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ABSTRACT

Path prediction is useful in a wide range of applications. Most of
the existing solutions, however, are based on eager learning meth-
ods where models and patterns are extracted from historical trajec-
tories and then used for future prediction. Since such approaches
are committed to a set of statistically significant models or patterns,
problems can arise in dynamic environments where the underlying
models change quickly or where the regions are not covered with
statistically significant models or patterns.

We propose a “semi-lazy” approach to path prediction that builds
prediction models on the fly using dynamically selected reference
trajectories. Such an approach has several advantages. First, the
target trajectories to be predicted are known before the models are
built, which allows us to construct models that are deemed relevant
to the target trajectories. Second, unlike the lazy learning approach-
es, we use sophisticated learning algorithms to derive accurate pre-
diction models with acceptable delay based on a small number of
selected reference trajectories. Finally, our approach can be contin-
uously self-correcting since we can dynamically re-construct new
models if the predicted movements do not match the actual ones.

Our prediction model can construct a probabilistic path whose
probability of occurrence is larger than a threshold and which is
furthest ahead in term of time. Users can control the confidence of
the path prediction by setting a probability threshold. We conduct-
ed a comprehensive experimental study on real-world and synthetic
datasets to show the effectiveness and efficiency of our approach.

Categories and Subject Descriptors

H.2.8 [DATABASE MANAGEMENT]: Database Applications-
Data mining; I.2.6 [ARTIFICIAL INTELLIGENCE]: Learning
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1. INTRODUCTION
Path prediction is presently a popular area of research [13, 17,

18, 8, 16, 9, 28, 15, 20]. Predicting the future path of moving ob-
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jects has a broad range of applications, including navigation, traf-
fic management, personal positioning, actionable advertising [16],
epidemic prevention [12], event prediction [21], anomaly detection
[4, 14] and even spatial query optimization [5].

We study the path prediction problem in dynamic environments.
An environment is considered to be dynamic if the movement of
objects in the environment changes with some uncertain, aperiodic
and irregular factors. Some real-life examples of dynamic envi-
ronments include: (1) urban space where the movement of objects
(e.g., cars) is affected by traffic signals, traffic jams and weath-
er conditions; (2) massively multiplayer online games where the
movement of game units varies depending on the placement of
monsters and resources; (3) shopping malls where the movement
of customers changes when certain shops are on promotions.

Existing path prediction methods mostly adopt the eager learn-
ing approach [17, 8, 18, 28, 20], i.e., models or patterns are extract-
ed from historical data and used to predict the future movements
of objects. In such methods, historical trajectories are abandoned
once the models or patterns are extracted. This results in a loss of
information since the models or patterns are usually not fully rep-
resentative of the data. Furthermore, since the models or patterns
are generated without knowing the objects to be predicted, prob-
lems arise when the target objects are moving through regions that
are not covered with statistically significant models. In extreme
cases where the environment is so dynamic that completely new
situations can arise (e.g. once in 50 years flash flood, new game
settings), the models or patterns can become invalid.

To overcome these problems, we propose a “semi-lazy” approach,
called R2-D21, to pRobabilistic path pReDiction in Dynamic envi-

ronments. In R2-D2, historical trajectories are kept and indexed.
To perform prediction for a target object, we match its past tra-
jectory against historical trajectories and extract a small set of ref-
erence trajectories. Sophisticated machine learning techniques are
then applied on the reference trajectories to construct a local model,
which can predict the future movement of the target object.

Fig.1(a) shows an application example of R2-D2 in vehicle path
prediction. R2-D2 continuously collects streaming trajectories of a
large number of moving objects (the cars in Fig.1(a)). In Fig.1(b),
the red solid line is the trajectory of object Op whose future path is
to be predicted; while the blue dash lines are the historical trajec-
tories which are selected as reference trajectories for predicting the
path of Op.

R2-D2 has several advantages. First, the target trajectory is known
before the model is derived from a set of similar reference trajecto-
ries. This ensures that the model is highly relevant. Second, since
the learning is performed on a small set of reference trajectories, we
can afford to use slightly more complex learning algorithms. Given

1R2-D2 is a smart robot in the Star Wars.



the power of modern hardware, the time taken to derive such local
model is typically acceptable. Finally, since the actual movement
of the target object can be compared against the predicted move-
ment subsequently, we can dynamically derive new models if the
actual movement and the predicted movement do not match. This
leads to a self-correcting continuous prediction approach.
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Figure 1: (a) An application example of R2-D2 in vehicle path

prediction; (b) Path prediction based on reference trajectories.

On top of these advantages, R2-D2 also supports probabilistic
path prediction. Since there is always a trade-off between the pre-
diction accuracy and the length of the predicted path, R2-D2 choos-
es to predict the longest path (in term of time) with probability
(confidence) higher than a given threshold. The user can thus use
R2-D2 to predict paths of different lengths by setting different con-
fidence thresholds, making it flexible enough be used in a broad
range of applications that have different requirements for predic-
tion confidence and predicted path length.

The rest of the paper is organized as follows. Section 2 gives a
review of related work. Section 3 formalizes the problem and gives
an overview of R2-D2. The prediction process of R2-D2 has three
sub-processes: “Update”, “Lookup” and “Construction”, which are
discussed in Section 4, Section 5 and Section 6, respectively. We
evaluate R2-D2 in Section 7 and conclude the paper in Section 8.

2. RELATED WORK
Approaches for path prediction can be categorized into pattern-

based path prediction and descriptive model-based path prediction.

2.1 Pattern-based prediction
Pattern-based prediction methods can be future categorized into

two classes: personal pattern-based methods and general pattern-
based methods.

