
1

Efficient and Scalable Processing of String
Similarity Join

Chuitian Rong, Wei Lu, Xiaoli Wang, Xiaoyong Du,
Yueguo Chen, Anthony K.H. Tung

Abstract —The string similarity join is a basic operation of many applications that need to find all string pairs from a collection
given a similarity function and a user specified threshold. Recently, there has been considerable interest in designing new
algorithms with the assistant of an inverted index to support efficient string similarity joins. These algorithms typically adopt a
two-step filter-and-refine approach in identifying similar string pairs: (1) generating candidate pairs by traversing the inverted
index; and (2) verifying the candidate pairs by computing the similarity. However, these algorithms either suffer from poor filtering
power (which results in high verification cost), or incur too much computational cost to guarantee the filtering power. In this paper,
we propose a multiple prefix filtering method based on different global orderings such that the number of candidate pairs can
be reduced significantly. We also propose a parallel extension of the algorithm that is efficient and scalable in a MapReduce
framework. We conduct extensive experiments on both centralized and Hadoop systems using both real and synthetic datasets,
and the results show that our proposed approach outperforms existing approaches in both efficiency and scalability.

Index Terms —Similarity Join, Multiple Filtering, MapReduce

✦

1 INTRODUCTION

As a fundamental data type, strings are widely used
in a variety of applications, such as recording product
and customer names in marketing, producing publi-
cations in academic research, publishing contents in
websites. Frequently, different strings may refer to
the same real-world entity due to various reasons
[17]. In order to find different strings that may refer
to the same entity, the string similarity join is pro-
posed as a primitive operation that finds all pairs
of strings in a given string collection, based on a
string similarity function such as the Jaccard similarity
[16] and a user specified threshold. Existing methods
for string similarity join fall into two categories [20],
[4], [28], [24]. Methods in the first category index
strings using a tree structure and perform the join
operation from the root to leaves by employing a set
of filtering rules. The B+-tree [28] and Trie-tree [24] are
two such indexes. Unfortunately, the Trie-tree based
indexing technique constrains itself to in-memory join
operations and is inefficient for long strings, while
the B+-tree based indexing technique requires the
whole index to be constructed in advance, and its
performance suffers for short strings. Thus, they are
not suitable for processing similarity joins over very
large string collections. Methods in the other category

• X. Du, C. Rong and Y. Chen are with the Key Laboratory of Data
Engineering and Knowledge Engineering, Ministry of Education,
China, and School of Information, Renmin University of China, China.
E-mail: {duyong,rct682,chenyueguo}@ruc.edu.cn.

• A. Tung, W. Lu and X. Wang are with the School of Computing,
National University of Singapore, Singapore.
E-mail:{luwei1,xiaoli,atung}@comp.nus.edu.sg.

extract signatures (e.g., n-grams, words) from strings,
and index the strings based on their signatures using
inverted indexes [20], [4]. A pair of strings that share
a certain number of signatures are regarded as a
candidate pair. Our solution in this paper falls into
this category.

To identify all similar string pairs in a collection,
the inverted index based methods follow a filter-and-
refine process which first generates candidate string
pairs based on their signatures, and then verifies each
candidate pair by computing their similarity. As an
example, we consider the titles for two publications
“Functional Programming and Parallel Graph Rewrit-
ing” and “Functional Dependencies from Relational
to XML”. If we use a single word of each string
as a signature, these two strings are considered as
a candidate pair as they share one signature “Func-
tional”. Unfortunately, the number of qualified can-
didate string pairs will grow exponentially when the
strings contain popular words. To overcome this prob-
lem, a prefix based inverted index has been proposed
in [3], in which some selected words of each string
are extracted as signatures. More specifically, words of
each string s are sorted on the basis of a global order.
The first T tokens (words) are selected as its prefix,
where T only relies on |s| (the number of words in
s), the similarity function sim, and the user specified
similarity threshold θ. It shows that for any other
string t, the necessary condition of sim(s, t) ≥ θ is that
the prefix of s and t must have at least one token in
common [4], [3], [27]. Take Jaccard similarity function
as an example, if sim(s, t) ≥ θ, they share at least
C = max(⌈|s| ∗ θ⌉, ⌈|t| ∗ θ⌉) tokens. That is to say they
contain at most |s| −C and |t| −C different tokens to

2

each other. So, when tokens in two strings are sorted
by one global ordering, these two strings must share
at least one common token in their first |s|−⌈|s|∗θ⌉+1
and |t| − ⌈|t| ∗ θ⌉ + 1 tokens, respectively. Therefore,
the tokens in the prefix of a string are extracted as its
signatures. Let us consider the Example 1 and apply
a prefix filtering technique to generate its candidate
pairs, based on the Jaccard similarity function with
θ = 0.8.

