
On Efficient Processing of Subspace Skyline Queries on High Dimensional Data

Wen Jin2 Anthony K. H. Tung1 Martin Ester2 Jiawei Han3

1School of Computing
Natl. Univ. of Singapore
atung@comp.nus.edu.sg

2School of Computing
Simon Fraser Univ.

{wjin, ester}@cs.sfu.ca

3Department of Computer Science
Univ. of Illinois at Urbana-Champagne

hanj@cs.uiuc.edu

Abstract

Recent studies on efficiently answering subspace skyline
queries can be separated into two approaches. The first fo-
cused on pre-materializing a set of skylines points in various
subspaces while the second focus on dynamically answering
the queries by using a set of anchors to prune off skyline
points through spatial reasoning. Despite effort to compress
the pre-materialized subspace skylines through removal of re-
dundancy, the storage space for the first approach remain ex-
ponential in the number of dimensions. The query time for
the second approach on the other hand also grow substan-
tially for data with higher dimensionality where the pruning
power of anchors become much weaker.

In this paper, we propose methods for answering subspace
skyline query on high dimensional data such that both pre-
materialization storage and query time can be moderated. We
propose novel notions of maximal partial-dominating space,
maximal partial-dominated space and the maximal equality
space between pairs of skyline objects in the full space and
use these concepts as the foundation for answering subspace
skyline queries for high dimensional data. Query processing
involves mostly simple pruning operations while skyline com-
putation is done only on a small subset of candidate skyline
points in the subspace. We also develop a random sampling
method to compute the subspace skyline in an on-line fash-
ion. Extensive experiments have been conducted and demon-
strated the efficiency and effectiveness of our methods.

1 Introduction
The skyline operator, which returns a set of tuples not

dominated by any other tuples, has widely been applied in
preference queries in relational databases. For example, given
a set of hotels with the attributes of price (price) and dis-
tance to the beach (distance). Hotel A dominates hotel B if
A.price ≤ B.price, A.distance ≤ B.distance, and strictly
A.price < B.price or A.distance < B.distance. The most
interesting hotels are called skyline hotels which are not better
by any other hotels in price and distance. Many algorithms
[4, 13, 15, 17, 18] have been developed to improve the effi-
ciency of answering skyline queries in large databases.

Among these earlier work of skyline queries, it is al-
ways assumed that all the attributes are involved in the sky-

line queries, that is, the dominating relationship is evaluated
based on every attribute of the database. However, in real
world applications, different users may have specific inter-
ests in different subsets of attributes. For example, a web-
based hotel information system often provides 10 attributes
of the hotel databases for customers to specify their desired
criteria in skyline queries such as price of room, price
of restaurant, hotel rank, chef level, size of room,
distance to beach, distance to downtown, distance to
airport, amount of tips, internet rate etc. Some users
may be only interested in price of room and distance to
beach, while some may prefer to price of room, distance
to airport and chef level.

Thus skyline queries are often performed in an arbitrarily
subspace according to users’ preferences. We will refer to
this type of query as Subspace Skyline Query(SS-query):

A B C E
p1 4 3 2 2
p2 5 1 1 2
p3 1 4 4 1
p4 3 5 5 1
p5 2 2 3 1

Table 1. A dataset

Subspace Skyline Subspace Skyline
∅ ∅ AC {p1, p2, p3, p5}
A {p3} AE {p3}
B {p2} CE {p2, p5}
C {p2} ABC {p1, p2, p3, p5}
E {p3,p4,p5} BCE {p2, p5}
AB {p2, p3, p5} ABE {p2, p2, p5}
BC {p2} ACE {p1, p2, p3, p5}
BE {p2, p5} ABCE {p1, p2, p3, p5}

Table 2. Subspace skyline objects

Example 1 For a dataset T1 of objects in Table 1, if a query
subspace is AB, the answer to SS-query with respect to sub-
space AB is {p2, p3, p5}, and the answer to SS-query to all
the subspaces of AB is {p2, p3, p5}, {p2},{p3} as shown in
Table 2.

1

Only a few of recent work involves SS-query and they can
be separated into two approaches. The first [16, 19, 21] fo-
cused on pre-materializing a set of skylines points in various
subspaces while second focus on dynamically answering the
queries by using a set of anchors to prune off skyline points
through spatial reasoning [20]. Despite effort to compress the
pre-materialized subspace skylines through removal of redun-
dancy, the storage space for the first approach remain expo-
nential in the number of dimensions. The query time for the
second approach on the other hand also grow substantially
for data with higher dimensionality where most spatial index
structures become ineffective.

In this paper, our goal is to develop an appropriate struc-
ture and efficient algorithms for answering SS-query for high
dimensional database. As the number of skyline points in
the full space can be large and many subspaces can contain
non-redundant skyline points, balancing the tradeoff between
storage for pre-materialized subspace skyline and query an-
swering efficiency become an important challenge.

Our solution in this paper is motivated by the observation
from pairwise objects comparisons. For simplicity, consider
a dataset T2 which consists of only object p1, p2 in Table 1,
assuming “smaller is better”, those dimensions where p1(p2)
is “better” than p2(p1) or “equal” are shown in Table 3 re-
spectively. It is very easy to infer the answers of SS-query
from here. For example, {p2} is the skyline in subspace B
or C since p2 is “better” in dimension B,C; {p1, p2} are the
skylines in AB,AC and ABC since p1 or p2 contributes at
least one “better” dimension in the corresponding subspace.

Dimensions where p1 is ”better” {A}
Dimensions where p2 is ”better” {B,C}
Dimensions where p1 equals to p2 {E}

Table 3. Value comparisons between p1 and p2

Extending this for dataset of more objects, we can com-
pute the “better” or “equal” subspaces for each pair of ob-
jects, and group together pairs that share all these subspaces,
into an index structure to efficiently facilitate the answering of
SS-query. Accordingly, we refer to these subspaces as domi-
nating space, dominated space or equivalent space.

Our contributions in this paper are as follows:

• We propose a framework for processing SS-query which
balance the extremes of high pre-materialization storage
cost or low query efficiency.

• We propose the notions of the maximal partial-
dominating space, maximal partial-dominated space
and maximal equality space based on the pairwise ob-
jects, and prove their equivalence to the corresponding
spaces based on pairwise full skyline objects.

• We build the maximal space index, MS-index on the
above spaces and develop efficient access methods for
SS-query in order to achieve a good trade-off between
the materialized space consumption and the query pro-
cessing cost.

• We conduct comprehensive experiments and demon-
strate our methods work well on datasets with different
distributions.

