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ABSTRACT
Recent research on skyline queries has attracted much interest in the
database and data mining community. Given a database, an object
belongs to the skyline if it cannot be dominated with respect to the
given attributes by any other database object. Current methods have
only considered so-called min/max attributes like price and quality
which a user wants to minimize or maximize. However, objects can
also have spatial attributes like x, y coordinates which can be used
to represent relevant constraints on the query results. In this pa-
per, we introduce novel skyline query types taking into account not
only min/max attributes but also spatial attributes and the relation-
ships between these different attribute types. Such queries support a
micro-economic approach to decision making, considering not only
the quality but also the cost of solutions. We investigate two al-
ternative approaches for efficient query processing, a symmetrical
one based on off-the-shelf index structures, and an asymmetrical
one based on index structures with special purpose extensions. Our
experimental evaluation using a real dataset and various synthetic
datasets demonstrates that the new query types are indeed meaning-
ful and the proposed algorithms are efficient and scalable.

1. INTRODUCTION
Recent research on skyline computation has attracted much in-

terest in the database community [1, 2, 4, 14, 20]. Given a set of
attributes, and a databaseD, an objectq is said to be in the skyline
of D if there is no objectp in D such thatp is as good or better in
all dimensions and better in at least one dimension. If there exists
such ap, then we say thatq is dominated byp or p dominatesq.

EXAMPLE 1. Consider the six hotels listed in Table 1. If we com-
pare the quality of these hotels based on the price and quality at-
tributes as shown in Figure 1(b), then we can see that hotels A and
F are the only two skyline points among the six hotels. This is be-
cause hotels B, C, D and E are all dominated by hotel A in terms of
quality and price.

From a customer’s perspective, the skyline of a set of hotels is
useful when selecting a hotel to stay since it is obvious that hotel A
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will always be a better choice when compared to B, C, D and E with
F being an alternative if he/she wants to tradeoff quality for price.
Answering such preference queries [14] is one reason why skyline
computation has emerged as a hot research topic.
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(a) Location of the 6 hotels in spatial dimensions x and y
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Figure 1: Spatial and Min/Max Attributes of Hotels

Hotel x y quality price
A 2.58 1 1 80.2
B 3 2 2 150
C 4 1 2 250
D 8 2 3 300
E 5 5 1 200
F 6.11 3 4 33

Table 1: Six hotels with their spatial locations, quality and price

Besides quality and price, however, spatial location is also an im-



portant aspect that affects customer decision. Going back to our
running example, if the customer is attending a conference at lo-
cation (8,2) on Figure 1(a), then he/she might consider staying in
hotel D although it is not in the skyline in term of quality and price.
Note that unlike the quality and price attributes in which “good” and
“better” are defined right from the start, the preferred values for at-
tributesx andy can be determined only with respect to some given
reference point. To distinguish these two types of attributes, we will
call attributes such asquality andprice min/max attributes and
attributes such asx andy spatial attributes.

While previous research on skyline queries has investigated the
perspective of a customer who wants to find a good trade-off be-
tween hotel price and quality, minimizing the price for a given qual-
ity, our research is motivated by the hotel management point of
view. The objective of a hotel manager is to maximize the price
(and consequently, the profit) for a given quality within certain con-
straints given by the price and quality of competing hotels and their
proximity. Thus, a hotel manager may want to answer the following
types of queries:

1. For my hotelq at location (x,y), what is the nearest hotelp
that dominatesq in the min/max dimensions? We callp the
nearest dominator of qand the distance between them the
nearest dominator distancedenoted asndd(q).

2. Let us assume that, to run a hotel profitably, the management
must charge prices of at least $250, $210, $180, $140 and
$100 for1st, 2nd,3rd, 4th and5th class quality, respectively.
Which hotelq is profitable according to that constraint while
having the largestndd(q), i.e. has the largest spatial distance
from all hotels who dominate it in the min/max dimensions?

3. Given the above profitability constraint and a distance thresh-
old δ, find a hotelq such thatndd(q) ≥ δ and the difference
between the price charged and the minimal profitable price is
the smallest.

EXAMPLE 2. In Figure 1(a), the nearest dominator of hotel B is
hotel A while the nearest dominator of hotel D is hotel C. We can see
that ndd(D) > ndd(B) althoughB dominatesD in the min/max
attributes. The above profitability constraint is represented as a
plane in Figure 1(b). Hotels above this plane are profitable, others
are not, i.e. only hotels C and D are profitable. Sincendd(D) >
ndd(C), hotel D is the answer for the second example query. As-
sumingδ = 4.5, hotel E will be returned for the third query, since
its nearest dominator is A with a distance of 4.6 and E’s distance to
the profitability plane is the smallest among all hotels whose nearest
dominator distance is not smaller thanδ.

To illustrate that the above query types are important in a broad
class of applications, let us discuss a second motivating scenario. A
survey of a group of consumers is done with their age, salary plus
the weight and price of the notebook they owned being recorded.
In this case, the age and salary are the spatial attributes while the
weight and price of the notebook are the min/max attributes. A
consumerq with a largendd(q) own a notebook which is compa-
rable to many other consumers with similar age and salary. Obvi-
ously, a notebook manufacturer will be interested to find notebook
in the market which can cater to the biggest age-salary group so
that he/she can build a similar or a slightly better one to target the
same group as well. However, this have to be done within the profit
constraint which correspond to the second query in the hotel exam-
ple. Alternatively, he/she might choose to incur some minimized
loss so that the notebook manufactured can cater to the need of a
sufficiently large salary-age group to extend his/her customer base.
This correspond to the third query in the earlier example.

Inspired by the above motivating applications, we call this new
family of query types considering the relationship between min/max
and spatial attributes,neighborhood dominant queries(NHDQs).
In order to process these NHDQs efficiently, this paper explores
two alternative approaches. The symmetrical approach treats both
min/max and spatial attributes as equal and indexes them together
in one R-tree. This approach is essentially the same as the approach
taken by [11] which shows that their method is flexible enough to
deal with many variants of the skyline problems. However, NHDQ
queries have a non-symmetrical nature. While the spatial dimen-
sions are used for capturing neighborhood information, the min/max
dimensions are used to compute the dominant relationship. There-
fore, we also propose an asymmetrical approach in which an R-tree
index is built only on the min/max dimensions, and the spatial infor-
mation is captured as bitmaps which are associated with the R-tree
nodes.

The contributions of this paper are as follows:

• We introduce three novel types of skyline queries, which we
call neighborhood dominant queries, that exploit not only
min/max attributes but also spatial attributes. These queries
support a micro-economic approach to decision making, con-
sidering not only the quality but also the cost of solutions.

• To efficiently process the proposed neighborhood dominant
queries, we present symmetrical as well as asymmetrical meth-
ods, based on standard or extended index structures.

• Our experimental evaluation on a real dataset and on a variety
of synthetic datasets demonstrates that the new query types
produce meaningful results and the proposed algorithms are
efficient and scalable.

The rest of the paper is organized as follows. Section 2 surveys
the related work and Section 3 gives the problem statements. In Sec-
tion 4 and Section 5, symmetry, asymmetry approaches on neigh-
borhood dominant queries are presented respectively. We give our
experimental results in section 6. We conclude the paper with a in
section 7.

2. RELATED WORK

2.1 Skyline
The skyline computation originates from the maximal vector prob-

lem in computational geometry, proposed by Kung et al. [3]. The
algorithms developed [9, 15] usually suits for a small dataset with
computation done in main memory. One variant of maximal vector
problem, which is related to but different from the notion of thick
skyline, is themaximal layersproblem[10, 16] which aims at iden-
tifying different layers of maximal objects.