Example 1: Table 1 lists 5 titles from the DBLP
dataset. We then sort the words of each title (after
removing stop words) in alphabetical order, and select
the first (|s| − ⌈|s| ∗ θ⌉ + 1) words (prefixes) as the
signatures, which are highlighted in bold in Table
2. (s2, s3) and (s2, s5) constitute the final result since
(s2, s3) and (s2, s5) share the signature “Functional”
and “Graph”, respectively.

In the above example, the number of candidate
pairs is reduced to two with the application of the
prefix filtering technique on the basis of alphabetical
order. As expected, sorting based on a different global
ordering yields different prefixes for each string. That
in turn may result in different candidate pairs for the
different signatures of the strings.

Example 2: We sort the words of each string in Table
1 based on another order, and highlight its prefixes in
bold as shown in Table 3. Obviously, the candidate
pair based on this global ordering is (s1, s2), as they
share a word of “Parallel”.

By applying different global orderings to sort the
words of strings in a given collection, we can derive
multiple sets of candidate pairs. The string pairs
whose similarity is above the predefined threshold
always qualify as candidate pairs as they must share
at least one common prefix token under any global
ordering. In this way, string pairs lying in all can-
didate sets constitute the final candidate pairs while
the remaining pairs can be safely pruned off. In the
above examples, when applying two different global
orderings, the final candidate pair set is empty since
there is no overlap in the two candidate sets. Com-
pared to using a single global ordering, the number of
candidate pairs can be significantly reduced to lower
the verification cost. In contrast to existing methods
which attempt to find a cost-efficient filtering method
using one global ordering, we aim to answer string
similarity joins by using cost-efficient multiple prefix
filtering.

However, there are two challenges that need to be
addressed: (1) Selection of a set of global orderings
such that the number of candidate pairs can be re-
duced as much as possible. (2) Derivation of the final
candidate pairs.

Figure 1 shows an intuitive and simple way to ap-
ply multiple global orderings to derive the final can-
didate pairs. It first sequentially applies each global
ordering to find individual candidate pairs, and then
compute the overlap among these partial results. This

entails building and traversing the inverted index for
each single global ordering method, which however
incurs high overall overhead. To keep the overhead
low, we propose to apply multiple global orderings
and filtering in an effective pipelining manner. Un-
like the existing approach of building and traversing
multiple inverted indexes based on different global
orderings, we use only one inverted index to support
multiple filterings. Our approach is simpler, but yet
more efficient and scalable in both centralized and
parallel environments.

In this paper, we make the following contributions:

• We propose a multiple prefix filtering technique
that applies the filtering using different global
orderings in a pipelining manner. The objective
is to reduce the number of candidate string pairs
as efficiently and effectively as possible. This will
reduce the cost of the more expensive verifica-
tions in the refinement step.

• We provide a detailed analysis of our proposed
method. We propose a cost model to determine
the number of multiple global orderings, and
optimizations for the selection and application of
global orderings.

• We parallelize our algorithm for a MapReduce
framework.

• We conduct extensive experiments in both cen-
tralized and Hadoop-like platforms. The experi-
ments demonstrate that our proposed approach
outperforms other existing methods by a wide
margin in terms of efficiency and scalability.

The rest of the paper is organized as follows: The
related works are given in Section 2. Section 3 presents
the problem definitions and preliminaries. Section
4 describes our proposed multiple prefix filtering
method. Section 5 presents how to extend our pro-
posed method in the MapReduce framework. Exper-
imental evaluation is given in Section 6. Section 7
concludes the paper.

2 RELATED WORK

In this section, we shall review some recent works
proposed for centralized systems and Hadoop-like
systems.

String similarity join is a primitive operation in
many applications such as merge-purge [13], record
linkage [10], [25], object matching [21], reference
reconciliation[7], deduplication [19], [2] and approx-
imate string join [11]. In order to avoid verifying
every pair of strings in the dataset and improve
performance, string similarity join typically consists of
two phases: candidate generation and verification [9],
[17]. In the candidate generation phase, the signature
assignment process or blocking process is invoked
to group the candidates into groups by using either
an approximate and exact approach, depending on
whether some amount of error could be tolerated

3

TABLE 1
String of Records

id values

S1 Parallel Relational Database Systems

S2 Functional Programming and Parallel Graph Rewriting

S3 Proof Pearl From Concrete to Functional Unparsing

S4 Functional Dependencies from Relational to XML

S5 Inequational Deduction as Term Graph Rewriting

TABLE 2
Sorted by Alphabetical Ordering

S1 Database Parallel Relational Systems

S2 Functional Graph Parallel Programming Rewriting

S3 Concrete Functional Pearl Proof Unparsing

S4 Dependencies Functional Relational XML

S5 Deduction Graph Inequational Rewriting Term

TABLE 3
Sorted by Another Global Ordering

S1 Parallel Database Relational Systems

S2 Functional Parallel Graph Rewriting Programming

S3 Unparsing Pearl Proof Concrete Functional

S4 Dependencies Functional XML Relational

S5 Inequational Deduction Graph Rewriting Term

s1

.

