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ABSTRACT
The emergence of Web 2.0 has resulted in a huge amount of
heterogeneous data that are contributed by a large number
of users, engendering new challenges for data management
and query processing. Given that the data are unified from
various sources and accessed by numerous users, providing
users with a unified mediated schema as data integration is
insufficient. On one hand, a deterministic mediated schema
restricts users’ freedom to express queries in their preferred
vocabulary; on the other hand, it is not realistic for users
to remember the numerous attribute names that arise from
integrating various data sources. As such, a user-oriented
data management and query interface is required.

In this paper, we propose an out-of-the-box approach that
separates users’ actions from database operations. This sep-
arating layer deals with the challenges from a semantic per-
spective. It interprets the semantics of each data value
through tags that are provided by users, and then inserts
the value into the database together with these tags. When
querying the database, this layer also serves as a platform for
retrieving data by interpreting the semantics of the queried
tags from the users. Experiments are conducted to illustrate
both the effectiveness and efficiency of our approach.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications

General Terms
Management, Performance

Keywords
Probabilistic Tagging, Wide Table, Top-k Query Processing

1. INTRODUCTION
The rapid growth of Web 2.0 technologies and social net-

works has provided us with new opportunities for sharing
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data and collaborating with others. Within a community,
users may like to contribute their own data, share the data
with friends, and meanwhile explore the shared data at the
community scale. Effectively and efficiently managing and
exploring these data at a web-scale level is an interesting
and important problem.

In this paper, we focus on the management of shared
structured tables (e.g. Google fusion table [16]) which is
an important type of data in Web 2.0. Such data have some
inherent properties that make their management challeng-
ing.

Heterogeneity. Data provided by different users may be
widely heterogeneous, containing different attribute names
that describe semantically similar values or same attribute
name with different semantics. For example, in Figure 1(a),
user A chooses attribute make to describe the car manufac-
turer in his/her private data, while user B uses manufac-

turer to represent the same meaning. Similarly, the seman-
tics of car in (b) is model but in (c) it contains both make
and model information.

Numerosity. As all users can publish their data into the
community as shown in Figure 1(a), (b) and (c), the num-
ber of distinct attributes will grow drastically as more users
participate. This results in a wide table [7] as Figure 1(d)
which is essentially a structured table with a large number
of attributes and many empty cells. Given such a wide ta-
ble, most existing data integration approaches [23] create a
global mediated schema that usually contains a huge num-
ber of attributes. Such huge mediated schema is difficult to
query as users cannot remember all the attributes. There-
fore, a more flexible and user-oriented query interface is re-
quired. This interface should allow users to choose different
attribute names to represent the same semantics in different
queries, and have the power to express their confidence over
the attribute semantic heterogeneity in posed queries.

Personalized Attributes. Since attributes are contributed
by users, there could be many personalized attributes, which
cannot be captured by existing ontology or taxonomy, such
as DBpedia1 and WordNet2. Examples of such personalized
attributes include myear in Figure 1(c), which represents
the production year of a car, and eadd, the abbreviation for
email address. Due to this, existing techniques that rely on
ontology for schema mapping [26, 30] will not be suitable any
more. A better system should be able to infer more popular

1DBpedia, http://dbpedia.org/About
2WordNet, http://wordnet.princeton.edu
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Figure 1: The Wide Table
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Figure 2: Tag Similarity

attributes for such personalized ones, so that these data can
be explored by the other users asides from its owner.

Due to the inherent semantic heterogeneity of the at-
tributes in user contributed data, we will no longer refer
to them as “attribute”. Instead, we borrow the term tag
from the multimedia domain [1, 2], and view these attribute
names as just a way to annotate the values that are pro-
vided by users3. In this paper, we describe a query system
which enables users to effectively query a large quantity of
user contributed data. Our system provides the following
functionalities.

• Users can contribute and share data by inserting them
into a single wide table together with their tags, as
shown in Figure 1(d).

• Our system is able to automatically discover the se-
mantic relationships between users’ tags, which is han-
dled by our tag inference approach in Section 3. Fig-
ure 2 illustrates the semantic similarities between each
pair of tags produced by our approach for the example
data in Figure 14.

• Users can use their own preferred tags to query the
database, and the system then dynamically determines
the semantics of these tags at query time.

Combining the data from Figure 1(d) with the tag simi-
larities in Figure 2, we can easily obtain the virtual proba-
bilistic tagged data, as shown in Figure 3, where each value
is associated with a list of 〈tag, probability〉 pairs. The prob-
ability indicates the semantic association strength between
the value and tag pair. The generation of such semantic as-
sociation probabilities is called probabilistic tagging, and its
formal definition will be given in Section 2.

We next present an example to illustrate several charac-
teristics of our query interface via a set of queries.

3In this case, users might even choose to annotate the same
value with multiple tags.
4As our similarity measure is symmetric, we only show uni-
directional tag similarity in Figure 2.

Example 1. Figure 1 shows a scenario where four users,
A, B, C and D contribute and share their datasets. The wide
table is used to store the shared data. User E, F, G and H
then submit four different queries which are Q1, Q2, Q3 and
Q4, respectively. The queries are shown in Table 1 in an ex-
tended SQL format. The delimiter ‘@’ in the query is for
users to explicitly specify their confidence over tag seman-
tics. Its formal definition is presented in Section 2. Here we
can interpret make@0.9 as a set of tags in Figure 2 which
are similar to make with confidence no less than 90%. The
table name CAR refers to the probabilistic tagging table in
Figure 3. Values in the result tuples have the same order as
the tags in the SELECT clause.

From the query result in Table 1, we observe that i) dif-
ferent users can choose different tags to express the same
semantics, such as Q1 and Q2; ii) explicit confidence spec-
ification gives users control over the search scope. For in-
stance, with lower confidence Q3 retrieves two more tuples
than Q1; iii) schema for users’ query is dynamically deter-
mined at query time, which is user-oriented rather than pre-
defined. Take Q4 as an example, where a user would like to
retrieve values that are associated with car and model from
CAR. From the data perspective, for T3 and T4, tag car in
the query should be aligned with car in the source table. But
from the users’ perspective, intuitively the best schema align-
ment for T3 and T4 should be (car, model). This is what
our system retrieves given Q4.

To further see the benefit of our approach, Figure 4 shows
the result of Q4 over tuples T3 and T4 using our approach
and the one proposed by Dong and Halevy in [12, 25]5. Both
records returned by our approach are correct and ranked in
the right order. However, the top two ranked tuples re-
trieved by probabilistic integration are not correct although
their score is much higher than the correct ones. The result
differs because we are dynamically determining the seman-
tics for user posed tags at query time. The reasons for such
differences will be explained in Section 2.2.

Besides the functionalities discussed above, our work also
makes the following contributions:

• We proposed the concept of probabilistic tagging to
represent the associations between values and tags.

