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ABSTRACT

Computing preference queries has received a lot of attention
in the database community. It is common that the user is
unsure of his/her preference, so care must be taken to elicit
the preference of the user correctly. In this paper, we pro-
pose to elicit the preferred ordering of a user by utilizing
skyline objects as the representatives of the possible order-
ing. We introduce the notion of order-based representative
skylines which selects representatives based on the orderings
that they represent. To further facilitate preference explo-
ration, a hierarchical clustering algorithm is applied to com-
pute a denogram on the skyline objects. By coupling the hi-
erarchical clustering with visualization techniques, we allow
users to refine their preference weight settings by browsing
the hierarchy. Extensive experiments were conducted and
the results validate the feasibility and the efficiency of our
approach.

Categories and Subject Descriptors

H.2.8 [Databases Management]: Database applications

General Terms

Algorithm, Performance

Keywords

Preference Query, Skyline Query, Sampling, Visualization

1. INTRODUCTION
Computing preference queries has been a well studied prob-

lem in the database community [16, 6, 15, 22]. Preferences,
treated as soft constraints, are utilized in multi-criteria de-
cision situations to identify the preferred results of man-
ageable size [16]. Among various possible problem settings,
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a common one [15, 22] assumes that a monotonic rank-
ing (or preference) function P (·) is provided and the user
will specify his/her preference by setting a set of weights
w = {w1, w2, . . . , wd} which are used within the preference
function to rank the importance of data objects. Each of the
weight wi represents the importance of an attribute Ai de-
scribing the objects and thus w1, ..., wd describe the impor-
tance of d attributes A1,..., Ad. In such a problem setting, it
is also assumed that the order of preference for the domain
values of each attribute are known. As such, if the user is
able to specify the settings of the weights correctly, then the
objects will be ranked in the correct order of his/her pref-
erence and then the problem becomes one of retrieving the
objects efficiently based on the order. However, if the user
is unsure of his/her preference (which is typically the case),
it is crucial to interact with the user to obtain a correct set
of weights that represent his/her preference. Designing an
effective mechanism to elicit the preference of the user is
exactly what we set to do in this paper.

To elicit an user’s preference, a common approach is to
present the user with a set of objects, and based on his/her
choice of the objects, we can potentially infer the correct
weights. To ensure that all possible choices are well covered,
the set of objects being presented must be carefully selected.
More often than not, this involves clustering the objects into
different groups and a representative from each group will
be presented to the user. By stating the preference for a
particular representative, he/she implicitly provides an ap-
proximate setting for the set of weights and also indicates
that he/she prefers the group that is associated with the rep-
resentative. Further refinement can then be made by repeat-
ing the procedure on the selected group and selecting more
representatives from the group. However, such an approach
will bring about a dilemma. In a typical clustering opera-
tion, an appropriate similarity function will be required to
determine the similarity between the objects. Such a simi-
larity function will usually be determined by weighting the
importance of the attributes based on the user’s input. The
user unfortunately is relying on the clustering results to help
him/her determine the importance of these attributes in the
preference function!

In view of this, much research has been done on the prob-
lem of skyline computation [3, 7, 25, 17, 24, 18]. An object
p dominates another object q if p is better or equal to q in
all attributes and at least better than q in one. The skylines



of a set of objects are those that are not dominated by any
other objects in the set. Based on this definition, it can be
shown that the set of skyline objects for a dataset is insen-
sitive to (1) the weight assigned to each attribute and (2)
the preference function being adopted. More importantly,
given any monotonic preference function, it is guaranteed
that the top one will always be a skyline object. More for-
mally, let πw(D) denote the preferred ordering of a set of
objects given weight setting w and πw(D)[i] denote the ith

object in this ordering, then πw(D)[1] must be a skyline
object. In this sense, we will refer to πw(D)[1] as a repre-
sentative of πw(D) and thus every possible ordering based
on different weight settings will be represented by one of the
skyline objects.

Since the set of skyline objects is insensitive to the setting
of the weights and gives full coverage as representatives of
πw(D), it thus makes sense to present the skylines to the user
for selection and infer the weight setting that represents the
user’s preference based on his/her selection1. However, it
has been shown in [25] that the expected number of skyline
objects is Θ(lnd−1 n/(d − 1)!) for a random dataset where
d is the dimensionality of the data. The large number of
skyline objects for high dimensional dataset is ironical since
this is the situation in which users have most difficulty deter-
mining their preferences and comparing products. Various
efforts have been made [21, 28] to overcome this problem
by selecting k representatives from a large set of skylines.
While we will discuss these later in the related work section,
it suffices to point out here that none of these works try to
bring the preference function and its ordering of the objects
back into the picture.

In this paper, we propose to elicit the preferred ordering
of a user by utilizing skyline objects as representatives of
the possible ordering. Our approach tries to find k repre-
sentative skylines that best capture the orderings that are
associated with other skyline objects. This brings about two
challenges:

1. Given a dataset D, let Wp(D) denote the set of weight
settings such that for every w ∈ Wp, πw(D)[1] = p,
p ∈ D. In this case, Wp(D) is a set of weight settings
in which the object p will be ranked first and such a
set could potentially be of infinite memberships. As
such, comparing the ordering represented by two sky-
line objects becomes difficult.

2. Given that πw(D) represents a ranking with large num-
ber of objects, comparing any instance of the rankings
represented by two skyline objects will require compu-
tationally efficient solutions to be developed.

In order to overcome these problems, we propose an in-
direct notion of similarity between the orderings that are
represented by two skyline objects p and q. We claim that
the ordering of q is close to p if q has a high probability
of ranking high whenever p is ranked first in the ordering.
Based on this notion which we will formally define later, we
make various contributions towards eliciting users’ prefer-
ence based on hierarchical browsing of skylines:

• We introduce the notion of order-based represen-
tative skylines which selects representative skylines

1Note that since multiple settings of w can be represented by
the same skyline object, this inference is only approximate.

based on the ordering that they represent. Unlike pre-
vious work, we bring the preference function back into
the picture when determining representative skylines
since our aim is to elicit the preference of the user
based on these representatives.

• To handle the two problems that we presented earlier,
we define a notion of similarity that avoids explicit
comparison of the orderings that are represented by
two skyline objects. Based on this similarity measure,
we develop sampling techniques that allow us to effi-
ciently and accurately estimate the similarity between
any two skyline objects. The similarity measure also
allows us to define a goodness measure for clustering
skyline objects, and a k-partitioning clustering algo-
rithm is developed to cluster skyline objects based on
this goodness measure.