.

.

sk

O1

O2

O3

Candidate sets

Set1

Set2

Set3

Final

candidate set

Inverted indexes

R
efin

e

Verification

F
ilte

rin
g

Fig. 1. Similarity Join Processing

or not. Since we aim to provide exact answers, we
will focus on the exact approaches. Recent works that
provide exact answers are typically built on top of
some traditional indexing methods, such as tree based
and inverted index based. In [5], the Trie-tree based
approach was proposed for edit similarity search,
where an in-memory Trie-tree is built to support edit
similarity search by incrementally probing it. The edit
similarity join method based on the Trie-tree was
proposed in [24], in which sub-trie pruning techniques
are applied. In [28], a B+-tree based method was pro-
posed to support edit similarity queries. It transforms
the strings into digits and indexes them in the B+-
tree. However, these algorithms are constrained to
in-memory processing, not efficient and scalable for
processing large scale dataset.

The methods making use of the inverted index are
based on the fact that similar strings share common
parts and consequently they transform the similarity
constraints into set overlap constraints. Based on the
property of set overlap [4], the prefix filtering was
proposed to prune false positives [4], [3], [27], [11].
In these methods, the partial result of the candidate
generation phase is a superset of the final result. The
AllPairs method proposed in [3] builds the inverted
index for prefix tokens and each string pair in the
same inverted list are considered as candidates. This
method can reduce the false positives significantly
compared to the method that indexes all tokens of
each strings [20]. In order to prune false positives
more aggressively, the PPJoin method applies the po-
sition information of the prefix tokens of the string.
Based on the PPJoin, the PPJoin+ uses the position
information of suffix tokens to prune false positives
further [27]. As these methods need to merge the
inverted lists during the candidate generation phase,
some optimization techniques for the inverted list
merging were introduced in [15], [27]. The exact
computation method proposed in [1] is based on
the pigeon hole principle. It transforms similarity
constraints into Hamming distance constraints and
transforms each record into a binary vector. The bi-

nary vector is divided into partitions and then hashed
into signatures, and the strings that produce the same
signatures are considered as candidate pairs. How-
ever, the signature scheme is time consuming and
introduces unnecessary false positives.

A common drawback of the above proposals is that
they cannot be easily parallelized to run efficiently on
a MapReduce framework. In the MapReduce frame-
work, the global information about the whole dataset
cannot be accessed easily, and therefore, the filtering
strategies used in a centralized system are not effec-
tive in this share-nothing computing environment. In
a demonstration paper [23], a framework was briefly
introduced, without providing much details. In the
recently work [22], two methods for similarity join on
MapReduce are proposed. One is RIDPairsImproved,
in which each prefix token of the string is considered
as its signature (key) in the Map procedure, the can-
didate generation phase. Then, the strings that with
the same signatures will be shuffled into one group
for further verification. In the verification process,
filtering methods are applied to avoid similarity com-
putation for as many false positives as possible. The
other method is RIDPairsPPJoin, which has the same
implementation of Map. In Reduce, RIDPairsPPJoin
builds inverted index for each group of strings to
accelerate processing. However, the filtering method
needs to scan each string pair more than one time
to compute the similarity upper bound for pruning
purpose. This incurs high overhead in a distributed
environment.

In this paper, we propose an efficient and MapRe-
duce friendly multiple prefix filtering approach based
on different global orderings. In the Map phase, we
apply one global ordering to generate signatures for
the strings and apply other global orderings to get
different prefix token sets which are appended to
the string. In the Reduce phase, for each string pair
their prefix token sets obtained by the same global
ordering are checked and pruned if they are obviously
not candidates. As the size of the prefix token set
is shorter than the string and the checking process
is applied in a pipelining manner, the verification
process is therefore very efficient.

3 PROBLEM DEFINITION AND PRELIMI-
NARIES
3.1 Definitions

A string s is considered as a set of tokens, each of
which can be either a word or an n-gram (a sub-
string of s with length n). For example, the tokens of

4

TABLE 4
Symbols and Definitions

Symbols Definition
Σ the alphabet
s a string with a sequence of characters in Σ
S collection of strings
| · | the element number of a set
t a token s

Ts set of tokens for string s
Vs Ts transformed to Vector Space Model
Tp
s the first p tokens of string s

U a token collection U = {∪s∈STs}
θ pre-assigned threshold
sim(si, sj) similarity between si and sj
O global ordering
Og a group of global orderings
Tp
s (O) Tp

s under O

string of s = “Parallel Relational Database Systems”are
{Parallel, Relational, Database, Systems}.