The rest of the paper is organized as follows. Section 2
presents the notions and properties of maximal partial dom-
inating, dominated and equality space on pairwise full space
skyline objects and proposes an efficient query method. Sec-
tion 3 presents a filtering-based scheme on subspace skyline
query. In Section 4, a method based on maximal space and
filtering-based scheme is proposed to answer dominating sub-
space query. We present our experimental results and related
work in section 5 and Section 6. We conclude the paper in
section 7.

2 Skyline Materialization
In this section, we will present an indexing scheme to sup-

port the answering of SS-query. As we have discussed in the
introduction, the ideal approach should achieve a good trade-
off between the space required and the query answering time.
Clearly, materializing the skyline for all subspace will be ex-
pensive in both these aspects especially for high dimensional
datasets in which many of the points are skylines. To intro-
duce our approach, let us denote a set of objects X in an
n-dimensional space D = (D1, . . . , Dn), where dimensions
D1, . . . , Dn are in the domain of numbers.

Definition 1. (Dominating Relationship) Given X , object
p ∈ X dominates another object q ∈ X , denoted as p � q, if
p.Di ≤ q.Di for (1 ≤ i ≤ n) and at least for one dimension
Di0 (1 ≤ i ≤ n), p.Di0 < q.Di0 . Correspondingly, we can
also say that q is a dominated object.

The definition above assume without loss of generality that
all the attributes are best minimized. In particular, a strict
dominating relationship which excludes equality relationship
is useful.

Definition 2. (Strictly Dominating Relationship) Given X ,
object p ∈ X strictly dominates another object q ∈ X , de-
noted as p � q, if p.Di < q.Di for (1 ≤ i ≤ n). Here, q is a
strictly dominated object.

Definition 3. (Skyline) Object p ∈ X is a skyline object if p
is not dominated by any other objects in X .

Definition 4. (Subspace skyline) A subset of dimensions
B ⊆ D forms a |B|-dimensional subspace of D. For an ob-
ject u in space D, the projection of u in subspace B, denoted
by uB , is a |B|-tuple (u.Di1 , . . . , u.Di|B|), where Di1 , . . .,
Di|B| ∈ B and i1 < . . . < i|B|.

The projection of an object u(u ∈ S) in subspace B ⊆ D
is in the subspace skyline (of B) if uB is not dominated by
any object wB in B for any other object w ∈ S. We call u a
subspace skyline object (of B)

Definition 5. (Partial-dominating Relationship) A set of
skyline objects S ⊆ X is given in full space D =
(D1, . . . , Dn), for any object p, q ∈ S, p is partial-
dominating q if under dimensions D′ ⊂ D, p.Dij

� q.Dij

for Dij
∈ D′. On the other hand, p is partial-dominated

2

by q if under D′′ ⊂ D, q.Dik
� p.Dik

for Dik
∈ D′′,

D′ ∩ D′′ = ∅.

Here D′ is called p’s partial dominating space, while D′′

is p’s partial-dominated space (or correspondingly q’s partial
dominating space). For example, B or C is a partial dominat-
ing(dominated) space for p2(p1) in Table 3. We say a partial-
dominating space D′ is maximized if there exists no other
space D∗ ⊃ D′ such that D∗ is a partial-dominating space.
In this case, D′ is called a maximal partial-dominating space
for p and q, adding any other dimension to D′ which turns
into D′∗ would violate the dominance of p � q in D′∗. For
example, BC is the maximal partial-dominating space for
p2 w.r.t p3, but in ABC and BCE, p2 and p3 cannot dom-
inate each other. Besides, there could exist duplicate values
in some subspaces, for example, p3.E = p4.E = p5.E = 1
equals each other in E dimension in Table 1.

Definition 6. (Equality Relationship) Given a set of skyline
objects S in full space D = (D1, . . . , Dn), for any skyline
object p ∈ D and any object q(could be a non skyline object),
p is equal to q w.r.t. D′′′ or if under dimensions D′′′ ⊂ D,
p.Dil

= q.Dil
for Dil

∈ D′′′.

Similar to previous definitions, D′′′ is called equality
space of p.

Lemma 2.1. Given a set of skyline objects S in full space
D = (D1, . . . , Dn), for any pair of objects p, q ∈ S,
the partial-dominating space D′, partial-dominated space D′′

and the equality space D′′′ of p are all maximized if and only
if D′ ⋃ D′′ ⋃ D′′′ = D.

Since any skyline object p in the full space is not dom-
inated by another skyline object, so the maximal partial-
dominating space for p is not empty. Given a set of sky-
line objects S in full space (D1, . . . , Dn), we can maintain
the maximal partial dominating space, maximal partial dom-
inated space and maximal equality space for any pair of ob-
jects p, q ∈ S. As the same maximal partial dominating
space, maximal partial dominated space and maximal equal-
ity space may correspond to multiple pairs of skyline objects,
these pairs of skyline objects can be grouped together. Each
maximal space can be indexed in an index called MS-index.

Definition 7. (MS-index) Each entry of MS-index is a triple
(t(D′), t(D′′), t(D′′′)) where D′ is the maximal partial dom-
inating space, D′′, the maximal partial dominated space, and
D′′′, the maximal equality space and (t(D′), t(D′′), t(D′′′))
denote the corresponding pair of tuples.

Example 2 For the 4-dimensional dataset shown in the Table
1, where p1, p2, p3, p4, p5 are five objects. The skyline objects
in each subspace are listed in Table 2, where p1, p2, p3, p5

are skyline in the full space {A,B,C,E}. For all pairs of
full space skyline objects, the maximal partial-dominating
spaces, the maximal partial-dominated spaces and the maxi-
mal equality spaces are listed as a MS-index in Table 4 where
there are 3 entries. For instance, in the entry (1), among (p1,
p3), (p2, p3), and (p2, p5), BC are the dimensions for p1,p2

to be dominating (darkened letters in the maximal partial-
dominating space column), while AE are the dimensions for

p3, p5 to be dominating (shown as darken letters in the maxi-
mal partial-dominated space).

Interestingly, we can derive the same property of subspace
skyline in [16] from the concept of maximal spaces.

Theorem 2.1. Any subspace skyline object must be either
a full space skyline object or an object in maximal equality
space which share the same values in this subspace with a full
space skyline object[16].

From the MS-index in Table 4, we note that for each en-
try, the maximal partial dominating space and maximal par-
tial dominated space always contain the same pair of objects
if both space are not empty. For example, in the first entry
D′ = BC �= ∅ and D′′ = AE �= ∅, both have the same
pair of objects (p1, p3), (p2, p3) and (p2, p5). Similar cases
occur in the second and third entry, where both space are not
empty and have the same pair of objects (p1, p5) and (p1, p2),
(p3, p5).

Lemma 2.2. Given an MS-index, for any entry E(t(D′),
t(D′′), t(D′′′)), if D′ �= ∅ and D′′ �= ∅, then t(D′) = t(D′′).