Borzsonyi et al. first introduce the skyline operator over large
databases [14] and also propose a divide-and-conquer method. The
method based on [3, 12] partitions the database into memory-fit par-
titions. The partial skyline objects in each partition is computed
using a main-memory-based algorithm [15, 9], and the final sky-
line is obtained by merging the partial results. In [4], the authors
proposed two progressive skyline computing methods. The first
employs a bitmap to map each object and then identifies skyline
through bitmap operations. Though the bit-wise operation is fast,
the huge length of the bitmap is a major performance concern. The
second method introduces a specialized B-tree which is built for
each combination list of dimensions that a user might be interested
in. Data in each list is divided into batches. The algorithm processes
each batch with the ascending index value to find skylines.

Kossmann et al. present an online algorithm, NN, based on the
nearest neighbor search. It gives a big picture of the skyline very



quickly in all situations. However, it has raw performance when
large amount of skyline needs to be computed. The current most
efficient method isBBS (branch and bound skyline), proposed
by Papadias et al., which is a progressive algorithm to find skyline
with optimal times of node accesses [2, 11]. Balke et al. [19] in their
paper show how to efficiently perform distributed skyline queries
and thus essentially extend the expressiveness of querying current
Web information systems. They also propose a sampling scheme
that allows to get an early impression of the skyline for subsequent
query refinement.

2.2 Microeconomic Data Mining
The microeconomic approach to data mining has been introduced

by Kleinberg et al [7] formalizing the optimization problem of en-
terprises based on data allowing the enterprise to predict the utility
of a customer w.r.t. a chosen decision. [7] focuses on a special
class of such optimization problems, so-called segmentation prob-
lems, and shows that all discussed segmentation problems are NP-
complete. [6] also shows how sensitivity analysis of the microeco-
nomic optimization problem can distinguish interesting from unin-
teresting changes of the decision of the enterprise. In [7], the same
authors investigate segmentation problems in more details. As an
approximate algorithm for the catalog segmentation problem, they
outline a sampling-based algorithm (enumerating and measuring all
possible partitions of the customers in the sample) and prove prob-
abilistic bounds for its result quality and runtime.

The existing methods on microeconomic data mining mainly fo-
cus on the efficiency issues of extracting interesting patterns from
raw data. As far as we know, the only attempt to link microeco-
nomic data mining with dominant relationship is in [8]. However,
only min/max attributes are being considered. As shown in this pa-
per, spatial dimensions add a new level of complexity and power to
the analysis of dominant relationship.

3. PROBLEM STATEMENTS
Let S be a set of spatial dimensions andD be a set of min/max

dimensions of the datasetH.

DEFINITION 1. Dominating Relationship
Let D be a set of min/max dimensions1 of the datasetH, p =
(p1, . . . , pd) ∈ H dominatesanother objectq = (q1, . . . , qd) ∈
H, denoted asp Â q, if pi ≤ qi(1 ≤ i ≤ d) and at least for one
attribute say thejth attribute(1 ≤ j ≤ d), pj < qj . On the other
hand,q is a dominated object,p is a dominator ofq. 2

DEFINITION 2. ND(q), ndd(q)
Let p, q be two points inH such that 1)p dominateq, 2)among all
points that dominateq, p is nearest toq in the space ofS. We callp
the nearest dominator ofq, ND(q). We will usendd(q) to refer to
the distance betweenq andND(q). 2

We can now formally define the queries that we will look at in
this paper.

Problem 1: Nearest Dominators Query (NDQ)
Given any arbitrary objectq in H, find its nearest dominatorND(q).

2

DEFINITION 3. Hyperplane Dominating Relationship
Let S be a set of spatial dimensions andD be a set of min/max

1The original definition of dominating relationship [14] is based on
the minimum or maximum condition, that is, for corresponding di-
mension, the smaller/larger the value, the better the object in this
dimension. Here without loss of generality, we adapt to the mini-
mum condition.

dimensions of the datasetH. Given an objecth ∈ H and a hy-
perplaneP in the space ofD, we sayP dominatesh, P Â h if
there exists a pointp in the planeP , such thatp Â h in min/max
attributes. 2

In the above definition, hyperplaneP is calledprofitability con-
straint, which works as the input of a microeconomic query for eval-
uating the degree of profits.

Problem 2: Least Dominated, Profitable Points Query (LDPQ)
Let S be a set of spatial dimensions andD be a set of min/max
dimensions of the datasetH. Given a hyperplane,P 2 in the space
of D, find the pointst ∈ H,

1. P Â t.

2. There does not exist any other pointsp ∈ H − {t} such that
p satisfies (i), and|ndd(p)|3 > |ndd(t)|

2

Problem 2 aims to find those objects which are profitable based
on aprofitability constraint, and meanwhile locate in the area with
most competitive advantage i.e. cover the biggest area. While most
companies will like to ensure profitability, there are also companies
which like to take some minimized loss in order to build a larger
customer base. This corresponds to the following query.

Problem 3: Minimal L oss and Least Dominated Points Query
(ML2DQ)

Let S be a set of spatial dimensions andD be a set of min/max
dimensions of the datasetH. Given a thresholdδ and a profitability
constraint in the form of a hyperplane,P , find the pointt, t ∈ H
such that

1. ndd(t) ≥ δ

2. There does NOT exist any other pointsp ∈ H−{t} such that
p satisfy (i) and distance ofp to the planeP in the min/max
dimensional space is less than the distance oft to P .

2

Note that LDPQ and ML2DQ are in fact constrained optimiza-
tion problem and are the dual problem of each other. LDPQ hope
to maximizendd(q) while satisfying the constraint that the solu-
tion must come from the profitable region. ML2DQ on the other
hand aims to minimize loss (i.e. the distance going into the non-
profit region) while satisfying the constraint onndd(q). In addi-
tion, it should also be easy to define a top-k version of LDPQ and
ML2DQ which can easily handle by our algorithms with some triv-
ial changes.

As a side note, it is also possible to define LDPQ and ML2DQ
using an analogous concept tondd(q) call further dominating dis-
tance of q,fdd(q). The distancefdd(q) represents the largest
distance such that any point within a distance offdd(q) is domi-
nated byq. This concept is a more aggressive measure compared to
ndd(q) which only guarantee that all points withinndd(q) cannot

2Although we use a linear hyperplane as the constraint here, other
non-linear constraints can easily be adopted as long as we have a
way to estimate the nearest/furthest distance between the constraint
and a point or a minimum bounding box. Non-linear constraint can
also be approximated by piecewise linear splines.
3While we use only the nearest dominator in our definition here,
the proposed techniques in this paper is still valid even if we al-
low the user the flexibility of using the distance to the nearestnth

dominators. We have however avoid doing so in order not to add
unnecessary complexity to the description.



dominateq. The two concepts ofndd(q) andfdd(q) are however
very similar and all algorithms that applied forndd(q) will be ap-
plicable tofdd(q). As such, our studies will only focus onndd(q)
for this paper.

4. SYMMETRICAL METHODS
In this section, we will first look at a symmetrical approach to

answering the three types of queries that we have defined. In this
approach, we treat both types of dimensions to be the equal and
build an R-tree that index the points based on all the dimensions. As
mentioned in [11], this approach is applicable for many variations
of the skyline problems. We will briefly touch on R-tree here to
set the context for discussion. Interested readers can refer to [5] for
more details on this popular indexing structure.

An R-tree is a height balanced tree in which each node is a min-
imum bounding box(MBR) that most tightly bounds the MBRs of
its children nodes. This property applies recursively for all nodes
in the tree until the leaf nodes where MBRs most tightly bound
a set of spatial objects. In aN dimensional space, an MBR,R,
can thus be represented by two pointsRl = {Rl1, .., RlN} and
Ru = {Ru1, .., RuN} whereRli andRui is the lower bound and
upper bound value for the MBR along dimensioni respectively. We
usesymmetrical R-tree to refer to an R-tree which is built on both
spatial and min/max attributes. The MBRs in a R-tree satisfy the
following property as proven in [13] which will be useful for our
algorithm derivation later on.