Definition 1: (String Similarity Join) Given a set of
strings S, and a join threshold θ, string similarity
join finds all string pairs (si, sj) in S, such that
sim(si, sj) ≥ θ.

Table 4 lists the symbols and their definitions that
will be used throughout this paper.

3.2 Similarity Measures

A similarity function measures how similar two
strings are and returns a value in [0,1]. Typically, the
larger the value is, the more similar two strings are.
In this paper, we utilize three widely used similarity
functions, namely Dice [18], Jaccard [16], and Cosine
[26], whose computation problem can be reduced
to set overlap problem [3]. They are based on the
fact that similar strings share common components.
Clearly, the similarity between two strings is zero if
they do not have any token in common. In other
words, we only verify string pairs with at least one
common token. For the sake of better understanding,
the similarity measures and their definitions are sum-
marized in Table 5. Unless otherwise specified, we
use Jaccard as the default function, i.e., sim(si, sj) =
simjaccard(si, sj).

3.3 Prefix Filtering

Prefix filtering technique is commonly used in the
refinement step to further prune false positives of
candidate pairs that share a certain number of com-
mon tokens. In [3], [4], the methods sort the tokens of
each string based on some global ordering O (e.g., an
alphabetical order or a term frequency order), select a
certain number of its first tokens as the prefix, and use
the tokens in the prefix1 as its signatures. They prove
that the necessary condition for every two strings si
and sj to be a candidate pair is that the prefixes of si
and sj must have at least one token in common. The
number of tokens in the prefix for each string can be

1. When there is no ambiguity, we will simply refer token prefixes
as prefixes.

TABLE 5
Similarity Function and Its Definition

Similarity Function Definition

simdice(si, sj)
2×|Tsi

∩Tsj
|

|Tsi
|+|Tsj

|

simjaccard(si, sj)
|Tsi

∩Tsj
|

|Tsi
∪Tsj

|

simcosine(si, sj)
Vsi

·Vsj
√

|Vsi
|×|Vsj

|

TABLE 6
Prefix Length

Similarity Function Prefix Length
Dice |Ts1

| − ⌈|Ts1
| ∗ θ⌉ + 1

Jaccard |Ts1
| − ⌈|Ts1

| ∗ θ⌉ + 1

Cosine |Ts1
| − ⌈|Ts1

| ∗ θ2⌉ + 1

computed and the computation formulae are shown
in Table 6. Essentially, they rely on the similarity
function, join threshold, and length of the string.

By applying the prefix filtering technique, candidate
pairs with no overlap in their corresponding prefixes
can be safely pruned. In this manner, the number
of candidate pairs can be significantly reduced since
popular words or frequent tokens can be set to the end
of the global ordering so that they are not probable of
lying in the prefixes.

4 SIMILARITY JOIN PROCESSING

In this section, we first introduce the similarity join
method by using a single global ordering scheme, and
then extend it for multiple global ordering schemes,
finally conduct a detailed complexity analysis.

4.1 Single Global Ordering

In general, the similarity join using the prefix filtering
technique based on a single global ordering consists
of three phases.

1) Index Construction: In this phase, the prefix
tokens of each record are extracted under one
global ordering and indexed in an inverted in-
dex. Figure 2 shows an inverted index built for
the prefix tokens of strings shown in Table 1
using the alphabetical ordering.

2) Candidate Pairs Generation: The strings in the
dataset are processed sequentially. For each
string s ∈ S, the prefix tokens T p

s are derived. For
each token t ∈ T p

s , the corresponding inverted
list is scanned to get all the candidates for the
current string. Take the string s5 for example.
The prefixes of s5 which are presented in Table
2 are T p

s5
={“Deduction”,“Graph”}. The inverted

lists for “Deduction”, “Graph” are therefore
scanned, and s2 is identified as the similarity
candidate of s5. Thus, (s2, s5) constitutes a can-
didate pair. The optimization of scanning the
inverted index is well studied, and reported in
various work such as [20], [27].

5

Database ConcreteGraphFunctional DeductionDependencies

s1 s2
s3

s2
s5

s3 s4 s5

Fig. 2. Inverted Index for Prefix Tokens

s1

.

.

.