• By applying the k-partitioning algorithm recursively,
we create a hierarchical clustering of the skyline ob-
jects. By coupling hierarchical clustering with visual-
ization techniques, we enable users to refine their pref-
erence weight settings by browsing the hierarchy.

• We conducted extensive experiments, and the results
show that our approach is both effective and efficient.

The rest of the paper is organized as follows. Section 2
gives our new definition of representative skylines and shows
the defects of existing methods. Section 3 reviews the related
work on skyline query and preference elicitation. Section 4
presents the efficient sampling algorithm, and hierarchical
browsing to elicit users’ preference is described in Section 5.
Results of our extensive experimental study are reported in
Section 6. Section 7 concludes the paper.

2. PRELIMINARY

2.1 Problem Definition
We have a database D of n objects. Each object is de-

scribed by d attributes A1, ..., Ad. We will use p.Ai to
refer to the value of an attribute Ai for an object p. For
ease of discussion, we assume that all of these attributes
are numerical attributes ranging from 0 to 1 2 and that
a smaller value indicates better score. As such, we say p
dominates q if p.Ai < q.Ai for at least one value of i and
p.Ai ≤ q.Ai for 1 ≤ i ≤ d. The skyline set S ⊆ D consists
of all objects in D which are not dominated by any other
objects in D. We also have a monotonic ranking (or pref-
erence) function P (·) which is provided by the application
domain and users will specify their preference by provid-
ing a set of weights w = {w1, w2, . . . , wd}, 0 ≤ wi ≤ 1.
Given the set of weights, the user can easily define any

monotonic ranking function as P (−→w,
−−→
f(·)) =< −→w ,

−−→
f(·) >,

i.e. the dot product of weight vector −→w (w1, w2, . . . , wd) and

monotonic function vector
−−→
f(·)(f1(·), f2(·), . . . , fd(·)). fi(·)

can be any monotonic function on objects, such as linear
function, product function or exponential function. As il-
lustrated in 2-dimensional space, one simple linear ranking
function P = 0.9A1 + 0.2A2 can be expressed as the dot
product of the weight vector −→w (0.9, 0.2) and the monotonic

function vector
−→
f (A1, A2).

2This can be obtained by mapping the attribute values of
some application domain to a score from 0 to 1



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

A
2

A1

p1 p2

p3

p4

p5

(a) Data Space

R(p5)

R(p1)

R(p3)

w1

w
2

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(b) Weight Space

w1

w
2

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(c) R4(p2) on weight space

Figure 1: Example of Data Space and Weight Space

Given the above setting, our paper deals with two multi-
dimensional spaces. First, we have the data space, which
is the d-dimensional space that is formed from A1, ..., Ad.
Second, we have the weight space, which is another d-
dimensional space formed from w1,...,wd, i.e. the ith dimen-
sion of this space represents the weight wi. Any point in the
weight space thus corresponds to a particular setting of the
weights. For any skyline object p ∈ S, we will use R(p) to re-
fer to the region in the weight space such that πw(D)[1] = p
as long as w is within the region R(p). Since the weight
space is normalized to the unit range, we can treat the vol-
ume of R(p) as a probability that p is the top object in any
possible ordering. Figure 1 illustrates the data space and
weight space for a set of skyline objects when the preference
function is a simple dot linear product between the weights
and the attribute values. As can be seen in Figure 1(a),
p1, . . . , p5 are all skyline objects since they do not domi-
nate each other. However, if we look at the weight space in
Figure 1(b), we can see only R(p1), R(p3) and R(p5) since
based on the dot linear product preference function, p2 and
p4 can never be ranked first regardless of the weight setting.

If we use V (·) as a function that calculates the volume of
any given region, then the probability of p being a top object
will be denoted as V (R(p)). To generalize this further, we
will use Rm(p) to denote the region in the weight space such
that p is among the top-m objects when compared to other
skyline objects. We are now ready to define a similarity
measurement between two skyline objects p and q.

Definition 2.1. SIMm(p, q)
Given p, q ∈ S and m, we measure how well p can represent
q by

SIMm(p, q) = V (R(p) ∩Rm(q))/V (R(p))

It is easy to see that SIMm(p, q) is in fact the probability
that q is within the top-m skyline objects whenever p is
ranked first. Intuitively, we are saying that if p has orderings
that are very similar to q, then SIMm(p, q) will be high

and thus p can represent q well. Note that SIMm(p, q)
is in fact not a metric since it is not symmetric and also
does not follow triangular inequality. This however does not
affect our k-partitioning clustering algorithm. Unlike most
clustering applications in which members in the same cluster
must be similar, our sole aim here is that the representatives
of each cluster can represent its members accurately while
other members in the cluster need not be similar to each
other.

Given S, our aim is to select a k representative set K, such
that K ⊆ S, |K| = k and other non-representative skylines
are somehow represented by K in terms of the ordering that
they represent. Intuitively, K should satisfy two criteria.
First, its

⋃

p∈K V (R(p)) should cover a sufficiently large re-
gion of the weight space so that weight settings are covered
as much as possible. Second, K should somehow represent
other skylines that are not within K.

The first criteria is relatively easier to satisfy with the
observation that {R(p) ∩ R(q) = ∅, p, q ∈ S ∧ p 6= q}. Since
there are no overlap between the regions, it is enough to
ensure that V (R(p)) is sufficiently large for each p ∈ K so
that

⋃

p∈K V (R(p)) is large. For the second criteria, we will
propose a measure of goodness.

Definition 2.2. Quality(K,S)

Quality(K,S) =

∑

q∈S maxp∈K SIMm(p, q)

|S|
As can be seen, Quality(K,S) is a goodness measure that

is similar to those used in a k-partitioning algorithm, i.e. the
average similarity between each skyline object and its best
representative. Correspondingly, we define our order-based
representative skyline problem as follow:

Definition 2.3. Order-based Representative Skylines
Given S, p , m and threshold α, find a set of representative
K ⊆ S such that:
1. For each p ∈ K, V (R(p)) ≥ α.
2. Quality(K,S) is maximized.

2.2 Problem Analysis
In order to find the order-based representative skylines,

the beginning step is to calculate the volumes of R(p) and
Rm(p) for each skyline object p. However, we will show
the hardness of exact computation of R(p) and Rm(p) with
their corresponding volumes. First, one important property
about the R(p) is presented in the following lemma.

Lemma 2.1. For any skyline object p, R(p) is either empty
or a convex polytope.

