
An Efficient Graph Indexing Method
Xiaoli Wang #, Xiaofeng Ding ∗, Anthony K.H. Tung #, Shanshan Ying #, Hai Jin ∗

#School of Computing, National University of Singapore, Singapore
Email: {xiaoli, atung, shanshan}@comp.nus.edu.sg

∗School of Computer Science, Huazhong University of Science and Technology, P. R. China
Email: {xfding, hjin}@hust.edu.cn

Abstract—Graphs are popular models for representing com-
plex structure data and similarity search for graphs has become
a fundamental research problem. Many techniques have been
proposed to support similarity search based on the graph edit
distance. However, they all suffer from certain drawbacks: high
computational complexity, poor scalability in terms of database
size, or not taking full advantage of indexes. To address these
problems, in this paper, we propose SEGOS, an indexing and
query processing framework for graph similarity search. First, an
effective two-level index is constructed off-line based on sub-unit
decomposition of graphs. Then, a novel search strategy based on
the index is proposed. Two algorithms adapted from TA and CA
methods are seamlessly integrated into the proposed strategy to
enhance graph search. More specially, the proposed framework
is easy to be pipelined to support continuous graph pruning.
Extensive experiments are conducted on two real datasets to
evaluate the effectiveness and scalability of our approaches.

I. INTRODUCTION
Graphs are widely used to model complex entities in many

applications including bio-informatics [1], chem-informatics
[2], and pattern recognition [3], etc. Managing a large amount
of graph data in these domains is a very challenging problem.
It is essential to process graph queries efficiently. The classical
query processing is often formulated as the (sub)graph iso-
morphism problem (e.g., [4], [5]). However, this kind of exact
matching is too restrictive, as real objects are often affected
by noises. Therefore, similarity search has become a basic
operation in graph databases.
To manage graph data based on similarity, a number of sim-

ilarity measures have been proposed in the literature (e.g., [3],
[6], [7]). Among them, graph edit distance (GED) is a popular
measure for evaluating graph similarity. Essentially, GED is
the minimum number of edit operations required to transform
one graph into another [8]. This motivates our studies in this
paper on GED based graph similarity search problem, and
our focuses on graph range query which is one of the most
widely studied problem. This problem can be described as
follows: given a graph database D = {g1, g2, . . . , g|D|} and
a query graph q, find all gi ∈ D that are similar to q within
a GED threshold denoted by τ . Scanning the whole database
D to compute the GED between q and each gi ∈ D is very
expensive, due to the high complexity of GED computation,
which is proved to be NP-hard [9]. Facing this difficulty,
several existing works use upper and lower bounds of GED
to prune off unlikely candidates. Although these methods
allow more efficient bound computations, they still suffer
from certain drawbacks. First, the most efficient approaches

proposed in [9] and [10] are still very expensive. Second,
they do not take full advantage of indexes, and require a full
scan of the whole database. These bring in poor scalability in
databases with a large number of graphs.
Facing these difficulties, it is natural to consider building an

effective index structure to reduce complex computations. Our
basic idea is to break graphs into sub-units (sub-unit is used as
a small substructure derived from a graph in our paper), and to
index them as filtering features using inverted lists. This idea
of structure decomposing is similar to many existing methods
for filtering sequences (using q-grams) [11], trees (using binary
branches) [12], and graphs (using paths, trees or subgraphs
to test for graph isomorphism) [4], [5], [13], [14], [15], [16].
Among these existing methods, filtering is done by performing
exact matching on the sub-units and then inferring the edit
distance bound through those sub-units that exactly match the
queried structure. For example, in κ-AT method [14], the edit
distance to a query graph is approximated by looking at the
κ-adjacent tree patterns that match exactly to those patterns
obtained from the query graph. These exact matches can be
found by transforming adjacent trees into sorted sequences and
then using hash-based indexing. Unfortunately, these existing
works have several common disadvantages. Some of them
require enumerating sub-units exhaustively with high space
and time overhead, and some of them do not capture the
attributes on vertices or edges which are continuous values
on graphs and often suffer from poor pruning power. This is
because filtering features in them need to be matched exactly
with the features in the query graph.
To overcome the above drawbacks, we develop a novel

sub-unit based index. In our approach, we decompose each
database graph into sub-units, and each sub-unit contains
a vertex and discriminative information about its neighbor-
ing vertices and edges. To avoid exhaustive enumerations,
discriminative information for a sub-unit only contains the
most neighboring information. To enhance filtering power, the
decomposed sub-units in our method are compared against the
sub-units generated from the query graph using the Hungarian
algorithm [17]. Formulated as a bipartite matching problem,
each sub-unit in database graphs can have only partial match-
ing with each sub-unit in the query graph. The need arises to
find highly similar sub-units that not only match exactly but
also are highly similar to the sub-units from the query.
To support such functionality, we propose a novel query

processing framework, called SEGOS (SEarching similar

Graphs based On Sub-units). In this framework, a two-
level inverted index is constructed based on the decomposed
sub-units. In the upper-level index, sub-units derived from the
graph database are used to index all graphs using inverted
lists. In the lower-level index, each sub-unit is further broken
into multiple vertices and indexed in inverted lists. This two-
level inverted index is preprocessed to maintain a global order
for sub-units and graphs. This order ensures that sub-units or
graphs can be accessed in increasing dissimilarity to a query
sub-unit or graph. Given a query, our strategy follows a novel,
cascaded framework: in the lower level, top-k similar sub-
units to each sub-unit of the query can be returned quickly;
in the upper level, graph pruning is done based on the top-k
results from the lower level. Two search algorithms, based
on the paradigm of the TA and the CA methods [18] are
proposed for retrieving sub-units and graphs. By deploying the
summation of sub-unit distances as the aggregation function,
sorted lists can be easily constructed to guarantee the global
orders on increasing dissimilarity for graphs. The CA based
methods can enhance similarity search by avoiding access to
graphs with high dissimilarity. It is clear that the top-k sub-
units returned from the lower-level sub-unit search can be
automatically used as the input to the upper-level graph search.
Therefore, these two search stages are easy to be pipelined to
support continuous graph pruning.

In summary, our main contributions are:

• We propose a novel two-level inverted index to speed up
graph similarity search. The lower-level index is first used
to efficiently find top-k similar sub-units. With the top-k
results, the upper-level index is retrieved to construct a
list of graphs that are sorted based on the similarity score.

• We propose a better search strategy following a cascade
framework using the novel index. Search algorithms
adapted from the TA and the CA methods [18] are
proposed to improve efficiency by dramatically reducing
accesses to sub-units and graphs with high dissimilarity.

• SEGOS can be applied to enhance existing works like
C-Star [9] developed for evaluating graph edit distance
using sub-units.

• SEGOS is easy to be pipelined into three processing
stages: the lower-level top-k sub-unit search, the upper-
level graph sorted list processing, and the dynamic graph
mapping distance computation.

The rest of this paper is organized as follows. Section
II provides related work and Section III introduces several
preliminary concepts and filtering principles. Section IV il-
lustrates how the two-level inverted index can be constructed
based on the sub-unit decomposition of graphs. Then, our
novel search strategy and the enhanced pipeline algorithm are
introduced in Section V. We provide experimental results in
Section VI and conclude the paper in Section VII. Finally,
several proofs are shown in the Appendix.

II. RELATED WORK

A. Graph Edit Distance
The GED problem has been extensively studied in many

previous works, and a detailed survey can be found in [8].
GED is widely defined as the minimum number of edit
operations needed to transform one graph into another. An
edit operation can be an insertion, a deletion or a substitution
of a vertex/edge. Algorithms for computing the GED can be
classified into two classes: exact and approximate algorithms.
Exact algorithms calculate the exact GED between two

graphs. Many optimal error-correcting subgraph isomorphism
algorithms have been proposed, and A∗-based algorithms [19]
are the most widely used ones. However, since GED compu-
tation is in NP-hard [20], these algorithms have exponential
complexity and are only feasible for small graphs [21].
To avoid expensive GED computations, approximate algo-

rithms are developed to compute lower and upper bounds of
GED for graph filtering. In [10] and [22], GED computation
is formulated as a BLP problem and a lower bound and an
upper bound for GED can be computed with time complexity
of O(n7) and O(n3) respectively. A recent method proposed
in [9] computes both lower and upper bounds in cubic time,
by breaking graphs into multisets of sub-units, and applying
a novel algorithm to bound GED for filtering. However, these
algorithms suffer from the scalability problem since they have
to scan the whole database to compute bounds for each graph.

B. Graph Isomorphism Search
In graph isomorphism and subgraph isomorphism search,

the aim is to find graphs that are either isomorphic or contain
a subgraph that is isomorphic to the query graph. In this regard,
the matching must be exact and there is no query relaxation
of any form. Algorithms for isomorphism search includes FG-
index [13], TreePi [16] and Tree+Delta [23]. These methods
differ only in the features that they use for pruning candidates.
These techniques however cannot be easily generalized to
handle graph similarity search which requires certain amount
of error tolerance in the matching graphs.