• We presented an effective distance function to measure
the semantic distance between a pair of tags. Based

5Please refer to Appendix A for the detailed score compu-
tation for probabilistic integration.



Table 1: Example Queries
QID Query Result

Q1 SELECT make@0.9 FROM CAR; T1(Ford),T2(BMW),T3(Ford),T4(Honda)
Q2 SELECT manufacturer@0.85 FROM CAR; T1(Ford),T2(BMW),T3(Ford),T4(Honda)
Q3 SELECT make@0.5 FROM CAR; T1(Ford),T2(BMW),T3(Ford),T4(Honda),

T5(BMW 525i),T6(Toyota Camry)
Q4 SELECT car, model FROM CAR; T1(Ford,Fiesta),T2(BMW,318Ci),

T3(Ford,Focus 1.6A),T4(Honda, Accord)

TID Value Probabilistic Tagging

T1 Ford <make,1.0>,<manufacturer,0.95>,<car,0.5>

T1 Fiesta <model,1.0>,<car,0.65>

T2 BMW <make,1.0>,<manufacturer,0.95>,<car,0.5>

T2 318Ci <model,1.0>,<car,0.65>

T3 Ford <manufacturer,1.0>,<make,0.95>,<car,0.52>

T3 Focus 1.6A <car,1.0>,<model,0.65>,<manufacturer,0.52>,<make,0.5>

T4 Honda <manufacturer,1.0>,<make,0.95>,<car,0.52>

T4 Accord <car,1.0>,<model,0.65>,<manufacturer,0.52>,<make,0.5>

T5 BMW <car,1.0>,<model,0.65>,<manufacturer,0.52>,<make,0.5>

T5 2005 <myear,1.0>

T6 Toyota <car,1.0>,<model,0.65>,<manufacturer,0.52>,<make,0.5>

T6 2009 <myear,1.0>

Figure 3: Probabilistic Tagging
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on this, we are able to automatically infer semantically
similar tags for each value.

• We proposed an efficient dynamic instantiation ap-
proach to associate the queried tags and data values
during query processing.

• A complete and extensive experimental study is con-
ducted to validate our approach.

2. PROBLEM DEFINITION

2.1 Probabilistic Tagging
As discussed earlier, one of our main objectives is to pro-

vide a flexible interface, which allows users to query the
underlying database with any tag they like. The very first
challenge is to discover which tags are similar in semantics.
However, this is insufficient since some tags are more similar
to each other in semantics while others are not. Taking T1
in Figure 3 as an example, it is intuitive that the semantics
of ‘Ford’ is better reflected by manufacturer than car since
the semantics of manufacturer is quite specific, while car is

a relatively more general term. Therefore, the second issue
is that the semantic association strength between a value
and tag should be well quantified, as shown in Figure 3.

In this paper, for a given value v in the wide table, we
interpret its semantic association with a tag t as the likeli-
hood/belief that v is tagged by t.

Definition 1 (Probabilistic Tagging). Let T be a
set of tags, for a value v in Wide Table and a tag t ∈ T ,
probabilistic tagging refers to the process of associating a
probability ζv,t for v and t, such that value v is tagged by
tag t with probability ζv,t.

The probability ζv,t is called the associated probability or
association probability. If the semantic association between
value v and tag t is stronger, then their associated proba-
bility ζv,t will be higher and vice versa. As shown by T1 in
Figure 3, for the value ‘Ford’, its associated probability with
its original tag make is 1.0 while its associated probability
with inferred tags manufacturer and car are 0.95 and 0.5,
showing difference in the strength of semantic association.

We note here that unlike previous works [12, 25, 17] in
data integration, the probabilities for all tags being associ-
ated with a value v do not sum up to 1. This is because
there is no assumption of mutual exclusion between tags at
this stage of data processing. We avoid doing so to prevent
a label bias problem in which a value v will have much lower
associated probability with each tag if it can be semantically
described by many different tags. For example, a value asso-
ciated with 5 or more tags will have much lower probability
than value with 2 or less tags. Instead, we choose to intro-
duce the assumption of mutual exclusion during query time
where the semantic meaning of the tags are clearer.

2.2 Query Semantics
After discovering and quantifying the tag semantic rela-

tionships during probabilistic tagging, the resulting proba-
bilistic table is shown as in Figure 3. In this table, each
value is associated with a 〈tag, probability〉 pair list. Query
over such probabilistic table is much more challenging than
with a predefined schema. We will now look into the query
relevant issues over a probabilistically tagged table.

2.2.1 Extended SQL Query
In this paper we adopted a SQL like query syntax to sup-

port our tag based queries. Specifically, we extended SQL
query to allow users to express their semantic confidence for
each tag using the delimiter ‘@’. We show some examples
in Table 1. Below is a more complex extended SQL query.

SELECT car, year@0.9, price@0.3

FROM CAR

WHERE make@0.5 = ‘Ford’

AND price ≥ 10,000

AND price ≤ 20,000



When a user provides a tag with high confidence, it means
that he is very sure about the semantics of the tag, and does
not want our system to do much tag inference. In contrast,
if the user is unsure of the semantics and he likes to use more
tags that are similar to the queried tag, then he can provide
a lower confidence threshold.

Definition 2 (Tag Expansion). Given a tag tq and
its semantic confidence δ in query q, tq@δ refers to the ex-
panded tag set Te = {tei |i = 1, . . . , n}, where for each tag
tei ∈ Te, Semsim(tq, tei) ≥ δ. We call Te as the expanded
tag set for tq.

In the above definition, Semsim(tq, tei) is the semantic
similarity between tag tq and tei , which is formally defined
by Equation 6 in Section 3. When processing query q, tq
will be expanded to a tag set Te, a set of tags that are
semantically similar to tq based on a threshold δ. All values
that are originally associated with any of the tags in Te are
valid for this tag expansion condition, and should be taken
into consideration when answering the query. If no semantic
confidence is explicitly specified for tq, we will expand it to
all our inferred tags.

Take the queries in Table 1 as example, make@0.5 will be
expanded to all the tags that are similar to make in seman-
tics inferred by our system, that is {manufacturer,car}, but
make@0.9 will only be expanded to {manufacturer}.

2.2.2 Query Answering
Before explaining the semantics of query answering, we

first look at the intuitions behind our query answering tech-
niques. Intuitively, syntactically equivalent tags in user posed
queries should be instantiated with the same value, no mat-
ter how many places it appears in the query. For example,
although price occurs three times in the example query in
Section 2.2.1, once in the SELECT clause and twice in the
WHERE clause, it is obvious that all the occurrences of price
refer to exactly the same semantics, i.e. price of a car.
Thus, in the resulting record, all these three instances of
price should be instantiated with the same value. Based on
this, we proposed the following Consolidation Rule for
our query answering.