Proof. Based on linear programming theory, if p is the
ith object pi in the skyline, the computation of R(pi) can
be directly transformed to the satisfaction of the following
inequations:











































P (−→w,
−−−→
f(pi)) ≤ P (−→w,

−−−→
f(p1))

...

P (−→w,
−−−→
f(pi)) ≤ P (−→w,

−−−−−→
f(pi−1))

P (−→w,
−−−→
f(pi)) ≤ P (−→w,

−−−−→
f(pi+1))

...

P (−→w,
−−−→
f(pi)) ≤ P (−→w,

−−−→
f(pn))

wi ∈ [0, 1]



The above inequations are a set of linear constraints on
the weight space, because each P (·) is the linear function

with respect to weight vector −→w given the
−−→
f(·) and the at-

tributes for each p ∈ S. Therefore, computing the R((p)) is
equivalent to solving the feasible range of linear constraints.
The boundary theory of linear programming [26] proves that
each inequality specifies a half space in an n-dimensional Eu-
clidean space, and their intersection is the set of all feasible
values the variables can take. The region is either empty,
unbounded, or a convex polytope. In our case, the region is
either empty, or a convex polytope, because it is bounded
by weight space with wi ∈ [0, 1].

According to Lemma 2.1, these regions can be determined
by computing their boundaries. Ideally, we first discover ver-
tices of R(p) or Rm(p) for each skyline object p, and then
derive SIMm(p, q). However, the cost of this method is
too expensive. For a convex polytope, there are at most
(u!)/(v!(u − v)!) vertices, where u is the number of inequa-
tions and v is number of variables [26]. Accordingly, the
Rm(p) can also be viewed as a union of all possible combi-
nations of linear constraints that p is smaller than at least
|S| − m skyline objects. As illustrated in Figure 1(c), the
shaded region, which is R4(p2), is the union of two separate
parts. This simple example shows that the computation of
Rm(p) is much more complicated than the computation of
R(p). Therefore, we conclude that finding the exact bound-
ary of top region and top-m region is unrealistic.

3. RELATED WORK
The skyline operator was introduced into the database

community by Borzsonyi et al.[3]. The efficiency was im-
proved by Chomicki et al.[7] and Godfrey et al.[25] signifi-
cantly by means of sorting. By exploiting index structures,
the efficiency of skyline query processing can be further im-
proved. Kossmann et al.[17] presented a nearest neighbor
search algorithm and Papadias et al.[24] proposed a branch-
and-bound algorithm (BBS). Both methods are based on
R-tree structure [11]. This operator has been studied in the
context of distributed systems [2], P2P networks [29, 30],
parallel environment [31], data streams [27], microeconomic
data analysis [19, 20, 34] and processing queries with mini-
mum communication [32].

The problem of having too many skylines in high dimen-
sional space were first highlighted by us in [33, 5, 4] and
solutions were proposed in the form of strong, frequent and k-
dominant skyline respectively. Subsequently, [21] proposed
representative skylines where k representative skyline ob-
jects must be found such that they together dominate the
most objects. From a ranking point of view, this ensures
that the representatives will somehow not rank too low since
the dominated objects will never rank higher than them with
any weight settings. Next, distance-based representative sky-
lines [28] grouped the skyline objects into k clusters based on
Euclidean distance and the medoid of each cluster is selected
as a representative skyline. Spatial proximity, however, does
not necessary means similarity in ordering. Going back to
our example in Figure 1, although p2 and p4 are spatially
closer to p3 when compared to p1 and p5 respectively, they
are never ranked higher than 4th whenever p3 is the top ob-
ject. Instead, p2 can rank higher (up to 2nd) when p1 is the
top object and likewise for p4 whenever p5 is the top ob-
ject. Besides this, it is well known that the distance-based

method can never avoid the curse of dimensionality, in the
sense that the Euclidean distance of a given skyline object
from its nearest and farthest neighbor tends to converge [1].
In contrast, an order-based method is robust to the increase
in dimensionality, which is more suitable for high dimen-
sional context. In view of the large number of proposals on
alternate skyline definition, a general framework for doing
so was developed in [35].

Preference discovery and mining is also related to our
work. Kießling [16] modelled various preference construc-
tors and integrates them into database systems. Based on
the preference construction approach aforementioned, Jiang
et al.[15] introduced the scenario of mining preferences us-
ing superior and inferior examples. Recently, Denis et al.[22]
proposed a framework called p-skylines which enriches sky-
lines with the notion of attribute importance. These works
differ from ours in two ways. First, their main aim is to elicit
the preference of categorical values within some categorical
attribute domains. Second, they focus on finding unknown
atomic preferences, i.e. an attribute is either more impor-
tant, less important or incomparable to other attributes.
Our work involves the concept of weighted attributes which
can model tradeoffs between the attributes. For example,
we can model the fact that a user is willing to take a note-
book with a CPU that is 20% slower if 50% more memory
is given.

Order information is well studied by the database and
data mining communities. Rank aggregation [9] is an useful
technique in web applications and other scenarios related to
aggregating results from heterogeneous sources. Cohen et al.
[8] developed an algorithm to learn a linear preference func-
tion. In this algorithm, feedbacks are iteratively given by
users in the form of “p is preferred to q” and the weights are
iteratively adjusted based on the feedbacks. Our approach
differs in that we focus on skylines as a representative of
orders and provide a hierarchical visualization framework to
elicit the preference of users systematically3.

4. METHODOLOGY
According to earlier analysis, finding the exact regions

for R(p) and Rm(p) for all p ∈ S can be very computa-
tionally intensive. Since we are only interested in V (R(p))
and V (Rm(q)∩R(p)), we can adopt a sampling approach to
estimate these values. This is done by performing a uni-
form sampling in the weight space and generating a set
of weight settings W . For each w ∈ W , we find πw[i] for
1 ≤ i ≤ m and keep a count on the occurrences of the sky-
line objects. Once the sampling is complete, we can simply
estimate V (R(p)) by count({w|w ∈ W,πw[1] = p]}/|W |, i.e.
the number of instances w in which p is ranked top and di-
vide it by |W |. Likewise, V (Rm(q)∩R(p)) is count({w|w ∈
W, πw[1] = p, πw[i] = q, i ≤ m})/|W |, the number of in-
stances in which q is ranked among top-m whenever p is the
top object and normalize it by |W |. Finally, we obtain the
following formula according to the definition 2.1:

SIMm(p, q) =
count({w|w ∈ W, πw[1] = p, πw[i] = q, i ≤ m})

count({w|w ∈ W, πw[1] = p]}

3In many ways, our approach is similar to how we judge
the results of a search engine; We conclude that the search
ranking is useful if the first few results are good.