Personal pattern-based prediction methods consider the move-
ment of each object to be independent. In [27], Yavas et al. propose
a method to predict a user’s future paths based on the user’s mobil-
ity patterns. Jeung et al. [8] propose a hybrid prediction model
which combines motion function and mobility patterns. Sadilek et
al. [20] propose a model to support long-term mobility prediction.

General pattern-based prediction methods use common mobility
patterns to predict future locations. In [17, 18], Morzy proposes
methods to extract association rules from trajectories for predic-
tion. For more of such methods, please refer to [28]. Mobility pat-
terns are also used for destination prediction, such as WhereNext
[16] and SubSyn [26], which predicts moving objects’ destinations
without concerning paths of reaching the destinations.

Pattern-based methods do not work well in dynamic environ-
ments. The main problem is that pattern mining is an expensive
(in terms of time) process; therefore, it cannot quickly capture new
patterns that emerge in a dynamic environment. Furthermore, the
movement of many moving objects may not match any pattern,
making it impossible to do prediction [28].

2.2 Descriptive model-based prediction
Descriptive model-based prediction methods use mathematical

models to describe the movement of moving objects.
Motion function methods estimate objects’ future locations by

motion functions [24, 23]. Recursive motion function [23] is one
of the most accurate methods. The problem is that these methods
do not take environment constraints into account.

Markov model methods are suitable for estimating future loca-
tions of moving objects in a discrete location space [19]. However,
these methods can only predict the short-term path. Some advanced
mathematical models, such as Gaussian process and Dirichlet pro-
cess [10], have been used to model objects’ behavior, but they do
not address the location prediction problem.

There are also some path prediction methods that utilize road
networks [11, 9]. Those methods can only be applied in network-
constraint spaces. R2-D2 does not have such limitations.

As far as we known, R2-D2 is the first “semi-lazy” approach
that on the fly finds reference trajectories to learn a path prediction
model and then make path prediction.

3. OVERVIEW AND PRELIMINARIES

Table 1: Table of Notations

Oi moving object Op object to be predicted
Oi

t location of Oi at time t RO reference objects of Op

t0 current time Ci
t credit of Oi at time t

T i trajectory of Oi Wh h-backward trajectory
ζi a set of reference points ζi

l
ζi in level l of cluster tree

sk state of Op at t0 + k Sk state space at t0 + k

R macro cluster radius dmic micro cluster radius
θ confidence threshold ξm support for “Construction”

ROk reference points of Op at time t0+k
RO1:k all reference points of Op from t0 + 1 to t0 + k

SS1:k a path of Op from t0 + 1 to t0 + k

si
k,l

the i-th state in level l of state space tree at time t0+k
CRt query range of Op at time t for reference objects
H TG buffer interval threshold for dropping old trajectories

3.1 Overview
Fig. 2 illustrates the architecture of R2-D2. It has two compo-

nents: the Trajectory Grid (TG) and the Prediction Filter (PF). TG
is a grid based indexing structure for storing historical trajectories.
PF performs probabilistic path prediction.

There are also two separate processes: “Update” and “Predic-
tion”. In Fig. 2, we denote the “Update” process by blue solid lines
and denote the “Prediction” process by red dotted lines. The “Up-
date” process continuously collects streaming trajectories from the
dynamic environment and stores them in TG (see Section 4).

The “Prediction” process makes path prediction. This process
has two sub-processes: “Lookup” and “Construction”. In Fig. 2,
we want to predict the path of Op (the red car). In the “Lookup”
process, we use the trajectory of Op in the last few time steps as
query trajectory to retrieve reference trajectories from TG (see Sec-

tion 5). R2-D2 will only make a prediction if the number of ref-
erence trajectories is greater than a predefined threshold. In the
“Construction” process, the reference trajectories are used to con-
struct a model for making path prediction (see Section 6).

3.2 Preliminaries
Table 1 lists notations used throughout the paper. We use Oi to

denote a moving object. A trajectory of Oi is a sequence of times-
tamped locations T i =< Oi

1, ..., O
i
t, ... >, where Oi

t = ((x, y), t)
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Figure 3: An example of using R2-D2 to predict Op’s path.

denoting that Oi locates at location (x, y) at time t. We assume
that all trajectories have synchronised timestamps. When this as-
sumption is not valid, we interpolate the trajectories.

We refer to the trajectory of Op in the last h time steps as h-

backward trajectory and denote it as Wh. If t0 is the current
time, then Wh =< Op

t0−h+1, O
p

t0−h+2, ..., O
p
t0
>.

The reference objects of Op, denoted as RO, is a set of objects
which have certain sub-trajectories matched with Wh. These ob-
jects have a similar tendency as Op. We give a formal definition of
the match function in Section 5.

For each object Oi ∈ RO, we denote Oi
v as the timestamped

location of Oi that is nearest to Op
t0

. In other words, v is the times-
tamp when object Oi’s location is closest to Op

t0
. The reference

points of Op at t0 are defined as RO0 = {Oi
v|O

i ∈ RO}. The
reference points of Op at t0 + k, namely ROk, are defined as
ROk = {Oi

v+k|O
i ∈ RO}. Note that the definition of ROk is

based on RO0, because the value of v for each Oi ∈ RO is deter-
mined at time t0. Moreover, we use RO1:k to denote all reference
points of Op from t0 + 1 to t0 + k, i.e., RO1:k =

⋃k

i=1ROi. We
also call RO1:k as reference trajectories of Op.