PROPERTY 4.1. MBR Face Property
Every face of an MBR in an R-tree contain at least one point.2

Since we need to distinguish the spatial attributes and min/max
attributes of the symmetrical R-tree in the context of our study, we
will assume for ease of discussion that the first|D| attributes are the
min/max attributes and the remaining|S| attributes are the spatial
attributes. To further ensure clarity, we will useRS

li, RS
ui to rep-

resent the lower bound and upper bound of dimensioni if it is a
spatial attribute andRD

li , RD
ui to do so if it is a min/max attribute.

As and when needed, we will useRS
l , RS

u to represent the whole
set of lower bound and upper bound values for the spatial attributes
of R andRD

l , RD
u for the min/max attributes.

4.1 NDQ with Symmetrical R-tree
Given a pointp in the databaseH, our algorithm for finding its

nearest dominator is based on abest first traversal of the nodes in
the symmetrical R-tree. In this approach, a heap is maintained for
storing every MBR,R that could potentially or definitely contain a
point that dominatesp in the min/max dimensions.

LEMMA 4.1. Case 1
Given a pointp = {p1, ..., pN} and an MBR,R, somepoints inR
could dominatep if RD

li ≤ pi ≤ RD
ui for all min/max attributei.

PROOF. We take the extreme case where there is a point at
{RD

l1, ..., R
D
lN} and sinceRD

li < pi for all min/max attribute, the
point at that position will dominatep.

LEMMA 4.2. Case 2
Given a pointp = {p1, ..., pN} and an MBR,R, somepoints inR
woulddefinitely dominatep if RD

li ≤ pi for all min/max attribute
i and there exist exactly|D| − 1 min/max dimensionsj such that
RD

uj < pj .

PROOF. Based on Property 4.1 stated earlier, there must be a
point on the face containing the diagonal joining{RD

l1,...,,RD
ij ,...,RD

lN}
to {RD

l1,...,RD
uj ,...,RD

lN}. Since the point with the worst dominant
power is at{RD

l1,...,RD
uj ,...,RD

lN} which still dominatesp based on
our condition, there must be at least one point inR that dominate
p.

LEMMA 4.3. Case 3
Given a pointp = {p1, ..., pN} and an MBR,R, all points inR

will dominatep if RD
ui < pi for all min/max dimensionsi.

PROOF. The point with worst dominant power in this case is
at {RD

u1,...,RD
uj ,...,RD

uN} which still dominatep. Furthermore, all
other points in the MBR will dominate{RD

u1,...,RD
uj ,...,RD

uN}. By
transitivity, all points inR will definitely dominatep.

Figure 2 lists the three cases corresponding to Lemma 4.1, 4.2
and 4.3 respectively. Note that Case 1, Case 2 and Case 3 are in-
creasing restricted version of the previous case and as such in our
algorithm, they will be handled in reverse order.

DEFINITION 4. MinDist(R,p)
The minimum distance between an MBRR and a pointp in the
spatial dimensions is defined as:

MinDist(R,p)=
NX

i=|D|+1

|pi − ri|2

where
ri = RS

li if pi < RS
li,

ri = RS
ui if pi > RS

ui and
ri = pi otherwise. 2

The algorithm first starts from the root MBR of the R-tree and
places its children MBRs into the heap by removing those that do
not correspond to any of the three cases. Within the heap, the MBRs
are ordered based on two criteria:

1. All MBRs corresponding to Case 3 are ordered before all
MBRs corresponding to Case 2 while all MBRs from Case
1 are ranked last.

2. With each group, MBRs with smaller MinDist top computed
using spatial attributes are ordered before MBRs with larger
MinDist.

This is then repeated recursively beginning from the MBR at the
top of the heap again by taking its children MBRs and inserting
those that potentially or definitely dominatep into the heap. The
algorithm maintains a variableBest which is initially set to∞ and
are updated based on the following two rules:

DEFINITION 5. MaxDist(R,p)
The maximum distance between an MBRR and a pointp in the
spatial dimensions is defined as:

MaxDist(R,p)=
NX

i=|D|+1

|pi − ri|2

where
ri = RS

li if pi > (RS
li + RS

ui)/2,
ri = RS

ui otherwise. 2

Rule 1: If current MBR,R, being processed corresponds to Case 2
with respect top then we assignBest to be the minimum ofBest
and MaxDist(R,p).

MaxDist(R,p) here corresponds to the furthest distance between
p and any point inR. The rationale for this is that although there
exists one point inR that dominatesp, we do not know its distance
to p. Thus we can only assume that the point is furthest away from
p in the MBR and setBest to such a value only if it is still smaller
thanBest.
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Figure 2: Three different cases for the dominant relationship betweenR and p

DEFINITION 6. MinMaxDist(R,p)
The MinMax distance between an MBRR and a pointp in the spa-
tial dimensions is defined as:

MinMaxDist(R,p)=
min

|D|+1≤k≤N
(|pk − rmk|2 +

X

|D|+1≤i≤N
i6=k

|pi − rMi|2)

where
rmk = RS

lk, if pk ≤ (RS
lk + RS

uk)/2,
rmk = RS

uk, otherwise.
and

rMi = RS
li, if pi ≥ (RS

li + RS
ui)/2,

rMi = RS
ui otherwise. 2

Rule 2: If current MBR,R being processed corresponds to Case 3,
with respect top, then we assignBest to be the minimum ofBest
and MinMaxDist(R,p).

MinMaxDist(R, p) here corresponds to a minimized upper
bound on the distance between a point inR andp. If MinMaxDist
is smaller thanBest, then it is guarantee thatR contains at least
one dominator ofp which have a distance shorter thanBest. Note
thatMinMaxDist can only be applied for MBR corresponding to
Lemma 4.3 because it makes use of the property that each face of
theR contains at least a point and this is only true if all points inR
dominatep.

Intuitively, the variableBest thus stores the minimum upper bound
on the distance between a point that dominatesp andp itself. Thus
any MBR,R that hasMinDist(p, R) greater thanBest will never
contain the nearest dominator ofp and can be removed without fur-
ther processing. Also, ifR is not within any of the three cases we
shown in Figure 2, then it can be removed as well since no points in
R will ever dominatep.

The algorithm terminates when there is no more MBRs in the
heap. Note that ifBest remains at∞ at the end of the algorithm,
this means there is no nearest dominator forp i.e. p is a skyline
point in the min/max dimensional space.

The pseudo-code ofNDQ algorithm is listed as Algorithm 1.

4.2 LDPQ with Symmetrical R-tree
Unlike NDQ in which a specified pointp is given, LDPQ does

not focus its search on any particular portion of the space formed by
the spatial attributes. Instead a profitability constraint is given in the
form of a planeP in the space formed by the min/max attributes.
Since we assume all attributes are min attributes, it is assumed that
P is anti-correlated with respect to all the min attributes else we will
be able to always choose the minimum value otherwise. GivenP ,
the min/max dimensional space is divided into two regions, prof-
itable and non-profitable.

ALGORITHM 1. A Symmetrical NDQ Method.
Input: An R-treeR of H, query pointp
Output: NDQ answer inH
Method:

1: Best := ∞; E={};
2: Insert the root MBR of R-tree in the heap;
3: WHILE exist MBRs in heapDO
4: Extract an MBRR in heap;
5: IF MinDist(R, p) > Best OR R not in all 3 cases
6: Exit; % Handle next R on heap
7: ELSE IF R is Case 3 MBR andMinMaxDist(R, p) < Best
8: Best = MinMaxDist(R, p);
9: ELSE IF R is Case 2 MBR andMaxDist(R, p) < Best
10: Best = MaxDist(R, p);
11: IF R is not a leaf MBR
12: FOR each childc of R DO
13: IF c in one of 3 cases, addc to heap;
14: ELSE FOR each pointx of R DO
15: IF x is dominated byp, addx to E
16: Compute nearest dominatorq among points inE;
17: Outputq;

To simplify discussion, we will assume that skyline points with
respect to the min/max attributes had been detected and a scan through
such a list had been done to find those points that are in the valid
region. If any of these point are in the skyline, then the solution is
found and no search need to be done.

