the interaction part, we pro-
vide a control panel to let users specify the input parameters.
As a result, customized search can be achieved. Advanced
users can issue their queries on demand, while common user-
s can just use the default setting to issue queries. For the
result display part, we use different colors to visualize the
results returned from different types of relaxation. There-
fore, results can be differentiated. This is motivated by the
fact that users usually prefer the exact matching results to
the approximate matching results. Besides, users can click
the spatial objects for further information.

3.2 Local Query Processor

1547

As described previously, the autocompletion paradigm al-
lows additional characters to be appended after the initial
query. To save the communication cost between the client
and the server, we cache the results of the previous-issued
query. When an appending query comes, the local query
processor first checks whether the local cached results can
answer the appending query. If yes, the answer set can be
reused and the appending query is not necessary to be sent
to the server; otherwise, the server side processes the ap-
pending query and returns the new results to the client.

All in all, MESA groups these key components into a sys-
tem to provide the spatial prefix search and its different
types of relaxation. The techniques, like spatial q-gram,
two-level inverted index and the unifying search strategy,
are proposed to make the spatial prefix query and its vari-
ous types of relaxation more efficient and effective. Each of
those techniques is an indispensable component of MESA,
whose ultimate goal is to process fuzzy type-ahead queries
in the context of spatial keyword search efficiently and ef-
fectively.

4. DEMONSTRATION
In this section, we would like to demonstrate how MESA

handles spatial prefix search and its different types of re-
laxation effectively and efficiently, and how it enhances user
experience by providing the error-tolerant autocompletion
feature. Users will be able to experience how MESA facil-
itates the spatial keyword search by supporting the fuzzy
type-ahead search.

Data sets: Three real data sets are used. The first one is
extracted from the Geographic Names Information System1

in the USA and contains the geographic name usage in the
U.S. government, including about two million records. The
second one is obtained from the SimpleGeo’s Places2 and
has thirteen million records. The third one is obtained from
OpenStreetMap’s points of interest data in China3.

Demonstration: The interface is shown in Figures 4. It
consists of two parts: a control panel (upper part) and a
display panel (lower part). The control panel is composed
of four components: (1) a query text field to type query
text; (2) a drop-down list to input the number of required
results; (3) anther drop-down list to specify the type of re-
laxation; and (4) two slider bars to indicate the degrees of
relaxation. If the type of relaxation is specified, MESA di-
rectly performs the particular type of relaxation. The slider
bars are used to indicate what degrees of relaxation a user
prefers. For example, users can decide how much to expand
in the spatial region and what edit distance threshold to use
in the approximate prefix/substring queries.

Besides, the display panel is composed of two parts: a
result list and a map view. In the result list, the results of
a query are shown in different colors. The color indicates
that the result is returned from which type of relaxation. In
addition, the results returned from the relaxation in earlier
phases are ranked higher than those results returned from
the relaxation in later phases because users usually prefer
exact matching results to approximate matching results. In
the map view, the returned objects are shown. When users
click results on the map, further information pops up.

1
http://geonames.usgs.gov/domestic/download data.htm

2
http://s3.amazonaws.com/simplegeo-public/places dump 20110628.zip

3
http://download.geofabrik.de/asia/china.html

Spatial Relaxation:

Textual Relaxation:

Method:

stable

Results:

stable mates inc

The staples
center

staples center

staples center
premium seating

staples center
inn

stable mates inc

Figure 4: Interface of MESA

We plan to demonstrate the three features of MESA, as
stated in the introduction. (1) MESA can answer each type
or degree of relaxation on its own. If a user specifies a par-
ticular type of relaxation for a query, MESA can directly
perform the type of relaxation. This feature can be shown
by choosing different types of relaxation to be performed
on the control panel. By default, MESA uses the unifying
search strategy discussed in Section 2.2 to perform a query.
(2) MESA provides efficient error-tolerant autocompletion.
We will show that the results can be returned in real time
to fulfill user-computer interaction requirement. (3) MESA
equips a user-friendly interface to interact with users and vi-
sualize the results. Using this interface, customized search
can be supported to meet the needs of different users. We
will demonstrate these features by showing the results of
queries issued in different places. In conclusion, this demon-
stration will show that MESA is able to process fuzzy type-
ahead search efficiently and effectively over geo-textual data.

5. ACKNOWLEDGEMENT
This research was carried out at the SeSaMe Centre. It is

supported by the Singapore NRF under its IRC@SG Fund-
ing Initiative and administered by the IDMPO.

6. REFERENCES
[1] M. Bader. Space-Filling Curves: An Introduction With

Applications in Scientific Computing, volume 9. 2012.
[2] S. Basu Roy and K. Chakrabarti. Location-aware type ahead

search on spatial databases: semantics and efficiency. In
SIGMOD, 2011.

[3] S. Chaudhuri and R. Kaushik. Extending autocompletion to
tolerate errors. In SIGMOD, 2009.

[4] L. Chen, G. Cong, C. S. Jensen, and D. Wu. Spatial keyword
query processing: An experimental evaluation. VLDB, 2013.

[5] R. Finkel and J. Bentley. Quad trees a data structure for
retrieval on composite keys. Acta Informatica, 4(1), 1974.

[6] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate string
joins in a database (almost) for free. In VLDB, 2001.

[7] G. Li, S. Ji, C. Li, and J. Feng. Efficient fuzzy full-text
type-ahead search. The VLDB Journal, 20(4), 2011.

[8] G. Salton and C. Buckley. Term-weighting approaches in
automatic text retrieval. Inf. Process. Manage., 24(5), 1988.

[9] B. Yao, F. Li, M. Hadjieleftheriou, and K. Hou. Approximate
string search in spatial databases. In ICDE, 2010.

1548