There are two remaining issues. First, we need to ensure
that generating these samples is efficient. Second, we need
to ensure that our estimation based on these samplings have
certain accuracy. We will address these two issues in the
next two subsections. Once these issues are resolved, we
will then move on to present our clustering algorithm based
on our measure of similarity.

4.1 Generating Samples
Instead of computing the ordering for individual samples,

we conduct the sampling in batches and apply the TA al-
gorithm [10] concurrently for all samples within the same
batch. Assuming that the main memory can handle b sam-
ples and we want to have a total of s samples, then the TA
algorithm will be applied ⌈s/b⌉ times.

The sampling method is shown in Algorithm 1. For all
the sample weight settings, it only needs to discover top-m
skyline objects from the disk once using the TA algorithm.
Here, m is set to be (number of skyline objects)/k based on
the assumption that the skyline objects have uniform prob-
ability of appearing in the top-m list of any of the (eventual)
k representative objects and thus setting m to this value en-
sures that each of the objects has a non-zero probability of
appearing in the top-m list of one of the k representatives.
This m can then be fixed for processing future batches of
samples.

In order to perform TA algorithm, we further need to
store d sorted lists in the disk. In τi, the skyline objects are
sorted from the smallest to the largest based on the values
on dimension i. Because the score function is monotonic, we
perform sorted access and random access on d ranking lists
to find the top-m skyline objects efficiently. According to
these top-m lists, we can calculate the V (R(p)) and V (R(p)∩
Rm(q)) and derive SIMm(p, q) for every p, q ∈ S.

Intuitively, the approximation of region computation has
high precision based on random uniform sampling if the
sampling size is sufficiently large. Thus, we approximately
achieve region computation as well as derive SIMm(p, q) ac-
cording to definition 2.1. As in Line 12-15 in Algorithm 1,
we only keep in memory the counting information of sky-
line objects which can be the top object. Since the skyline
set could be too large to fit in the memory, this strategy
greatly reduce the memory consumption. In addition, after
performing the TA based algorithm, the batch of samples
can be safely discarded to free up the memory for the next
batch. Let the top object set T0 satisfy {T0|p, if p ∈ S
and V (R(p)) > 0}. Accordingly, Tα is defined as {Tα|p, if
p ∈ S and V (R(p)) > α}. Assume the skyline set size is n,
Algorithm 1 utilizes O(|T0|n) instead of O(n2). |T0| is de-
termined by the monotonic function, which is much smaller
than n. Therefore, this improves the scalability of our al-
gorithm. Besides the probability information, the regions of
p ∈ T0 defined below are incrementally updated in Line 14
based on samples. This information is critical for hierarchi-
cal processing in Section 5.

Definition 4.1. Object Coverage
Given {W |weight setting w ∈ W if πw[1] = p}, the cover-
age of p is the minimal bounding rectangle(MBR) of W on
weight space.

The MBR for the object p is the minimal bounding rect-
angle that encloses all the w ∈ W whenever πw[1] = p.

However, to determine a sufficient number of samples is chal-
lenging. The sample space is infinite and the definition of
sufficiency is unclear. Before finding the k representative
skylines, we first show what is the quantitative relationship
between sampling size and sampling accuracy and how to
calculate the sampling size s in Line 2 of Algorithm 1.

Algorithm 1: SamplingTopM

Input: # representatives k and # samples b
Output: 2d array SIMm to store SIMm(p, q)
m←− # skyline objects/k1

Calculate the required sampling size s2

while s > 0 do3

Generate next b random uniform samples W4

s←− s− b5

// TA based method for b samples

while scorei(m
th item on heapi) > δi,i ∈ [1, w]6

do
Round-robin sorted access on τ1, . . . , τd7

Update thresholds θ1, . . . , θb for each sample8

Random access to get next skyline object p9

if scorei(p)<scorei(m
th item on heapi) then10

Swap p with mth item on heapi11

foreach skyline object q in top-m list when p is12

the top object do
if p 6∈ SIMm then new array SIMm[p]13

Update the region for R(p)14

SIMm[p][q]++15

foreach skyline object p ∈ SIMm do16

Count[p]←− count({w|w ∈W, πw[1] = p])17

foreach skyline object q do18

// calculate the probablity

SIMm[p][q]←− SIMm[p][q]
Count[p]19

return SIMm;20

4.2 The analysis of sampling accuracy
The sampling size determines the tradeoff between accu-

racy and efficiency. Intuitively, we expect the approxima-
tions of V (R(p)) and SIMm(p, q) to be close to the accu-
rate values if the values are larger than certain thresholds.
The constraint of V (R(p)) refers to definition 2.1. Further-
more, SIMm(p, q) should be accurate if it is no smaller than
the user-defined threshold β. Taking these two thresholds
into consideration, we can derive the following bound for
V (R(p) ∩Rm(p)):

V (R(p)∩ Rm(p)) = V (R(p)) · SIMm(p, q) > αβ

Therefore, we will focus on the accuracy of V (R(p)∩Rm(p))
to satisfy the required sampling quality. Next, we provide
guidelines for the choice of sampling size using statistical
analysis.

Let V (R(p) ∩ Rm(p)) be the unknown value that we are
trying to estimate. For simplicity, we utilize probability P
representing V (R(p)∩Rm(p)) to do the analysis. Then, the
P stands for the complementary set of V (R(p) ∩ Rm(p)).

Assume that we have N samples and find that X = P̃N of
these samples satisfy q does not appear in the top-m lists
when p is the top object. Given a sufficiently large number



of samples, we expect P to be close to P̃ as much as possible.
Furthermore, to ensure sufficiently large coverage, P should
be larger than or equal to αβ, which is equivalent to P ≤
1− αβ. We formally express the problem as follows.

Problem 1. Given thresholds α, β, confidence interval 1−γ
and margin of error δ, how to determine the sampling size
N to ensure

Pr(P ∈ [P̃ − δ, P̃ + δ]) > 1− γ

when P ≤ 1− αβ.