Handling LDPQ is more complex than handling NDQ as two
types of MBRs must be monitored during the search.

1. Potentially Dominated MBRs (PdMBR)
These are the MBRs that are potentially dominated by some
points and are candidates for the output answers.

2. Potentially Nearest Dominator (PnrMBR)
These are the MBRs that potentially contain the nearest dom-
inators for those points in PdMBR.

Note that the set of PdMBRs and the set of PnrMBRs might not
be mutually exclusive since the points in PnrMBR are not restricted
to only points in the valid region. For an MBRR2, we denote
all its potential dominating MBRs asPnrMBR(R2) and for each
MBR R1 we denote all the MBRs that it can potentially dominate
as PdMBR(R1). We determine that the dominant relationship be-
tween MBRs from PdMBR and PnrMBR can be separate into 3
cases based on the following lemmas.

LEMMA 4.4. Case 1
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Figure 3: Three different cases for the dominant relationship between two MBRs

Given two MBRs,R1 andR2, somepoints inR1 could dominate
somepoints inR2 if R1D

li ≤ R2D
ui for all min/max attributei.

PROOF. Assuming this is not the case, thenR1D
li > R2D

ui for
somei. All points in R2 will always be better (i.e. lower) thanR1
in the ith dimension making it impossible for any point inR1 to
dominate them.

LEMMA 4.5. Case 2
Given two MBRs,R1 andR2, somepoints inR1 definitely domi-
nateall points inR2 if R1D

ui ≤ R2D
li for |D| − 1 min/max attribute

i andR1D
lj ≤ R2D

lj for the remaining min/max attributej.

PROOF. From Property 4.14, we know that each face of R1 will
consist of at least 1 point. We will prove our lemma by identify-
ing a face fromR1 which definitely consists of a point that dom-
inates all points inR2. Let dimension 1,2,...,i,...,j-1,j+1,...|D| be
the set of dimensions in whichR1D

ui ≤ R2D
li for |D| − 1 min/max.

Let dimensionsj be the dimension in whichR1D
lj ≤ R2D

lj . Con-
sider the face ofR1 which contain the point (R1D

l1, ...,R1D
l|D|) and

(R1D
u1, ...,R1D

lj ,..., R1D
u|D|). Let us call this face ofR1, X. We

claim that any point onX will definitely dominates all point in
R2. This is because the weakest dominant point onX is (R1D

u1,
..., R1D

lj , ..., R1D
u|D|) while the strongest dominant point inR2 is

(R2D
u1, ..., R2D

uj , ..., R2D
u|D|) and based on the conditions we set,

we can see that the weakest dominant point onX will still dominate
the strongest dominant point inR2.

LEMMA 4.6. Case 3
Given two MBRs,R1 andR2, all points inR1 will definitely dom-
inate all points inR2 if R1D

ui < R2D
li for all min/max attribute

i.

PROOF. Since the upper bounds ofR1 are all smaller than the
corresponding lower bounds ofR2, this means that all points in
R2 will be dominated by any point inR1 even if it is located at
(R2D

u1,...,R2D
u|D|).

Figure 3(a), 3(b) and 3(c) depicts three examples to illustrate the
three cases that are stated in Lemma 4.4, 4.5 and 4.6 respectively.
Again, it is easy to see that the conditions for Case 1, 2 and 3 are
increasingly restrictive. Any pair of MBR,R1 andR2 that belong
to any of the 3 cases will be monitored.

The above three cases provide different pruning types using dif-
ferent spatial measurements computed on the spatial attributes. For
4Note that although we are processing MBRs consisting of both
spatial and min/max dimensions while dominant relationship is only
based on min/max dimensions, this property is still true as we are
projecting the points into a lower dimensional MBR consisting of
only the min/max dimensions when we do the dominant reasoning.

eachR2 in PdMBR, we keep track of two variables as threshold
values for pruning and comparing with other MBRs from PdMBR.

1. Minimum Lower Bound, nddmlb(R2)
Let NDmlb(R2) denoteR1 ∈ PnrMBR(R2) which have
theminimum value among thelower bound distanceof the
MBRs in PnrMBR(R2) to R2. The variablenddmlb(R2)
represent the lower bound distance ofR1 to R2

2. Minimum Upper Bound, nddmub(R2)
Let NDmub(R2) denoteR1 ∈ PnrMBR(R2) which have
theminimum value among theupper bound distanceof the
MBRs inPnrMBR(R2) to R2. The variablenddmub(R2)
represent the upper bound distance ofR1 to R2

We will now explain how these two variables are update accord-
ing to the three cases and how pruning will be done accordingly.

DEFINITION 7. MinMinDist(R1,R2)
Let CORNER(R)={ p : p = {p|D|+1, ..., pN}, pi = RS

li or pi =

RS
ui } denote the set of corners for an MBR,R. The MinMinDist

between two MBRs,R1 andR2 based on their spatial attributes is
defined as:

MinMinDist(R1,R2)= min
p∈CORNER(R2)

MinDist(R1, p) 2

DEFINITION 8. MaxMaxDist(R1,R2)
Let CORNER(R)={ p : p = {p|D|+1, ..., pN}, pi = RS

li or pi =

RS
ui } denote the set of corners for an MBR,R. The MaxMaxDist

between two MBRs,R1 andR2 based on their spatial attributes is
defined as:

MaxMaxDist(R1,R2)= max
p∈CORNER(R2)

MaxDist(R1, p) 2

Here, MinMinDist(R1,R2) and MaxMaxDist(R1,R2) are easily
understandable corresponding to the minimum and maximum dis-
tance between any pair of points from the two different MBRs re-
spectively.

Rule 1: Update for Case 3
If R1 and R2 follow Case 3, thennddmlb(R2) will be updated
with MinMinDist(R1,R2) if the current value ofnddmlb(R2) is
higher. This is becausenddmlb(R2) is suppose to contain the lower
bound value ofndd(p) for anyp in R2. For the upper bound value
nddmub(R2), we will use a different function, MaxMinMaxDist(R1,
R2) and updatenddmub(R2) with the value of MaxMinMaxDist(R1,
R2) if MaxMinMaxDist(R1,R2) is smaller than the current value of
nddmub(R2)



DEFINITION 9. MaxMinMaxDist(R1,R2)
Let CORNER(R)={ p : p = {p|D|+1, ..., pN}, pi = RS

li or pi =

RS
ui } denote the set of corners for an MBR,R. The MaxMin-

MaxDist between two MBRs,R1 and R2 based on their spatial
attributes is defined as:

MaxMinMaxDist(R1,R2)=
max

p∈CORNER(R2)
MinMaxDist(R1, p) 2

Intuitively, MaxMinMaxDist(R1, R2) computes an upper bound
on the distance between any pointp in R2 to a nearest point inR1
that definitely dominatesp. Note that we can use such a measure
because we know thatall points in R1 definitely dominate R2 and
thus each face of R1 definitely contains a point that dominates a
point in each face of R2.

Rule 2: Update for Case 2
If R1 and R2 follow Case 2 (but not Case 3), the update of of
nddmlb(R2) is similar as in Rule 1 above. Fornddmub(R2) how-
ever, since we are only sure that there are some points inR1 that
dominate all points inR2, we can only use MaxMaxDist(R1,R2)
as the minimum upper bound and updatenddmub(R2) with Max-
MaxDist(R1,R2) if MaxMaxDist(R1,R2) is smaller than the current
value ofnddmub(R2).