Lemma 2.2 show the fact that the the pair of full space sky-
line objects in the maximal partial dominating space and the
maximal partial domianted space are symmetric. As such, we
can reduce the storage cost for MS-index by only maintaining
pairwise skyline objects in one of these two spaces.

Definition 8. (Entry Invalided and Entry Acceptable)
Given a skyline object p in the full space D, a query sub-
space Qs, and an entry (t(D′), t(D′′), t(D′′′)) in the MS-
index. We say p is entry invalided by (t(D′), t(D′′), t(D′′′))
if p is found to be dominated by some object in Qs exclusively
based on D′, D′′ or D′′′. Otherwise p is entry acceptable for
(t(D′), t(D′′), t(D′′′)).

Intuitively, p is entry invalided by entry (t(D′), t(D′′),
t(D′′′)) if p can be pruned off as a potential skyline object
in the query space Qs using the entry. For example, given
query subspace A, for the first entry in the MS-index, since
A ⊂ AE which is a maximal partial dominated space for p1

and p2 respectively, so p1 and p2 cannot become skyline in
A. Generally, we have the following lemma.

Lemma 2.3. Given a skyline object p in the full
space D, a query subspace Qs, and an entry
(t(D′), t(D′′), t(D′′′)) in the MS-index. p is entry in-
validated by (t(D′), t(D′′), t(D′′′)) only if: (1) Qs∩D′ = ∅,
Qs ∩ D′′ �= ∅, or; (2) Qs ∩ D′′ = ∅, Qs ∩ D′ �= ∅, or;

Lemma 2.3 is very useful for answering SS-query. That is,
when checking each entry of MS-index, if any maximal space
(dominated or domination) in the entry is a superset of Qs,
then there must exist at least one full space skyline point in
the entry which cannot become a skyline in Qs.

Lemma 2.4. Given any skyline object p in the full space D,
a query subspace Qs, and an entry (t(D′), t(D′′), t(D′′′)) in
the MS-index. Entry (t(D′), t(D′′), t(D′′′)) cannot exclude
p as a candidate skyline object in Qs if (1) Qs ∩ D′ �= ∅ ,
Qs ∩ D′′ �= ∅ or (2) Qs ⊆ D′′′.

3

Maximal-partial dominating space Maximal-partial dominated space Maximal equality space

1 {B,C}
p1 <p3

{A,E}
p3<p1

p2<p3 p3<p2

p2<p5 p5 <p2

2 {C} p1<p5 {A,B,E} p5<p1

3 {A} p1<p2 {B,C} p2<p1 {E} p2=p1

p3< p5 p5<p3 p3=p5=p4

Table 4. Maximal space index(MS-index)

Lemma 2.4 illustrates a very important property which can
be usedd in answering SS-query. That is, given an entry in
the MS-index, if both D′ and D′′ in the entry have at least
one common dimension with Qs, then the detailed informa-
tion in the entry can play no part in pruning off any potential
skyline candidate from the subspace Qs. The intuition here is
that all pairs of skyline points in this entry will be incompa-
rable in Qs since they would dominate each other in at least
one dimension of Qs. For the same reasoning, if Qs is a sub-
set of D′′′, then all pairs of objects in the entry are also not
comparable in Qs and thus need not be accessed.

Such an approach will help to save much cost in compar-
isons since we do not have to access the pairs of objects in
entry. For example, if Qs = BE and given the first entry in
Table 4, since BC match Qs on B while AE match Qs on
E, the pairs of skyline objects in the first entry cannot domi-
nate each other and no potential skyline points in Qs can be
pruned off by this entry.

While Lemma 2.3 and Lemma 2.4 help to define whether
a single entry is useful for pruning off potential skyline points
in a particular query space Qs, we still need to consider mul-
tiple entries when computing the skyline points in a subspace.
Next, we will show that if there exists a potential skyline point
is entry invalidated with one of the entries, then it can never
be a skyline point in the query subspace. On the other hand, it
is still not guarantee to be a skyline point in Qs even if it is en-
try acceptable with one of the entry. For example, if the query
subspace is BE, then the first entry in Table 4 has no effect
on the full space skyline objects, say p1. While for the second
entry, p1 is dominated in ABE so p1 is finally removed.

Theorem 2.2. Given the MS-index, for any query subspace
Qs, we have the following properties:

1. All full space skyline objects which are entry acceptable
w.r.t. to Qs for all the entries in the MS-index, are skyline
objects in Qs.

2. All full space skyline objects which are entry invalidated
w.r.t. to Qs for some entries of the MS-index, are not
skyline objects in Qs.

3. Let S be the set of skyline in subspace Qs based on (1)
and (2) above. All objects which are equal in values for
all dimensions in Qs to some objects in S will also be
skyline objects in subspace Qs.

3 Query Processing Based on the MS-Index
We next look at the actual processing of a SS-query using

the MS-Index.

ABCE−A−BC=E

P1 P3 P2 P3 P2 P5BC AE

C ABE P1 P5

A BC P1 P2 P3 P5 =

maximal partial dominating space: M1

maximal partial dominated space: M2

maximal equality space=D−M1−M2

P3 P5 P4 P1 P2

Figure 1. MS-index Structure

3.1 MS-index Structure

As presented in Section 3, the MS-index is built by ma-
terializing the maximal partial dominating space, the maxi-
mal partial dominated space and the maximal equality space
of pairs of full space skyline objects. Nevertheless, the MS-
index depicted in Table 4 needs to be further refined since
unlike the standard relational table, multiple pairs of objects
are in each entry.

To address these issues, we modify the index structure as
shown in Figure 1. We use an array of list to maintain the
maximal partial dominating spaces and the maximal partial
dominated spaces of different pairs of full space skyline ob-
jects. Each entry links to its full space skyline objects which
are stored pairwise and linked node by node.

As a rule, given a pair of objects (a, b) in an entry, the
first object a is always better than the second object b in the
maximal partial dominating space, and b is better than a in the
maximal partial dominated space. For example, p1 � p3 in
BC while p3 � p2 in AE. The equality space can be inferred
by the complementary set of the maximal partial dominating
set and the maximal partial dominated set. For example in the
3rd entry of MS-index, the maximal equality space E is the
complementary space of A and BC. If equality space exists,
we can represent it after the nodes of the other two spaces,
by inserting a node with a label “=” (is linked by (p3, p5) in
Figure 1), and links to the corresponding full space skyline
objects in the equality space with increasing values (starting
from (p3, p4, p5)) then (p1, p2), i.e. p3 = p4 = p5 < p1 =
p2).