Let ⊙(centroid, radius) denote a circle. We call a vector sk =
(⊙(centroid, radius), k) a state of Op, which means Op may be
within the circle at time t0+k. Since there could be several possible
states for Op at time t0 + k, we use sik to denote a possible state
whose identifier is i. We define the set of all possible states ofOp at
time t0+k as a state space, i.e., Sk =

⋃
sik. We denote a sequence

of states ofOp from t0+1 to t0+k as SS1:k =< s1, s2, ..., sk >.
We call SS1:k a path of Op.

Given RO1:k, we denote the probability that Op is in state sk as
p(sk|RO1:k). Similarly, given RO1:k, we denote the probability
that Op would appear in every state in SS1:k as p(SS1:k|RO1:k).
Now, we can define the probabilistic path prediction problem.

DEFINITION 3.1 (PROBABILISTIC PATH PREDICTION). Given

a moving objectOp and a probability threshold θ at time t0, proba-

bilistic path prediction returns a path SS1:k of length k time steps,

which satisfies: (1) p(SS1:k|RO1:k) ≥ θ, and (2) for any path of

length k + 1 time steps, p(SS1:k+1|RO1:k+1) < θ.

EXAMPLE 1. In Fig. 3, there are five moving objects: {Op, O1,
O2, O3, O4}. TG stores all their trajectories (see Section 4). At

time t0 = 11, we want to predict the future path of Op. First, we

use the 2-backward trajectory of Op, i.e. W2 =< Op
10, O

p
11 >,

to retrieve reference objects from TG (see Section 5), which are

RO = {O2, O3, O4}.

Then, PF estimates a future path of Op in two steps. First, at

each future time t = t0 + k, we generate the state space Sk of

Op (see Section 6.2). For example, when k = 2 we have S2 =
{s02, s

1
2}. A sequence of states is a possible path. Next, PF select-

s the longest path whose probability is larger than the probability

threshold θ. If there are multiple such paths, the one with the high-

est probability is selected (see Section 6.1). In this example, if the

user sets θ = 0.4, the predicted path is SS1:2 =< s01, s
0
2 >. If

θ = 0.2, the predicted path is SS1:3 =< s01, s
0
2, s

0
3 >.

4. TG AND UPDATE PROCESS
The Trajectory Grid (TG) is a multi-level grid structure, which

dynamically stores new (recent) trajectories as they emerge. We
use a grid to divide the area of interest into a set of rectangular
regions with fixed width. We refer to a region as a cell. Each
cell is uniquely identified by a discrete coordinate (x, y) describing
the position of the cell in the grid. Hereafter, we use cell(x, y) to
denote the cell. Fig. 4(b) shows the overall structure of TG. Each
leaf node in TG corresponds to one cell. In the experiment part,
we will discuss how to set the width of cells. If the trajectories do
not have synchronised timestamps, we use a cache structure, called
Moving Object Cache (MOC), to interpolate the trajectories.

In each cell, we record two pieces of information: density and
trajectories passing the cell. The density of a cell indicates the
popularity of the cell, i.e., how often the cell is visited. The density
provides prior information for “Prediction Filter” (see Eqn. (14)).
Each cell in TG has a density counter. If a moving object visits
the cell, we increase its density counter by 1. We also update the
density of all the cells along the interpolated line (see Fig. 4(a)).

Each cell uses a hash table, called traHash, to store the trajecto-
ries passing the cell. The key of traHash is a vector (Oi, t), which
means Oi passes this cell at time t. The value of traHash is a vec-
tor (x, y), which is the coordinate of the next cell that Oi passes.
In this way, we implicitly store moving objects’ trajectories in the
cells’ hash tables. Knowing Oi in cell(x, y) at time t enables us to
retrieve its following trajectory after t (see Fig. 4(c)).

EXAMPLE 2. In Fig. 4(a), O1 is in cell(2, 2) at time t, then it

moves to cell(5, 4) at time t + 1. We insert a record into the tra-

Hash of cell(2, 2) with key (O1, t) and value (5, 4). Similarly, we

insert the records into cell(5, 4) and cell(6, 6). If we know O1 is

in cell(2, 2), we can recursively retrieve the approximate trajectory

of O1 after time t (see Fig. 4(c)).

TG always stores moving objects’ trajectories in the most recent
H time units. We denote H as TG buffer interval threshold. In
the experiment part, we evaluate and discuss how to determine the
value of H . When the moving objects report their new locations,
TG updates the relevant cells’ density and traHash, and at the same
time, TG also checks the oldest element in the traHash (traHash is
implemented as linked hashtable, therefore, the oldest element is
always at the end of the linked list). TG then discards the expired
elements of trahHashs and updates density counters.
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Figure 4: (a) Density update; (b) Overall structure of TG; (c)

Example of stored trajectory.

5. LOOKUP PROCESS
We describe how to retrieve reference objects, from which we

can easily derive reference trajectories. The general idea is that if
Oi has a sub-trajectory that matches with the h-backward trajectory
of Op, we say Oi is a reference object of Op.