Rule 3: Update for Case 1
If R1 and R2 follow Case 1 (but not Case 2 and 3), we will not be
sure whether the point in R1 dominates any point in R2. As such
bothnddmlb(R2) andnddmub(R2) cannot be updated. However
being in Case 1 mean that R1 cannot be removed as a potential dom-
inator of R2 and could be further expanded unless Rule 4 applies.

Rule 4: Local Pruning
Given R1 and R2, R1 can be removed from PnrMBR(R2) if Min-
MinDist(R1,R2)> nddmub(R2). The reason is thatR1 could never
contain the nearest dominator for any points inR2 since its nearest
point toR2 is already at a greater distance thannddmub(R2).

Rule 4 is a local pruning in the sense that we are just pruning
off the potential nearest dominators of R2. We next describe how
a global pruning can be done for PdMBR. We maintain a variables
Best which is always updated as the highestnddmlb(R2) for all
R2 ∈ PdMBR that had been processed. Our pruning go as follows:

Rule 5: Global Pruning
An MBR R2 will be removed fromPdMBR as a potential answer
if nddmub(R2) < Best. This is because all points inR2 can never
have a nearest dominator that is further away thanBest. 2

The pseudo-code of LDPQ algorithm is listed as Algorithm 2.
To perform best first search, the algorithm maintain a heap which
store allR in PdMBR sorted indecreasingvalue ofnddmlb(R).
Initially, MBRs at the first level of the R-tree are retrieved. For each
MBR, R, the function Initialize() is called to compute the following
six variables: PdMBR(R), PnrMBR(R), NDmlb(R), nddmlb(R),
NDmub(R) andnddmub(R). This is done by comparingR against
the rest of the MBRs. The algorithm maintains a temp list to keep all
MBRs with their six variables. IfR intersect the profitable region,
it is then inserted intoheap.

Once all the first level MBRs are processed. The algorithm then
access the top MBR,R, from the heap and updateBest if this give
a better result i.e. the nearest dominator is guaranteed to be further
away thanBest for some point inR. Next, R and NDmlb(R) 5

5This is the node that potentially dominate all points inR with at

ALGORITHM 2. A Symmetrical LDPQ Method.
Input: An R-tree ofH, a hyperplaneP
Output: LDPQ answer inH
Method:

1: heap = ∅; Best = 0;
%heap ordered by decreasingnddmlb(R)

2: Retrieve the first level of MBRs in R-tree;
3: FOR each MBRR in the first level
4: Initialize(R), put R into thetemplist;
5: IF R intersect profitable region
6: InsertR into heap;
7: WHILE heap not emptyDO
8: RetrieveR from top ofheap;
9: Best = max(Best,nddmlb(R));
10: FOR each MBRR′ in thetemplist, heap DO
11: RemoveR, NDmlb(R) from all PdMBR(R′), PnrMBR(R′);
12: IF R equals to NDmlb(R

′)
13: Select a new NDmlb for R′ from the children of R;
14: IF NDmlb(R) equals to NDmlb(R

′)
15: Select a new NDmlb for R′ from the children of NDmlb(R);
16: FOR each childr of R, NDmlb(R)DO
17: Initialize(r), putr into thetemplist;
18: PdMBR= Children ofR ∪ PdMBR(NDmlb(R));
19: PnrMBR = Children of NDmlb(R) ∪ PnrMBR(R);
20: FOR eachR2 ∈ PdMBRDO
21: FOR eachR1 ∈ PnrMBRDO
22: IF R1 andR2 DOES NOT follow all 3 casesOR

MinMinDist(R1, R2)> nddmub(R2)
23: Exit; % Handle next R1
24: ELSE IF R1 andR2 follow Case 3
25: nddmlb(R2)=min(nddmlb(R2),MinMinDist(R1,R2));
26: nddmub(R2)=min(nddmub(R2),MaxMinMaxDist(R1,R2));
27: ELSE IF R1 andR2 follow Case 2
28: nddmlb(R2)=min(nddmlb(R2),MinMinDist(R1,R2));
29: nddmub(R2)=min(nddmub(R2),MaxMaxDist(R1,R2));
30: AddR1 into PnrMBR(R2);
31: AddR2 into PdMBR(R1);
32: Maintain NDmlb(R2),NDmub(R2);
33: IF R2 intersect profitable region
34: AddR2 into heap;
35: Performglobal pruning onheap;
36: OutputBest and best pointp;

are expanded by retrieving their children nodes. This is done in two
phases.

First, we need update the variables of some MBRs in the temp
list and the heap (line 10-15). Since R and NDmlb(R) are ex-
panded to their children, they can not be potential nearest domi-
nator or dominated MBRs any more. For each MBRR′ in the temp
list, we need remove R and NDmlb(R) from all PdMBR(R′) and
PnrMBR(R′). If R happened to be the NDmlb(R

′), we need
select a new NDmlb for R′ from the children of R. If NDmlb(R)
happened to be the NDmlb(R

′), we need select a new NDmlb for
R′ from the children of NDmlb(R). Once the NDmlb is changed,
the value of the variablenddmlb(R) need to be changed at the same
time. Obviously, all MBRs in the heap need to be updated also. To
simplify the implementation and keep one copy for the six variables
of each MBR, we can associate a unique ID with each MBR, and
just keep the IDs in the heap. In this case, only the temp list need to
be updated.

Next, we must compute the potential dominating and dominated
MBRs for the children nodes ofR and NDmlb(R) respectively.Line
16-17 is used to initialize the children ofR and NDmlb(R). After
this, the dominating relationship inside theR or NDmlb(R) was
captured. For the children of NDmlb(R), the MBRs that are poten-
tially dominated by them are the children ofR and all those MBRs

least distancenddmlb(R)) as define earlier



which are potentially dominated by NDmlb(R). These MBRs are
added into PdMBR at Line 18. Line 19 update PnrMBR, the set of
MBRs that potentially dominate the children ofR using the same
reasoning. Line 20-34 then take each pair of MBRs from PdMBR
and PnrMBR and compute the values of the six variables by con-
sidering the three cases of dominating relationship that we discuss
earlier. Line 35 then perform a global pruning removing allR in the
heap withnddmub(R2) < Best.

The next item on the heap is then retrieved and the above proce-
dure is repeated until there is no more items in the heap. The object
that last update the variableBest will then be output.

4.3 ML2DQ with Symmetrical R-tree
We next look at the handling of ML2DQ using the symmetrical

R-tree. The query consists of a distance boundδ and a profitability
constraintP . The aim of this type of query is to find a pointq in the
unprofitable region bounded byP and the min/max attribute axes
such that the distance toP is minimized while satisfying the con-
straints all thatndd(q) ≤ δ. Note that the use of ML2DQ is neces-
sary only if no pointsq in the profitable region satisfyndd(q) ≤ δ.
This can be trivially checked by issuing a LDPQ query right from
the start. As such in this section, we will only handle the case in
which the top answer come from the non-profitable region.

To answer ML2DQ, we adopt the same best first search approach
as LDPQ. The pruning comes in three forms. First, only MBRs in-
tersecting the non-profitable region are considered for reason men-
tioned earlier. Second, MBRs with nearest dominators that are less
than a distance ofδ are removed. Third, MBRs which are too far
away fromP to be the result are also removed.

Performing the first form of pruning involves trivial geometry
computation which we will not describe here. For the second form
of pruning, we again separate the MBRs into PdMBR and PnrMBR
and compute various bounds on the spatial distance between the
MBRs based on the three possible cases of dominant relationship
we described for LDPQ.