Obviously, we want both the interval size 2δ and the error
probability γ to be as small as possible. Since the sampling
process can be viewed as the Bernoulli Trials on the weight
space, X = P̃N satisfies a binomial distribution with param-
eters N and P . Therefore, we can apply Chernoff bounds
[12] to compute

Pr(P 6∈ [P̃ − δ, P̃ + δ])
= Pr(X < NP (1− δ/P )) + Pr(X > NP (1 + δ/P ))

< e−NP (δ/P )2/2 + e−NP (δ/P )2/3

The bound in above equation is meaningless if the value
of P is unknown. A simple relaxation is based on the fact
that P ≤ 1− αβ, yielding

Pr(P 6∈ [P̃ − δ, P̃ + δ]) < e−Nδ2/2(1−αβ) + e−Nδ2/3(1−αβ)

Setting γ = e−Nδ2/2(1−αβ) +e−Nδ2/3(1−αβ), we obtain the
tradeoff between these parameters. Given the requirements
on α, β, γ and δ, the above equation calculates the mini-
mum number of sampling size N to guarantee the sampling
accuracy. As shown in Section 6, the reasonable sampling
size is around below ten thousand, resulting in satisfactory
response time.

4.3 Finding representative skylines
Since the SIMm(p, q) has already been calculated ap-

proximately, the next step is to discover the order-based
representative skylines. Our objective is to maximize the
quality of the representative set K as well as cover a suffi-
ciently large size of the weight space. In order to efficiently
discover k representative skylines, we adopt the k-medoids
clustering algorithm, as presented in Algorithm 2. By parti-
tioning the skyline objects into groups, we choose the medoid
as representative for each group and other skyline objects are
assigned to the closest representative.

One noticeable difference of Algorithm 2 is the filtering
method. As in line 3, it sifts out candidate set C as Tα.
The default setting of α is 1/|S|, the average volume of
R(p) for p ∈ S on weight space. This is reasonable since
the volume of representative skylines should be at least no
worse than the average situation, otherwise the objects can
be safely pruned. User also has the flexibility to adjust the
threshold in order to achieve the tradeoff between the qual-
ity and the coverage of K. This is not only beneficial to
finding better k representative skylines, but also reducing
the candidate size, especially for skyline objects with skew
top region sizes. After filtering, the rest is straightforward.
The k-medoids clustering is derived from CLARANS [23],
which randomly chooses k medoids and refines its quality
by neighborhood searching. In detail, the swapcost in line

10 is the quality difference because of swapping. Line 13
guarantees that the cluster K is updated only if the new
cluster K′ has better quality. Finally, the clustering algo-
rithm determines numlocal k-medoids sets with local best
quality, and chooses the best of them as the final order-based
k representative skylines.

Algorithm 2: FilterClustering

Input: # representatives k,threshold α and SIMm

Output: k order-based representative skylines
Candidate set C ←− ∅1

k-medoids set K ←− ∅2

foreach skyline objects p ∈ T0 do3

if V (p) > α then C ←− C ∪ p4

bestquality ←− 0, bestrepresentative←− ∅5

for i = 1 to numlocal do6

K ←− randomly choose k objects from |C|7

for j = 1 to maxneighbor do8

Randomly swap p from K and q from C −K9

swapcost←− ∆Quality(K,S)10

if swapcost < 0 then11

j ←− 1, update K12

if Quality(K, S) > bestquality then13

bestrepresentative←− K14

bestquality ←− Quality(K, S)15

return bestrepresentative16

5. ELICITING USERS’ PREFERENCES
In this section, we further extend our work to support

skyline browsing and visualization in order to elicit users’
preference effectively and efficiently. In general, it is a hi-
erarchical navigation approach to locate user’s preferred re-
gion on the weight space. A visual interface is developed to
support this exploration.

5.1 Hierarchical Browsing
Hierarchical browsing is an effective way to interact with

the user. As shown in Algorithm 3, this process can be
viewed as iterative refinements based on a combination of
sampling and clustering. First, shown with the initial k
representatives, the users will then select a subset of them
as object/s of interested. Second, re-sampling is performed
on the region covered by the subset and related clusters.
This focused sampling will allow us to have more accurate
sampling result on the area of interest. We first define the
cluster coverage as follows.

Definition 5.1. Cluster Coverage
Given a cluster c, the cluster coverage rc of c on the weight
space is the minimal bounding rectangle(MBR) that bounds
the object coverage of all skyline objects in c.

Therefore, the area of interest is the MBR covering all
the clusters generated by the selected skyline subset. The
clustering algorithm will then be applied on the new samples
so that the next level of k representatives can be found.
This procedure will iterate until the user reaches the skyline
object that is of interest to him/her or when |T0| is smaller
than k. As shown in Line 5 of the algorithm, the hierarchical



process terminates and displays the final results to the user
if one of the above two conditions is satisfied.

Algorithm 3: HierarchicalBrowsing

Input: w, k, α,SIMm

p←− SamplingTopM(w)1

K ←− FilterClustering(k,α,SIMm)2

Output K to user3

User chooses interesting subset H and sets k4

while H 6= ∅ and |T0| ≥ k do5

sampleregion←− ∅6

Candidate set C ←− ∅7

foreach object p ∈ H do8

Calculate cluster region rc from the cluster c9

with medoid p
Update sampleregion covering the rc10

Update C as all the objects in the cluster c with11

medoid p ∈ H
// sampling on sampleregion
p←− SamplingTopM(m,w)12

K ←− FilterClustering(k,α, p)13

Output K to user14

User chooses interesting subset H and sets k15

Output final set of skyline objects user preferred16

5.2 Visualization
To support our hierarchical browsing process, we provide

a visualization tool to ensure that users can easily see the
difference between the representatives and select the repre-
sentatives that are of interest to them.

Parallel coordinates [13] is a common way of visualizing
high-dimensional geometry and analyzing multivariate data.
To show a set of objects in an d-dimensional space, this tech-
nique represents data dimensions as d parallel lines spaced
equally. A data object in d-dimensional space is represented
as a polyline linking n vertices on each axes. The ith vertex
is mapped to position on ith axis proportional to its value for
that dimension. For our purpose, each of these axis repre-
sents a dimension in the weight space and the users can thus
indirectly indicate their preferred weight setting by selecting
the clusters based on the visualization. For each cluster, we
take the average values of the samples along each dimension
and plot a line that goes through these averages for each di-
mension. Users can estimate the average weight setting for
each dimension by looking at this line. Generally, the range
of different clusters overlapping and crossing each other,
which renders the graphic representation unclear. Instead,
we approximate display the cluster coverage. For the cluster
c, the weight setting w belongs to it if πw[1] = p∧p ∈ c. Let
the mean value of all the weight settings belongs to cluster c
on the ith dimension be µi(c), and the standard deviation of
them be σi(c). To ameliorate the visualization, we restrict
the range as [µi(c)−σi(c), µi(c)+σi(c)] on the ith dimension
to control the size of the cluster c.