The match function defines similarity between trajectories pairs
by a boolean function. Given trajectory T i and trajectory T j , we
have match(T i, T j) = true if dis(T i, T j) ≤ τ , where dis()
is a distance function. Besides the high cost for building index
to support such match function, it is also not easy to determine
the threshold τ . We define a new match function which has clear
semantic meanings and can support high performance query in TG.
The definition of match function is as below (dis() is the Euclidean
distance function):

DEFINITION 5.1 (MATCH FUNCTION). Suppose T i
n =

< Oi
1, ..., O

i
n > is a sub-trajectory of Oi and Wh = {Op

1 ,
Op

2 , ..., O
p

h} is the h-backward trajectory of Op, then we have

match(T i
n,Wh)=true if they satisfy:

• (c1) dis(Oi
1, O

p
1) ≤ ǫ and dis(Oi

n, O
p

h) ≤ ǫ;

• (c2) ∀Op
u ∈Wh∃O

i
v ∈ T i

n(dis(O
i
v, O

p
u) ≤ ǫ);

• (c3) ∀Op
u1 ∈ Wh∀O

p
u2 ∈ Wh(u1 < u2 ⇒ (∃Oi

v1 ∈
T i
n∃O

i
v2 ∈ T i

n(dis(O
i
v1, O

p
u1) ≤ ǫ ∧ dis(Oi

v2, O
p
u2) ≤

ǫ ∧ v1 < v2)))

Intuitions behind the definition are as follows: (c1) requires T i
n

and Wh to be close to each other; (c2) requires every point in Wh

to be matched with a point in T i
n; (c3) requires Oi and Op to have

the same direction and tendency.
In TG, a query is processed in three steps: (s1) for each Op

u ∈
Wh, we define a range CRu = ⊙(Op

u, ǫ); (s2) we obtain objects
that have visited any CRu; (s3) the objects visited all the CRu by
the time increasing order are reference objects. We omit the proof
of this algorithm due to space constraints.

One problem is how to determine a proper value for ǫ. The rule
we use is to multiply the moving objects’ average velocity by half
of the sampling time interval of the trajectories. For example, if the
average velocity of the moving objects is 11.1m/s and the sam-
pling time interval is 30 seconds, then ǫ = 11.1 ∗ 15 ≈ 160(m).

EXAMPLE 3. In Fig. 3, the reference objects of Op are RO =
{O2, O3, O4}, which visit both CR10 and CR11. The reference

points of Op at k = 0 are RO0 = {O2
5, O

3
2, O

4
3}.

6. PF AND CONSTRUCTION PROCESS
The Prediction Filter (PF) is a model for path prediction. The

input of PF is a set of reference points and the output of PF is a
predicted path. The “Construction” process, which iteratively con-
structs state spaces and makes the path prediction, runs within PF.
We first give an introduction of PF and the probabilistic path pre-
diction in Section 6.1. Then, we introduce a hierarchical method
to generate state spaces in Section 6.2. We then explain some im-
portant functions used in PF in Section 6.3. Finally, we discuss
self-correcting continuous prediction in Section 6.4.

6.1 PF and probabilistic path prediction
PF is based on the Grid-based Filter model[1], which is a gen-

eralization of Hidden Markov Model. Recall that sk is a state in
state space Sk, we denote the probability distribution function of
Sk by p(sk|RO1:k), where RO1:k are observations of state sk. PF
constructs p(sk|RO1:k) recursively, i.e., from p(sk−1|RO1:k−1)
to p(sk|RO1:k), which is computed by the following function [1]:

p(sk|RO1:k) =
∑

i

wi
k|kδi(sk) (1)

where
wi

k|k−1 ,
∑

j

w
j

k−1|k−1
p(sik|s

j
k−1) (2)

wi
k|k ,

wi
k|k−1

p(ROk|s
i
k
)

∑
j

w
j

k|k−1
p(ROk|s

j
k
)

(3)

Note that δ() is the Dirac measure function and w0|0 = 1. We will
discuss functions p(sik|s

j

k−1) and p(ROk|s
i
k) in Section 6.3. How

to generate a state space is discussed in Section 6.2.
To find the longest path whose probability is greater than the

given threshold θ, we increase the length of the predicted path un-
til its probability is smaller than θ. To realize this, we increase
the value of k, and for each k value we find a path SS1:k =<
s1, ..., sk > whose value of p(SS1:k|RO1:k) is maximized and
then check whether its probability is still greater than θ.

Let us define a function ηk−1(j) as follows:

ηk−1(j) = max
<s1,...,sk−2>

p(< s1, ..., sk−2, s
j

k−1 > |RO1:k−1)

ηk−1(j) is the highest probability that the path ends with state
sjk−1. By Bayesian inference in Grid-based Filter, we have:

ηk(i) = max
j

[ηk−1(j)p(s
i
k|s

j

k−1)]p(ROk|s
i
k) (4)

Eqn. (4) can be solved by dynamic programming algorithms,
such as the Viterbi Algorithm [7]. Algorithm 1 lists the pseudo
code for the probabilistic path prediction. The result is a predicted
path, whose probability (confidence) is larger than θ and whose
length (in term of time) is longest.

EXAMPLE 4. In Fig. 3, we have η2(0) = 0.53, η2(1) = 0.48; and

η3(0) = 0.26, η3(1) = 0.22, η3(2) = 0.17. Therefore, if θ = 0.4,

then SS1:2 =< s01, s
0
2 >; if θ = 0.2, then SS1:3 =< s01, s

0
2, s

0
3 >.

6.2 Generate states by a hierarchical method
In this section, we discuss how to generate states of Op at time

t = t0 + k. In a nutshell, we cluster the reference points ROk and
then convert each reference points cluster to a state.



Algorithm 1: Probabilistic Path Prediction Algorithm

input : probability confidence threshold: θ
output: probabilistically predicted path: SS

1 η0(0) = 1, ψ0(0) = 0, θ∗ = 1, k = 0
// “Lookup” process, see Section 5

2 get RO and RO0 from TG by Wh

3 If |RO| < ξm Then return NIL
// “Construction” process, see Section 6

4 while θ∗ ≥ θ do
5 k=k+1
6 get ROk from TG based on ROk−1

7 generate state space Sk// Section 6.2

8 for i=1 to |Sk| do

9 ηk(i) = max
j

[ηk−1(j)p(s
i
k|s

j

k−1)]p(ROk|s
i
k)

10 ψk(i) = argmax
j

[ηk−1(j)p(s
i
k|s

j

k−1)]

11 θ∗ = max
i

[ηk(i)]

12 Backtrack SS from matrix ψ and return SS

We do not use traditional clustering methods (such as K-means
or DBSCAN) because it is hard to determine their parameters in our
problem. Furthermore, we would like to generate states that cover
small areas (i.e., the radius is small) but have high probabilities (i.e.,
p(sk|RO1:k) is high). Traditional clustering methods are unable to
find a compromise between these two contradictory criteria.