Rule 1 (Consolidation Rule). Let set Tq = {ti|i =
1, . . . , n} be the set of tags in query q, for two tags ti, tj ∈ Tq,
if ti = tj, then ti and tj should be instantiated with the same
value from the underlying record.

Consider the query in Section 2.2.1, although we know
tag car and make are similar in semantics from Figure 2,
in this query they actually represent different attributes be-
cause the user specifies them as different. In other words,
car and make are mutually exclusive from each other in this
query, and should be instantiated with different values in
the resultant record. We proposed our Mutual Exclusion
Rule as below.

Rule 2 (Mutual Exclusion Rule). Let Tq = {ti|i =
1, . . . , n} be the set of tags in query q, for two tags ti, tj ∈ Tq,
if ti 6= tj, then ti and tj should be instantiated with different
values from the underlying record.

We have discussed the impact of our mutual exclusion
rule using Q4 earlier (in Example 1). There for T3, we

argued that car in the query should be aligned with manu-

facturer in the source table. Here we look at the query in
Section 2.2.1, where a user would like to retrieve the value
associated with car from a record whose value ‘Ford’ is as-
sociated with make (for simplicity, we skipped the other con-
straints). Now for T3, it is more reasonable for car in the
query to be aligned with car in the source table. Comparing
these two queries, we can see that with our mutual exclusion
rule, the same tag (car) can be aligned with different seman-
tics in different queries even for the same record (T3). As
explained earlier, applying the mutual exclusion rule during
query answering time allows us to avoid the label bias prob-
lem. Moreover, our mutual exclusion rule cannot be trivially
introduced in [12, 25, 17] since they enforced the fact that
two attributes/tags are either semantically equivalent (asso-
ciated with the same value) or not in each possible world.
As such, the problem illustrated by Figure 4 in Example 1
is inherent for [12, 25, 17].

For a given tuple/record, we aim to find its possible best
alignment to the queried tags. As the semantics of queried
tags are determined dynamically on the fly, our query an-
swering is referred to as Dynamic Instantiation.

Definition 3 (Dynamic Instantiation). Let set Tq =
{ti|i = 1, . . . , n} be the set of tags in query q, and Vr =
{vj |j = 1, . . . , m} be the set of values from a record r, we
refer to a mapping f : Tq → Vr as the dynamic instanti-
ation of Vr with respect to Tq. Based on f , the instanti-
ated score Score(r) for r with respect to q is defined as the
multiplication of associated probabilities for edges in f , i.e.
Score(r) =

∏n

i=1 ζf(ti),ti . In addition, all the following con-
ditions must be satisfied in f :

1. f satisfies all the value constraints in the WHERE clause.

2. f satisfies both Consolidation Rule and Mutual Exclu-
sion Rule;

3. The associated probability for each edge in f , i.e. ζf(ti),ti ,
must satisfy its corresponding tag expansion;

4. Among the mappings in which all the above three con-
ditions hold, dynamic instantiation refers to f whose
score is maximized, i.e. f = argmaxf Score(r).

The first condition states that if tag t has value constraints
in the WHERE clause, then its mapped value f(t) should sat-
isfy all the value constraints over t in query q. The second
condition is for us to better capture the users’ intention as
discussed earlier. The third condition is used to meet the
tag semantic specifications. Finally, the last condition is to
find the best possible instantiation between tags set Tq and
values set Vr, i.e. the one with maximum instantiation score
Score(r). Our instantiated score is defined as the multipli-
cation of associated probabilities in the instantiation f , that
is because in our case the associations between tag and value
pairs are independent, and based on our mutual exclusion
rule, all the edges falling outside of f are invalid.

Due to the semantic uncertainty of tags, answering a query
q can result in a large number of records with score larger
than 0. In view of this, we mainly focus on top-k query
processing to find the best k answers based on our query
answering semantics.

Definition 4 (Top-k Query Answering). Given a
query q, a user specified positive integer k, and a set of



records R = {ri|i = 1, . . . , |R|}, the problem of top-k query
answering is to retrieve a record set RS, such that RS ⊆
R, |RS| is maximized with the condition |RS| ≤ k, ∀r ∈
RS and ∀r′ ∈ RS, which is the complementary set of RS,
Score(r) ≥ Score(r′).

From the above definition, it is possible that less than k

results are retrieved. We however feel that it is a worthy
cost to pay for freeing users from a fixed mediated schema
and providing relaxation over the tag specifications.

3. TAG INFERENCE
We next describe our tag inference process which is essen-

tial for discovering the semantic relationships between tags,
and computing the associated probabilities between tag and
value pairs. We use T = {ti|i = 1, . . . , n} to denote all the
tags in our database, and V = {vj |j = 1, . . . ,m} to denote
all the values. For a tag t ∈ T , we use Vt ⊆ V to represent
the set of values that fall under the tag t in the wide table.

Effectively discovering the semantic similarities between
user contributed tags however is challenging. Although sev-
eral approaches have been proposed in the literature [23,
26, 30], none of them is suitable for our case. First, string
similarity over tag names could not convey all cases [26,
23]. With such approaches, model and model_year will be
treated as similar but make and manufacturer will be treated
as dissimilar. Second, ontology and taxonomy based meth-
ods [26, 30] are not applicable, as there are many person-
alized tags like myear and eadd, which cannot be captured
by any existing ontology and taxonomy. Finally, similarity
function based on values overlap [23] works only for cat-
egorical values, not for string and numerical values. For
example, given two set of emails that are contributed by dif-
ferent users using two different tags, it is unlikely that there
is much overlap between the two set of emails.

Our approach to discovering the semantic similarities in
this paper can generally be described in two steps. First,
soft clustering [28] is applied to the values in the wide ta-
ble to separate them probabilistically into K clusters, i.e.
each value can belong to each of the K clusters with dif-
ferent probabilities. Since each tag is associated with a set
of values with different probabilities, we can thus indirectly
compute the probability of these tags being associated with
the K clusters. In the second step, we measure the distance
between tags by comparing the probability distribution of
their associated membership to each of the K clusters us-
ing KL-divergence [8, 9]. KL-divergence is a function for
measuring the relative entropy between two distributions.
Specifically, if the probabilistic cluster membership distri-
butions for two tags are p and q respectively, their rela-
tive entropy is KL(p‖q) =

∑
i=1..K pi log

pi
qi
, where pi is the

probability of the first tag being associated to cluster i and
qi is the probability of the second tag being associated to
cluster i.

3.1 Tag Semantic Distance Discovery
To perform the soft clustering, our approach first extracts

a set of features F from the underlying data V . Depending
on the type of values in t, different approaches are adopted
to generate the features for t. If values in t are string val-
ues, we extract a set of frequent q-grams called sigrams as
its features. If values in t are numerical values, bins of the
distribution histogram over Vt are extracted as its features.