Figure 2 gives an example of our visualization technique.
According to the definition of weight space, all the dimen-
sions are within the range of 0.0 to 1.0. In the diagram, three
clusters are represented with three representatives: rep-1,
rep-2 and rep-3. Each cluster is visualized as a polygon. In
each dimension, the cluster region is restricted by the upper

Figure 2: Visualization example

bound and the lower bound respectively. Furthermore, the
polyline in the middle of each region is shown for users to
estimate the average weight settings of the cluster in each
dimension. In addition, the values of each of the represen-
tative skyline in the data space are also presented for users
to link their preferences back to the actual domain that is
familiar to them. To distinguish different clusters, the poly-
line and representative label belonging to the same cluster
are colored similarly, while the colors are different between
clusters. This framework supports highlighting cluster as
well. For instance, the cluster with representative rep-1 is
highlighted with red color in Figure 2.

Ordering of Axes: Another simple but powerful fea-
ture of our visualization tool is that it supports dynamic
ordering of the axes based on the selected cluster c. The di-
mensions are arranged from left to right following the order
w1, w2, . . . , wd if u1(c) ≥ u2(c) ≥ . . . ≥ ud(c). By looking
at the order of these dimensions, users can quickly assess
the strength of the cluster by looking at the relative ranking
of the dimensions and compare these ranking against what
they preferred.

Furthermore, the gradient of the polyline after the order-
ing presents a good indication of the tradeoff between the
attributes for a particular cluster. A steep gradient indi-
cates that the tradeoff between the attributes is high while
a gentle gradient indicates that the importance between the
attributes are almost the same. For instance, the dimensions
of Figure 2 are reordered to be {w2, w3, w4, w1, w5}. The un-
derlying meaning is that this cluster of skyline objects ranks
high mainly because of the dominance on the attribute w2.
Moreover, the steep gradient of this cluster demonstrates
that the quantities on attributes A1 and A5 must drop sub-
stantially for the sake of sustaining the strength on A2.

Alternatively, users will be also allowed to rank the dimen-
sions themselves. Once they ordered the dimensions, they
can identify clusters of interest to them by looking for poly-
lines that are approximately decreasing from left to right.
Among all those that are decreasing, they can also assess
the tradeoff by looking at the gradients.

6. EXPERIMENTS
We now present the experimental study to evaluate order-

based representative skylines. For simplicity, we refer to our
algorithm as SampleClus, while refer to the best algorithm
in distance-based representative skylines [28] as I-greedy. In
Section 6.1, the proposed algorithm is measured with re-
spect to the efficiency as well as effectiveness on synthetic
datasets. Section 6.2 further illustrates its performance on



the real NBA dataset 4. At last, the effect of different mono-
tonic functions and the process of hierarchical elicitation are
evaluated in Section 6.3. All experiments are executed on
the Windows operating system with Intel Core-2 Duo pro-
cessor and 4 GB RAM.

6.1 Synthetic Data
The synthetic datasets are created using the anti-correlated

distribution according to the classical method [3]. Every at-
tribute on each dimension is normalized to [0,1]. Table 1
shows the range and default values (in bold) of the param-
eters. In each experiment, we adjust a single parameter
while keeping the rest at their default values. Note that
the confidence interval 1− γ and margin of error δ are two
variables for controlling suitable sampling size. Due to the
space constraint, other two parameters α and β are fixed in
our experimental settings. The default value for α is 0.01 as
we expect the representative skyline object covers at least
one percent of the weight space. The default value of β is
set to be 1/k, i.e. SIMm(p, q) ≥ β = 0.1, since the clos-
est representative should be better than the average case to
represent the non-representative objects. The evaluation is
based on the dot linear product preference function.

Table 1: Parameter settings

Parameter Range
γ 0.1,0.2,0.3,0.4
δ 0.02,0.03,0.04,0.05

Dimensionality 2,3,4,5
k 4,6,8,10,12

Data Size(100K) 2,4,6,8,10

Table 2: Varying γ

γ 0.1 0.2 0.3 0.4
Sampling Size 4,774 3,618 2,956 2,492

Sampling time(ms) 1,842 1,409 1,133 953

Table 3: Varying δ

δ 0.02 0.03 0.04 0.05
Sampling Size 14,475 6,433 3, 618 2,316

Sampling time(ms) 5,558 2,513 1,409 887

We measure the performance of the algorithm in seven as-
pects. The first five refer to # top objects, # replacements,
Quality(K, S), V (R(K)), and Er(K, S), which evaluate the
effectiveness of the algorithm. The first one reflects how
many distinct skyline objects appear as top objects in the
samples. The # replacements is utilized to evaluate the ro-
bustness of the clustering algorithm, which records the num-
ber of objects varying from one cluster to another due to the
alteration of sampling size. Recall that the Quality(K,S) is
described in definition 2.1. The V (R(K)) is the summation
of all V (R(p)) as long as p ∈ K since they are mutually ex-
clusive. For Er(K,S), it indicates the representative error
to measure the distance between the representative skylines
and the other skyline objects [28]. The remaining two as-
pects, # IO and CPU time, assess the efficiency of the al-
gorithm. # IO consists of two parts, the random access
times (RA) and the sorted access times (SA). Moreover,
CPU time is also divided into sampling time and cluster-
ing time for better understanding the performance of our

4http://www.databasebasketball.com

SampleClus algorithm. The breakdown of execution time
provides a deeper and clearer view of the experimental re-
sult. Furthermore, due to the random nature of the sampling
output, we repeat each experiment ten times and report the
average measurements.