We propose a hierarchical method to generate states (see Fig.
5). Moreover, we define a score function to find local optimal that
balances the area size against the probability of the state.
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6.2.1 Bottom-up: building state space tree

Now we discuss how to build a state space tree. We use a mod-
ified agglomerative hierarchical clustering algorithm to merge the
reference points. Then all clusters in each level of the cluster tree
are converted to one candidate state space of Op (which is a set of
states, one cluster for one state).

Suppose ζ is a set of reference points in ROk, i.e., ζ ⊆ ROk,
we can define Centroid(ζ) and Radius(ζ) as follows:

Centroid(ζ) =

∑
Oi

v
∈ζ
Oi

v

|ζ|

Radius(ζ) =

∑
Oi

v
∈ζ

||Oi
v − Centroid(ζ)||

|ζ|

(5)

The mean distance between two clusters is defined as :

dismean(ζ
i, ζj) = ||Centroid(ζi)− Centroid(ζj)|| (6)

The bottom-up red arrow in Fig. 5 shows the agglomerative clus-
tering process. At level 0, we treat each reference point as a cluster.
Then, we continuously merge a cluster with its nearest cluster by
the mean distance, until its radius is larger than a threshold. Then
we double the radius threshold, and merge the clusters again. The
process repeats until there is only one root cluster. Initially, we set
the radius threshold R = ǫ (ǫ is described in Section 5) since ǫ
defines a proper size of the area in the environment.

Then, we generate the state space tree. For a cluster ζil in level l
of the cluster tree, we construct a state sik,l = (⊙(Centroid(ζil ),

Radius(ζil )), k). The state space at level l is Sk,l =
⋃
sik,l.

Time complexity. We index reference points by a k-d tree [2].
Suppose the total number of reference points is n. The time cost for
building k-d tree is O(n log n). The time cost for nearest neighbor

search in k-d tree isO(n
1

2 ). Our agglomerative clustering algorith-
m is based on [6], and every point needs to merge with others only
O(1) times. To sum up, the total time complexity is O(n

3

2 ).

6.2.2 Top-down: selecting state space

We define a score function to select the state space with the high-
est score from the state space tree by a top-down manner. All states
in one level of the state space tree can be considered as a state
space; we denote the state space at lth level as Sk,l.

The score function is to measure the quality of a state space.
For a state, we hope it has a high probability (P (sk|RO1:k)) and a
small radius. However, the states at a higher level of the state space
tree have larger probabilities, but also have larger radii; and vice
versa. Our objective is to find an optimal compromise between the
probability and the radius.

Suppose the state with the largest probability in state space Sk,l

is s∗k,l (i.e., ∀sik,l ∈ Sk,l, p(s
∗
k,l|RO1:k) ≥ p(sik,l|RO1:k)), and

r∗k,l is the radius of s∗k,l. Our score function is:

fk,l =
p(s∗k,l|RO1:k)

(r∗k,l)
α

(7)

α in Eqn. (7) controls the compromise between the probability
and the radius. We will evaluate how to set α. We choose the state
space with maximum fk,l as our state space at time t0 + k, e.g. in
Fig. 5 we choose the states at level 2 as the state space.

The benefit of the top-down strategy is that we can prune nodes
at low levels of the space tree. At one level, if all the states’ proba-
bilities are smaller than θ, we stop moving down to lower levels.

6.2.3 Improving efficiency by reusing micro cluster

We improve the efficiency of state generation by reusing micro
clusters. The basic idea is that objects’ locations are changing grad-
ually [22]. By reusing previous clusters at time t0 + k− 1, we can
reduce the time cost for state generation at time t0 + k.

A set of reference points in ROk is defined as a micro cluster
mick if Radius(mick) ≤ dmic. The set of all micro clusters is
denoted as MICk =

⋃
i
micik. We try to generate MICk based

on MICk−1. The whole process is as follows.
First, we get all reference points ROk, and divide them into d-

ifferent reference points sets. The reference objects in the same
micro cluster of micjk−1 are also in the same set ζj .

Second, for every reference point Oi
v ∈ ζj , we check whether

it is within the circle ⊙(Centroid(ζj), dmic). If Oi
v is outside of

the circle, it will be split out as a new micro cluster [22]. All the
reference points left in ζj also form a new micro cluster. We denote
all the micro clusters generated in this step as MIC′

k.
Third, we use the bottom-up method to merge micro clusters in

MIC′
k, which is the same with the method in Section 6.2.1.



Reusing micro clusters reduces the time complexity of the bottom-
up process. The time complexity of the first and the second step is
O(n). For the third step, we need to perform a nearest neighbor
query for each micro cluster in MIC′

k which is indexed by k-d
tree. The time complexity of each query is O(m′ 1

2 ). (m′ is the
number of micro clusters in MIC′

k.) As such, the time complexity
of the third step is O(m′ 3

2 ). To sum up, the time complexity of

reusing micro clusters is O(n+m′ 3
2 ). Note that m′ << n.

6.3 Functions in the Prediction Filter

6.3.1 State Transition Function

The state transition function p(sik|s
j

k−1) represents the probabil-
ity thatOp will go to state sik at time t0+k given thatOp is in state
sjk−1 at time t0 + k − 1. We model the state transition function by
considering two factors: spatial factor and connection factor.