.

sk

<s1,s4>

<s1,s5>

<s1,s9>

<s1,s8>

<s1,s7>

<s1,s2>

<s1,s5>

<s1,s2>

<s1,s7>

<s1,s9>

<s1,s5>

<s1,s9>

O1 O2 O3

Verification

Dataset Candidate pair sets

Fig. 3. Pipelining Operations in Multiple Prefix Filtering

3) Verification: We compute the similarity between
two strings in each candidate pair one by one
and output them when the similarity is no less
than θ.

4.2 Multiple Global Orderings

By applying the single global ordering method, the
candidate pairs can be significantly reduced compar-
ing with the naive approach, in which every two
strings that share common tokens are considered as
a candidate pair. However, for large scale datasets,
the number of candidate pairs is still very large and
needs to be substantially reduced. Therefore, in this
section, we propose a more effective alternative by
making use of multiple global orderings to reduce the
number of candidate pairs. A straightforward solution
of implementing such an approach is to repeat the
approach of using single global ordering for each
ordering, and derive the overlap among these sets
of candidate pairs. However, the cost of this process
for candidate pair generation is very high. To solve
such a problem, we propose a new join method called
MGJoin.

Figure 3 illustrates the workflow of the MGJoin sim-
ilarity join processing. In the figure, we have used the
string s1 and three global orderings as our example
for illustration. At the first phase, we generate a set
of global orderings Og = {O1, O2, O3}(the details of
this generation will be explained in the latter section).
We do not generate each set of candidate pairs for
each Oi ∈ Og separately, instead, we select O1 as
the basis to build inverted index for prefix tokens.
Further, during the candidate pair generation phase,
for each string, as we generate its candidates based on
its prefixes, we do the pipeline processing to prune
the false positive of its candidates in advance. For
string s1, its candidate set size |Cnum(s1)| is six when
applying O1. Based on Cnum(s1), O2 and O3 are

Algorithm 1: MGJoin(S, θ,K)

input : S: the data set, each string is tokenized and
sort by one global ordering O
θ: the similarity threshold
K: the number of prefix filtering to apply

output: All pairs of strings < x, y >, if sim(x, y) ≥ θ
Results← ∅ ;1

foreach sx in S do2

Candidates.clear();3

T p
sx ← get prefix tokens of sx;4

Tmp
sx ← get multiple prefix tokens of sx;5

foreach token ∈ T p
sx do6

//scan inverted list of token Itoken7

foreach sy ∈ Itoken do8

if |sy| > |sx| × θ then9

res=MultiPrefixF iltering(Tmp
sx ,Tmp

sy ,K);10

if res == true then11

Candidates[y]+ = 1;12

V erification(sx, Candidates);13

return Results;14

Algorithm 2: MultiPrefixF iltering(Tmp
sx

, Tmp
sy

,K)

input : Tmp
sx : multiple prefix tokens for sx

Tmp
sy : multiple prefix tokens for sy

K: the number of prefix filtering applied
output: true or false
for i← 0 to K do1

if Tmp
sx [i] ∩ Tmp

sy [i] == ∅ then2

return false;3

return true;4

applied in pipelining. We can found that |Cnum(s1)|
become smaller in each step. More specifically, given
a string and its similarity candidate, we check if
they constitute a candidate pair by directly comparing
their prefixes (without accessing the inverted index)
that have been produced by another global ordering.
We will continuously check the candidate pair by
comparing their prefixes that have been produced by
any global ordering until they are pruned off or all
their prefixes are checked.

Algorithm 1 provides the outline of MGJoin. Each
string in the dataset is tokenized into a token set
and sorted based on one global ordering. The other
prefix tokens are derived during the canonicalization
process. The input strings are sorted based on their
lengths in order to avoid unnecessary operations.
The sorted strings are processed sequentially in two
phases, candidate generation phase and the verifica-
tion phase. For each string, its prefix token set T p

sx
and

other prefix token sets Tmp
sx

will be obtained (lines
4-5). In this algorithm, the ascending order of term
frequency is applied to produce the prefix tokens T p

sx
.

For each prefix token in T p
sx

, its inverted index Itoken
will be scanned using length filtering method and
then multiple prefix filtering (lines 8-9). The string

6

pairs that satisfy all the filtering conditions are con-
sidered as candidate pairs. In order to avoid duplicate
verifications for the same two strings, each inverted
index is scanned sequentially and the candidates are
counted for their number of occurrences (line 11).
After which, the pairwise verification is invoked.

The multiple prefix filtering algorithm is outlined
in Algorithm 2. Its input is each string’s multiple
prefix token sets that have been produced by applying
different global orderings on the token set of the
string. The K is the number of prefix filters applied. If
two strings don’t share any prefix token under some
global ordering, they cannot be similar (line 2). If
two strings are similar, they must have at least one
common prefix token under any global ordering.