C. Graph Similarity Search
There is a great amount of literatures on graph similarity

search. However, few developed indexes for searching by
graph edit distance. Here we list these works based on the
similarity function that they adopted.
Feature Counting Since graph alignment is NP-hard, various
heuristical feature counting methods have been developed
to compare graphs. GraphGrep proposed in [4] compares
graphs by counting the number of matching paths between
two graphs. Signatures are generated for all the paths in a
graph up to a threshold length and inserted into an index to
facilitate searching and counting of paths. In [24], features are
generated by merging each node in a graph together with its
neighbouring vertices information. Graph similarity is judged
by counting the number of features that are sufficiently from
both graphs and a B+-tree is used to index the features of the
graphs in the database. However, none of these methods can

guarantee that edit distance is minimized for graphs that are
returned as query results.
Edge Relaxation Given two graphs g1 and g2, if c12 is
the maximum common subgraph of g1 and g2, then the
substructure similarity between g1 and g2 is defined by |E(c12)|

|E(g2)|

and 1 − |E(c12)|
|E(g2)|

is called the edge relaxation ratio. In [15],
the gIndex is developed to support similarity search by
edge relaxation. The gIndex adopts discriminative frequent
subgraphs as basic indexing structures and involves complex
feature extraction for each query. Adopting edge relaxation as
a similarity measure implicitly excludes node substitution as
a graph edit operation [9] and is thus not general enough to
handle search by edit distance.
Edit Distance As far as we know, there are few works that
provide an index for searching by graph edit distance. The C-
Tree [5] is one of such pieces of work. In C-Tree, an R-tree
like index structure is used to organize graphs hierarchically
in a tree. Each internal node in the tree summarizes its
descendants by a graph closure. By approximating the graph
edit distance against the graph closures that are stored in
the internal nodes, C-tree tries to avoid accessing individual
graphs that are too dissimilar based on the GED. A most
recent work κ-AT [14] decomposes graphs into κ-adjacent
tree patterns and indexes them using inverted lists. A lower
bound is also proposed to filter out graphs that do not sharing
sufficient common patterns with a query graph.
In our experiments, we will compare our approach against

C-Tree and κ-AT.

III. PRELIMINARIES AND PRINCIPLES
In this paper, we focus on a database D of undirected,

simple graphs whose vertices are labelled. A graph is defined
as a 4-tuple g = (V,E,Σ, l), where V is a finite set of vertices,
E ⊆ V × V is a set of edges, Σ is a finite alphabet of vertex
labels and l : V → Σ is a labelling function assigning a label to
a vertex. Figure 1 shows an example of a graph database with
five data graphs from g1 to g5. The size of a graph g, denoted
by |g|, is the number of vertices in g, and other common
notations used in our paper are shown in Table I.

TABLE I
NOTATIONS

Notation Description
deg(v) |{u|(u, v) ∈ E}|, the degree of v
δ(g) maxv∈V (g) deg(v)
δ(D) maxg∈D δ(g)
λ(g1, g2) the edit distance between graphs g1 and g2
λ(s1, s2) the edit distance between stars s1 and s2
μ(g1, g2) the mapping distance between g1 and g2
ζ(g1, g2) the overall score of g2 obtained from g1

A. Graph Decomposing Method
To estimate GED bounds effectively, we employ the idea

proposed in [9] to decompose a graph into multiple sub-units
like star. A star is defined as a labelled, single-level and rooted
tree which can be represented by a 3-tuple s = (r, L, l), where
r is the root, L is the set of leaves and l is a labelling function.
For each vi in the graph, we construct a star si = (vi, Li, l),

Fig. 1. A Sample Graph Database

2

c b

a b

c

c b

a b

dc

a

b b c c

b ba

b

a b c c

c ba

a

b b c c d

b ba

b

a b c c d

c ba

d ba

g1 g2

S(g1) S(g2)

ε

c ba c ba

s0

s2

s3

s5

s5

s5

s5

s6

s4

s2

s1

s0

s2

s3

s5

s5

ε

s5 s5 s6s4s2s1

M(S(g1), S(g2))

6 4 6 6 6

8 0 6 1 1 1

44 2 5 5 5

8 1 7 0 0 1

8 1 7 0 0 1

11 5 11 5 5 5

ε

2

Fig. 2. Mapping Distance Computation Between g1 and g2

where Li is the label set of vi’s neighbors. A graph g with
|g| vertices can be decomposed into a multiset of |g| stars. In
Figure 2, two graphs g1 and g2 are transformed into two star
representations: S(g1) and S(g2). With this transformation, [9]
has given a lemma to compute the star edit distance.
Lemma 1: (Star Edit Distance)(SED) Given two stars s1

and s2, the edit distance between them is computed as

λ(s1, s2) = T (r1, r2) + d(L1, L2)

where T (r1, r2) = 0 if l(r1) = l(r2), otherwise T (r1, r2) = 1.

d(L1, L2) =
∣∣|L1| − |L2|

∣∣+M(L1, L2)

M(L1, L2) = max{|ΨL1
|, |ΨL2

|} − |ΨL1
∩ΨL2

|

ΨL is the multiset of vertex labels in L. Assuming that the
alphabet Σ of vertex labels has a total order, we can compute
SED between two stars in only Θ(n) time, if ΨL1

and ΨL2

are sorted. For example, to compute the distance between s0
of S(g1) and s1 of S(g2) in Figure 2, it is obvious that
T (r1, r2) = 0, for l(r1) = l(r2) = a. Having |L1| = 4,
ΨL1

= {b, b, c, c}, |L2| = 5 and ΨL2
= {b, b, c, c, d}, we get

that λ(s0, s1) = 0 + |4− 5|+ 5− 4 = 2.
Definition 1: (Mapping Distance) Given two star represen-

tations S(g1) and S(g2) with the same cardinality, assume
P : S(g1) → S(g2) is a bijection, then the distance between
them is defined as

μ(g1, g2) = min
P

∑

si∈S(g1)

λ(si, P (si))

The computation of mapping distance is equivalent to
finding an optimal mapping between two star representations.
Zeng et al. [9] constructs a weighted matrix for each pair of
stars from two graphs, and applies the Hungarian algorithm
[17] to get the optimal solution in cubic time. The weight
between two stars is the SED. If two graphs are of different
size, ε node is inserted for normalization. In Figure 2, the
bottom left matrix M(S(g1), S(g2)) is the weight matrix
between star sets S(g1) and S(g2). Cells in gray denote the

optimal matching between S(g1) and S(g2), i.e. μ(g1, g2) =
2 + 0 + 2 + 0 + 0 + 5 = 9. To have a clear view, two sets
of stars are shown on the right, and the optimal matching is
marked with solid arrows.
As shown in [9], the mapping distance can be used to bound

GED effectively, and a lower bound Lm(g1, g2) and a upper
bound Um(g1, g2) can be derived as below.
Lemma 2: Suppose μ(g2, g1) is the mapping distance be-

tween g1 and g2. Then,

Lm(g1, g2) =
μ(g2, g1)

max{4, [max{δ(g1), δ(g2)} + 1]}
≤ λ(g1, g2)

Lemma 3: Suppose P is a mapping between V (g1) and
V (g2) obtained from Hungarian algorithm when computing
μ(g1, g2). Then Um(g1, g2) = C(g1, g2, P) ≥ λ(g1, g2),
where C(g1, g2, P) is the cost to transform g1 to g2 using
the mapping P [10].
This paper employs the above decomposing method to build

the index, hereafter, a sub-unit refers to a star structure, and
SED can also denote the sub-unit edit distance. The sub-unit
is also represented as a sequence of labels for simplicity. For
example, in Figure 5, “s0: abbcc” represents the sub-unit s0
as its label sequence of “abbcc”. As shown above, computing
mapping distance takes cubic time on graph size. The existing
filtering strategy proposed in [9] suffers from poor scalability
as it has to scan a large graph database, and compute mapping
distance between each data graph and the query graph for
pruning. Facing this problem, two ways can be developed to
enhance the graph search: using dynamic mapping distance
computation and a better filtering strategy.

B. Dynamic Mapping Distance Computation

To reduce complex mapping distance computations, this
paper proposes a novel computing method as below.
Theorem 1: Given two graphs g1 and g2 and their sub-

unit representations S(g1) and S(g2). Suppose S′(g2) contains
several sub-units derived from g2 and S′(g2) ⊆ S(g2). Then
we have

μ(S(g1), S
′(g2)) ≤ μ(g1, g2)

In Figure 3, M(S(g1), S
′(g2)) is a different cost matrix

defined for computing μ(S(g1), S
′(g2)). For the ε sub-unit,

we define its distance to any existing sub-unit si in S(g1) as
0 instead of λ(si, ε). We apply the Dynamic Hungarian [25]
to find the minimum cost and matching on M(S(g1), S

′(g2)).
After that, the incremental part for computing full μ(g1, g2) us-
es the original definition of cost matrix with λ(si, ε). With this
definition, it is clear that μ(S(g1), S′(g2)) ≤ μ(S(g1), S(g2)).
This property allows us to compute bounds for the GED

between two graphs even if only a subset of a graph’s sub-
units are available. If μ(S(q), S′(g)) is sufficiently large, there
is no need to compute the bound based on the full set of sub-
units between graphs.