To efficiently maintain the entries in the MS-index, some

4

recent work for indexing transaction data [1, 11] can also be
applied to indexing the maximal space of each of pair of full
space skyline objects.

3.2 Answering SS-query

With the support of the MS-index, we start with the set sky-
line objects in the full space, and simply check the entries in
the MS-index. According to Theorem 2.2, those skyline ob-
jects which satisfy condition (1) in the theorem are kept while
skyline objects which satisfy condition (2) in the theorem are
pruned. Finally, those objects that satisfy (3) are added.

We first give two concrete examples to illustrate the main
idea of our algorithm for answering SS-query.

Example 3 Suppose the query space Qs = {BCE}. We
access the first entry and find that both maximal partial-
dominating space ({BC} ∩ {BCE} = {BC}, and max-
imal partial-dominated space ({BCE} ∩ {AE} = {E}
have non-empty intersection with Qs. Based on Lemma
2.4, we know they do not affect the potential candidate sub-
space skyline point. The result is the same for the sec-
ond entry in which both maximal partial-dominating space
({C} ∩ {BCE} = {E}) and maximal partial-dominated
space ({BCE} ∩ {ABE} = {BE} have non-empty inter-
section with Qs. Now, consider the third entry. Only the
maximal partial-dominated space ({BC} ⊂ {BCE}, and
maximal equality space {E} ⊂ {BCE}). Since p1, p3 are
dominated by p2, p5 in {BC}, and equal with p2, p5 in {E},
so p1, p3 are pruned, and the subspace skyline objects in
{BCE} are p2, p5.

Sometimes, the subspace skyline objects may not be a
member of the full space skyline objects, but from those
objects which satisfy (3) in Theorem 2.2.

Example 4 Suppose the query space Qs = {E}. From both
the first entry and the second entry, based on Lemma 2.3,
the maximal partial-dominated spaces ({AE} and {ABE}
are both supersets of E which will pruned off p1 since it is
dominated in E. Now the candidates are p2, p3, p5. Among
the third entry, only the maximal equality space {E}) needs
to access. Since p1 = p2 in E, so p2 is pruned off too. On
the other hand, since p3 = p5 = p4 in E, P4 will be a skyline
object in E.

The pseudo-code of SS-query method is as shown as Al-
gorithm 1.

The algorithm sequentially scans the index once, and this
is done efficiently by (1) performing a low-cost “must do”
pruning based on Lemma 2.3 and (2) saving a non-trivial cost
of evaluating detailed pairwise skyline objects according to
Lemma 2.4. Although the worst case of space cost is O(m2)
where m is the number of full space skyline objects, it does
not need frequent I/Os described previously and thus leads to
a rather good performance. Furthermore, when the dimen-
sionality is high, we propose several methods in next section
in order to achieve a good trade-off between query processing
time and index space.

Algorithm 1 MS-Index Lookup Method
Input: A MS-index build on full space skyline S, query sub-
space Qs

Output: Subspace Skyline in Qs

Method:

1. i = 1;
2. WHILE NOT EOF MS-index DO
3. Ei = (t(D′), t(D′′), t(D′′′));
4. IF {Qs ∩ D′ = ∅, Qs ∩ D′′ = Qs} OR {Qs ∩ D′′ = ∅,

Qs ∩ D′ = Qs} THEN
5. Prune objects which are “bad” in t(D′) or

t(D′′);
6. ELSE IF {Qs ∩ D′ �= ∅} AND {Qs ∩ D′′ �= ∅} THEN
7. i=i+1;
8. ELSE IF {Qs ∩ D′′′ �= ∅, Qs ∩ D′ �= ∅} OR

{Qs ∩ D′′′ �= ∅, Qs ∩ D′′ �= ∅} THEN
9. Prune objects which are “bad” in

t(D′) or t(D′′)
10. Add non skyline objects in t(D′′′)

with the same values as objects that
are “good” in t(D′) or t(D′′);

11. i=i+1;
12. Output objects S as subspace skyline objects in Qs;

BC

ABC ABE BCE

AB AC BE AE CE

B E

ACE

ABCE

A C

BC AE

C ABE

maximal partial dominated space: M2
maximal partial dominating space: M1

P1 P3 P2 P3 P2 P5

A BC

P1 P5

maximal equality space=D−M1−M2

P1 P2 P3 P5 = P3 P5 P4 P1 P2

ABCE−A−BC=E

Figure 2. Hierarchical Navigation in MS-index

3.3 Employing Hierarchical Navigation
The proposed Algorithm 1 for SS-query needs a scan of

the index. To reduce the number of entries being accessed,
we introduce a hierarchical lattice structure in order to facil-
itate the search. Figure 2 shows the subspaces of ABCE in
a lattice where the nodes corresponding to the maximal par-
tial dominating space, maximal partial dominated space (in
bold), point to the entries with the same subspaces (seen the
nodes with dashed arrows). In this case, when the query sub-
space Qs is given, we can avoid accessing those entries which
are entry acceptable. Basically, we only need to check the en-
tries pointed by Qs and those pointed by Qs’s superset if they
have links to the entries. Note that in the whole lattice, only
nodes ABE, BC, AE and C have links to the entries in the
index. For example, if Qs = BC, it has two links to the
1st and the 3rd entry respectively, while none of its superset
(BCE,ABC) has link to the 2nd entry or any other entry. So
it only access two entries instead of three. On average, it can
reduce the number of entry accesses to a large extent. Based
on this hierarchical navigation, the algorithms in subsection
3.1 and 3.2 would substantially improve the performance.

5

4 Filtering based on Samples
The previous method mainly focuses on materializing the

maximal partial dominating spaces,maximal partial domi-
nated spaces and maximal equality spaces between pairs of
full space skyline objects into a MS-index, and using it to an-
swer SS-query However, as the materialized size is determine
by the number of skyline objects in the full space, the size of
the MS-index can grow substantially at high dimensionality
where the number of full space skyline objects increase. To
overcome this drawback, in this section we propose several
methods which make use of a sample of the full space sky-
line points to filter off most of the non-skyline points in the
queried subspace Qs before using any state-of-the-art skyline
computation algorithm to identify the real skyline objects in
Qs. Such an approach uses only a constant size space. We
will first present the basic filtering scheme before looking at
a hybrid one which combine the basic filtering scheme with
the maximal space approach we took in previous section.