After extracting the features F for all values V , soft clus-
tering [28, 8] is performed over F . In soft clustering, the
membership of a value in a cluster is probabilistic. Sup-
pose there are K clusters C = {c1, . . . , cK}, for a value v,
its membership probabilities in each cluster form a vector
τ (v) = 〈p1, . . . , pK〉, where

∑K

i=1 pi = 1, and pi is the prob-
ability that v belongs to cluster ci. We call τ (v) the cluster
probability distribution for value v over C. Based on [8], our
soft clustering based tag inference is robust when K>100.
We set K to be 200 in this paper.

Since a tag t can be associated with different values which
have different cluster probability distributions on theK clus-
ters, we can indirectly compute a cluster probability distri-
bution for a tag t (denoted as τ (t)) by taking the average
cluster probability distributions of all its associated values
Vt:

τ (t) =
∑

vt∈Vt

1

|Vt|
· τ (vt)

To measure the semantic relationship between two tags, t1
and t2, one important factor that needs to be considered first
is the semantic scope of each of these tags. Intuitively, if the
semantics of a tag t is more general, the values associated
with it will be more diverse. For instance, both make and
model information of a car can be tagged by car, while only
the make information can be tagged by make. Thus, the
semantic scope Scope(t) for tag t can be captured by the
average KL-divergence between τ (vt) and τ (t):

Scope(t) =
∑

vt∈Vt

1

|Vt|
·KL(τ (vt)||τ (t)) (1)

Another important factor we need to consider is the dis-
tance between tag t1 and the values of tag t2. If t1 is similar
to t2, then τ (vt1) should be close to τ (t2). For clarity, we
define the distance between the value set Vt1 of tag t1 and
another tag t2 as DV (Vt1 , t2):

DV (Vt1 , t2) =
∑

vt1∈Vt1

1

|Vt1 |
·KL(τ (vt1)||τ (t2)) (2)

Based on the above discussion, if two tags t1 and t2 are
similar in semantics, they should i) have similar semantic
scopes; and ii) close to the value set of each other. Now
we consider one extreme case: the distance between two
semantically equivalent tags t1 and t1. We can easily find
that DV (Vt1 , t1) = Scope(t1). From this we can see that
if tag t1 is more similar to t2, the ratio of DV (Vt1 , t2) over
Scope(t1) will be closer to 1, and vise versa. Thus, the
dissimilarity between two tags t1 and t2 is defined by such
ratios:

Dis(t1, t2) =
DV (Vt1 , t2)

Scope(t1)
+

DV (Vt2 , t1)

Scope(t2)
(3)

However, it is costly to compute such tag dissimilarity for
each tag pairs based on Equation 3 since we need to enu-
merate all values in Vt1 and compute their KL-divergence to
t2 to obtain DV (Vt1 , t2) and vice versa. Assuming there are
n tags in T , and each tag t being associated with m values,
the complexity for computing all tag-pair dissimilarity using
Equation 3 is O(C2

n ·m+ nm).
Fortunately, we are able to use the following proposition

to reduce the computational complexity.



Proposition 1 (Bregman Information Equality).
Let X be a random variable that takes values in X = {xi}

n
i=1 ⊆

R
d following the probability measure π = {π(xi)}

n
i=1, given

a Bregman divergence φ 6 and another point y,

Eπ[dφ(X , y)] = Eπ[dφ(X , µ)] + dφ(µ, y)

where µ = Eπ[X ].

Proof. Eπ[dφ(X , y)] =
∑n

i=1 π(xi)dφ(xi, y)

=
∑n

i=1 π(xi){φ(xi)− φ(y)− 〈xi − y,∇φ(y)〉}

=
∑n

i=1 π(xi){φ(xi)− φ(µ)− 〈xi − µ,∇φ(µ)〉

+〈xi−µ,∇φ(µ)〉+φ(µ)−φ(y)−〈xi−µ+µ−y,∇φ(y)〉}

=
∑n

i=1 π(xi){φ(xi)− φ(µ)− 〈xi − µ,∇φ(µ)〉}

+
∑n

i=1 π(xi){φ(µ)− φ(y)− 〈µ− y,∇φ(y)〉}

= Eπ[dφ(X , µ)] + dφ(µ, y)

As
∑n

i=1 π(xi)(xi − µ) = 0, and both
∑n

i=1 π(xi)〈xi −
µ,∇φ(µ)〉 =

∑n

i=1 π(xi)〈xi−µ,∇φ(y)〉 = 0, that is how the
second last equation comes from.

Intuitively, our proposition simply states that the expected
KL-divergence between a random variable X following the
probability distribution π and a point y is equivalent to the
sum of the KL-divergence between X and its means µ plus
the KL-divergence between µ and y. By this proposition
and [3], we can show that the distance between the set of
values associated with tag t1 (i.e. Vt1) and the tag t2 can
in fact be computed simply by using Scope(t1) and the KL-
divergence between τ (t1) and τ (t2).

DV (Vt1 , t2) =
∑

vt1∈Vt1

1

|Vt1 |
·KL(τ(vt1 )||τ(t2))

=
∑

vt1∈Vt1

1

|Vt1 |
·KL(τ(vt1 )||τ(t1))

+KL(τ(t1)‖τ(t2))

= Scope(t1) +KL(τ(t1)‖τ(t2)) (4)

By applying Equation 4 over Equation 3, we can now de-
fine our semantic distance between t1 and t2 as:

D(t1, t2) =
KL(τ (t1)‖τ (t2))

Scope(t1)
+

KL(τ (t2)‖τ (t1))

Scope(t2)
(5)

D(t1, t2) is symmetric, however, it does not satisfy triangle
inequality. This coincides with the intuition that two tags
cannot be inferred as similar via a third tag. For example,
we cannot say model and make are similar although both are
semantically similar to car.

Note that unlike Equation 3, the computation of the new
distance function only involves the semantic scope, and pair-
wise KL-divergence between tags. The computational com-
plexity for all tag pair distances is thus reduced from O(C2

n ·
m+ nm) to O(C2

n + nm).

3.2 Tag Inference
With the tag distance defined above, now we give our

semantic similarity between two tags by taking the power of
the negative distance, i.e.

SemSim(t1, t2) = e
−α·D(t1,t2) (6)

6Note that KL-divergence is a special instance of Bregman
divergence [32] and thus the derivation here immediately
applies to KL-divergence.

Table 2: TagTable for make

TID LID Value Probability

1 1 Ford 1.0
2 1 BMW 1.0
3 1 Ford 0.95
4 1 Honda 0.95
5 1 BMW 525i 0.5
6 1 Toyota Camry 0.5

where α is a parameter which controls the power of inference.
When α is set to be 0, every value will be associated with
every tag; when α is set to be infinity, there will be no
inference among tags. In the experiments, we set α at 0.5.
An example tag similarity table is shown in Figure 2.