2s0

s2

s3

s5

s5

ε

s5 s5 s6s4s2s1

M(S(g1), S(g2))

6 4 6 6 6

8 0 6 1 1 1

44 2 5 5 5

8 1 7 0 0 1

8 1 7 0 0 1

11 5 11 5 5 5

0s0

s2

s3

s5

s5

s5 s5s2

M(S(g1), S
′(g2))

6 0 6 6

0 0 0 1 1

40 0 5 5

0 1 0 0 0

0 1 0 0 0

ε ε

Fig. 3. An Example for Computing μ(S(g1), S′(g2))

q : s0

ω μ

q : s1 q : s2

gid gid gid gidλ1 λ2 λ3

ω = λ1 + λ2 + λ3

g1 0

g4 3

g2 0

g3 2

g5 2

g2 1

g4 1

g1 2

g2 4

g3 6

0

3

g3 3

g1 2 g1 0

5

.
τ ∗ δ′ = 1 ∗ 4 = 4
Halt: ω = 5 > 4

g3 0

g2 3

Fig. 4. A Simple Example for CA-based Filtering Strategy

C. Filtering Strategy
To reduce the complex computations of GED bounds, it is

natural for us to consider a more efficient filtering strategy. In
this paper, we propose a novel search strategy based on the
paradigm of the TA and the CA methods proposed in [18]1.
Figure 4 shows a simple example that helps to illustrate

our CA-based filtering strategy for range query on the graph
database in Figure 1. Consider the three score sorted lists on
the left which consist of sub-units from q. Each entry in the
lists records the graph identity gi and the SED between the
corresponding sub-unit in gi and the sub-unit of q. We use
the summation of SEDs as the score aggregation function and
assume that for an unseen graph g, μ(g, q) ≥ ω where ω is
the summation of SEDs seen currently (we also call this as-
sumption as monotonic assumption). Then, in this example, the
search algorithm halts when ω = λ1+λ2+λ3 = 5 > τ ∗δ′(=
4). Hereafter, we denote δ′ = max{4, [max{δ(q), δ(D′)}+1]}
where D′ is the set containing all unseen graphs. Here, g4 and
g5 are filtered out without computing their mapping distances,
since their values of μ are no less than ω. From Lemma 2, for
an unseen graph g with μ(g, q) > τ ∗ δ′, we have λ(g, q) > τ

and g can be safely filtered out.
Accordingly, our search strategy must overcome the follow-

ing challenges: 1) An effective indexing structure is needed
for constructing the score-sorted lists. 2) Since graphs in score
indexing lists are sorted according to their SEDs to the sub-unit
of the query, an efficient search algorithm must be developed
to obtain sub-units that are highly similar to the query sub-
unit. 3) Score indexing lists must be sorted to guarantee the
correctness of halting based on monotonic assumption of the
TA or the CA based search strategy.

1As far as we know, such TA and CA based methods had never been
previously applied for matching complex structures like sequences (using
qgrams) [11], trees (using binary branches) [12], or graphs [4], [5], [15],
[16], [13], [14]. This is because all these previous methods simply use the
number of exact matches among the sub-units to bound the edit distance and
compute the exact edit distance for all candidate that pass through the filter.
For cases in which such filters are not effective (eg. range query with a very
loose edit distance threshold), our approach here provide an elegant way to
avoid computing the exact edit distance for large number of candidates.

IV. INDEX BUILDING IN SEGOS
To handle the above problems, a two-level inverted index

based on the sub-unit decomposition is constructed.

A. The Upper-Level Inverted Index
Given a database with graphs and their sub-unit represen-

tations, an inverted index can be constructed. For example,
given a database of g1 and g2 in Figure 2, we can construct
an inverted index for all sub-units derived from data graphs
in this database as shown in Figure 5. This index is made up
of two main parts: an index for all distinct sub-units from the
given database, and an inverted list below each unit. Here, the
sub-units are sorted in alphabetical order. Each entry in the
inverted lists contains the graph identity and the frequency of
the corresponding unit. All lists are sorted in increasing order
of the graph size. In Figure 5, since |g1| < |g2|, g1 is located
before g2 in the lists.
With this index, it is very convenient to fetch out graphs

that contain a given sub-unit. Then, given a query, if we can
quickly access sub-units that are highly similar to the sub-
units from the query in increasing dissimilarity, graphs can
also be accessed in globally increasing dissimilarity to the
query. Therefore, a lower-level index for sub-units is built.

B. The Lower-Level Inverted Index
We construct the lower-level inverted index for all sub-units

based on vertex labels. A sub-unit is broken into a multiset of
labels excluding its root label. For example, s0 in Figure 5 is
decomposed into Ψs0 = {b, b, c, c}. With this decomposition,
it is easy for us to build an inverted index for sub-units
based on labels. The index also contains two components:
a label index in increasing order and inverted lists below
labels recording the sub-unit identities and the frequencies of
corresponding labels in the leaves of the sub-unit. Entries in
each list are first grouped based on the leaf size of |Ψs| and
then sorted in decreasing frequencies within each group. For
example, in Figure 6, the list below label b has three groups
sorted in increasing leaf size. In the first group, s2, s5 and
s6 all have leaf sizes of 2. In the second group, s0 and s3
have leaf sizes of 4. In the last group, s1 and s4 have leaf
sizes of 5. In each group, frequencies are sorted decreasingly.
Considering in the last group, the frequency of s1 is 2 which
is larger than that of s4 (=1). Moreover, the last list without a
label index is an extended list storing the sizes of all sub-units
in increasing leaf size.
With this index, it is convenient to search similar sub-units

for a query sub-unit based on the sub-unit edit distance. We
will present the details of the search algorithm in next section.

C. Index Maintenance
While employing a more complex two-level index in this

paper, it is worth noting that both these levels are inverted
indexes and the features like sub-units and labels can be easily
generated from individual graphs. As observed in [26], such
inverted indexes can be implemented either with a special pur-
pose inverted list engine or in commercial relational database

s0: abbcc s1: abbccd s2: bab

gid gid gidfreq freq freq

g1 1 g2 1 g1 1

g2 1

s3: babcc s4: babccd s5: cab

gid gid gid

g1 1 g2 1 g1 2

g2 2

s6: dab

gid

g2 1

freq freq freq freq

Fig. 5. Upper-Level Inverted Index for Graphs

a b c

sid sid sidfreq freq freq

s2 1

s5 1

s3 1

s2 1

s6 1

s0 2

s0 2

s4 2s6 1

s5 1 s3 2

s4 1

d

sid freq

s1 1

s4 1

sid size

s1 2

s4 1

s3 1

s2 2

s6 2

s0 4

s5 2

s1 5

s4 5

s3 4

Fig. 6. Lower-Level Inverted Index for Sub-units

systems. For the latter case, we will be building on various
query optimization, concurrency control techniques that had
been developed over the years 2 to update our indexes. For
the earlier case, we will describe our operations here.
There are essentially seven kinds of updates for graph data:

(1) inserting a new graph, (2) deleting a data graph, (3)
inserting an edge into a graph, (4) deleting an edge of a
graph, (5) inserting a new vertex into a graph, (6) deleting
a vertex from a graph, and (7) relabelling a vertex in a graph.
To support these updates, four kinds of operations occur in
our two-level inverted index:
1) Op1: Inserting or deleting the graph information into an
inverted list below a sub-unit in the upper-level index.

2) Op2: Inserting or deleting the sub-unit information in
an inverted list below a label in the lower-level index.

3) Op3: Create a new list for a new generated unit, or delete
a unit from the upper-level index when its list is empty.

4) Op4: Create a new list for a new label, or delete a label
from the lower-level index when its list is empty.

Assuming that the inverted index is properly implement-
ed and optimized over a B-tree (or B+-tree) [28], all the
operations above will take at most O(logN) page accesses.
Building on these operations, our index can easily support
various types of updates as below: 1) Inserting a graph needs
us to decompose this graph into a multiset of sub-units, and
then perform Op1. For a new generated unit, we will perform
Op3 followed by Op2. If a new label is detected, perform
Op4. 2) Deleting a graph requires us to remove all the graph
information in the upper-level index. 3) Inserting or deleting
an edge of a graph affects two sub-units. Therefore, the
graph information below two original sub-units is removed
and they are inserted into two new lists. Furthermore, sub-
unit information is also updated in the lower-level index.
4) Inserting or deleting a vertex only affects one unit. The
operations are similar to update 3). 5) Relabelling a vertex
will affect the sub-unit rooted by this vertex and those sub-
units rooted by its neighbors. These operations are similar to
updates 3) and 4).

2This approach is also adopted in [27] where qgrams are stored in a
relational database to support approximate string join.

V. SEARCHING IN SEGOS

Based on the proposed two-level inverted index, we develop
SEGOS, a cascade query processing framework, to employ the
dynamic mapping distance computation and the filtering
strategy proposed in Section III to enhance the graph search.
The novel framework contains two search steps: the top-k
sub-unit search and the graph similarity search. As shown in
Figure 7, in the lower level, top-k similar sub-units to each
sub-unit of the query can be returned quickly by using the TA
search algorithm; in the upper level, graph pruning is done
based on the top-k results from the lower level. To support
continuous graph pruning, the CA graph search algorithm can
be further divided into two stages: sorted list processing and
dynamic graph mapping distance computation. In this step,
sub-units for each data graph can be output with round-robin
scan through the score sorted lists, and used as input to run
dynamic mapping distance computation for seen data graphs
with the query. This section will show how this framework
work for graph pruning, and TA, CA, and DC denote the three
stages in our framework.