4.1 Basic Filtering Scheme
Obviously, we wish to pick some objects with high domi-

nating capacity in the queried subspace to prune off as many
dominated objects as possible. This will reduce the number
of data accesses and comparisons among objects. Motivated
by the property in Theorem 2.1, we developed a sampling
method to give strong pruning power with limited process-
ing.
Sampling full space skyline objects The basic idea of the
first sampling approach is as follows. We first randomly sam-
ple k objects from the full space skyline objects S as initial
“seeds” in each subspace. Since any subspace skyline ob-
ject is either a full space skyline object or an object in max-
imal equality space which have the same values in the sub-
space with a full space skyline object, the chosen “seeds”
are most likely to have high dominating capacity compared
with objects that are not in the skyline. After one scan of
the database, each object is compared with the chosen k full
space skyline objects w.r.t. the query subspace, and many
non skyline objects will be pruned off. Afterwards, any ex-
isting skyline computing algorithm such as DC(divide-and-
conquer) method [12] can then be applied in the remain can-
didates to obtain the skyline in the subspace

Several criterions are required during the sampling step:
(1) we prefers to choose objects with smaller values in the
dimensions of the queried subspace which will more likely
to dominate more points in Qs; (2) the k full space skyline
objects are not dominated by each other in subspace Qs. To
achieve (1), we can select those full space skyline objects with
small average values over all attributes. For (2), we can first
obtain k samples satisfying (1), then if some of them are dom-
inated by the some of the remaining k samples, we re-sample
to replace those that are dominated until (2) is satisfied or ex-
ceed the user specified number of iterations.

Each of the k full space skyline objects (usually k � |X|),
can be see as a temporary subspace skyline object in Qs.
Other full space skyline objects are added in as candidate sky-
line object in Qs only if they are not dominated by these k
objects in Qs. We have the following lemma:

Lemma 4.1. No skyline object in the subspace Qs will be
pruned off by the filtering.

For objects which pass through the initial filtering, a sky-
line computation algorithm will be applied on these candi-
dates to remove those that are not in the skyline of Qs.

Lemma 4.2. All false skyline candidates will be removed at
the end of the skyline computation on the candidates.

The pseudo-code for the sampling-based subspace skyline
algorithm shown in Algorithm 2.

Algorithm 2 A Sampling-based Subspace Skyline Method.
Input: a set of full space (D) skyline S, query subspace Qs

Output: subspace skyline in Qs.
Method:

1. Sample k objects S′ ⊆ S ⊆ X which not dominate each
other in Qs;

2. Label ’skyline’ for k objects in Qs;
3. FOR each object xi ∈ X DO
4. IF any ’skyline’ object s(∈ S′) � xi THEN
5. Prune xi from X;
6. Apply DC algorithm to X to find skyline objects SS

in Qs;
7. Output SS;

This method only need a storage cost of O(m) where m is
the number of skyline in full space, and compute subspace
skyline on-the-fly. The runtime complexity is O(MlogM)
where M is the number of objects which remain in the sub-
space after pruning. In practice, M << N .
Sampling entries in MS-index The difference between the
second sampling approach and the first is that we choosing
k entries from the MS-index and using them for pruning off
any potential skyline point in a subspace skyline query. Since
the maximal spaces of different pairwise full space skyline
objects in MS-index imply “good” or “bad” situation in the
corresponding subspaces, so the chosen “seeds” must contain
the skyline objects in some subspaces. After comparing the
dataset with the chosen k entries w.r.t. the query subspace,
many non-skyline objects will be pruned off as well. The sub-
sequent processing is similar to the first approach by apply-
ing DC (divide-and-conquer) method to the pruned dataset
to obtain the subspace in the subspace as described in Algo-
rithm 2, and here we omit the pseudo-code. Typically we can
randomly sample k entries or choose k representative entries.
For example, those entries whose union of maximal spaces
can cover a larger dimensionality will be chosen with a high
priority since the query subspace will most probably be con-
tained in some maximal space or share some dimensions with
these spaces, thus the properties in previous section can be
used.

4.2 Hybrid Filtering Scheme
We have so far proposed two methods for answering SS-

query. Basically, these two methods reflect the different re-
quirements on materialized space and the query processing
cost. In this section, we develop a method which combines

6

the features of previous two methods, and aim to keep a good
trade-off between the materialized space and the query an-
swering cost.

Intuitively, we wish to keep the pairs of full space skyline
objects in the corresponding entries, if the number of nodes
in the list is small (say, if under the a threshold c). While for
those entries which contain a large number of skyline objects
pairs(say, if above a threshold c), we sample k full space sky-
line objects and store them in the list as “seeds”. Now, the
MS-index has been modified into a hybrid MS-index. For an-
swering SS-query , we also modify the approach in Section 2
to quickly retrieve subspace objects: if the queried subspace
involves k samples full space skyline “seeds”, the properties
described in the basic filtering scheme can help to prune full
space skyline objects in the queried subspace skyline or add
new objects to the queried subspace skyline.

The basic idea of the hybrid materialization-filtering sub-
space skyline method is as follows. We randomly sample k
objects from the full space skyline objects S as initial “seeds”
in the subspace for entries in the MS-index which contain a
large number of full skyline objects pairs, while entries which
small number of skyline pairs remain unchanged.

The difference between this and the method in Section 2 is
that for those subspace which maintain only the k full space
skyline objects, we only need to compare them with other
full space skyline objects instead of the dataset. Similarly,
any existing skyline computing algorithm can be applied in
the pruned full space skyline objects to identify the subspace
skyline in Qs.

The pseudo-code for the hybrid-materialization-filtering
subspace skyline algorithm is shown as Algorithm 3.

Algorithm 3 A Hybrid-Materialization-Filtering Method
Input: A hybrid MS-index, a set S of full space skyline ob-
jects, query subspace Qs

Output: Subspace Skyline in Qs

Method:

1. i = 1;
2. WHILE NOT EOF hybrid MS-index DO
3. Ei = (t(D′

i), t(D
′′
i), t(D′′′

i));
4. IF {Qs ∩ D′ = ∅,Qs ∩ D′′ = Qs} OR {Qs ∩ D′′ = ∅,

Qs ∩ D′ = Qs} THEN
5. IF D′ OR D” has a small size THEN
6. Access the pairs of objects in D′ OR D′′;
7. ELSE apply the Sample-based Algorithm 4.1

to find skyline in D′ or D′′;
8. IF p ∈ S is dominated in Qs THEN
9. Prune p from S;
10. ELSE IF {Qs ∩ D′′′ = Qs, the objects which p ∈ S

shares the same values in Qs are not
skyline in Qs} THEN

11. Prune p from S;
12. ELSE IF {Qs ∩ D′′′ = Qs, the objects SS

which p ∈ S shares the same values
in Qs are subspace skyline in Qs} THEN

13. Add s ∈ SS to S;
14. i=i+1;
15. Output objects S as subspace skyline objects in Qs;

The storage cost of hybrid method is O(|EL| ·k + |Es| · c)
where |EL| is the number of entries with a large number of
pairwise full space objects, |ES | is the number of entries with
a small number of pairwise full space objects, and c is the
upper bound threshold of the small number of pairwise full
space objects. The runtime is O(|L| + MlogM) where |L|
is the total length of index and M is the number of unpruned
objects in |EL| entries.