The spatial factor is the extent of spatial overlap between state
sjk−1 and sik, and is defined as follows:

J(sik, s
j

k−1) =
|sik

⋂
sjk−1|

|sik
⋃
sjk−1|

(8)

|sik
⋂
sjk−1| denotes the intersection area size of sik and sjk−1, and

|sik
⋃
sjk−1| denotes the union area size of sik and sjk−1.

Connection factor is based on the common reference objects be-
tween sjk−1 and sik. We use RO(sik) to denote the reference ob-
jects within state sik at t0 + k. For example, in Fig. 3, we have
RO(s02) = {O2, O3}. The connection factor is defined as

C(sik, s
j

k−1) =
|RO(sik)

⋂
RO(sjk−1)|

|RO(sik)
⋃
RO(sjk−1)|

(9)

We combine Eqn. (8) and Eqn. (9) into a linear function:

f(sik, s
j

k−1) = λJ(sik, s
j

k−1) + (1− λ)C(sik, s
j

k−1) (10)

where λ is used to adjust the weight of these two factors. In our
experiment, we set λ = 0.5. Initially, we have J(si1, s

0
0) = 0

and C(si1, s
0
0) =

|RO(si
1
)|

|RO|
. We can see that a larger value of

f(sik, s
j

k−1) leads to a larger state transition probability. To sum
up, we have:

p(sik|s
j

k−1) ∝ f(sik, s
j

k−1) (11)

6.3.2 Likelihood Function

The likelihood function represents the probability that ROk is
observed givenOp is in state sik at time t0+k. By Bayes’ theorem,
we have:

p(ROk|s
i
k) =

p(sik|ROk)p(ROk)

p′(sik)
(12)

p(sik|ROk) can be computed according to the distribution of ROk

in different states. The more reference objects Oi ∈ RO are in
state sik, the higher value of p(sik|ROk) is. Then we have:

p(sik|ROk) =
|RO(sik)|

|RO|
(13)

p′(sik) is the prior probability that O will be in sik. We assume
that Op has a higher prior probability to enter a state with a higher
density in TG. We use ρ(sik) to denote the average density of sik,
which is the sum of density of all cells in sik divided by the number

of cells covered by sik. Then the prior probability that Op will be
in sik can be expressed as:

p′(sik) =
ρ(sik)∑
j
ρ(sjk)

(14)

Since p(ROk) is constant for every state, we have:

p(ROk|s
i
k) ∝

p(sik|ROk)

p′(sik)
(15)

6.4 Self-correcting continuous prediction
In real-life applications, we may need to predict the path of a

moving object continuously. Continuous prediction gives us an op-
portunity to improve the prediction result. During the prediction,
the actual movement of the target object (Op) can be compared
against the predicted movement. With this information, we can in-
crementally refine the prediction model. The basic idea is to give
more weight to the reference objects which help us make the cor-
rect prediction. Let us consider the following example.

EXAMPLE 5. In Fig. 3, at time t0 = 11, reference objects of

Op are RO = {O2, O3, O4}. Suppose after 1 time unit, i.e.,

t0 = 12, Op goes to the state s01. At t0 = 12, we have RO′ =
{O1, O2, O3, O4}. Since {O2, O3, O4} have helped us make the

correct prediction, it is reasonable that we can trust them more than

O1 when we make future prediction.

Now we introduce a new attribute, called credit, for the moving
object. Let ROt denotes the reference objects of Op at time t. We
denote Ci

t (Ci
t ∈ N

0) as the credit of Oi ∈ ROt.
We use a linear growth and exponential decay method to update

moving objects’ credits. From t to t + 1, the credits are computed
as follows: (s1) Suppose Op is in state sj1 at time t + 1. For each
Oi ∈ ROt, if Oi contributes to generate sj1, we have Ci

t = Ci
t +1

(linear growth); otherwise, Ci
t = ⌊ 1

2
Ci

t⌋ (exponential decay). (s2)

Retrieve ROt+1 from TG at time t+1, and initialize the credits of
the reference objects as 1. (s3) For each Oi ∈ ROt, if Ci

t > 0, put
Oi into ROt+1; if Oi is already in ROt+1, sum its credits.

To integrate this self-correcting method into our prediction mod-
el, we need two modifications. First, during the state generation
(see Section 6.2), we use the weighted center of clusterCentroid′(ζk)
to replace Eqn. (5):

Centroid′(ζ) =

∑
Oi

v
∈ζ
Ci

tO
i
v∑

Oi
v
∈ζ
Ci

t

(16)

Second, we integrate credits (as weighted coefficients) into Eqn.
(9) and Eqn. (13). For example, we use Eqn. (17) to replace Eqn.
(13). Eqn. (9) is modified in the same way.

p′(sik|ROk) =

∑
Ou∈RO(si

k
) C

u
t

∑
j
Cj

t

(17)

7. EXPERIMENT
We evaluate R2-D2’s performance on real-world and synthetic

data sets. We compare R2-D2 with two state-of-the-art prediction
methods: RMF [23] and TraPattern [18]; and study R2-D2’ distinct
features, such as the confidence threshold θ and the self-correcting
continuous prediction. Efficiency issue is also discussed.