A. Searching for Top-K Sub-units
Given a query graph q, we need to efficiently find sub-

units that are highly similar to each sub-unit from q in the
TA stage. A full scan of the database to compute the sub-unit
edit distance (SED) between each sub-unit and a query sub-
unit can be very expensive. In this paper, we propose a top-k
sub-unit searching algorithm based on TA method [18]. The
TA filtering strategy can help to avoid access to sub-units with
high dissimilarity to the query sub-unit, but the score-sorted
lists constructed need to guarantee the correctness of the TA
halting monotonic assumption. From Definition 1 in Section
III-A, the SED between a query sub-unit sq and any database
sub-unit si can be represented as below:

λ(sq, si) =

{
T (rq, ri) + 2 ∗ |Lq | − (ψ + |Li|), if |Li| ≤ |Lq |
T (rq, ri)− |Lq | − (ψ − 2 ∗ |Li|), if |Li| > |Lq |

(1)

where ψ = |ΨLq∩ΨLi
| denotes the common leave labels between

sq and si. From the above two equations, if we ignore the difference
between the roots of sub-units T (rq, ri), the SED increases when
the value of (ψ + |Li|) or (ψ − 2 ∗ |Li|) decreases. Therefore, two
aggregation functions can be derived as ω = 2 ∗ |Lq | − (ψ + |Li|)
and ω = −|Lq| − (ψ − 2 ∗ |Li|) and we need to construct two sets
of score-sorted lists to apply the above two functions. That means,
sub-units with leaf sizes no more than |Lq | and those with leaf sizes
larger than |Lq | must be processed separately.
Fortunately, the lower-level index can be used to conveniently

construct these two sets of score-sorted lists. We know that each
lower-level index list has been grouped increasingly according to
sub-units’ leaf sizes. Maintaining a leaf size array denoted by AL
pointing to positions of all leaf size groups, it is easy to find the
position that after which the leaf sizes are larger than that of the
query sub-unit in O(log|AL|) time. Since each group has been sorted
based on decreasing frequencies, all groups within a leaf size range
can be directly merged into one list in O(|AL| × |SL|) time (|SL|
is the maximum length of all leaf size groups). Generally, |AL| is a
constant smaller number compared to |SL|, so the merge complexity

Fig. 7. The Cascade Search framework

sq: b 2

sid sid sidfreq freq size

s0 2

s2 1

s6 1

s0 2 s0 4

s3 4

s3 1

s1 2

s4 1

sq: c 2

s1 5

s4 5

s5 2

s6 2

s4 2

ω λsid

ω = 2 ∗ |Lq| − (t(χ) + L)

s0 0

s2 6

s3 2

0

1

s5 6

s5 1

s3 2

s2 2

Halt: ω = 3 > 2

top-2

s3: 2

s0: 0

3

Fig. 8. A Top-k Sub-unit Searching Example for sq = abbcc

can be considered to be linear. The detail of the merge function is
given in Algorithm 1.
Figure 8 shows the score-sorted lists obtained for sq = abbcc

using the index in Figure 6. The query sub-unit sq has leaf labels
b and c. For the label b, we fetch out the inverted list under
“b” in Figure 6. Then a size bound larger than |Lq | = 4 can
be found in position 5 pointing to (s1, 2). From here, group-
s with leaf sizes no larger than 4 are merged into one sin-
gle list of {(s0, 2), (s2, 1), (s5, 1), (s6, 1), (s3, 1)}. Another list of
{(s1, 2), (s4, 1)} with leaf size larger than 4 is also formed. Similarly,
two lists below c are formed as {(s0, 2), (s3, 2)} and {(s4, 2)}. The
size list is also split into two parts, but the one with leaf sizes no
larger than 4 should be reversely accessed decreasingly.
Given the score-sorted lists for sq , suppose sq has m distinct leaf

labels with frequencies of (c1, c2, . . . , cm). We compute ψ = t(χ)
as the number of common leaf labels between sq and any si.

t(χ) =
m∑

j=1

min{cj , χj} (2)

where χj represents the frequency corresponding to si in the jth
score list of sq . If si does not appear in that list, χj = 0. Accordingly,
given m distinct label sorted lists and one size sorted list for sq , the
steps of our searching algorithm are:
1) Do sorted access in a round-robin schedule to each sorted list.
If a sub-unit si is seen, compute λ(sq, si). Maintain a queue
of top-k sub-units with the lowest λ values.

2) For each label list SLj , let χ
j
be the frequency last seen under

sorted access. Let L be the size last seen in the size list. For the
score-sorted lists with smaller size, ω = 2∗ |Lq |− (t(χ)+L).
Otherwise, ω = −|Lq | − (t(χ) − 2 ∗ L). If the top-k values
are at most equal to ω, then halt. Otherwise, go to step 1.

The detail is shown in Algorithm 2 and its correctness is shown
in Appendix A. Figure 8 shows an example to search top-2 similar
sub-units to sq = abbcc on score-sorted lists containing sub-units
with lower leaf sizes. Sub-units are accessed in a round-robin way
from the list below label b to the size list. SED is calculated for each
sub-unit seen and a top-2 queue is maintained. Algorithm halts in the
positions with gray shadows because ω = 2∗4−(1+2+2) = 3 ≥ 2,
where 2 is the maximum value in the top-2 queue. Obviously, the
top-2 results are returned without access to s6.

Algorithm 1 Merge function
Require: A list L and a size index array A of length n
Ensure: A score-sorted list SL
1: end← true, max← 0, p← 0
2: initialize an array A′ with values of A;
3: while true do
4: for i = 0 to n− 1 do
5: if A′[i] == A[i+ 1] then
6: continue;
7: end← false;
8: if max < L[A′[i]].freq then
9: max← L[A′[i]].freq;
10: p← i;
11: if end == true then
12: break;
13: SL.push back(L[A′[p]]);
14: A′[p] + +;

Algorithm 2 Top-k sub-unit searching algorithm
Require: m sorted lists SL and 1 size list L for sq; low
Ensure: The top-k similar sub-units
1: top− k ⇐ ∅;
2: for all sorted lists with j = 1 . . .m+ 1 do
3: if j ≤ m then
4: sid ⇐ SLj .getNext();
5: χ

j
⇐ sid.freq;

6: else
7: sid ⇐ L.getNext();
8: L⇐ sid.size;
9: if sid is not seen before then
10: calculate λ(sq, sid);
11: if |top− k| < k then
12: Maintain top− k and continue;
13: if λ(sq, sid) < max{λ|λ ∈ top− k} then
14: Maintain new top− k;
15: if low is true then
16: ω = 2 ∗ |Lq | − (t(χ) + L);
17: else
18: ω = −|Lq | − (t(χ)− 2 ∗ L);
19: if ω ≥ max{λ|λ ∈ top− k} then
20: return top− k;
21: return top− k;

B. Score-Sorted Lists Construction for Graph Search
The above algorithm provides us an efficient way to return highly

similar sub-units to a query sub-unit. Then graph score sorted lists
can be easily formed by combining a set of lists fetched from the
upper-level index below the corresponding top-k results.
Given a query graph q, for each query sub-unit sq , its top-k queue

is returned from the lower-level TA stage. Then, for each sub-unit
si in the queue, a graph inverted list indexed by si can be directly
fetched from the upper-level index. Therefore, k graph lists will be
returned for each query sub-unit sq . Later the k graph lists will be
split into two segments: those with graph sizes larger than |q|, and
those not. Segments within a graph size range will be combined into
one group. Within each group, graphs are naturally ordered in terms
of SEDs according to the top-k values. Furthermore, in the group
with smaller sizes, the segments having SED larger than λ(sq, ε)
are discarded. Since the upper-level index lists have been sorted by
increasing graph sizes, finding size range position takes O(log|GL|)
time (|GL| is the maximum size of all graph size index arrays).
For example, given a query q = g1 in Figure 1, the top-2 similar

sub-units for the query sub-unit s5 are s5 and s2, in Figure 9. Then

q : s0 q : s2 q : s3

sid sid sidλ λ λ

s0 0 s2 0 s3 0

s0 2

q : s5 q : s5

sid sid

s5 0 s5 0

λ λ

s3 2 s5 1 s2 1 s2 1

gid gid gidfreq freq freq

g1 1 g1 1 g1 1

g1 1

gid gid

g1 2 g1 2

freq freq

g1 1 g1 2 g1 1 g1 1

g2 1 g2 2 g2 2

g2 2 g2 1 g2 1

Fig. 9. The Sorted Lists for q = g1

q : s0

gid λ

g4 4

.

g2 3

q : s0

gid λ

g4 4

g3 4

.

q : s2

gid λ

g2 0

g5 2

g3 2

.

q : s3

gid λ

g3 0

g1 4

g2 3

.

sid sid sid sid

s3

s1

. . .

s1

s1

. . .

s2

s5

s6

. . .

s3

s5

s4

. . .

g1 0s0 g1 0s0

g3 4s1

g2 3s3 g2 2s5 g1 1s7

GL1 GL2 GL3 GL4

Fig. 10. An Example for Computing CA Bounds

two graph lists indexed by s5 and s2 are extracted from the upper-
level index in Figure 5: {(g1, 2), (g2, 2)} and {(g1, 1), (g2, 1)}. Since
the query is of size 5, each graph list is divided into two segments.
For example, the list below s5 is split into {(g1, 2)} with |g1| ≤ 5
and {(g2, 2)} with |g2| > 5. Similarly, the list below s2 is split into
{(g1, 1)} and (g2, 1)}. After that, segments {(g1, 2)} and {(g1, 1)}
with smaller sizes are combined into one list {(g1, 2), (g1, 1)}. Since
λ(s5, s5) = 0 ≤ λ(s5, s2) = 1, (g1, 2) is located before (g1, 1). In
Figure 9, if a graph is fetched from a list below a sub-unit, it is
connected to that sub-unit using a dashed arrow.
Based on the constructed graph score sorted lists, the CA stage

accesses sub-units for data graphs using a round-robin scan. Using the
summation of SEDS as an aggregation function, the halting condition
and several aggregation bounds can be directly derived.