5 Related Work
The skyline computation originates from the maximal vec-

tor problem in computational geometry. which was proposed
by Kung et al[12], and a set of algorithms were developed
for variants of this problem. Basically, the skyline in com-
putational geometry always involves in datasets which are
not very large, and can only be suited to the main memory.
In [4], Borzsonyi et al. introduce the skyline operator over
large databases, and also propose a block-nested loops(BNL)
method and a divide-and-conquer method.

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

R
un

tim
e(

se
c)

Cardinality(x k)

M-All
MS-Index
Sampling

Hybrid
Skyey

SubSky
Scratch

(a) Independent

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100

R
un

tim
e(

se
c)

Cardinality(x k)

M-all
MS-Index
Sampling

Hybrid
Skyey

SubSky
Scratch

(b) Anti-correlated
Figure 3. Time vs Size

In [18], the authors proposed two progressive skyline com-
puting methods. The first method uses bitmap to map each
object to a m-bit vector, and then identify whether an ob-
ject is in skyline. The second method introduces the spe-
cialized B-tree for each combination list of dimensions that
a user might be interested in. Then the algorithm loads the
first batch of each list, and finds the ones not dominated by
any of the already-found skyline objects into the skyline list.
Kossmann et al. present an online algorithm NN based on
nearest neighbor search, which gives a big picture of the sky-
line very quickly in all situations [13]. Balke et al. [3, 2]
study skyline computation in web information systems, ap-
plying the ”threshold” algorithm of [8]. The sort-first-skyline
(SFS) [7] sorts the input data according to a (monotone) pref-
erence function, after which the skyline can be found in an-
other pass over the sorted list. Papadias et al. proposed a pro-
gressive algorithm to find skyline with optimal times of node
accesses[17] with the help of typical R-tree indexes. Tan et.al
[5] proposed layered skyline-based methods to compute sky-
line with partially-ordered attributes.

Recent skyline study include: [19] studies the problem
of computing the skylines in all subspaces and develop ef-
ficient algorithms, and [16] explores the structure of skylines
in subspaces, and uses the concepts of skyline groups and
decisive subspaces to capture the semantics of subspace sky-
lines. Both methods in [19] and [16] compute skylines for
every subspace, and interestingly, both studies suggest that
a top-down depth-first search framework may favor efficient
computation. Lin et al. [15] consider the skyline maintenance

7

over data streams. Godfrey et.al. based on the complexity
and performance analysis of existing skyline algorithms, pro-
posed a scan-based skyline algorithm LESS which seemingly
more naive, but is much better behaved in practice[9]. Zhang
et. al. proposed a notion of strong skyline[22] points in high
dimensional data, and also developed efficient algorithms.

6 Experiments
In this section, we conducted experiments to compare the

performance of our methods using different types of datasets.
We evaluated the efficiency and the scalability of the pro-
posed methods in term of the cardinality and dimensionality
of the datasets. All methods proposed in this paper were im-
plemented using Microsoft Visual C++ V6.0, including max-
imal space indexing method (denote as MS-Index), basic fil-
tering scheme on samples (denote as Sampling), and hybrid
scheme (denote as Hybrid). For both the sampling and hybrid
scheme, we set k, the number of samples or “seeds”we used
for pruning to be around 5% of the full space skyline.

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30

R
un

tim
e(

se
c)

Dimension

M-all
MS-Index
Sampling

Hybrid
Skyey

SubSky
Scratch

(a) Independent

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30

R
un

tim
e(

se
c)

Dimension

M-all
MS-Index
Sampling

Hybrid
Skyey

SubSky
Scratch

(b) Anti-correlated
Figure 4. Time vs Dimension

For the purpose of comparison, we also implemented the
method in [16] (denote as Skyey) which materializes skyline
groups and their signatures, another subspace skyline method
Subsky[20]1 which is based on transforming multi dimen-
sional data to 1D values, and indexing the dataset with a B-
tree, a naive baseline method which materialize skylines in
every subspace (note as M-all method), and a method which
directly computing the subspace skyline from scratch for the
chosen subspace (Scratch). We also obtain the algorithm for
compressed skyline cube kindly given to us by the authors
[21], but the algorithm was unable to run beyond a dimen-
sionality of 7 making it impossible for us to compare again
their result for high dimensional data. Due to the limitation
in space, interesting readers are referred papers for details.
Experiments were conducted on a PC with an Intel Pentium 4
1.6 GHz CPU, 512MB main memory and a 40 GB hard disk,
running the Microsoft Windows XP Professional Edition op-
erating system.

Using the data generator provided by the authors of [4], we
generated two types of data sets as follow: (1) Independent
data sets where the attribute values of records are uniformly
distributed; (2) Anti-correlated data sets where if a record is
good in one dimension, it is unlikely to be good in other di-
mensions. We suppressed experiments on a third type of dis-
tribution called correlated data as they are much more simple

1As SubSky performance is heavily dependent on the number of anchors
being selected, we always vary such a number and select the result that give
the best average performance

to process and did not bring about significant difference be-
tween various algorithms. For each type of data distribution,
we generated data sets with different sizes (from 10, 000 to
100, 000 tuples) and with dimensionality varying from 10 to
30. We investigate different aspects of the methods mainly
in terms of querying time, pre-processing cost and storage
space.
•Query Time Comparisons We compare the query response
time of the subspace skylines by taking average over ran-
domly selected subspace.

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000
 22000

 0 5 10 15 20 25 30

P
re

-p
ro

ce
ss

in
g

tim
e(

se
c)

Dimension

M-all
MS-Index
Sampling

Hybrid
Skyey

SubSky

(a) Independent

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30

P
re

-p
ro

ce
ss

in
g

tim
e(

se
c)

Dimension

M-all
MS-Index
Sampling

Hybrid
Skyey

SubSky

(b) Anti-correlated
Figure 5. Pre-processing

We first fix the dimensionality of the datasets as 20, and
test the query time in varying with different cardinalities of
the datasets from 10,000 to 100,000 tuples.

Figure 3(a) and Figure 3(b) show the results in the case
of independent data and anti-correlated data respectively.
Clearly, except for the baseline M-all method, our pairwise
materialization method MS-index achieves better query re-
sponse time than the remaining methods. Hybrid ranks third
in query time and Skyey method is the fourth (note that MS-
index only uses 1/3 to 1/2 the query time compared to Skyey).
SubSky is slower than Sampling since it relies on the k-means
technique and it is difficult to find meaningful clusters in high
dimensions. As such, the corresponding query does not per-
form well for high dimensional(> 5) data. Scratch is the
slowest among all methods.