4.3 Analysis of Global Orderings

MGJoin algorithm applies multiple global orderings
in the pipelining manner for improving the efficiency
of string similarity join. According to the property of
the prefix filtering technique [3], [4], the correctness
of MGJoin algorithm will be always guaranteed no
matter which global orderings are selected. In this
section, we give a detailed analysis on the global or-
derings. For ease of exposition, let Og be a set of global
orderings; Cnum be the number of candidate pairs
by applying the global orderings in Og. The analysis
is based on the assumption: all global orderings are
selected randomly and each of them has the same
pruning power.

Theorem 1: Given a group of orderings Og , the final
number of candidate pairs Cnum is independent on
the execution order of the global orderings in Og .

Proof: Let Og = {O1,O2, ...,Ok}. If (si, sj) is a can-
didate pair certified by applying Og . When applying
Om (1<m ≤ k), their prefix token sets are T p

si
(Om) and

T p
sj
(Om), respectively. In pipelining checking process,

if there exits T p
si
(Om) ∩ T p

sj
(Om) = ∅, the candidate

pair (si, sj) will be pruned off. Therefore, Cnum is
decided by the effect of given global orderings in Og ,
but independent on the execution order of Om ∈ Og .

Lemma 1: ∀si, sj ∈ S. If sim(si, sj) < θ, the proba-
bility of the pair (si, sj) to be pruned off increases as
more global orderings are applied.

Proof: For the pair (si, sj), the probability of this
pair to be pruned off is defined as p(0<p<1). p can be
computed by the occurrence probability of T p

si
∩T p

sj
=

∅ when applying all kinds of global orderings on U .
If sim(si, sj) < θ, the occurrence probability of T p

si
∩

T p
sj

= ∅ becomes high when more global orderings are
applied. Therefore, if sim(si, sj) < θ, the pair (si, sj) is
more likely to be pruned off as more global orderings
are applied.

Theorem 2: The candidate pair number Cnum de-
creases as more global ordering applied.

Proof: ∀si, sj ∈ S. If sim(si, sj) ≥ θ, the pair (si, sj)
always share at least one common prefix token under

any global ordering and being reserved as candidate
pair. So, we have Cnum ≥ Nres. If sim(si, sj) < θ, the
pair (si, sj) will be pruned off with the probability
p, according to Lemma 1. Let the number of all
possible string pairs in S is N . After applying k global
ordering, Cnum = Nres +(N −Nres)× pk. So, as more
global orderings are applied, the Cnum decreases and
will be more closer to Nres.

According to Theorem 2, in order to reduce the
number of candidate pairs as many as possible, we are
desired to employ a large number of global orderings.
Although the number of candidate pairs can be min-
imized by employing a maximum number of global
orderings, the overhead of candidate generation ap-
plying multiple global orderings also increases. The
need arises to carefully consider the trade-off between
the benefit of reducing the candidate pair number and
the overhead of applying more global orderings.

As the similarity join follows a two-step filter-and-
refine framework, the final total time cost is decided
by not only the verification cost in the refine phase
but also the filtering cost in the candidate genera-
tion phase. Let Toverall be the overall execution time
of similarity join, Tc be the time to generate the
candidate pairs by applying the global orderings in
Og including inverted index construction, inverted
list merging and multiple prefix filtering, Tv be the
verification time for candidate pairs. As the group
of global ordering Og is determined before similarity
join, the time on global ordering selection is not taken
into consideration.

Let N be the number of all pairs in dataset S, and
Nres be the number of results. The number of initial
false positives is defined as F , F = N − Nres. Let
the time cost on processing one candidate pair in the
candidate generation phase and the verification phase
are tc and tv , respectively. Given a group of global
ordering Og, let Toverall(k) be the overall time cost
when applying k global orderings. Then, we have
Toverall(k) = Tc(k) + Tv(k).

Toverall(k)=tc
k∑

i=1

(Nres + F × pk−1)+tv × (Nres + F × pk)

Firstly, as the k increases the false positives are
pruned off vastly. As a result, Toverall(k) decreases
drastically(see Figure 6). But, as more global orderings
are applied Nres + F × pk will be close to Nres

gradually, the decrease trend of false positives become
slower. That is to say, Tv does not change strikingly
when k increases. But, the time cost Tc increases
with k. So, Toverall(k) will increase. Based on above
analysis, the cost model about the optimal number
selection of global orderings can be given as below.