Suppose value v is originally associated with tag t in user
contributed data, then the associated probability of v with
respect to other tags ti ∈ T is defined as follows.

ζv,ti = ζv,t · Semsim(t, ti) = Semsim(t, ti) (7)

associated probability ζv,t = 1 as v is originally associated
with t. After applying the above tag inference equation, each
value in the database will be associated with a set of seman-
tically similar tags with proper probabilities. One example
probabilistic tagged data is shown in Figure 3.

4. TOP-k QUERY PROCESSING
Next we will look at our top-k query processing approaches.

4.1 Data Organization
To facilitate top-k query processing, we partition the prob-

abilistic tagged table according to tags. For a specific tag t,
all its associated values are stored into one relational table,
and this table is named by the tag name, i.e. t. We call such
a table TagTable. Table 2 shows the TagTable for make.

Each TagTable has four attributes: TID (tuple id), LID
(location offset in the source tuple), Value (data value) and
Probability (associated probability). Note that the ma-
jority of ζ is approximately 0 and only values with associ-
ated probability above a cutoff threshold are stored. On the
other hand, value v may be associated with multiple tags, so
there is a copy of v in each of its associated TagTable. For
each TagTable, a B+-tree index is built over the attributes
〈V alue, Probability〉, which will be used for the sorted list
retrieval in top-k query processing.

4.2 Dynamic Instantiation
Given a query q and record r, let Tq be the set of tags

in q, and Vr be the set of values from r. We can build
a weighted bipartite graph G = (U, V,E) as follows. Let
U = Vr, V = Tq, and for each vr ∈ Vr, each tq ∈ Tq, if
vr satisfies the value constraints over tq and ζvr,tq meets
the tag expansion condition, we add an edge e〈vr, tq〉 to E,
with weight ln ζvr,tq . For simplicity, we denote this bipartite
graph as G = (Vr, Tq, ln ζVr,Tq ).

After taking logarithm over the associated probabilities
ζVr ,Tq , it is easy for us to apply Hungarian algorithm [18] on
G = (Vr, Tq, ln ζVr ,Tq ) to find the best one to one matching
between Vr and Tq, where the total sum of cost/weight is
maximized. We denote the maximum score found by Hun-
garian algorithm for record r as ScoreH(r). Based on Defi-
nition 3, we can see that the mapping found by Hungarian
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Figure 5: Dynamic Instantiation Illustration

algorithm is exactly the dynamic instantiation. The first
and third statements in Definition 3 are met by our edge
insertion constraints discussed above; one to one mapping
guarantees the second statement; and the last statement is
fulfilled as the solution found by Hungarian algorithm is op-
timal. From the above discussion, it can be easily proven
that

Score(r) = e
ScoreH(r)

Take the following extended SQL query as an example.
The values associated with tags year, price and mileage

are to be retrieved, with constraints issued over tags make,
model and price.

SELECT year@0.9, price@0.3, mileage

FROM CAR

WHERE make@0.8 = ‘Toyota’

AND model = ‘Prius’

AND price ≥ 10,000

AND price ≤ 20,000

The corresponding bipartite graph is shown in Figure 5.
For clarity, edge weights in the figure are original associated
probabilities without logarithm. As illustrated by Figure 5,
if mileage is instantiated with 16204 and price is instanti-
ated with 18500 as the darker lines indicate, it gives the best
instantiation as the multiplication of the associated proba-
bilities is maximized.

4.3 Top-k Query Answering
Next we will discuss the retrieval of top-k answers. For

ease of illustration, we refer to tags in the SELECT clause as
QTags, and tags in the WHERE clause as VTags. Tag set in
query q is denoted as Tq.

4.3.1 Sorted List Retrieval
For each queried tag tq ∈ Tq, we aim to retrieve a list of

valid values from its TagTable, sorted over associated prob-
ability from high to low. For a tag that appears in both
VTags and QTags, we merge its constraints from SELECT

and WHERE clauses, and retrieve one sorted list.
We first study the situation where a user-specified se-

mantic confidence δ is issued over tq, i.e. tq@δ. Based
on Definition 2, tq will be expanded to a tag set Te =
{tei |Semsim(tq, tei) ≥ δ}. Next we will look at the as-
sociated probabilities with tq for valid and invalid values,
respectively. Valid case: Given a valid value v, suppose it
is originally associated with tag tei ∈ Te. The associated
probability between v and tq is ζv,tq = Semsim(tq, tei) ≥ δ.
This means that for each valid value, its associated prob-
ability in TagTable tq is not less than δ. Invalid case:

Given an invalid value v′, we know that its original tag falls
outside of Te. Assume its original tag is tv′ . From Def-
inition 2, we know that Semsim(tq, tv′) < δ. Therefore,
the associated probability between v′ and tq, i.e. ζv′,tq =
Semsim(tq, tv′) < δ. In other words, for each invalid value,
its associated probability in TagTable tq is less than δ. In
conclusion, associated probability with valid value is not less
than δ, while with invalid value is. Hence, the sorted list for
tq@δ can be retrieved by the following SQL statement issued
over the TagTable for tq:

SELECT * FROM tq WHERE Probability ≥ δ

ORDER BY Probability DESC;

We then look at the complex situation where there is value
constraint over tq besides the tag expansion, i.e. tq@δ op

vq . Here op is a comparison operator and vq is a specific
value. Its sorted list can be resolved by adding one WHERE

condition “Value op vq” into the above SQL statement. For
the simple cases where there is no tag expansion or value
constraint over tq, their sorted lists can be easily retrieved
by removing the corresponding WHERE condition from the
SQL statement. Benefiting from the B+-tree index built
over attributes 〈V alue, Probability〉 for each TagTable, most
sorted lists can be done by an index-only scan.

After retrieving the sorted list for each tag tq, Thresh-
old Algorithm (TA) [13] can be applied to fetch the top-k
results, using Hungarian algorithm to find the best instan-
tiation. We proposed two TA-based approaches for top-k
query processing: Eager and Lazy.

4.3.2 Eager Top-k Query Answering
In eager query answering, for each tag tq in query q, its

sorted list is retrieved and maintained. TA [13] is then per-
formed over all the retrieved sorted lists. The main idea is
shown in Algorithm 1.

A priority queue RS is maintained to store the best k

records that have been processed so far. All the scanned
records are inserted into Sr to avoid accessing the same
record more times. Each time, we scan the top unseen
records from all the sorted lists, and pop the record r with
the highest logarithmic probability (MP ) from its sorted list
(line 14). If there are more than one sorted lists whose top
probability is equal to MP , our algorithm randomly chooses
one from them. The popped record r is then retrieved and
Hungarian algorithm is applied to get its score ScoreH(r)
(line 15). Finally, priority queue RS is updated accordingly
(line 16-19), and r is inserted into the scanned record set Sr

(line 20).
For all the unseen records, their scores are upper bounded

by the summation of the top probabilities from each sorted
list, i.e. UBS. This is because our sorted list is ranked
over probability, so the probability for each unseen record
in SLtq is not greater than SLtq .top.prob. Algorithm 1 can

be terminated when the kth score in the result set RS is
not less than the upper bound score UBS (line 23), or any
sorted list is exhausted (line 21).