C. Bounds from Aggregation Function
Given m score lists of a query graph q, we compute the overall

score of a graph g having been seen, denoted by ζ(q, g) as

ζ(q, g) = t′(χ1, . . . , χm) =

m∑
j=1

χj

χj is a local minimum SED of graph g having been seen below the
jth list of q. The computation of χj is as below.
Definition 2: Let Sej = {e1, . . . , ex} including all SEDs of a

graph g below the jth list. Then the corresponding χj of g is
computed as

χj = min
ei∈Sej

{ei}

Generally, if Sej is empty, χj = 0.
Example 1: As shown in Figure 10, a graph g1 has been seen blow

three lists GL1, GL2, and GL4 of q (this can be seen in cells with
slashes in the figure). We have its local minimum SED in each list as
χ1 = 0, χ2 = 0, and χ4 = 1. Since Se3 is empty, χ3 = 0. Therefore,
the overall score of g1 obtained from q is ζ(q, g1) = 0+0+0+1 = 1.
Suppose l(g) = {l1, . . . , ly} ⊆ {1, 2, . . . ,m} is a set of known

lists of g having been seen below q. Let χ(g) be the multiset of
distances corresponding to the distinct sub-units of g last seen.

• Aggregation Lower Bound denoted by Lμ(q, g) is obtained
by substituting the missing lists j ∈ {1, 2, . . . ,m} \ l(g) with
χ
j
(the distance last seen under the jth list) in ζ(q, g). That is,

χj = χ
j
when Sej is empty.

• Aggregation Upper Bound denoted by Uμ(q, g) is computed
as Uμ(q, g) = t′(χ(g)) + χ ∗ (max{|q|, |g|} − |χ(g)|).

Here, χ = maxs∈S(q)∪S(g){λ(s, ε)}. As shown in Example 1,
we have ζ(q, g1) = 1. Suppose the cells with gray shadows are the
current positions accessed, the distances last seen below the lists of
q is {4, 3, 2, 1}. To replace the unseen value χ3 of g1 with χ

3
= 2,

Lμ(q, g1) = ζ(q, g1) + χ
3
= 1 + 2 = 3. It can be seen from Figure

10, the distinct sub-unit set of g1 last seen is χ(g1) = {s0, s7}.
Suppose |g1| = 3, a remaining sub-unit s4 has not been accessed (the
cell with back slash), and the maximum distance between sub-units
in q and g1 is χ = maxs∈S(q)∪S(g1){λ(s, ε)} = 11. To substitute
the value of unseen sub-units from g1 to q with χ, Uμ(q, g1) =
t′(χ(g1))+χ∗(max{|q|, |g1|}−|χ(g1)|) = 0+1+11∗(4−2) = 23.
Theorem 2: Let g1 and g2 be two graphs, the bounds obtained as

above satisfy the following:

ζ(g1, g2) ≤ Lμ(g1, g2) ≤ μ(g1, g2) ≤ Uμ(g1, g2)

The proof of this theorem can be seen in Appendix B.

D. Graph Pruning Algorithm
Our graph pruning algorithm is a CA-based algorithm. Its filtering

strategy is similar to the top-k sub-unit search, while using a different
aggregation function. It also employs the above aggregation bounds
and dynamic mapping distance computation algorithm to reduce the
graph mapping distance computation. A simple example of graph
sorted lists processing can be seen in Figure 4 in Section III. The
main steps of our CA-based algorithm are shown as blow. Given m
sorted lists for a graph query q and a threshold τ ,
1) Perform sorted retrieval in a round-robin schedule to each
sorted list. At each depth h of lists:

• Maintain the lowest values χ
1
, . . . , χ

m
encountered in

the lists. Maintain a distance accumulator ζ(q, gi) and a
multiset of retrieved sub-units S′(gi) ⊆ S(gi) for each gi
seen under lists.

• For each gi that is retrieved but unprocessed, if ζ(q, gi) >
τ ∗ δgi (δgi = max{4, [max{δ(q), δ(gi)} + 1]}), filter
out the graph; if Lμ(q, gi) > τ ∗ δgi , filter out the graph;
if Uμ(q, gi) ≤ τ ∗ δgi , add the graph to the candidate
set. Otherwise, if μ(S(q), S′(gi)) > τ ∗ δgi , filter out
the graph. If all the above bounds are useless, run the
Dynamic Hungarian algorithm to obtain Lm(q, gi) and
Um(q, gi) for filtering.

2) When a new distance is updated, compute a new ω. If ω =
t′(χ) =

∑m

j=1 χj
> τ ∗ δ′, then halt. Otherwise, go to step 1.

The details of CA-based range query are shown in Algorithm 3 and
its correctness is shown in Appendix C. Obviously, the CA method
performs the pruning test only for every h index entries accessed,
and aggregation bounds can be accumulated in constant time. For
data graphs having very similar sub-units to the query, aggregation
upper bounds are small enough to output them as candidates; while
for those having very dissimilar sub-units, aggregation lower bounds
are large enough to prune them. Therefore, aggregation bounds take
negligible constant time for early filtering.
As described before, our whole search strategy includes the TA,

CA, and DC stages. Previously, we have provided the complexity
analysis of some steps. Here, we present a more complete analysis.
First, in the TA stage, constructing sorted lists for each queried sub-
unit is decided by the merge time, which takes O(|AL| × |SL|)
time as shown in Section V-A, and a simple study of the TA search
complexity is in [18]. The worst case of this step takes O(kd|SL|)
(k is the value of top-k results and d is the average degree of sub-
units) time for sorted access and takes O(Nlogk) (N is the number
of graphs accessed) time for maintaining a heap. Second, in the CA
stage, graph sorted lists are combined by top-k results. As stated in
Section V-B, it takes O(log|GL|) time. Third, in the DC stage, the
CA search complexity is similar to the TA search. We compute the
dynamic mapping distance in Θ(n3) (n is the average size of graphs)
time and do the sub-unit difference operation in O(logn) time.

Algorithm 3 CA-based range query algorithm
Require: m sorted lists GL for q, τ and h
Ensure: All gi s.t. λ(q, gi) ≤ τ
1: candidate⇐ ∅; flag ⇐ false;
2: for all sorted lists GLj with j = 1 . . . m do
3: gid ⇐ GLj .getNext();
4: χ

j
⇐ gid.dist;

5: maintain the distance accumulator ζ(q, gid);
6: maintain the multiset for seen sub-units S′(gid);
7: if scandepth%h == 0 then
8: for all gid seen and unprocessed do
9: if ζ(q, gid) > τ ∗ δgi then
10: filter it out and continue;
11: if Lμ(q, gid) > τ ∗ δgi then
12: filter it out continue;
13: if Uμ(q, gid) > τ ∗ δgi then
14: further compute other bounds;
15: if μ(S(q), S′(gid)) > τ ∗ δgi then
16: filter it out and continue;
17: Filtering with Lm(q, gid) and Um(q, gid);
18: if ω = t′(χ) > τ ∗ δ′ then
19: flag ⇐ true and break;
20: if flag �= true then
21: post process the remaining graphs not appeared;

Fig. 11. The Pipeline of Query Processing Framework

E. Query Processing Pipelining Algorithm
As shown in Figure 7, the above graph pruning algorithm can

be divided into two stages: graph sorted list processing (CA) and
dynamic graph mapping distance computation (DC). In step 1, we
only use aggregation bounds, and output accessed graphs with seen
sub-unit multisets to the separate DC stage for mapping distance
computations. The main advantage of our query processing frame-
work lies in reducing the complex GED bounds computations by
avoiding accessing highly dissimilar graphs.
Moreover, the proposed approaches can be further improved by

pipelining. It is easy to pipeline the whole query processing frame-
work in Figure 7 into three consecutive stages: TA, CA, and DC. As
shown in Figure 11, given graph queries, they are first decomposed
into multiple sub-unit multisets. Then, each sub-unit is input to the TA
stage to get its top-k similar sub-units. The output of top-k results for
each query graph is fed to the input of the CA stage for building the
graph score sorted lists. After that, the CA stage retrieves graph score
sorted lists for each query graph in a round-robin schedule. When CA
halts or the ends of all lists have been reached, all the accessed sub-
units for seen data graphs are arranged to be the input of the DC
stage. In the DC stage, we compute partial mapping distance when
the accessed sub-units for the data graph are more than 50%, and
run dynamic computation for graphs which have been processed but
not filtered out. Moreover, there is no need to further return top-k
results in the TA stage when the CA halts.
The pipelining algorithm can avoid parameter tunings for the k

value in the TA stage and the h value in the CA stage. The k value can
be fixed as a small number like 20, and h is not needed since the CA
stage does not control the dynamic computations. To reduce dynamic
computation overhead, we run partial matching only when more than
50% sub-units of a graph have been accessed. Further consideration
will be illustrated in Section VI. To differentiate our algorithms,
hereafter SEGOS means our original CA search algorithm without
pipeline, and SEGOS-Pipeline refers to the pipelining one.