Theorem 3: The precondition to apply one more
global ordering is:

Toverall(k)− Toverall(k + 1) > 0

7

Algorithm 3: TokenPermutation(U,N)

input :
U : the distinct token list of dataset
N : the times to exchange the position of token

output:
newTokenList: the new token list generated by

applying permutation
size← Sizeof(U);1

for i = 0→ N do2

position1 = random()%size;3

position2 = random()%size;4

Permutation(U, position1, position2);5

4.4 Selection of Global Orderings

Now we consider how to select global orderings to
enhance the efficiency of the MGJoin. Due to the
pipelining execution process of the multiple prefix
filters, the efficiency may be affected by (1) the kind
of global orderings: what kind of global ordering we
apply; (2) the execution order of global orderings: how
to arrange a group of global orderings in pipelining
execution. Generally, the objective of selecting a global
ordering is to reduce the number of candidate pairs
as many as possible. For a given dataset, the number
of global orderings is the number of all possible
sorted token lists generated from token universe. In
this section, we proposed three strategies for global
ordering selection. All these three strategies are based
on permutations in the token universe.

4.4.1 Random Selection

Given the token universe U of S, the sequence of
tokens in U is their first occurrence in the dataset.
We can derive one new global ordering by randomly
permutating the positions of tokens in U , as shown
in Algorithm 3. Since each prefix filter is based on
a different global ordering, we can derive the other
global orderings using the above method. Then, one
group of global orderings can be derived by random
selection and defined as ORandom.

ORandom = {O1,O2, ...,Ok}

4.4.2 Random Selection with Reverse Ordering

Let CPi be the number of candidate pairs after em-
ploying the ith global ordering Oi separately. As we
utilize the pipelining method to apply multiple global
orderings, only the candidate pairs that exist in CPi

would be checked if they share common prefix tokens
when applying the next global ordering Oi+1. Only
the candidate pairs that occur in CPi ∩ CPi+1 will
be reserved as candidates. If the candidate pair set
CPi and CPi+1 are vastly different, the false posi-
tives would be pruned off easily. As described above,
we expect to select two global orderings such that
|CPi − CPi+1| + |CPi+1 − CPi| is maximized. If Oi

and Oi+1 are vastly different, the prefix tokens in
one string can be different. Based on this assumption,

we utilize the Footrule Distance [12], [14] as our basic
principle for global ordering selection.

Definition 2: (Footrule Distance) Let Oi and Oj be
two rankings of U . The footrule distance between the
two rankings is defined as:

F (Oi,Oj) =
|U|∑

m=1
|Oi(tm)−Oj(tm)|

Footrule Distance depicts the sum of the ranking
position gap for each token ∈ U over two global
orderings, Oi(tm) is the rank of token tm under Oi.
In particular, for two global orderings Oi and Oj ,
F (Oi,Oj) obtains its maximum value when Oi and
Oj are ordered in a reverse way [12], [14].

Based on this, given a token set of a string, if we
apply a global ordering O1 first, and then apply its
reverse ordering O−1

1 (in Definition 3) as O2, the prefix
token set selected for this string will be changed most
significantly. In this way, the candidate pairs that are
separately produced by these two global orderings
are significantly different. In theory, we should se-
lect the subsequent global orderings to make each
selection of prefix tokens can vary most significantly
from previous selections. For example, we select the
subsequent ordering O3 to make that F (O1,O3) and
F (O2,O3) can obtain their maximum values. How-
ever, according to [8], the time complexity to compute
the optimal global orderings is in NP-Hard even when
only deciding the selection to O4.

Definition 3: (Reverse Ordering) Given a global or-
dering O, its reverse ordering O−1 is defined as:
∀t ∈ U , if t is ranked at the ith position, then t is
ranked as the (|U | − i+ 1)th position.

Based on above analysis, we propose an approx-
imate strategy for global ordering selection by ran-
domly selecting a global ordering and its reverse as
a pair, which assure the Footrule Distance of each
pair of global orderings get its maximum value. In
summary, if we expect to generate k global orderings,
we first generate ⌈k/2⌉ global orderings as in Random
method, and the remainder are their reverse orderings
and applied consecutively with their corresponding
orders. With this, the group of global orderings is
defined as:

ORandom with Reverse = {O1,O
−1
1 ,O2,O

−1
2 , ...}

4.4.3 TF as the First Global Ordering
In pipelining execution of multiple prefix filters, lower
overhead will take in latter phases if more false
positives are pruned off in earlier phases. Due to the
property of token frequency ordering, in which tokens
with low frequency are often selected as the prefix
of each string, the candidate pairs can approximately
be minimized [3], [4]. Therefore, we apply the to-
ken frequency ordering as the first global ordering
followed by its reverse ordering. Therefore, if we
expect to generate k global orderings, the first two
global orderings are token frequency ordering and its
reverse ordering. Additional ⌈k/2−1⌉ global orderings

8

will be randomly generated, and the remainder are
their reverse orderings. One group of global orderings
derived by this strategy is defined as OTF as the 1st .