Eager query processing searches through the sorted lists
for all queried tags, including all QTags and VTags. How-
ever, this is not efficient enough. Generally, the sorted lists
for QTags are much longer than those for VTags, because
VTags have value constraints in the WHERE clause, while most
QTags do not, especially for those that only exist in QTags.
Due to the low selectivity of QTags, their sorted lists usually



Algorithm 1: Eager top-k Query Processing

Input : A query q in extended SQL
A positive integer k

Output: Result set RS

1 Tq ← tags in query q;
2 RS ← ∅; // top-k result set
3 Sr ← ∅; // scanned records
4 foreach tag tq ∈ Tq do
5 SLtq ← sorted list of tq;

6 Let SLtq .top be the most top unseen item in SLtq ;
7 Let SLtq .top.prob be the probability of item SLtq .top;
8 while true do
9 UBS ← 0; // upper bound score for unseen records

10 MP ← −∞; // maximum in all SLtq .top.prob

11 foreach tag tq ∈ Tq do
12 UBS ← UBS + SLtq .top.prob;
13 MP ← max(MP, SLtq .top.prob);

14 Pop record r from SLt where SLt.top.prob = MP ;
15 Let score = ScoreH(r); // computed by Hungarian

16 if |RS| < k or score > the kth score in RS then
17 if |RS| = k then
18 pop one item from RS;

19 insert (score, r) into RS;

20 insert record r into Sr;
21 if SLt has reached its end then
22 break; // while loop is terminated

23 if |RS| = k and UBS ≤ the kth score in RS then
24 break; // while loop is terminated

25 return RS;

contain lots of invalid items. Based on this, we proposed an-
other approach, namely lazy top-k query answering, which
only focuses on the sorted lists of VTags.

4.3.3 Lazy Top-k Query Answering
Unlike the eager approach, our lazy approach only re-

trieves and maintains sorted lists for VTags in query q. For
a record, any values that are not related to Vtags are only
accessed when computing its Hungarian score (line 15). For
queried tags falling outside of Vtags, we assume their associ-
ated probabilities to be 1 (the largest associated probability)
when computing the upper bound score (UBS). Compared
to the eager approach, our lazy approach does not need
to probe the long sorted lists which include many invalid
records, making it more I/O efficient.

In both eager and lazy approaches, the score for each un-
seen record is upper bounded by the summation of all the
top item scores. Hence, the correctness of our algorithms
can be guaranteed.

5. EXPERIMENTAL STUDIES
We now present the experiments to validate the perfor-

mance of our system. We have two main goals in this sec-
tion: 1) to examine the effectiveness of our tag inference
approach, 2) to show that our top-k query processing is ca-
pable of retrieving top-k results with high precision and low
cost.

5.1 Experimental Setup
We implement our system on top of MySQL. The tag in-

ference and query answering algorithms are written in C++.
The system is set up on a PC with Intel(R) Core(TM)2 Duo
CPU at speed 2.33GHz and 3.5GB memory. Through all the
experiments, we randomly select 2% samples for soft clus-
tering.

1. Car Datasets (CAR Domain). The first datasets
we deal with are datasets in the car domain. We insert
101 different tables from different sources into a wide table
to simulate the scenario where different users share their
data. Among the 101 tables, one is obtained from Google
Base, and has 24 thousand tuples and 15 columns, while the
others are downloaded from Many Eyes7. These tables have
different sizes, with number of tuples ranging from dozens to
thousands, and the number of columns ranging from 5 to 31.
In total, there are 94,854 rows, 284 distinct tags and 850,215
distinct values after combining the data into one wide table.

2. Directory Datasets (DIR Domain). We extract
three directory datasets from three websites that provide
directory services8. The directory data sets consist of infor-
mation about companies, such as company name, address,
telephone, fax, email and so on. In total, there are 139,022
tuples, 31 distinct tags and 495,908 distinct values.

5.2 Tag Inference Validation
We verify the effectiveness of our tag inference approach

first on real datasets, and compare it with the matching
results from Open II. We then further validate it over the
semi-real Google Base car datasets.

5.2.1 Validation over Real Datasets
To evaluate our tag inference approach, we first compare

it with Open II [26] based on the golden standard. Open
II is an open source data integration toolkit that has im-
plemented several schema matching methods9. In this ex-
periment, for Open II, we choose all the matching meth-
ods it implemented to produce its matching result. These
matchers include “Name Similarity Matcher”, “Documenta-
tion Matcher”,“Mapping Matcher”, “Exact Matcher”,“Quick
Matcher” and “WordNet Matcher”. The golden standard is
identified by manually scanning through all the columns in
each domain.

In car domain, totally there are 160 semantically equiva-
lent tag pairs in the golden standard. Both the output for-
mat of Open II and our system are a list of tag pairs, each
associated with a similarity score. For car domain, Figure 6
shows the precision for the top-k similar tag pairs in Open
II and our approach, with k varying from 20 to 200. The
result clearly demonstrates that our approach achieves bet-
ter precision than Open II when we are looking at the same
number of top-k similar tag pairs. The reason is that we de-
fine the tag semantic similarity based on soft clustering and
7http://manyeyes.alphaworks.ibm.com/manyeyes/
8They are thegreenbook.com, streetdirectory.com and yel-
lowpages.com.sg respectively.
9Note that Open II is a schema level mapper while our ap-
proach is an instance-based approach [23]. As such, Open
II takes only one second for all its attribute mappings while
our approach takes on average 2.5 hours to perform high
dimensional clustering. These operations are however pre-
processing which do not affect the query answering efficiency
of our approach.
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Figure 6: Comparison with Open II

KL-divergence, rather than directly over attributes. Hence,
we are able to discover similar tags that have different syn-
taxes, such as make and manufacturer, while they cannot be
found by Open II. At the same time, Open II makes many
wrong predictions on tag pairs which are similar in names
but different in semantics. Examples include fuel_type and
body_type, model and model_year etc.

Figure 6 also indicates that our precision decreases when
k increases. This is because there are some semantically
different tags whose value distributions are so similar that
our approach cannot tell them apart, such tags include price
and mileage in car domain, telephone and fax in directory
domain. For such tag pairs, it might not even be possible
for human being to distinguish them if no extra information
is provided. The result in directory domain is similar, due
to limited space, we do not list it here.