We first investigate how the confidence interval 1− γ and
margin of error δ affect the performance of SampleClus.
Since the α and the β are fixed, the sampling size N is
determined by these two parameters. Table 2 shows how
sampling size varies as γ changes from 0.1 to 0.4 while fix-
ing δ = 0.04. On the other hand, by increasing δ from 0.02
to 0.05 with γ = 0.2, we derive the sampling size in Table 3.
Because the sampling quality is directly related to the sam-
pling size, we continue the analysis based on the sampling
size. To begin with, we generate the initial k-partitioning
clusters using 4613 samples, which is the mean of all the
sampling sizes in Table 2 and 3. Additionally, by varying
the sampling size, we record # top objects, # replacements,
Quality(K,S) and V (R(K)), and display them in Figure 3.
Generally, the trend of # top objects suggests that it in-
creases with growing sampling size. However, the increase
ratio tends to converge to the real # top objects, which is
larger at the beginning while smaller at the end. Concern-
ing the # replacements, it is large when the sampling size
is small but tends to be stable when sampling size is large
enough. Most importantly, the Quality(K,S) and V (R(K))
of the clustering results demonstrate SampleClus’s robust-
ness although the change in sampling size is noticeable. The
stdev of Quality(K,S) is 0.001 and that of V (R(K)) is 0.01.
Thus, the experiments show that sampling is a practical ap-
proach to solve this problem.
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Figure 3: Robustness vs. sampling size

Furthermore, the sampling time is linear related to the
sampling size as shown in Tables 2 and 3, since finding the
top-m skyline objects for each sample almost costs the same
amount of time. Taking both the clustering robustness and
sampling time into consideration, we conclude that moder-
ate size of samples is enough for good clustering outputs.
Based on this observation, we choose γ = 0.2 and δ = 0.04,
which determine the sampling size to be 3618.

Figure 4 shows the comparison between SampleClus and
I-greedy with respect to dimensionality. Note that we gen-
erate ten sample sets other than the one used in SampleClus
to test the representative skylines of two algorithms. The
figure suggests that SampleClus is superior to I-greedy both



for Quality(K,S) and V (R(K)) in any dimensionality. The
V (R(K)) is multiplied by the sampling size for clearer dis-
play. The closeness of the two algorithms in two dimensional
cases is because the number of skyline objects is 57, which is
in the same order of magnitude as the number of represen-
tatives. Other than this, the distance-based representative
skylines can hardly represent the order information as an-
alyzed in the Section 3. Furthermore, the distance based
metric is sensitive to the dimensionality. The goal of I-
greedy algorithm is to minimize the Er(K, S). Accordingly,
we define a relative representative error NormEr(K, S) as

Er(K, S)/
√

d, where
√

d is the maximal possible distance
between two objects in d dimensional normalized space. By
varying dimensionality from 2 to 5, as shown in Table 4,
Er(K, S) as well as NormEr(K, S) increases along with the
rise in dimensionality. It suggests that this goodness func-
tion deteriorates in high dimensional cases.
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 10

 100

 1000

 10000

 100000

 2  3  4  5

#
 a

c
c
e
s
s
e
s

dimensionality

SA
RA

(a) #IO

 0.1

 1

 10

 100

 1000

 10000

 100000

 2  3  4  5

ti
m

e
(m

s
)

dimensionality

Sample Time
Cluster Time

(b) CPU time

Figure 5: Efficiency vs. dimensionality

Figure 5 shows the efficiency measures as a function of
dimensionality. As dimensionality varies from 2 to 5, the
|S| increases dramatically because of the property of anti-
correlated distribution. The corresponding skyline sizes equal
to 57, 990, 7745, 36290 for dimensionalities 2 to 5 respec-
tively. Therefore, both # IO and CPU time rise linearly
with respect to dimensionality.

Table 4: The relative representative error

Dimensionality 2 3 4 5
Er(K, S) 0.09 0.39 0.64 0.86

NormEr(K, S) 0.06 0.23 0.32 0.38

Next, we vary the number of representatives k to explain
how this parameter affects the effectiveness of our algo-
rithm. The V (R(K)) is multiplied by the sampling size for
clearer display. As shown in Figure 6, the Quality(K,S)
and V (R(K)) of I-greedy almost remain constant as the
number of representatives increases. For SampleClus, the
Quality(K, S) and V (R(K)) are always greater than those
of I-greedy, and increase as more representatives are re-
turned.
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Figure 7: Efficiency vs. k
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Figure 8: Efficiency vs. cardinality

In Figure 7, we present the effect of k on the efficiency
measurements. As m equals to |S|/k, when the skyline set
is fixed, m decreases along with the increase of k. Therefore,
both of the random access times and sorted access times de-
crease accordingly. Similarly, we need to discover smaller
top-m skyline list for each sample, so the sampling time re-
duces since the sampling size keeps invariable. On the other
hand, the search space enlarges with respect to k, leading to
the growing of the clustering time.

The last set of experiments focuses on the scalability of
our algorithm as the function of cardinality. Although the
cardinality of the dataset increases, the related skyline sizes
are 773, 808, 936, 1101, 990 for cardinality 200K to 1M.
Figure 8 presents the result. The performance does not show
any significant changes since the major factor is the skyline
size, but not the dataset cardinality. The trend of the curve
is proportional to the number of skyline objects.

6.2 Real Data
In this section, we report results of experiments performed

on the NBA dataset. NBA includes 16399 nine-dimensional
objects. We denote each object as p(A1, A2, . . . , A9), rep-
resenting the regular season performance of a player from
1973-2008 on nine attributes: points per game (pts), re-
bounds per game (reb), assists per game (ast), steals per
game (stl), blocks per game (blk), assists to turnovers (a/t),
field goal percentage (fgp), free throw percentage (ftp) and
three points percentage (tpp). The skyline set of NBA con-
sists of 1024 players. Since the dataset’s properties are fixed,
we adjust γ, δ and k to measure the performance.



First, we show the quality of the results as a function of
γ and δ in Figure 9. Following the same setting of γ and
δ, the derived sampling size is the same as that of the syn-
thetic data. The values of # top objects, # replacements,
Quality(K, S) and V (R(K)) with respect to sampling size
are shown in figure 9. Although the robustness properties
are similar, there exist several distinctions due to the correla-
tions between NBA attributes. As such, the # top points is
fewer and the # replacements becomes larger. Furthermore,
the region sizes between different skyline objects are skew,
resulting in better Quality(K,S) and larger V (R(K)) when
compared to these measurements for the synthetic data.

Table 5: Sampling time vs. γ and δ

γ 0.1 0.2 0.3 0.4
Sampling time(ms) 2,782 2,106 1,717 1,420

δ 0.02 0.03 0.04 0.05
Sampling time(ms) 8,343 3,679 2,106 1,340
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Figure 9: Robustness vs. sampling size

Figure 10 displays the relationship between k and the ef-
fectiveness of the representatives. The V (R(K)) is multi-
plied by the sampling size for clearer display. The I-greedy
algorithm exerts no explicit relationship with the change of
k. On the other hand, the order-based representative sky-
lines present better Quality(K,S) as well as V (R(K)) in
comparison to distance-based representative skylines. Since
the NBA dataset has correlated character, the gain of the
two measures in SampleClus are not so significant by adding
more representatives.