7.1 Experiment setup and measurement
Data sets: Two real-world data sets and four synthetic data sets

are used in our experiment, Table 2 summaries their details:



Table 2: Data sets
data set name ST HT BT

number of objects 13,200 9,800 25K,50K,100K,200K

unit of time 30sec 1 sec 1 step
width of grid cell 20m-80m(20m) 8 pixels 10 units
buffer interval H 0.5h-3h (1h) 10 min 200 steps

Table 3: Parameter settings

Parameter Description range(default value)
θ confidence threshold 0.2-0.8 (0.2)

dmic radius of micro cluster (cell width) 1-11 (7)
α score function 1/32-2 (1/16)
h backward steps 2-6 (3)

[ST] is a collection of trajectories of 13,200 taxies in Singapore
over one week [25]. Each taxi continuously reports its locations
every 20-80 seconds. We interpolate the trajectories over fixed in-
tervals with 30 seconds spacing. Totally, the dataset contains 268
million points.

[HT] is a collection of human trajectories tracked from 30 min-
utes surveillance video in a lobby of a train station [29]. The video
is 24 fps with a resolution 480×720. Since high sample rate is not
necessary, we downsample the timestamp interval of trajectories to
1 second. There are 9,800 trajectories and 159K points.

[BT] We use Brinkhoff generator [3] to generate four collections
of synthetic trajectories on the road map of Oldenburg (see Table
2). Different from ST and HT, BT has 10 different types of moving
objects. The speed of moving objects may change at each time
unit. We also put 400 moving obstacles in the space to simulate
the changes of the environment. We generate the trajectories for
400 time steps, and each moving object generates one point at each
time step. We use the default time units and distance units of the
generator. Note that the system performance is mainly affected by
the total number of moving objects; therefore, these large synthetic
datasets are also used to test the scalability of our model.

Settings: The experiments are conducted on a PC with Intel
Q9550 Core Quad CPU 2.83GHz and 3.00GB RAM running Win-
dows XP. All programs are implemented in Java with JDK 1.7. Ta-
ble 3 lists all parameters used throughout the experiments. Parame-
ters are set to default values (bold font) unless explicitly specified.

Competitors: R2-D2 is compared with two state-of-the-art al-
gorithms: (1) Recursive Motion Function (RMF) [23] that is a de-
scriptive model-based path prediction method and is the most accu-
rate motion function in literature [23, 8]; and (2) Frequent Trajecto-
ry Pattern (TraPattern) [18] that is a general (i.e., not personalized)
pattern-based path prediction method. Configurations of RMF and
TraPattern are set for their best performance in terms of accuracy
by their performance studies. In order to mine patterns for TraPat-
tern, we use data between 19:00-20:00 from Monday to Friday of
ST, use all trajectories of HT and BT.

Measurement: In order to assess the quality of the prediction
result, we define four metrics. We use the centers of states as the
predicted locations. All errors are measured by Euclidean distance.
For a moving object, the prediction distance error at a predict-
ed time is the spatial distance between the predicted location and
the real location of the object. Maximal distance error is defined
as the maximal prediction distance error during the whole predict-
ed time frame. Prediction length is the length (time duration) of
a predicted path. Prediction rate is the fraction of query trajec-
tories for which the model outputs prediction (i.e., the number of
predictable query trajectories over the total number of query trajec-

tories). These measurements have been used to assess the quality
of prediction models in [16, 8, 9].

Methodology: For ST data set, we randomly select 200 trajecto-
ries between 19:50-20:00 on Tuesday as trajectories for prediction.
We warm up TG with the Tuesday trajectories from 17:00-19:50.
For HT data set, we randomly select 50 query trajectories within
the [16,20] minute interval. We warm up TG with the trajectories
within the [0,16] minute interval. For BT data set, we randomly se-
lect 1000 query trajectories within the [380,400] interval. We warm
up TG with trajectories within the [0-380] interval.

7.2 Comparison with competitors
We find that R2-D2 outperforms the competitors in terms of pre-

diction rate and prediction distance error by 2 to 5-fold.
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Figure 6: Comparison with competitors.

7.2.1 Prediction rate

We show the result on prediction rate in Fig. 6 (a), (c), (e). As the
prediction length gets longer, the prediction rate gets lower. How-
ever, the prediction rate of TraPattern is much lower than R2-D2 in
all prediction lengths. For example, in Fig. 6(a), more than half of
the predicted paths on ST can be longer than three minutes, while
20% trajectories have predicted paths with seven minutes. Where-
as TraPattern cannot give prediction results for more than half of
the prediction requests even when the predicted path length is short
(e.g. 1 minute for ST). We do not show the prediction rate of RM-
F in the figures since its prediction rate is always 100%, but the
prediction error may be extremely large as shown in Fig. 6(b).

7.2.2 Average prediction distance error

Fig. 6 (b), (d), (f) show that R2-D2 has not only higher pre-
diction rate, but also much lower average prediction distance error
than those of RMF and TraPattern. In term of average prediction
distance error, R2-D2 outperforms RMF by 5 times on ST, 3 times
on HT and 3.5 times on BT-200K; and R2-D2 outperforms Tra-
Pattern by 2 times on all data sets. Note that the longest pattern
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Figure 7: Effect of confidence threshold θ

mined by TraPattern is about 8 minutes, therefore, in Fig. 6(b) the
TraPattern cannot predict any path longer than 8 minutes.

7.3 Study of R2-D2’s distinct features
In this section, first, we can see the confidence threshold θ en-

ables users to control the tradeoff between the prediction accuracy
and the prediction length. Second, we show self-correcting contin-
uous prediction can reduce the maximal distance error by 50%.

7.3.1 Effect of confidence threshold

We study the effect of the confidence threshold θ, in particular
on the maximal distance error and the prediction time length. It is
desirable to have a low maximal distance error and a long predic-
tion path. However, a longer prediction path typically comes with
a larger prediction error. Fortunately, in R2-D2 users can use the
confidence threshold θ to control the trade-off between them.