5.2.2 Validation over Semi-real Datasets
We further validate our tag inference by artificially intro-

ducing semantically similar tags. The large Google Base,
which contains 15 different columns and about 2 million
records, is pre-processed as follows10 . For each attribute,
we create 9 different attributes from the original one, with
shared prefix. For example, we create another 9 attributes
make_a, make_b, . . ., make_i from attribute make. These at-
tribute names are then used to simulate the scenario where
different tags with same semantics come from heterogeneous
data sources.

In addition, with the observation that there are many
small datasets but few large ones, we take this into account
in our data generation. The 10 semantically similar tags are
divided into four groups with different probabilities. The
first group contains 4 attributes, make, make_a, make_b and
make_c, each with probability 5%; the second group con-
tains 3 attributes, make_d, make_e and make_f, each with
probability 10%; the third group has only two attributes,
make_g and make_h, each having probability 15%; the last
group, with the sole attribute make_i, is assigned with prob-
ability 20%. We then assign every value to a tag according
to this probability distribution and with an associated prob-
ability of 1. In the experiment, we consider each attribute
as a tag, and run our soft clustering 3 times with different
initializations on a 2% sample (∼40 thousand data values).

Figure 7 shows the pairwise similarity between tags. Each
row and column represents a tag. The similarity between the
row and column tag at a given pixel is related to the darkness

10We used the entire Google Base data in data generation,
but only 10% samples in tag inference to avoid dominance.
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Figure 7: Tag Similarity Bitmap

of the pixel. The darker the square is, more similar the tag
pairs are. Note that the tags are arranged in the same order
in both row and column orientations, and tags generated
from the same original tags are grouped together. From
Figure 7 we can see that the squares on the diagonal are
much darker than the other squares. This coincides with the
fact that tags generated from the same attribute are much
more similar with each other than the other tags. However,
the only outlier is the fourth last attribute price and the
sixth last attribute mileage. Their diagonal intersections
only give a moderate grey scale. This is because mileage and
price share very similar value distributions, as explained
earlier.

5.3 Top-k Query Processing Validation
We evaluate the performance of our top-k query process-

ing over both car domain datasets and directory domain
datasets. For car domain data, we vary the number of dis-
tinct tags in a query from 1 to 5, and denote them as T1 to
T5. For each T i, i ∈ {1, . . . , 5}, we choose 5 different queries
with approximately equal number of tags in SELECT clause
and WHERE clause. When selecting queries, we randomly vary
the selectivity for predicates in the WHERE clause. The pro-
cess is similar for directory domain data, except that we vary
the distinct number of tags from 2 to 4, as directory domain
has less number of tags.

To get the precision and recall for query result, we build
the golden standard as follows. We manually check the ex-
tended SQL query to determine its semantics, then translate
it to a set of traditional SQL queries over each source data
set, and finally merge the results retrieved by SQL queries.
For instance, if tags in {make, manufacturer, g_make} are se-
mantically equivalent to each other, then an extended SQL
query containing make will be broadcasted to each data source
that includes any equivalent tag of make. On average, a tag-
based query can be translated to 4 to 6 SQL queries.

Based on golden standard, we define precision and recall
as follows: let P be the set of answers retrieved by the query
processor, and GS be the set of answers in golden standard,

then Precision = |P∩GS|
|P |

, and Recall = |P∩GS|
|GS|

.

5.3.1 Effectiveness
Figure 8(a) shows the precision over car datasets, with

top-k% varying from 20% to 100%. For each k%, it also
illustrates the precision for each T i, with i (i.e., the number
of distinct tags) ranging from 1 to 5. Note that our top-k%
query is a little different from the traditional top-k query.
In top-k query, the number of returned answers is k. How-
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Figure 8: Precision and Recall by Varying k%

ever, in top-k% query it is |GS| ∗k%. The reason we choose
top-k% query is that we would like to see how recall changes
with different number of distinct tags. As golden standard
size for different queries may differ a lot, setting the same ab-
solute k for all queries will make recall bias the performance
towards queries with small answer set. Top-k% query avoids
this problem since no matter how much the golden standard
differs, recall for top-k% query is upper bounded by k%.

Figure 8(a) shows that our approach achieves high pre-
cision in all the cases, and is not sensitive to k%. It also
indicates that for T1, precision increases slightly with larger
k% while T2 has a slight decrement. The reason is that our
tag inference approach is unable to distinguish tag pairs with
similar value distributions (e.g. price and mileage). Such
false positives are ranked higher in T1 than in T2. However,
this problem can be eliminated by our dynamic instantiation
when price and mileage are queried together, as our query
processor always attempts to find the best instantiation.

Figure 8(b) shows the corresponding recall for car do-
main datasets. We can see that when k% increases, there
is a steady increase for recall. As mentioned before, recall
in k% case is upper bounded by k%. However, since we
missed some true similar tag pairs in tag inference, we can-
not grantee 100% recall. Such missed tags are those which
are semantically similar but have heterogeneous values. For
example, it is difficult to associate year which has format
“yyyy” with model_year which has format “yy”. This prob-
lem will become severer if there are more tags in query, be-
cause the possibility of including missed tags also increases,
as shown in case T5. However, for queries containing less
distinct tags, our approach is still able to achieve good re-
call. Consider the first 4 cases T1 to T4, at the point where
k% equals to 100%, our approach can achieve 0.7 recall in
average. Together with the high precision we provide, our
proposed approach is quite effective.

We also get precision and recall on the directory data,
shown in Figure 8(d) and Figure 8(e) respectively. As there
are less number of tags than the car dataset, we vary its
distinct number of tags from 2 to 4. We observe similar

behavior as over car datasets. Since the number of tags in
the directory datasets is less, and most are well-formatted,
its recall is much better than the car datasets.

Finally, we compare our work with Open II for the query
processing. Comparisons over precision and recall are shown
in Figure 8(c) and Figure 8(f), respectively. In particular,
we only list the results for T3 case over car datasets. The
reason is that Open II makes many wrong inferences, as
such, precision in most cases is really low. Here we choose
its best case, i.e. T3, for comparison. It is indicated that our
approach provides better precision and recall than Open II.
Specifically, among the 5 queries in T3, Open II produces
0% precision for two of them because they contain wrong
matched tags, and 100% precision for the rest three. In
average, Open II has 60% precision across all k% cases. With
less correct records returned, Open II has lower recall than
ours.

5.3.2 Efficiency
We validate the efficiency of our top-k query processing

over T3 on car datasets. For the directory data sets and the
other queries, the overall trend is similar.

We first compare the running time of our approaches with
the translated SQL queries, as shown in Figure 9. Note that
when k% is set to 100%, our approaches retrieve almost the
same number of tuples as the translated SQLs. As illus-
trated, the running time of the translated SQL queries is
quite stable with respect to different top-k%, because they
always retrieve the golden standard (i.e. all the true an-
swers), no matter how k% changes. In contrast, the run-
ning time of our approaches, i.e., lazy retrieval and eager
retrieval, increases linearly when top-k% increases. How-
ever, eager retrieval takes longer time than lazy retrieval by
almost 1.5 times since eager retrieval maintains and probes
the sorted lists for QTags, but most tuples in them are in-
valid. The running time that lazy retrieval takes is almost
k% of translated SQLs, which clearly shows the efficiency of
our lazy retrieval approach.