0.00

0.01

0.02

0.03

0.04

0.05

 10 100 1000

R
es

po
ns

e
Ti

m
e(

se
c)

SEGOS-k
SEGOS-h

(a) Response Time

 160

 162

 164

 166

 168

 170

 10 100 1000
Ac

ce
ss

 N
um

be
r

SEGOS-k
SEGOS-h

(b) Access number
Fig. 12. Sensitivity Test on AIDS Dataset

VI. EXPERIMENTAL STUDY
In this section, we compare our methods with two state-of-the-art

approaches C-Tree[5] and κ-AT[14] on two real datasets. SEGOS
was compiled with gcc 4.4.3 in Red hat Linux Operating System,
and all experiments were run on a server with Quad-Core AMD
Opteron(tm) Processor 8356, 128GB memory, running RHEL 4.7AS.
In the experiments, we randomly selected 20 graphs from the dataset
as query graphs and present the average result.
AIDS Dataset. This dataset is a DTP AIDS Antiviral Screen

chemical compound dataset, published by National Cancer Insti-
tute (http://dtp.nci.nih.gov/docs/aids/aids data.html). This dataset has
been widely used in many existing works [4], [5], [13], [14], [15],
[16]. It consists of 42, 687 chemical compounds, with an average of
46 vertices. Compounds are labelled with 63 unique vertex labels.
Linux Dataset. Program Dependence Graph (PDG) is an ideal

static representation of the data flow and control dependency within
a procedure, with each vertex assigned to one statement and each
edge representing the dependency between two statements. PDG is
widely used in software engineering for clone detection, optimization,
debugging, etc (e.g., [29], [30]). Here, we use CodeSurfer 2.1pl to
generate the PDG dataset (http://www.grammatech.com). First we
maximize the configuration of the Linux kernel and then dump the
Program Dependence Graph using CodeSurfer 2.1pl with strict error
limitation. This Linux kernel procedure dataset has in total 48,747
graphs, with an average of 45 vertices. The graphs are labelled with
36 unique labels, representing the roles of vertices in the procedure,
such as “declaration”, “expression”, “control-point”, etc.
Taken from different applications, AIDS is a sparse database with

near normal size distribution while Linux is that with near uniform
size distribution. Table II presents five major parameters used in our
experiments, including their descriptions and values (with default
values in bold). Hereafter, the default values will be used in all the
experiments if not particularly indicated.

TABLE II
PARAMETER SETTINGS

Parameter Description Value
ks k value for the TA stage 10, 20, .., 100, 200, .., 1000
h h value for the CA stage 10, 20, .., 100, 200, .., 1000
|D| dataset graph number 5K,10K,15K,20K,25K,30K,35K,40K
|q| query vertex number 10, 20, 30, 40, 50, 60, 70, 80
τ distance threshold 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

A. Sensitivity Study
We first conduct a series of parameter sensitivity analysis on our

non-pipeline algorithm SEGOS. The impact of different parameters
on the access number and the response time is presented. Access
number here is defined as the number of graphs accessed to compute
mapping distances for a query graph.
In Figure 12 SEGOS-k and SEGOS-h respectively correspond to

the sensitivity of parameters ks and h. It can be seen that, when ks
is small, the lists of top-k sub-units are quite short. In this case, our
algorithm filters out few graphs after scanning through the lists, and
the dynamic algorithm has to be applied on more sub-units for the
remaining graphs. As ks increases from 50 to 100, the lists of top-k

 0

 10

 20

 30

 40

 50

 60

 70

 5 10 15 20 25 30 35 40

In
de

x
Si

ze
(M

B)

Dataset Size(K)

C-Tree
k-AT

SEGOS

(a) on AIDS Dataset

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 5 10 15 20 25 30 35 40

In
de

x
Si

ze
(M

B)

Dataset Size(K)

C-Tree
k-AT

SEGOS

(b) on Linux Dataset
Fig. 13. Index Size vs. |D|

100

101

102

103

 5 10 15 20 25 30 35 40

Bu
ild

 T
im

e(
se

c)

Dataset Size(K)

C-Tree
k-AT

SEGOS

(a) on AIDS Dataset

100

101

102

103

104

 5 10 15 20 25 30 35 40

Bu
ild

 T
im

e(
se

c)

Dataset Size(K)

C-Tree
k-AT

SEGOS

(b) on Linux Dataset
Fig. 14. Construction Time vs. |D|

sub-units become larger for the CA stage and more graphs are pruned
off early. When ks is larger than 100, there is little change in the
access number, since CA has reached its halting conditions.
Meanwhile, when h is small, the chance of retrieving the whole

set of sub-units is low. As h grows, more sub-units will be seen,
allowing more graphs to be pruned without being fully accessed. As
such, both the response time and the access number decrease as h
increases from 10 to 100. The response time will be stable when h
is large enough to hit the halting condition of the CA stage.
We exclude results on the Linux dataset since it shows very similar

trends. However, the sensitive values for ks are larger in this dataset
because its size distribution is more uniform than the AIDS dataset.
Generally, our method achieves good performance by setting ks as
about 1% of the total sub-unit number and h as in the order of a few
hundred. Without loss of generality, we simply use the default values
in Table II for both two real datasets in the following experiments.

B. Index Construction Performance
In this subsection, we evaluate index construction performance

of SEGOS, κ-AT and C-Tree w.r.t the dataset size. To build the
index for κ-AT, we first conduct a sensitivity test and find that κ-AT
performs the best by setting κ = 2 on both datasets.
Figure 13 and 14 show the index size and index construction time

on both datasets, with |D| varying from 5K to 40K. We can see that
SEGOS needs the shortest construction time and takes up the smallest
space among all the three index structures, for it is sufficient for
SEGOS to build two simple inverted indexes with only one dataset
scan. For the other two index strategies, we find that κ-AT has to
scan the dataset up to κ times to build a κ-layer feature table for
each graph, and index these elements in all feature tables, and C-
Tree uses one complex R-Tree like index structure, making it the
most expensive one in index construction and the largest one in index
size. In summary, SEGOS outperforms κ-AT and C-Tree in terms
of index size and build time.

C. Query Performance
We next investigate the performance of our range query algorithms

compared against those of C-Tree and κ-AT. Figure 15 and 16 show
the results of range queries with τ varying from 0 to 20, |D| = 20K.
From Figure 15 we can see that SEGOS always returns the

smallest number of candidates while incurring shortest response time.
On the AIDS dataset, it outperforms κ-AT by up to two orders of
magnitude in terms of candidate set size, and beats C-Tree in terms
of filtering efficiency by two orders of magnitude.

10-2

10-1

100

101

102

 0 5 10 15 20

R
es

po
ns

e
Ti

m
e(

se
c)

Edit Distance τ

C-Tree
k-AT

SEGOS

(a) Response Time vs. τ

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20
C

an
di

da
te

 S
iz

e(
K)

Edit Distance τ

C-Tree
k-AT

SEGOS

(b) Candidate Size vs. τ
Fig. 15. Range Queries on AIDS Dataset

10-2

10-1

100

101

 0 5 10 15 20

R
es

po
ns

e
Ti

m
e(

se
c)

Edit Distance τ

C-Tree
k-AT

SEGOS

(a) Response Time vs. τ

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20

C
an

di
da

te
 S

iz
e(

K)

Edit Distance τ

C-Tree
k-AT

SEGOS

(b) Candidate Size vs. τ
Fig. 16. Range Queries on Linux Dataset

Figure 16(b) shows that κ-AT has the poorest filtering ability,
although it is the fastest one when it comes to filter as shown in
Figure 16(a). Even when τ is as small as 6, κ-AT gives 800 more
candidates than SEGOS. Here we can conclude that although the
simplistic filtering adopted by κ-AT gives it higher efficiency, it’s
filtering power is however much weaker than the other two. In a
more concrete term, κ-AT is fast simply because it does not do much
filtering. Compared to C-Tree, it is clear that SEGOS dominates
C-Tree w.r.t response time and candidate size. The superiority of
SEGOS becomes more significant when τ grows larger. We can see
that C-Tree returns 2K more candidates than SEGOS which is about
1/10 of the entire dataset size.
There are two reasons for the best result of our algorithm in Figure

15(a). First, the number of accessed graphs for mapping distance
computation is much smaller on the AIDS dataset than the Linux
dataset. Second, the randomly selected queries include graphs with
smaller sizes or with high dissimilarity to most graphs in the AIDS
dataset which can be fast completed in SEGOS.
Note that candidates verification using the GED is an extremely

expensive process (NP-Hard). If we take into consideration that the
GED computation for each of acquired candidates (of average size
40) is in thousand of seconds, then the extra candidates generated
by κ-AT (eg. 800) will cost an additional hundreds of thousands
seconds. From our observation, the total response time including
filtering time and verification time increases as the candidate number
becomes larger. This result is also presented in several existing works.
As such, it makes sense to sacrifice a little more time to filter out as
many candidates as possible, as SEGOS does.