Pruning by Constraint
An MBR R2, can be removed from PdMBR ifnddmub(R2) < δ.
Obviously, all points inR2 will never satisfy the constraint that the
nearest dominator must be a distance ofδ away.

The third type of pruning is to remove MBRs that are too far
away fromP in the min/max dimensional space and thus can never
be among the best result. To achieve this goal, we again need to
define the MinDist and MinMaxDist for an MBR, R2 to the plane
P , in time in the min/max dimensional space.

DEFINITION 10. MinDist(R2,P)
The minimum distance between R2 and the planeP in the min/max
dimensional space is the distance of the point (R2D

u1,...,R2D
u|D|) to

the planeP if P does not intersectP else MinDist(R2,P)=0. 2

DEFINITION 11. MaxDist(R2,P)
The minimum distance between R2 and the planeP in the min/max
dimensional space is the distance of the point (R2D

l1,...,R2D
l|D|) to

the planeP . 2

As mentioned earlier, since we assume that all attributes inD are
min attributes, the planeP will be anti-correlated compared against
all the axes of the min/max attributes. Given this fact, the min-
imum distance between theP and an MBR, R2 will be the dis-
tance from{R2D

u1,...,R2D
u|D|} to P unlessP intersect R2 in which

case the MinDist is obviously 0. For the same reason, we compute
MaxDist(R2,P) to be the distance between{R2D

l1,...,R2D
l|D|} which

is the maximum distance for a point inR2 to move into the unprof-
itable region away fromP .

ALGORITHM 3. A Symmetrical ML2DQ Method.
Input: An R-treeR of H, a hyperplaneP
Output: ML2DQ answer inH
Method:

1: heap = ∅; Best = ∞;
% heap ordered by increasing MinDist(R,P)

2: Retrieve the first level of MBRs in R-tree;
3: FOR each MBRR in the first levelDO
4: Initialize(R), put R into thetemplist;
5: IF R intersect non-profitable region
6: InsertR into heap;
7: WHILE heap not emptyDO
8: RetrieveR from top ofheap;
9: Best = max(Best,MaxDist(R, P ));
10: FOR each MBRR′ in thetemplist, heap DO
11: RemoveR, NDmlb(R) from all PdMBR(R′), PnrMBR(R′);
12: IF R equals to NDmlb(R

′)
13: Select a new NDmlb for R′ from the children of R;
14: IF NDmlb(R) equals to NDmlb(R

′)
15: Select a new NDmlb for R′ from the children of NDmlb(R);
16: FOR each childr of R, NDmlb(R)DO
17: Initialize(r), putr into thetemplist;
18: PdMBR= Children ofR ∪ PdMBR(NDmlb(R));
19: PnrMBR = Children of NDmlb(R) ∪ PnrMBR(R);
20: FOR eachR2 ∈ PdMBRDO
21: FOR eachR1 ∈ PnrMBRDO
22: IF R1 andR2 DOES NOT follow all 3 casesOR

MinMinDist(R1, R2)> nddmub(R2)
23: Exit; % Process nextR1
24: ELSE IF R1 andR2 follow Case 3
25: nddmub(R2)=min(nddmub(R2),MaxMinMaxDist(R1,R2));
26: ELSE IF R1 andR2 follow Case 2
27: nddmub(R2)=min(nddmub(R2),MaxMaxDist(R1,R2));
28: AddR1 into PnrMBR(R2);
29: AddR2 into PdMBR(R1);
30: Maintain NDmub(R2);
31: IF nddmub(R2) ≥ δ % Pruning by Constraint
32: AddR2 into heap;
33: Performglobal pruning onheap;
34: OutputBest and best pointp;

Global Pruning
To perform pruning, we monitor MaxDist(R,P) for all MBRs in
PdMBR and maintain the smallest MaxDist among them asBest.
We then remove an MBRR away from PdMBR if MinDist(R,P)>
Best. Note thatBest are initially set to∞.

The pseudo-code of ML2DQ algorithm is listed as Algorithm 3.
The overall structure of the algorithm is generally similar to the
LDPQ algorithm except for the ordering of the heap and the use of
the two pruning methods i.e. the constraint and global pruning.

5. ASYMMETRICAL METHODS
While a symmetrical approach is attractive because it can reuse

a genericR-tree for supporting other forms of spatial and skyline
queries, it might not always be the best solution since the queries
that we are trying to handle are asymmetrical by nature; the spa-
tial attributes and min/max attributes play different roles and have
different characteristics in all the three types of queries.

In NDQ, it is important to determine dominant relationship for
the query pointp before finding the nearest neighbors among the
dominant points. In LDPQ and ML2DQ, the profitability constraint
P is only defined in terms of min/max attributes and the dominant
relationship must be determined before neighborhood relationship
is evaluated.

On the other hand, there is also a difference in characteristic be-
tween dominant relationship and spatial closeness of two points. A



point p that dominates another pointq might not be spatially close
even in the multi-dimensional space formed by the min/max at-
tributes. For the spatial attributes however, neighborhood closeness
is rather important and much more pruning can in fact be enforced
in the early stage of the query answering if higher resolution spatial
information is provided.

In view of this, we will next propose our solution by making use
of anasymmetrical R-tree. Before construction of the tree, a clus-
tering of the points are first employed in the spatial dimensions by
grouping the points intok microclusters [18],MC1,...,MCk. This
step can be finished by a typical pre-processing algorithm BIRCH
[17]. For each microcluster,MCi, we assign a cluster id,i, and
keep track of its mean value,MCi.m and radius,MCi.r which
is the distance betweenMCi.m and the furthest point in the clus-
ter. Given any two microclusters,MCi andMCj , we pre-compute
their maximum and minimum distance and store them in a lookup
table.

DEFINITION 12. MinDist(MCi, MCj)
The minimum distance,MinDist(MCi, MCj), between two mi-
croclustersMCi andMCj is dist(MCi.m, MCj .m)−MCi.r−
MCj .r if this is greater than 0, elseMinDist(MCi, MCj) = 0

2

DEFINITION 13. MaxDist(MCi, MCj)
The maximum distance,MaxDist(MCi, MCj), between two mi-
croclustersMCi andMCj is dist(MCi.m, MCj .m)+MCi.r+
MCj .r. 2

During the construction of the asymmetrical R-tree, the MBRs
are formed by the min/max attributes while spatial information are
captured in a bitmap of sizek with bit i representing the absence
and presence ofMCi in the MBR.

DEFINITION 14. MCin(R)
Given an MBR, R, in an asymmetrical R-tree, we use MCin(R)={
MCR1,...,MCR|MCin(R)|} to denote the set of microclusters that
are mark as present in R. 2

Now let us look at how to answer NDQs with an asymmetrical
R-tree.

5.1 NDQ with Asymmetrical R-tree
Given the query pointp, we first define its minimum and maxi-

mum distance with respect to any microclusterMCi.

DEFINITION 15. MinDist(p, MCi)
The maximum distance betweenp andMCi is define as:

MinDist(p, MCi) = dist(p, MCi.m)−MCi.r

if dist(p, MCi.m) > MCi.r

0 otherwise. 2

DEFINITION 16. MaxDist(p, MCi)
The maximum distance betweenp andMCi is define as:

MaxDist(p, MCi) = dist(p, MCi.m) + MCi.r. 2

Based on this, we can redefine the MinDist, MinMaxDist and
MaxDist of an MBR R in the asymmetrical R-tree with respect to a
pointp.

DEFINITION 17. MinDist(R,p)

MinDist(R,p)=
min{MinDist(p, MCRi), MCRi ∈ MCin(R)} 2

DEFINITION 18. MaxDist(R,p)

MaxDist(R,p)=
max{MaxDist(p, MCRi), MCRi ∈ MCin(R)} 2

DEFINITION 19. MinMaxDist(R,p)

MinMaxDist(R,p)=
min{MaxDist(p, MCRi), MCRi ∈ MCin(R)} 2

By plugging these three new definitions into Algorithm 1, we
will have an algorithm that answer NDQ based on asymmetrical
approach.