We next look at how the number of random and sequential
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accesses vary as we vary k. Figure 10(a) shows the number
of random accesses for eager and lazy retrieval when varying
k from 20 to 120. The corresponding graphs for sequential
I/Os are in Figure 10(b). Note that in both figures, we
adopt top-k rather than top-k%, as the number of tuples
returned by top-k% varies proportionally to query’s answer
set. Consistent with earlier observation that eager retrieval
takes almost 1.5 times longer than lazy retrieval, the same
conclusion holds for both the number of sequential accesses
and random accesses.

6. RELATED WORK
Query Relaxation In the recent decade, there are sev-

eral efforts to provide users a more friendly query interface
that requires minimal or no user knowledge of the database
schema. Such effort includes the extensive studies about
keyword searches over RDBMS [19, 31]. However, keyword
query confines users from issuing structural constraints, and
it is not applicable for range queries. Moreover, it does not
allow users to express semantic confidence over tags. In [15,
21], it was illustrated that tags on multimedia objects are
prevalent over Web 2.0 application [1, 2], to facilitate search-
ing over multimedia objects. Our use of tags here serves the
same purpose.

Database Relaxation. There is also some effort to relax
the strict schema defined in RDBMS, including researches
on malleable schemas [11, 33], Bigtable [6], Wide-table [7],
WebTable [5], and RDF tables [22]. These approaches pro-
vide some flexibility for users to interact with the schema
without the strict constraints of a RDBMS. However, most
of them only provide a flexible interface to store data, but
the columns or attributes in their system play the same role
as in RDBMS. While [33] did look at issues involving query
relaxation, they only do so for string attributes and have
to generate many alternate relaxed queries in order to re-
trieve relevant data. Users are also not given the control
over which attributes to relax.

Probabilistic Database. There also exist a large body of
work over probabilistic databases, dealing with row existence
and value existence uncertainty [14, 27], or lineages [24, 29].
However, the uncertainties they aim to handle are different
with ours. Our uncertainties on one hand, come from the
semantic heterogeneities of the attributes and on the other
hand, also come from the semantic uncertainties of user’s
queries. In other words, our uncertainties are in schemas.
As far as we know, none of the existing approaches over
probabilistic databases have considered schema uncertain-
ties.
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Figure 10: Random I/O and Sequential I/O

Data Integration and Schema Matching. Data integra-
tion aims to create a unified mediated schema. One main
drawback of most data integration approaches [23] is that
when the number of data sources becomes large, the global
mediated schema will be too huge for users to query. Our
work discovers semantic relationships among different tags
so that users can choose preferred tag/attribute to query the
database, rather than over the mediated schema. Among
them, probabilistic data integration proposed by Dong and
Halevy [12, 25] is closest to our work. However, their mutual
exclusion rule is issued prior to the query answering, and our
query-time mutual exclusion rule cannot be trivially applied
to them. Consequently, they are not able to dynamically de-
termine the tag semantics as ours. Moreover, we do not need
to enumerate two levels of probability (i.e. mediated schema
level and schema mapping level) in query answering as they
do, so our work is more efficient.

Our tag inference approach also differs from the exist-
ing instance-based schema matching approaches [20, 10, 4].
They assume the existence of a database with a “correct”
schema which data from other sources will be mapped to.
Data from this database is used as training data in super-
vised learning (i.e. classification) to map attributes from
other sources to the “correct” schema. Our problem in this
paper however assumes no existence of a “correct” schema.
Instead we need to derive the semantic similarity for many
different sets of tags provided by different users. As such,
we adopt unsupervised learning (i.e. clustering) as a way
to find the similarity between tags. Our emphasis is on not
confining the users to a single mediated schema and allow-
ing them to query the data freely with different tags. The
clustering-based tag inference method is essential towards
this aim.

7. CONCLUSION
We proposed a framework of tagging data values with

probabilities on top of the wide table. Under this frame-
work, we introduced our model of probabilistic tagging, ap-



proach of performing tag inference for all values based on
their relative entropy, and the efficient and effective dynamic
instantiation for query processing. We believe our approach
is able to grant more privileges to non-expert database users
and to better maintain the database quality.
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APPENDIX

A. PROBABILISTIC DATA INTEGRATION
Score computation for tuple T3 and T4 over query Q4 using

approaches from [25] is discussed below. As assumed in [25] that
different data sources are independent, now we only consider the
data source that T3 and T4 come from (i.e. Figure 1(b)) and
denote it as S. For clarity, We denote manufacturer in S as
B1, car as B2, and p(M) is used to represent the probability
of M . The attribute set in mediated schema is {manufacturer,
car, model}. Due to the semantic heterogeneity of car (seman-
tics of manufacturer and model are specific), probabilistic medi-
ated schema M has two possible schemas, i.e. M = {M1,M2}.
Specifically, attributes in M1 are A1 = {manufacturer, car} and
A2 = {model}, and attributes in M2 are A3 = {manufacturer}
and A4 = {car,model}. According to [25], p(M1) + p(M2) = 1,
and p(M1) < p(M2) because manufacturer and car co-occur in
S. Thus, p(M1) < 0.5 and p(M2) > 0.5.

Next we consider probabilistic schema mappings. As the actual
semantics of B1 is manufacturer, and B2 is model, we firstly drop
the wrong correspondences such as (B1, A2), (B2, A1), (B1, A4)
and (B2, A3). Based on the tag similarities from Figure 2, the
attribute correspondences between S and M1 are p(B1, A1) =
(1+ 0.52)/(1+0.52) = 1 and p(B2, A2) = 0.65/(1+ 0.52) = 0.43;
and correspondences between S and M2 are p(B1, A3) = 1/(1 +
0.65) = 0.61 and p(B2, A4) = (1+0.65)/(1+0.65) = 1. According
to [25], we list all the possible schema mappings as follows, each
followed by the probability.

Schema mappings between S and M1 are:
m1: (B1, A1), (B2, A2) : 0.43

m2: (B1, A1) : 0.57

Schema mappings between S and M2 are:
m3: (B1, A3), (B2, A4) : 0.61

m4: (B2, A4) : 0.39

Scores for the result tuples produced by [25] are as follows.
p(Focus 1.6A,Focus 1.6A) = (0.39+0.61)∗p(M2) = p(M2) > 0.5
p(Accord,Accord) = (0.39 + 0.61) ∗ p(M2) = p(M2) > 0.5
p(Ford,Focus 1.6A) = 0.43 ∗ p(M1) < 0.215
p(Honda,Accord) = 0.43 ∗ p(M1) < 0.215