D. Scalability Study
We conduct two groups of experiments to evaluate the scalability

of our algorithm in terms of the dataset size over two real datasets.
Figure 17 and 18 illustrate the scalability of the algorithms with

respect to the dataset size |D|, ranging from 5K to 40K. Here, we
choose τ = 2 for Linux dataset, and τ = 10 for the AIDS dataset.
This is because there are many similar graphs in the Linux dataset
and a small τ is sufficient to show the difference in performance
(SEGOS also performs better than the others when τ is large). On
the contrary, since the AIDS dataset does not have that many similar
graphs, a larger τ is more appropriate to reveal the difference.
Figure 17 shows that SEGOS outperforms the other two algorithm-

s over the entire range of dataset sizes. Furthermore, as the dataset
size grows, SEGOS’s response time increases only from 8ms to
40ms, which is only 0.1% that of C-Tree and 50% that of κ-AT. On

10-3

10-2

10-1

100

101

102

 5 10 15 20 25 30 35 40

R
es

po
ns

e
Ti

m
e(

se
c)

Dataset Size(K)

C-Tree
k-AT

SEGOS

(a) Response Time vs. |D|

10-2

10-1

100

101

102

 5 10 15 20 25 30 35 40

C
an

di
da

te
 S

iz
e(

K)

Dataset Size(K)

C-Tree
k-AT

SEGOS

(b) Candidate Size vs. |D|

Fig. 17. Scalability of Range Queries on AIDS Dataset

10-3

10-2

10-1

100

101

 5 10 15 20 25 30 35 40

R
es

po
ns

e
Ti

m
e(

se
c)

Dataset Size(K)

C-Tree
k-AT

SEGOS

(a) Response Time vs. |D|

10-2

10-1

100

101

 5 10 15 20 25 30 35 40

C
an

di
da

te
 S

iz
e(

K)

Dataset Size(K)

C-Tree
k-AT

SEGOS

(b) Candidate Size vs. |D|

Fig. 18. Scalability of Range Queries on Linux Dataset

the Linux dataset, SEGOS is still the most effective one in candidate
filtering and costs moderate response time. From these two figures,
we can see that SEGOS is better than κ-AT on the AIDS dataset, and
C-Tree on both the AIDS and the Linux datasets. Though SEGOS
needs more time than κ-AT on the Linux dataset, it filters out more
candidates than κ-AT, by two orders of magnitude.

E. Effects of SEGOS on C-Star
To show how much SEGOS can enhance C-Star, we conduct a

set of experiments to see the response time and the access ratio of
SEGOS, compared to C-Star. 20K graphs are randomly selected
from two real datasets, and 10 graphs are extracted as queries.
Figure 19 shows that SEGOS can enhance C-Star by dramatically
reducing mapping distance computations by two orders of magnitude
on average. We also investigate queries which have a mass of similar
graphs in the database, since in this special case our method may
degrade to the linear case of C-Star while taking extra overhead for
the TA stage. However, we find that the overhead can be negligible,
even in the worst case, this overhead takes less than 0.1% of the
overall response time. A result showing the overhead with various
ks values is presented in Figure 20.

10-2

10-1

100

101

102

 0 5 10 15 20

R
es

po
ns

e
Ti

m
e(

se
c)

Edit Distance τ

C-Star
SEGOS

(a) Response Time vs. τ

0%

1%

2%

3%

4%

5%

 0 5 10 15 20

Ac
ce

ss
 R

at
io

(%
)

Edit Distance τ

SEGOS/C-Star

(b) Access Ratio vs. τ
Fig. 19. Quality of SEGOS

0.000

0.001

0.002

0.003

0.004

0.005

10 200 400 600 800 1000

R
es

po
ns

e
Ti

m
e(

se
c)

Total Time
Top-k Time

(a) on AIDS Dataset

0.070

0.075

0.080

0.085

0.090

0.095

0.100

0.105

0.110

10 200 400 600 800 1000

R
es

po
ns

e
Ti

m
e(

se
c)

Total Time
Top-k Time

(b) on Linux Dataset
Fig. 20. Overhead Testing of Top-k Sub-unit Search on Range Queries

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050

 0 5 10 15 20

R
es

po
ns

e
Ti

m
e(

se
c)

Edit Distance τ

SEGOS-Pipeline
SEGOS

(a) on AIDS Dataset

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

 0 5 10 15 20
R

es
po

ns
e

Ti
m

e(
se

c)
Edit Distance τ

SEGOS-Pipeline
SEGOS

(b) on Linux Dataset
Fig. 21. Effects of Pipeline on SEGOS

F. Effects of the Pipelining Algorithm
We also implement a simple pipelining algorithm for SEGOS,

denoted by SEGOS-Pipeline. Since this algorithm is implemented
with multi-threading, we only compare it to our non-pipeline method
to study its effects. In our implementation, we dispatch two parallel
threads to respectively run the TA and the CA stage, and two threads
to run the DC stage respectively for two parallel parts: partial match-
ing computations and sub-unit multiset difference computations. With
this, the overhead of SEGOS can be reduced by parallel processing.
SEGOS-Pipeline fixes the ks value to be 20, and CA feeds its
output into the DC stage when it finishes processing sorted lists
constructed by top-20 results from TA. Therefore, the h parameter
can be removed. Figure 21 shows one group of results on range
queries, varying τ from 0 to 20. In this experiment, we randomly
select 20K data graphs and 20 query graphs from two real datasets.
The results show that the pipelined algorithm can further speed up
the graph search. The access number for queries does not exceed
700, which is not significant enough to show the high enhancement.
However, the trend shows that with τ increasing, the enhancement
also becomes higher as the access number becomes larger.

VII. CONCLUSIONS AND FUTURE WORK

In this study, we investigated an important problem of GED based
similarity graph search. Different from previous works, we propose
SEGOS, an efficient indexing and pipeline query processing frame-
work based on sub-units. A two-level inverted index is constructed
and preprocessed to maintain a global similarity order both for sub-
units and graphs. With this blessing property, graphs can be accessed
in increasing dissimilarity, and any GED based lower/upper bound
can be used as filtering features. With this, two algorithms adapted
from TA and CA are seamlessly integrated into the framework to
speed up the search, and it is easy to pipeline the proposed framework
to process continuously graph pruning. The top-k result in the TA
stage is automatically fed into the CA stage, and the accessed sub-
units of each graph from the CA stage are output to the DC stage.
Experimental results on two real datasets show that the proposed

approach outperforms the state-of-the-art works with best filtering
power. Although κ-AT is fast to answer queries but its loose bound
causes it to suffer very poor filtering power. Since GED verification
is extremely expensive, it makes sense to sacrifice a few more
milliseconds to prune as many candidates as possible. SEGOS also
can highly improve C-Star [9] by avoiding accessing the whole
database. We also implement a simple pipelining algorithm to see its
potential for enhancing the proposed framework, and future work can
be done in this topic for handling huge graph databases with GPU or
MapReduce system. Besides, interesting topics can be opened up to
handle more general sub-unit based methods by providing appropriate
aggregation functions for the TA or CA search. Another interesting
topic can be further to do is that with bounds adaption our work also
can support the sub-graph matching problems.

ACKNOWLEDGMENT
Xiaofeng Ding and Hai Jin were supported by NSF China grant

61100060.

REFERENCES
[1] H. Hu, X. Yan, Y. Huang, J. Han, and X. J. Zhou, “Mining coherent

dense subgraphs across massive biological network for functional dis-
covery,” Bioinfomatics, vol. 1, no. 1, pp. 1–9, 2005.

[2] X. Yan, P. S. Yu, and J. Han, “Substructure similarity search in graph
databases,” in SIGMOD, 2005, pp. 766–777.

[3] B. T. Messmer and H. Bunke, “A new algorithm for error-tolerant
subgraph isomorphism detection,” IEEE TPAMI, vol. 20, no. 5, pp. 493–
504, 1998.

[4] R. Giugno and D. Shasha, “Graphgrep: A fast and universal method for
querying graphs,” in ICPR, 2002, pp. 112–115.

[5] H. He and A. K. Singh, “Closure-tree: an index structure for graph
queries,” in ICDE, 2006, pp. 38–38.

[6] H. Bunke and K. Shearer, “A graph distance metric based on the maximal
common subgraph,” Pattern Recognition Letter, vol. 19, no. 3-4, pp.
255–259, 1998.

[7] M.-L. Fernández and G. Valiente, “A graph distance metric combin-
ing maximum common subgraph and minimum common supergraph,”
Pattern Recognition Letter, vol. 22, no. 6-7, pp. 753–758, 2001.

[8] X. Gao, B. Xiao, D. Tao, and X. Li, “A survey of graph edit distance,”
Pattern Anl. & Applic., 2009.

[9] Z. Zeng, A. K. H. Tung, J. Wang, J. Feng, and L. Zhou, “Comparing
stars: on approximating graph edit distance,” PVLDB, vol. 2, no. 1, pp.
25–36, August 2009.

[10] D. Justice, “A binary linear programming formulation of the graph edit
distance,” IEEE TPAMI, vol. 28, no. 8, pp. 1200–1214, 2006.

[11] C. Li, B. Wang, and X. Yang, “Vgram: improving performance of
approximate queries on string collections using variable-length grams,”
in VLDB, 2007, pp. 303–314.

[12] R. Yang, P. Kalnis, and A. K. H. Tung, “Similarity evaluation on tree-
structured data,” in SIGMOD, 2005, pp. 754–765.

[13] J. Cheng, Y. Ke, W. Ng, and A. Lu, “Fg-index: towards verification-free
query processing on graph databases,” in SIGMOD, 2007, pp. 857–872.