 0

 2e+008

 4e+008

 6e+008

 8e+008

 1e+009

 1.2e+009

 1.4e+009

 0 20 40 60 80 100

S
pa

ce
(n

um
be

r
of

 tu
pl

es
)

Cardinality(x k)

M-All
MS-Index
Sampling

Hybrid
Skyey

SubSky

(a) Independent

 0

 2e+008

 4e+008

 6e+008

 8e+008

 1e+009

 1.2e+009

 1.4e+009

 1.6e+009

 0 20 40 60 80 100

S
pa

ce
(n

um
be

r
of

 tu
pl

es
)

Cardinality(x k)

M-all
MS-Index
Sampling

Hybrid
Skyey

SubSky

(b) Anti-correlated
Figure 6. Space vs Size

Among the two data sets, the query time on the indepen-
dent datasets is always faster than the computation on the
anti-correlated datasets. We also evaluated the query time by
varying the number of dimensions from 10 to 30, with a fixed
cardinality of 100,000 tuples. Figure 4(a) and Figure 4(b)
show the results for independent and anti-correlated datasets
respectively. We observe similar rankings in runtime from
Figure 3(a) and Figure 3(b).

In particular, our MS-index method is most efficient and
scalable with respect to the dimensionality comparing to the
baseline M-all. For other methods, it still achieves significant
gains in query time. For example, it saves over 100 seconds
over Skyey whenever dimensionality reaches 15.

8

From the query point of view, all methods provide quick
responses to the query when the size of the dataset is small.
As the size of the data increases, the materialization of maxi-
mal space MS-index), the materialization of skyline group and
signatures (Skyey) and the materialization of partial maximal
space and partial sampling full space skyline objects (Hybrid)
are still efficient.
• Pre-processing Time To test the efficiency of pre-
processing, we compare the pre-processing time of the
above five methods for both independent datasets and anti-
correlated datasets.

Specifically, the components of pre-processing time for in-
dividual methods are: (1) MS-Index need (a) compute a set of
full space skyline objects, and (b) materialize the maximal
partial dominating, dominated and equality space for every
pair of full space skyline objects; (2) Sampling method need
to compute a set of full space skyline objects, and choose k
full space skyline objects as “seeds” in every subspace; (3)
Hybrid method need compute a set of full space skyline ob-
jects, and choose k full space skyline objects as “seeds” in
some subspaces, and compute pairwise full skyline objects in
some subspaces; (4) Skyey method need to compute a set of
full space skyline objects, and compute skyline group and sig-
nature in every subspace; (5) SubSky need to find multiple an-
chors and transform the dataset into B-tree (6)M-all method
need compute skyline objects in every subspace. We fix the
cardinality of the datasets to 100,000 tuples, and vary the di-
mensionality of the datasets from 10 to 30.

Figure 5(a) and Figure 5(b) show that Sampling method
takes the least pre-processing time since it only requires the
information of full space skylines, and the time used in sam-
pling for each subspace is a constant O(k). Hybrid method
uses less time than MS-index because it does not need to com-
pute all the pairwise relationship. SubSky method is ranked
the third in pre-processing time and MS-index is the fourth.
Skyey needs more time due to pre-computing the skyline
group and signature [16] as well as finding subspace skyline
objects. Obviously, M-all is the slowest since it repeats the
same routine of skyline computing in 2d subspaces (cannot
draw its entire curve when the dimensionality≥ 10 since its
values are too big).
• Materialized Space Comparisons We also evaluate the
space needed by the above five approaches for the materi-
alization of the information for SS-query.

 0

 1e+008

 2e+008

 3e+008

 4e+008

 5e+008

 6e+008

 7e+008

 0 5 10 15 20 25 30

S
pa

ce
(n

um
be

r
of

 tu
pl

es
)

Dimension

M-All
MS-Index
Sampling

Hybrid
Skyey

SubSky

(a) Independent

 0

 1e+008

 2e+008

 3e+008

 4e+008

 5e+008

 6e+008

 7e+008

 8e+008

 9e+008

 1e+009

 0 5 10 15 20 25 30

S
pa

ce
(#

 o
f t

up
le

s)

Dimension

M-all
MS-Index
Sampling

Hybrid
Skyey

SubSky

(b) Anti-correlated
Figure 7. Space vs Dimension

We first fix the dimensionality of the datasets as 20, and
observe the materialized space in varying with cardinalities
of the datasets from 10000 to 100000 tuples. Furthermore,
we test the materialization space in the case of varying the

dimensions from 10 to 30, with a fixed cardinality of 100,000
tuples. Figure 6(a) and Figure 6(b) show the results of for in-
dependent and anti-correlated datasets respectively. As Sam-
pling method basically computes the subspace skyline in an
on-line fashion, so it need to materialize the full space sky-
line objects, while sampling k “seeds” in each subspace only
occupies constant space cost. Likewise, the space required
for SubSky is rather small (although more than Sample) since
it only take up space for a B+ tree. MS-index on the other
hand is comparable Skyey in space consumption. The distri-
bution of space requirement is similar in Figure 7(a) and Fig-
ure 7(b), but the materialization size of each method becomes
larger. If the dimensionality is larger than 15, the material-
ization storage of Sampling, Hybrid, MS-index, SubSky and
Skyey increases as well respectively, but each is scalable to
the increased dimension, except for M-all method.

Over all the above comparisons, we conclude that the
pure MS-index method and Hybrid method provide the best
trade-off between query time, pre-processing time and stor-
age space.

7 Conclusions
To improve response time in answering subspace skyline

queries, the materialization approach is preferable. In this
paper, we first propose a novel notion of the maximal partial-
dominating, partial-dominated and equality space of pairs
of skyline objects in the full space. Instead of performing
any existing skyline computing algorithms, the query pro-
cessing only involves simple operations of keeping, pruning
full space skyline objects to the queried subspace skyline or
adding new objects to the queried subspace skyline. We also
develop an efficient random sampling-based method to com-
pute the subspace skyline. In the future work, we plan to de-
velop algorithms on subspace skyline integrating with some
knowledge discovery operation such as clustering.

References

[1] Charu C. Aggarwal, Joel L. Wolf, Philip S. Yu. A New Method
for Similarity Indexing of Market Basket Data. In SIGMOD
1999

[2] W. Balke, U. Gntzer Multi-objective Query Processing for
Database Systems. In VLDB 2004

[3] W.-T. Balke, U. Güntzer, J. X. Zheng. Efficient Distributed
Skylining for Web Information Systems. In EBDT 2004.

[4] S. Borzsonyi, D. Kossmann, K. Stocker. The Skyline Operator.
In ICDE 2001.