5.2 LDPQ and ML2DQ with Asymmetrical R-
tree

As can be seen from the previous section, it is relatively easy to
convert a NDQ algorithm on a symmetrical R-tree to a NDQ algo-
rithm on a asymmetrical R-tree. This is because for an asymmet-
rical R-tree, the MBR coordinates are maintained for the min/max
attributes and as such all dominant inference on the MBRs in the
previous section can be applied. The only difference is that spatial
inferences on the spatial attributes need different processing strat-
egy. In an asymmetrical R-tree, the microclusters capture higher
resolution spatial information in a bid to prune off search space
as early as possible. To adapt Algorithm 2 and 3 in the previous
section for computing LDPQ and ML2DQ on a asymmetrical R-
tree, we need to redefine the function MinMinDist, MaxMaxDist
and MaxMinMaxDist for two MBRs R1 and R2.

DEFINITION 20. MinMinDist(R1,R2)

MinMinDist(R1,R2)=min{MinDist(MCR1i,MCR2j)
MCR1i ∈ MCin(R1), MCR2i ∈ MCin(R2)} 2

Essentially, given the two set of microclusters that are present
in MBR R1 and R2, we pick a pair of microclusters fromR1 and
R2 with the smallest pairwise minimum distance and take such a
distance to be MinMinDist.

DEFINITION 21. MaxMaxDist(R1,R2)

MaxMaxDist(R1,R2)=max{MaxDist(MCR1i,MCR2j)
MCR1i ∈ MCin(R1), MCR2j ∈ MCin(R2)} 2

MaxMaxDist on the other hand, computes the exact opposite of
MinMinDist. Given the two set of microclusters, it picks a pair
which maximize the maximum distance between them.

Given a microclusterMCR2i from MCin(R2), let us denote
the microcluster inMCin(R1) which has the smallest MaxDist
to MCR2i as NNMAX(MCR2i,MCin(R1)) i.e. we are compar-
ing one single microcluster fromMCin(R2) against the whole set
of microcluster inR1 to find the nearest one from R1. We define
MaxMinMaxDist of two MBRs from the asymmetrical R-tree as
follow:

DEFINITION 22. MaxMinMaxDist(R1,R2)

MaxMinMaxDist(R1,R2)=
max{MaxDist(MCR2i, NNMAX(MCR2i,MCin(R1)))

whereMCR2i ∈ MCin(R2)} 2

In other word, MaxMinMax estimates the distance between each
microclusterMCR2i ∈ MCin(R2) to its nearest dominator in R1
based on pairwise MaxDist and then take the maximum one among
all these pairs to estimate an upper bound on ndd(p) for all pointsp
in the MBR R2.



Once MinMinDist, MaxMaxDist and MaxMinMaxDist are de-
fined for MBRs in a asymmetrical R-tree, Algorithm 2 in the previ-
ous section can then be used for answer LDPQ query while Algo-
rithm 3 can be used for computing answers to ML2DQ queries.

6. EXPERIMENTAL EVALUATION
To evaluate the efficiency and scalability of our query processing

algorithms, we conducted extensive experiments. We implemented
all algorithms using Microsoft Visual C++ V6.0, and conducted the
experiments on a PC with Intel Pentium 4 2.4GHz CPU, 3G main
memory and 80G hard disk, running Microsoft Windows XP Pro-
fessional Edition. We conducted experiments on both synthetic and
real life data sets.

6.1 Results on Synthetic Data Sets
We generate a set of synthetic data. For the min/max dimensions,

we use the data generator that is used in [14] to generate data sets
with three different distributions:Uniform(Uni), Correlated(Cor) and
Anti-correlated(Ant). For spatial dimensions, we generate data sets
with two different distributions: uniform(Uni) and clustered(Clu).
The clustered distribution consist of 8 Gaussian distributed clusters
which are randomly placed. By combining the three types of dis-
tribution for min/max dimensions and the two types of distribution
for spatial dimensions, we obtain 6 different types of data sets: Uni-
Uni, Uni-Clu, Cor-Uni, Cor-Clu, Ant-Uni, Ant-Clu. As an example,
Uni-Clu refer to a dataset in which the data is uniformly distributed
in the min/max dimensions and clustered in the spatial dimensions.
We generate 5 different data sets for each of the 6 types and take the
running time to be average over the 5 different data sets.

The default values of dimensionality is 8, data size is 100k and
the default number of microclusters is 50.6 For simplicity, we used
the same number of min/max attributes and spatial attributes. As
an example, for 12 dimensions, we chose 6 dimensions as min/max
and the other 6 dimensions as spatial attributes.

6.1.1 NDQ
In this experiment, we evaluated the efficiency of our symmetri-

cal algorithm (SYM-NDQ) and the asymmetrical algorithm (ASYM-
NDQ) for answering a NDQ query. We compare our algorithms
with a Naive method which returns the nearest dominator of a point
by perform all pair comparison between the points.

Figure 4(a) shows the run time of the three algorithms for an-
swering a NDQ query on six types of data sets. Obviously, from
the results, we can see that SYM-NDQ outperforms Naive on all
data sets. This is because pruning can reduce computation for those
MBRs whose MinDist to the query point is greater than the current
value of the variableBest. Among the algorithms, ASYM-NDQ
performs best as expected due to the separate index for different
types of attributes. In addition, R-Trees only achieve high perfor-
mance for low dimensionality (usually≤ 5), and the R-tree in the
asymmetrical approach has smaller dimensionality.

Next, we look at the run time of the three algorithms as the num-
ber of dimension increases.Since the trends are the same for all six
data sets, we only show the results on the data sets with Ant-Clu
distribution as it is the most efficient. We increase the number of
dimension from 4 to 12. Figure 4(b) shows the run time of all three
algorithms. We observe that with increasing number of dimension,
the runtime of Naive and symmetrical method increases more sig-
nificantly than that of asymmetrical method. This is again due to the
fact that the R-tree is more effective in the asymmetrical approach
because of the smaller number of dimensions indexed and because

6In our full paper, varying number of microcluster size from 50 to
100 does not bring about significant changes in performance for all
datasets

spatial pruning is done at finer granularity in the earlier part of the
R-tree search.

Figure 4(c) shows the run time of the three algorithms as the num-
ber of points increases from 20,000 to 100,000. From the results, we
can see that both the symmetrical and the asymmetrical algorithms
are scalable with respect to the size of data sets. However, the asym-
metrical method is more efficient than the symmetrical method

6.1.2 LDPQ
In this experiment, we evaluated the performance of the three

algorithms Naive, SYM-LDPQ and ASYM-LDPQ for answering a
LDPQ query. The default data size is 10,000. In this case, the Naive
algorithm perform a ASYN-NDQ search for all points in the prof-
itable region and select the point with the highest nearest dominator
distance among them. To test the efficiency and the scalability of the
three algorithms, we choose a profitability hyperplane that roughly
splitting the data set into two parts of similar size.

Figure 5(a) shows the run time of the three algorithms for answer-
ing a LDPQ query on six types of data sets. We can find that ASYM-
LDPQ is always the fastest one among the three algorithms. Among
the six distributions, we can see that the computation on the Ant-Clu
data set gives the most improvement from symmetrical method to
asymmetrical method while that of the Cor-Uni data set is the most
modest. This is because: 1) the domination relationship computa-
tion on the anti-correlated min/max dimensions is the fastest since
in this case the number of skyline objects is the largest, and less
dominating/dominated relationship needs to be maintained between
MBRs (points). 2) the distance computation on the clustered spatial
dimensions is the fastest since in this case spatial proximity can be
explored and more pruning can be done in the early stage of query
processing.