[14] G. Wang, B. Wang, X. Yang, and G. Yu, “Efficiently indexing large
sparse graphs for similarity search,” IEEE TKDE, vol. 99, no. PrePrints,
2010.

[15] X. Yan, P. S. Yu, and J. Han, “Graph indexing: a frequent structure-based
approach,” in SIGMOD, 2004, pp. 335–346.

[16] S. Zhang, M. Hu, and J. Yang, “Treepi: a novel graph indexing method,”
in ICDE, 2007, pp. 966–975.

[17] H. W. Kugn, “The hungarian method for the assignment problem,” Naval
Research Logistics, vol. 2, pp. 83–97, 1955.

[18] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for
middleware,” in PODS, 2001, pp. 102–113.

[19] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. SSC, vol. 4, no. 2,
pp. 100–107, 1968.

[20] M. Garey and D. Johnson, Computers and intractability. Freeman San
Francisco, 1979.

[21] M. Neuhaus, K. Riesen, and H. Bunke, “Fast suboptimal algorithms for
the computation of graph edit distance,” in SSSPR, 2006, pp. 163–172.

[22] H. A. Almohamad and S. O. Duffuaa, “A linear programming approach
for the weighted graph matching problem,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 15, no. 5, pp. 522–525, 1993.

[23] P. Zhao, J. X. Yu, and P. S. Yu, “Graph indexing: tree + delta >=
graph,” in VLDB, 2007, pp. 938–949.

[24] Y. Tian and J. Patel, “Tale: A tool for approximate large graph matching,”
in ICDE. IEEE, 2008.

[25] I. H. Toroslu and G. ı́çoluk, “Incremental assignment problem,” Inf. Sci.,
vol. 177, no. 6, pp. 1523–1529, 2007.

[26] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohman, “On
supporting containment queries in relational database management sys-
tems,” in SIGMOD. ACM, 2001, pp. 425–436.

[27] L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas, S. Muthukrishnan, and
D. Srivastava, “Approximate string joins in a database (almost) for free,”
in VLDB. Citeseer, 2001, pp. 491–500.

[28] D. Cutting and J. Pedersen, “Optimization for dynamic inverted index
maintenance,” in ACM SIGIR. ACM, 1989, pp. 405–411.

[29] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence
graph and its use in optimization,” ACM Trans. Program. Lang. Syst.,
vol. 9, no. 3, pp. 319–349, 1987.

[30] M. Gabel, L. Jiang, and Z. Su, “Scalable detection of semantic clones,”
in ICSE, New York, NY, USA, 2008, pp. 321–330.

APPENDIX
A. Proof of Algorithm 2

Proof: We show that the algorithm really returns the exact top-
k result to a query sub-unit sq when halting. Suppose we have m
sorted lists for sq . In fact, this algorithm can halt on two conditions:
1) The value of ω is no less than the maximum value in top-k. Since
the top-k queue is maintained by the top-k minimum SEDs to sq ,
when halting, they are naturally the top-k values among all sub-units
having been retrieved. If we can prove that all remaining unseen sub-
units have SEDs no less than the maximum value in top-k, the result
is sure to be correct.
1.1) When processing the lists with smaller size graphs, we have

ω = 2 ∗ |Lq| − (t(χ) + L) ≥ max{top− k}

For any unseen sub-unit si, we have

λ(sq, si) = T (rq, ri) + 2 ∗ |Lq | − (t(χ) + |Li|)

where T (rq, ri) ≥ 0. Since all lists in this case are sorted in
decreasing orders, we have

t(χ) + L =
m∑

j=1

χ
j
+ L ≥ t(χ) + |Li|

where all χx ∈ χ and Li are located below the halting positions.
Therefore, ω ≤ λ(sq, si), i.e., unseen sub-units have λ ≥ ω ≥
max{top−k}. The top-k results are the real k minimum values.
1.2) When running on sorted list with larger size graphs, we have

ω = −|Lq| − (t(χ)− 2 ∗ L) ≥ max{top− k}

In this case, for any unseen sub-unit si, we have

λ(sq, si) = T (rq, ri)− |Lq | − (t(χ)− 2 ∗ |Li|)

where T (rq, ri) ≥ 0. Since label lists are sorted decreasingly while
size list is sorted increasingly, we have

t(χ)− 2 ∗ L =

m∑
j=1

χ
j
− 2 ∗ L ≥ t(χ)− 2 ∗ |Li|

where all χx ∈ χ and Li are located below the halting positions.
Therefore, ω ≤ λ(sq, si), i.e., unseen sub-units have λ ≥ ω ≥
max{top−k}. The top-k results are correct to be the k minimum
values.
2) Algorithm halts when all sorted lists have been accessed to the
ends. In this case, with post processing, the top-k result is sure to be
correct because they are the k minimum values among all sub-units.

B. Proof of Theorem 2
Proof: From the aggregation bounds definitions in Section V-C,

it is clear that ζ(g1, g2) ≤ Lμ(g1, g2) ≤ Uμ(g1, g2). Now we prove
Lμ(g1, g2) ≤ μ(g1, g2). Suppose P is an optimal alignment between
S(g1) and S(g2). Then,

μ(g1, g2) =
∑

si∈S(g1)

λ(si, P (si))

where P (si) is each sub-unit in g2 aligned to si in g1 and P (si) ∈
S(g2) ∪ {ε}. Let ζ(g1, g2) of g2 be the overall score obtained by
computing the summation of all local minimum SED of g2 below m
sorted lists for g1.
1) For those lists below S′(g1) including entries of g2, since they

contain the top-k lowest scores, we have∑
si∈S′(g1)

min
ei∈Se

{ei} =
∑

si∈S′(g1)

min
sj∈S(g2)

{λ(si, sj)}

≤
∑

si∈S′(g1)

λ(si, P (si))

2) For those below S′′(g1) = S(g1)\S
′(g1):∑

si∈S′′(g1)

min{χ
i
, λ(si, ε)} ≤

∑
si∈S′′(g1)

min
sj∈S(g2)∪{ε}

{λ(si, sj)}

≤
∑

si∈S′′(g1)

λ(si, P (si))

Accordingly, we obtain Lμ(g1, g2) and μ(g1, g2) as,

Lμ(g1, g2) =
∑

si∈S′(g1)

min
ei∈Se

{ei}+
∑

si∈S′′(g1)

min{χ
i
, λ(si, ε)}

μ(g1, g2) =
∑

si∈S′(g1)

λ(si, P (si)) +
∑

si∈S′′(g1)

λ(si, P (si))

Therefore, Lμ(g1, g2) ≤ μ(g1, g2).
3) We prove Uμ(g1, g2) ≥ μ(g1, g2). As described in Aggregation
Upper Bound, χ(g2) is a multiset of distances corresponding to the
sub-units of g2 last seen in known lists without duplicates, and

χ = maxs∈S(g1)∪S(g2){λ(s, ε)}

Suppose S′(g2) ⊆ S(g2) is the sub-units corresponding to χ(g2),
and S′(g1) contains sub-units of g1 aligned to S′(g2) due to χ(g2).
If S′(g2) ⊆ {P (si)|si ∈ S

′(g1)}, we have

t′(χ(g2)) =
∑

si∈S′(g1)

λ(si, P (si))

χ ∗ (max{|g1|, |g2|} − |χ(g2)|) ≥
∑

si∈S(g1)\S′(g1)

λ(si, P (si))

If S′(g2) �⊆ {P (si)|si ∈ S
′(g1)}, we have

t′(χ(g2)) ≥
∑

si∈S′(g1)

λ(si, P (si))

χ ∗ (max{|g1|, |g2|} − |χ(g2)|) ≥
∑

si∈S(g1)\S′(g1)

λ(si, P (si))

Accordingly, we obtain Uμ(g1, g2) ≥ μ(g1, g2).

C. Proof of Algorithm 3
Proof: We prove that our candidate set includes all positive

results when algorithm halts.
1) The algorithm halts with ω > τ ∗ δ′.
1.1) Running on the sorted lists with smaller size graphs, entries

in each list below sj ∈ q have distances χj ≤ λ(sj , ε). From the
halting condition, we have ω = t′(χ) > τ ∗ δ′. Then, for any unseen
graph gi ⊆ D′, suppose P is the optimal alignment between S(q)
and S(gi). From Definition 1, we have

μ(q, gi) =
∑

sj∈S(q)

λ(sj , P (sj))

where P (sj) is each sub-unit in gi aligned to sj in q and P (sj) ∈
S(gi)∪ {ε}. Since |gi| ≤ |q|, and gi locates below halting positions
of ω. We have χ

j
≤ λ(sj , P (sj)). Hence, ω ≤ μ(q, gi). Therefore,

for any gi ⊆ D′, we have

Lm(q, gi) =
μ(q, gi)

δgi
≥
μ(q, gi)

δ′
≥
ω

δ′
> τ

Any unseen gj ⊆ D′ can be safely filtered out.
1.2) Similarly, if algorithm runs on the sorted list with larger size

graphs, any unseen gi ⊆ D′ also can be safely filtered out.
2) Algorithm halts when the ends of all sorted lists have been reached.
In this case, this algorithm will become a linear scan algorithm by
postprocessing the remaining unseen graphs, which guarantees that
we have the correct candidate set without false negative.