In Fig. 7, we show the result on ST and HT data sets. (R2-D2
has the similar result on BT, we do not show it due to space con-
straints.) We can see that the maximal distance error and the predic-
tion length are statistically correlated with the confidence threshold.
When we increase θ, both maximal prediction distance error and
prediction length decrease.

7.3.2 Self-correcting continuous prediction

We evaluate the effect of self-correcting continuous prediction
of R2-D2. For each query trajectory, we perform prediction with a
fixed prediction length (next 15 time steps). For each prediction, we
do prediction with two different methods: R2-D2 with and without
self-correcting continuous prediction (denoted as conR2-D2 and
dirR2-D2, respectively). We set the current location to be the loca-
tion of the object at next one time unit from the previous time, and
repeat the same prediction process. For each prediction, we sum
the maximal distance errors of conR2-D2 and dirR2-D2, and com-
pute the ratio of them, which is ratio = conR2−D2

dirR2−D2
. ratio < 1

indicates conR2-D2 performs better than dirR2-D2; and vice versa.
The curves in Fig. 8 show a clear trend that the performance of

conR2-D2 improves gradually with the continuous prediction. (BT
data sets have the same trend, and we do not show them due to
space constraints.) Since the ratios are noised over time, we use
Bez̀ier Curve to fit them over all the prediction steps.

7.4 Response time and scalability
We show that R2-D2 makes path prediction in real time. In Table

4, we can see the average response time of R2-D2 is only several
milliseconds on HT and ST. Even for the largest dataset BT-200K,
the response time is still acceptable. From BT-25K to BT-200K, we
can see R2-D2 can scale linearly with the number of objects. Be-
sides, the update process of TG is quite efficient, we do not discuss
it due to space constraints.

We do not show the response time of RMF and TraPattern. Since
they only need to compute a math function or match patterns, their
response time is faster than R2-D2. Note that we use a prefix tree

to compress and index the patterns for TraPattern. Without such
index, the time for matching patterns is unacceptable.

Table 4: Response time of R2-D2

data set HT ST
BT

25K 50K 100K 200K
avg. time (ms) 3.8 15.3 13.3 24.9 46.2 105.0

Effectiveness of reusing micro clusters: Table 5 shows that
reusing micro clusters halves the response time. The value of dmin

means the times of cell width. We can see that when dmic = 7 ×
cell_width, average response time is about a half of that when
dmic = 1× cell_width. Note that dmic = 1× cell_width means
reusing micro clusters is disabled since only points in one cell form
a micro cluster. dmic has little effect on the prediction error and the
prediction length, we do not show them due to space constraints.

Table 5: Response time VS. dmic on ST data set

dmic (× cell width) 1 3 5 7 9 11
avg. time (ms) 27.0 17.9 15.3 14.5 14.2 13.8

7.5 Effect of parameters
We present the effect of parameters in R2-D2. We only show

the experimental results on ST due to space constraints. In Fig. 9,
we use two y-axes: the left one is the maximal distance error and
the right one is the prediction length. It is worth noting that for all
datasets we set the same default value of h and α, and they work
well.

Cell width of TG: Table 6 shows the memory needed by TG
and the maximal distance error with different cell width. We can
see that using larger cell size can reduce the memory cost, but al-
so lead to larger maximal prediction distance error. The reason is
that smaller cell size can better approximate the true distribution of
moving objects.

TG buffer time interval H: H determines the length (in terms
of time) of trajectories indexed in TG. From Fig. 9(a), we can see
that both the maximal distance error and the prediction length in-
crease with the increasing of H , but the maximal distance error
increases a little faster. WhenH is larger, TG contains older trajec-
tories, some of which may be misleading when being used as ref-
erence trajectories. To balance the maximal distance error against
the prediction length, we set H to 1 hour.

Backward steps h: Fig. 9(b) shows that as h increases, the
maximal distance error reduces slightly but the prediction length
reduces dramatically. When the number of backward steps is larg-
er, the trajectories of the selected reference objects are more similar
to that of the target object, therefore, the maximal distance error is
reduced. However, at the same time fewer trajectories are used for
prediction, therefore, the prediction time length reduces dramati-
cally. To balance them, we set h=3.
α of the score function: We investigate the effect of α of the

score function (Equ. (7)), shown in Fig. 9(c). A larger α leads to
shorter prediction time length and smaller maximal distance error.

Table 6: Size of TG on ST data set
cell width(m) size(MB) max dist err(m)

80 53.6 1693
40 116.9 1280
20 310.0 1020
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Figure 16: Effectiveness and efficiency of our algorithms

Figure 9: Effect of parameters

The reason is that when α is large the score function always gives a
high score to the state space with the small radius; then the maximal
distance error is reduced. However, since the state radius is small,
the probability of this state is also small. It leads to the fact that
the path probability decreases dramatically over time. To balance
distance error against prediction time length, we set α to 1

16
.

We also study the effect of other parameters in R2-D2, and find
that they do not affect R2-D2’s performance much. For example, if
minimum support ξm is not set too small (e.g., 3) or too large (e.g.,
50), it has little effect on R2-D2’s performance. For all data sets,
we set ξm = 10, and it works well.

8. CONCLUSION
In this paper, we propose a “semi-lazy” approach for performing

probabilistic path prediction. Unlike previous approaches adopting
eager learning, we propose to leverage on the growth of computing
power by building prediction model on the fly, which utilizes his-
torical trajectories that are dynamically selected. Our experiment
shows that this self-adaptive “predict-on-the-go” approach can out-
perform existing eager learning methods in dynamic environments.
We plan to apply this approach on other data mining tasks that are
required to work in a dynamic environment.
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