Figure 5(b) shows the run time of each algorithm with increasing
dimensionality. Here we only show the results on the data sets with
Ant-Clu distribution for the same reason mentioned earlier. Clearly,
we can find that with increasing number of dimension, the runtime
of Naive and symmetrical method increases more significantly than
that of asymmetrical method. The difference between the run time
of SYM-LDPQ and ASYM-LDPQ increases with dimensionality.
This is again due to the fact that the R-tree is more effective in the
asymmetrical approach because of the smaller number of dimen-
sions being indexed and because of the fine granularity of the mi-
croclusters which support effective spatial pruning even with higher
dimensionality.

Figure 5(c) shows how the run time of each algorithm scales up
as the number of points increase. We can find that although both
the symmetrical and the asymmetrical algorithms scale linearly, the
run time of the asymmetrical algorithm scales better than that of
the symmetrical algorithm. As the number of points increases, the
asymmetrical approach only slightly worsens since smaller number
of dimensions means that the height of the R-tree increase slower
than the symmetrical approach when more points are added.

6.1.3 ML2DQ
We performed similar experiments for ML2DQ queries. We set

the input distance threshold as the average distance of points to their
nearest dominator.

Figure 6(a) shows the run time of the three algorithms (Naive,
SYM-ML2DQ, ASYM-ML2DQ) for answering a ML2DQ query
on six types of data sets. Figure 6(b) and 6(c) shows the run time of
the three algorithms as the dimensionality and the number of points
increases respectively. As expected, the asymmetrical approach per-
forms the best in both the figures for similar reasons as LDPQ.

6.2 Results on NBA Data Set
We downloaded from the NBA official website (www.nba.com)
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the Great NBA Players’ technical statistics from 2004 to 2005, and
downloaded NBA players’ salary information from website:
http://asp.usatoday.com/sports/basketball/nba/salaries/.

The NBA data set has more than 20 attributes, from which we
chose the following fourmin/max attributes: the number of games
played(GP), points per game(PPG), rebounds per game(RPG) and
assists per game(APG). For these attributes, the larger the values
are, the better. This mean that playerA dominates playerB if A’s
attribute values are not less thanB’s, andA has at least one attribute
better thanB. We selected weight, height and position asspatial
attributessince these attributes are not performance measures to be
minimized or maximized but can be used to identify players that
are comparable in terms of their attributes and are expected to have
similar performance. Weight and height are numerical attributes
with canonical distance definitions, while the distance of positions
is defined to be 1 if two players are in different positions and 0, oth-
erwise. Finally, we used the salary attribute to define a profitability
constraint.

There are some very interesting results for the neighborhood dom-
inant queries. For example, let us consider Yao Ming, a 7.6 feet,
310 pounds all-star center in Houston Rockets, who had 80(GP),
18.3(PPG), 8.4(RPG) and 0.8(APG) for the NBA 2004-2005 sea-
son. His nearest dominator is neither the best center in the NBA,
Shaquille O’Neal, and or the NBA MVP, Kevin Garnett, a for-
ward from Minnesota Timberwolves with 6.11 feet height and 220
pounds weight, and a statistics of 82(GP), 22.2(PPG), 13.5(RPG)
and 5.7(APG). Instead, he is a young center in Phoenix Suns, Amare
Stoudemire. Amare is 6.10 feet high and weighs 245 pounds with a
record of 80(GP), 26.0(PPG), 8.9(RPG) and 1.6(APG).

Based on the Rosen-MacDonald’s superstar theory7, the players’

7http://www.westga.edu/ bquest/2005/nba/NBA1.htm

salary can be estimated by a regression of different technical statis-
tics. This theory can be represented by our profitability hyperplane,
which can be thought of as a measure for deciding a NBA basketball
player’s payment. Any player under or on this profitability hyper-
plane receives a salary that is well-deserved according to his talent.

In our experiments, the profitability hyperplane was chosen ac-
cording to a simplified version of this superstar theory as follows:
0.03*GP + 0.20*PPG + 0.32*RPG + 0.45*APG. We found the top-
3 LDPQ players as shown in Table 2. While these players are not the
absolute top players, they meet the profitability constraint and out-
perform other players with similar values for thespatial attributes:
height, weight and position. These players can only be “dominated”
by those players with significantly differentspatial attributevalues,
i.e. by those players with much better physical conditions or play-
ing different positions. For example, D. Wade, a guard in Miami
Heat, is best among all the guards with similar height and weight,
but he has a “dominator” L. James (6.4 feet, 212 pounds) in Cleve-
land Cavaliers, who has the advantage of a height of 6.8 feet and
a weight of 240 pounds. So from the point of performance-salary
trade-off, it is desirable for a team to hire these players.

Name GP PPG RPG APG Salary Height Weight position
D.Wade 77 24.1 5.2 6.8 2.8m 6.4f 212b guard
S.Marion 81 19.4 11.3 1.9 12m 6.7f 228b forward
E.Brand 81 20.0 9.5 2.6 12m 6.8f 254b forward

Table 2: Top-3 LPDQ NBA players

If we setδ = 5, and keep the same hyperplane as before, the
top-3 ML2DQ players are shown in Table 3. We can observe that
the results are quite interesting too. For example, R. Davis (6.7feet
195pounds) is a guard in Minnesota Timberwolves whose nearest



Name GP PPG RPG APG Salary Height Weight position
C.Maggette 66 22.2 6.0 3.4 7m 6.6f 225b forward
R.Hamilton 76 18.7 3.9 4.9 7.8m 6.7f 193b guard
R.Davis 82 16.0 3.0 3.0 5.4m 6.7f 195b guard

Table 3: Top-3 ML2DPQ players

dominator is Kevin Garnett (6.11 feet,220 pounds). The distance of
height and weight between these two players is large enough (> δ),
which means Davis is a strong player among players with similar
physical condition and position. Only C.Maggette and R.Hamilton
have similarly small difference between their actual salary and the
profitability constraint.

To conclude, our experiments on synthetic datasets demonstrate
the efficiency and scalability of our methods for processing NDP,
LDPQ and ML2DQ queries. In addition, we show that the asym-
metrical algorithms consistently and significantly outperform their
symmetrical counterparts.

7. CONCLUSION
Skyline queries have recently emerged as a promising paradigm

for decision support. These queries find objects that are outstand-
ing, i.e. cannot be dominated, in terms of a set of attributes to be
minimized or maximized. In this paper, we have introduced three
novel types of skyline queries, so-called neighborhood dominant
queries, that exploit not only min/max attributes but also spatial at-
tributes. Such queries support a micro-economic approach to deci-
sion making, considering not only the quality but also the cost of so-
lutions. To efficiently process the proposed neighborhood dominant
queries, we presented symmetrical as well as asymmetrical index-
based methods. While the symmetrical approach has the advantage
of using off-the-shelf index structures, our experimental evaluation
shows that the asymmetrical approach clearly performs better for a
wide range of synthetic datasets. Our evaluation on the NBA Great
Players dataset demonstrates that the proposed new query types pro-
duce meaningful and interesting results.

This paper suggests several promising directions for future re-
search. From a practical point of view, the integration of the pro-
posed query types into SQL and their treatment by the query opti-
mizer of a DBMS deserve further investigation. A more theoretical
question is what other query types may be defined in our framework
taking into account min/max and spatial attributes. Corresponding
efficient query processing algorithms will have to be developed. Fi-
nally, in the spirit of the micro-economic framework, methods for
ranking the usefulness of query results would be desirable, in partic-
ular in the case of large databases with long result lists. Such an ap-
proach could bridge the gap between the two alternative paradigms
of skyline queries and rank-aware query processing.
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