[5] C. Y. Chan, P. K. Eng, K. L. Tan. Stratified Computation of
Skylines with Partially-Ordered Domains. In SIGMOD 2005

[6] C.-Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and
Z. Zhang. Finding k-dominant skylines in high dimensional
space. In SIGMOD, pages 503–514, 2006.

[7] J. Chomicki, P. Godfrey, J. Gryz, D. Liang. Skyline with pre-
sorting. In ICDE 2003.

[8] R. Fagin, A. Lotem, M. Naor. Optimal aggregation algorithms
for middleware. In PODS 2001.

9

[9] P. Godfrey, R. Shipley, J. Gryz. Maximal Vector Computation
in Large Data Sets. In VLDB 2005

[10] Jon M. Kleinberg, Christos H. Papadimitriou, Prabhakar
Raghavan. A Microeconomic View of Data Mining. Data Min.
Knowl. Discov. 2(4): 311-324 (1998)

[11] Q. Jing , R. Yang , P. Kalnis , A. K. H. Tung. Localized signa-
ture table: fast similarity search on transaction. data In CIKM
2004

[12] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the
maxima of a set of vectors. In JACM, 22(4), 1975.

[13] D. Kossmann, F. Ramsak, and S. Rost. Shooting Stars in the
Sky: An Online Algorithm for Skyline Queries. In VLDB
2002.

[14] C. Li, B. C. Ooi, A. K. H. Tung, and S. Wang. Dada: a data
cube for dominant relationship analysis. In SIGMOD Confer-
ence, pages 659–670, 2006.

[15] X. Lin, Y. Yuan, W. Wang, H. Lu. Stabbing the Sky: Efficient
Skyline Computation over Sliding Windows. In ICDE 2005

[16] J. Pei, W. Jin, M. Ester, Y. Tao. Catching the Best Views of
Skyline: A Semantic Approach Based on Decisive Subspaces.
In VLDB 2005

[17] D. Papadias, Y. F. Tao, G. Fu and B. Seeger. An Optimal and
Progressive Algorithm for Skyline Queries. In SIGMOD 2003.

[18] K. Tan, P. Eng and B.Ooi. Efficient Progressive Skyline Com-
putation. In VLDB 2001.

[19] Y. Yuan, X. Lin, Q. Liu and W. Wang, J.X. Yu and Q. Zhang.
Efficient Computation of the Skyline Cube. In VLDB 2005.

[20] Tao, Y., Xiao, X., Pei, J. SUBSKY: Efficient Computation of
Skylines in Subspaces. In ICDE 2006.

[21] T. Xia, D. Zhang. Refreshing the sky: the compressed skycube
with efficient support for frequent updates. In SIGMOD 2006.

[22] Z. Zhang, X. Guo, H. Lu, A.K.H. Tung, N. Wang. Discovering
Strong Skyline Points in High Dimensional Spaces. In CIKM
2005.

8 Appendix
8.1 Proof for Lemma 2.2
Proof. Suppose t(D′) �= t(D′′), which means at least one
pair of objects , say p1 < p2) in t(D′) does not appear in
t(D′′) in the form of p1 > p2. It shows p1 cannot be larger
than p2 in subspace D′′, instead p1 = p2 in D′′′. So D′′

for (p1,p2) is actually ∅, which is contradiction since D′′ �=
∅ otherwise (p1, p2) cannot be listed in the entry E(t(D′),
t(D′′), t(D′′′)). So we prove this lemma.

8.2 Proof for Theorem 2.1
Proof. Given an query subspace Qs, the skyline object in Qs

is obviously either a full space skyline object, or a non-full
space skyline object. Suppose such a non-space skyline ob-
ject is p, and p is not equal to any other object in each attribute
value of Qs. Since p must be dominated by some objects in
D, meanwhile, as p is a subspace skyline in Qs, p is not dom-
inated by any other objects in Qs, so p is dominated by some
other objects in D−Qs. Thus it infers that p is not dominated
by any other objects in D, which contradicts the assumption.
So p must share the same values in Qs with some other ob-
jects which are skyline in Qs.

8.3 Proof for Lemma 2.3
Proof. Since (1) and (2) are symmetric, we prove (1). Sup-
pose for entry (t(D′), t(D′′), t(D′′′)), D′ �= ∅, which means
that for any object p ∈ S occurring in entry (t(D′), t(D′′),
t(D′′′)), there exists another object q ∈ S in entry (t(D′),
t(D′′), t(D′′′)) such that p � q in D′. If Qs ⊂ D′, q is still
dominated by p in Qs, so q cannot be a subspace skyline in
Qs, and can be pruned. The case of Qs ⊂ D′′ can be proved
in a similar way. Otherwise, if Qs ⊂ D′′′, based on Theorem
2.1, if any object q ∈ S share the same values in Qs with ob-
jects which are not subspace skyline in Qs, q will not become
the subspace skyline in Qs either, so q can be pruned.

8.4 Proof for Lemma 2.4
Proof. For entry (t(D′), t(D′′), t(D′′′)), D′ �= ∅,D′′ �= ∅,
which means for any object p ∈ S occurring in (D′,D′′),
there exists another object q ∈ S in entry (t(D′), t(D′′)) such
that p � q in D′. If Qs∩D′ �= ∅, Qs �= D′, we have p � q in
Qs∩D′ ⊆ D′; meanwhile if Qs∩D′′ �= ∅, Qs �= D′′ ⊆ D′′,
we have p � p in Qs∩D′′. So, p cannot be dominated by any
other object occurring in entry (t(D′), t(D′′), t(D′′′)), and p
cannot be pruned.

8.5 Proof for Theorem 2.2
Proof. (1) Assume that p is not a skyline point in Qs, then
it must be dominated by some point q in Qs. Let D’,D” and
D”’ be the dominating, dominated and equality space of q on
p. Since q dominate p in Qs, then the dimensions in Qs are
either in D′ or D′′′ with at least one in D′. If this is the case
p will be entry invalidated by an entry (t(D′), t(D′′), t(D′′′))
which contradict our condition. (2) can be proven in a similar
way to (1). Based on Theorem 2.1, it can be derived that for
some non-full space skyline objects, if they share the values
for all attributes in Qs with S, they will naturally become
subspace skyline objects in Qs too.

8.6 Proof for Lemma 4.1
Proof. Since a skyline object in the subspace Qs will not be
dominated by any other object, the k sample points will also
not dominated it and thus the skyline object will not be pruned
off.

8.7 Proof for Lemma 4.2
Proof. All false skyline candidates in Qs that pass through
the filtering will be dominated by some skyline points in Qs.
Since no real skyline object in Qs are removed based on
Lemma 4.1, these skyline points will be used to remove the
false skyline candidates during the skyline computation.

10