Figure 11 shows the relationship between k and the effi-
ciency of the representatives. When k varies from 4 to 12,
the values of m are 256, 171, 128, 102, 85 respectively. Con-
sequently, except for clustering time in proportion to k, the
random access times, sorted access times and sampling time
decrease as k increases.

Table 6: The preference functions

Attributes
−−→
f1(·) (pts,

√
reb, ast2, stl2,

√
blk, a/t2, fgp, ftp, tpp)

−−→
f2(·) (pts, reb2, ast, stl, blk2, a/t, fgp,

√
ftp,
√

tpp)
−−→
f3(·) (pts, reb, ast, stl, blk, a/t, fgp, ftp, tpp)
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Figure 11: Efficiency vs. k

Table 7: The
−−→
f1(·) representatives

Player ID pts reb ast stl blk a/t fgp ftp tpp
2006 Nash 18 4 12 0.8 0.1 3 .53 .90 .45
1975 Jabbar 28 17 5 1.5 4.1 0.0 .53 .70 .00
1987 Bird 30 9 6 1.6 0.8 2.2 .53 .92 .41
1987 Jordan 35 5 6 3.2 1.6 1.9 .54 .84 .13
1991 Stockton 16 3 14 3.0 0.3 3.9 .48 .84 .41

Table 8: The
−−→
f2(·) representatives

Player ID pts reb ast stl blk a/t fgp ftp tpp
1980 Gilmore 18 10 2 0.6 2.4 0.7 .67 .70 .00
1975 Jabbar 28 17 5 1.5 4.1 0.0 .53 .70 .00
1989 Ewing 29 11 2 1.0 4.0 0.7 .55 .77 .00
1986 Jordan 37 5 5 2.9 1.5 1.4 .48 .86 .18
1974 Mcadoo 35 14 2 1.1 2.1 0.0 .51 .81 .00

Table 9: The distance-based representatives
Player ID pts reb ast stl blk a/t fgp ftp tpp
1989 Bogues 11 3 9 1.3 0.0 5.1 .48 .89 .19
1997 Rodman 5 15 3 0.6 0.2 1.6 .43 .55 .17
2003 Wallace 17 7 3 0.8 1.6 1.3 .44 .74 .34
2008 Diener 4 2 2 0.5 0.1 5.8 .41 .80 .39
1986 Jordan 37 5 5 2.9 1.5 1.4 .48 .86 .18

6.3 Case Study of Preference Elicitation
In this section, we further investigate the effect of prefer-

ence function and the process of hierarchical browsing. Both
these two factors exert an important influence on the out-
come of preference elicitation. The experiments are con-
ducted on the NBA dataset.

To begin with, we test how different monotonic functions
affect the result. Unlike the distance-based representative
skylines, the order-based representative skylines could vary
to reflect the underlying interest of different users. There-
fore, the user-defined function format could help him/her to
faster elicit preferences.

We illustrate three different monotonic functions in Table 6
to show the distinct perspectives on the NBA dataset. For

the function
−−→
f1(·), the user favors players who are compa-



(a) First level visualization

(b) Second level visualization

Figure 12: Example of Hierarchical Browsing

rable in attributes ast, stl and a/t, while
−−→
f2(·) could be a

good choice if the user prefers players with better reb and
blk. Comparing between Table 7 and 8, the five order-based

representative skylines of
−−→
f1(·) and

−−→
f2(·) are of noticeable

distinction. The former contains good assisters such as Nash
and Stockton, while the latter includes outstanding defend-
ers: Gilmore, Ewing and Macdoo. Moreover, taking ast for
instance, the average ast of representatives in Table 7 are
much higher than that in Table 8. Note that the output
changes according to monotonic function is totally different
from ranking based on specific function. The order-based
representative skylines achieve a tradeoff between accuracy
and heterogeneity, so the all-round players have the high
probability to be selected as the representatives, such as Jor-
dan and Jabbar. Besides comprehending the overall situa-
tion of the skyline set, users are likely to find desired objects
as well. However, the results of distance-based representa-
tive skylines, as shown in Table 9, are less satisfactory. Al-

though close to other skyline objects in Euclidean distance,
most of the representatives themselves are not quite impor-
tant. Furthermore, the result is fixed and unable to express
the difference between the preference functions.

As displayed above, the tabular view of result is not intu-
itive especially for high dimensional case. We thus visualize

the process of hierarchical browsing of
−−→
f3(·) using the ap-

proach presented in Section 5. Since we adopt the linear
function, the five representative players are averagely ex-
cellent. In Figure 12(a), the axes are ordered according to
highlighted representative Jabbar, whose strengths are blk
and reb. Also, the set of representatives are well separated
and covering large area on the weight space. For example,
the representative Stockton dominates distinct region com-
paring with Jabbar, which is reasonable because they are
totally different kinds of players. Following the highlight
representative, the re-sampling is performed and five new
representatives are shown in Figure 12(b). These represen-



tatives are all excellent defenders as the Jabbar in higher
level, nicely following the interest of the user. Note that one
object represents one regular season record of certain player,
so Jabbar appears twice in the new representative skylines
with the records in 1973 and 1977 respectively. Furthermore,
the ordering of attributes in the second figure is very close
to that in the first one, suggesting that the new representa-
tives have the similar strength as Jabbar. In summary, the
hierarchical browsing approach enables users to drill down
to the preferred region effectively, especially with the help
of our visualization tool.

7. CONCLUSION
In this paper, we have introduced the order-based repre-

sentative skylines, a novel concept that integrates the discov-
ery of representatives with order preference. Unlike previ-
ous work, we brought the preference function back into the
picture when determining representative skylines in order
to elicit the preference. Moreover, a hierarchical sampling-
clustering framework was developed based on the new no-
tion. To further consolidate this interesting framework, we
provided visualized view to guide the user’s refinement of the
result. The outcomes from an experimental study demon-
strated that our order-based representative skylines can pro-
vide more informative views of data.

As for future research, we expect to extend our approach
to improve the usability of the database system inspired by
Jagadish et al.[14]. By interacting with the representative
tuples and the visualization tool, users could explore and
perceive the semantic of the data in a more sophisticated
way. However, integrating the ordering with the tuple se-
mantics remains challenging. Furthermore, how to improve
the efficiency to handler huge dataset instead of skyline set
is definitely the other interesting area of future work.
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