OTF as the 1st = {Otf ,O
−1
tf ,O2,O

−1
2 , ...}

4.4.4 Discussion on other methods

The above three methods for global ordering selec-
tion are independent on the dataset. Once the token
universe U is obtained, other global orderings can
be derived by applying random permutations on U
without scanning the dataset.

In this paper, we also consider other methods based
on statistical information, such as the co-occurrence
probability. Given a global ordering O1, the prefix
token set

⋃
T p
si
(O1)(si ∈ S) can be derived by canon-

icalization each string in the dataset S. If we want
to get another global ordering O2, under which the
prefix token set is defined as

⋃
T p
si
(O2)(si ∈ S). In

order to prune more false positives, we want the
tokens in

⋃
T p
si
(O2) has low co-occurrence probability

with that in
⋃

T p
si
(O1). Comparing with the above

three methods, the methods that based on statistical
information will incur the dataset scanning and co-
occurrence probability calculation to determine a new
global ordering. This process will take much more
time than similarity join itself.

5 HANDLING SIMILARITY JOIN IN MAPRE-
DUCE FRAMEWORK

Recently, there has been a considerable interest in
extending existing methods to support string simi-
larity join using MapReduce [6], [22]. In this section,
we present how to extend our MGJoin approach in
MapReduce framework.

The execution process of a typical MapReduce job
consists of two phases: Map and Reduce. In MapRe-
duce, the data set is partitioned into a number of
input splits based on a fixed size and distributed
over data nodes. Each Map in a data node reads
the key/value pairs from the local split and shuffles
newkey/list (values) to reducers. Note that key/value
pairs with the same key will be shuffled to the same
reducer and these pairs are sorted based on the keys.
To apply MGJoin to the MapReduce framework, the
main challenge is how to assign keys to candidate
string pairs. As a candidate pair of strings must have
one common prefix token under any global ordering,
we choose prefix tokens of a string as its keys and
the string content as the value so that strings with the
same prefix token can be shuffled to the same reducer.

This proposed solution has three MapReduce pro-
cedures. The first procedure is used to generate token
universe and the term frequency order. The second
one is to canonicalize the dataset according to a
designated global ordering and balance the dataset on
all data nodes according to the lengths of strings. The
last one is to implement the MGJoin process, whose

A B C

D E F

C F

E C D

F G

B A F

}

}
}

M
a
p

M
a
p

M
a
p

1,C B,A B C

1,C B,A B C

10,F,C F

11,E D,E C D

20,G, F G

21,F B ,B A F

G
ro

u
p

 b
y

 K
e
y

Key Value

1,C B,A B C

21,F B,B A F

1,C B,A B C

21,F B,B A F

2,F E ,D E F

11,E D,E C D

Key Value

}

}

}

R
e
d
u

c
e

R
e
d
u

c
e

R
ed

u
c
e

RID1 RID2 SimRID String

1 2 3

Tokens

A

B

sorting rules

}
Fig. 4. Data Flow of MGJoin Using MapReduce

Algorithm 4: Setup(context)

input : context: the context of current job
distributed cache files

output: tokenWeight : tokens with weight for each
ordering rule

G← global ordering number;1

foreach token ∈ sorted token file do2

tokenWeight[0]← <token,weight>;3

tokensV ector.add(token);4

for i = 1→ G do5

stdF ile← read rules for sorting tokens;6

tokenWeight[i]←7

sortTokens(tokensV ector, stdF ile);

algorithm is given in Algorithm 5. The data flow in
the MGJoin of an example is illustrated by Figure
4, where only two global orderings are applied for
concise description.

Algorithm 5: MGJoinOnCloud

Setup(context):1

read cache files and initialize weight of tokens;2

Map(key,value):3

tokenlist← Tokenize(value);4

G← global ordering number;5

while i < G do6

prefixTokens[i++] ← getPrefixTokens(tokenlist,7

tokenWeight[i++]);

foreach token ∈ prefixTokens[0] do8

i ← 1;9

while i < G do10

newvalue← append(prefixTokens[i++]);11

newvalue← append(value);12

write(token,newvalue);13

Reduce(key,values):14

foreach vali, valj ∈ values do15

prefixTokensi[]← getPrefixTokens(vali);16

prefixTokensj[]← getPrefixTokens(valj);17

result = Testify(prefixTokensi, prefixTokensj);18

if result ==true then19

sim← simjaccard(vali, valj);20

if sim ≥ θ then21

newvalue← (vali, valj);22

write(key,newvalue);23

Before conducting similarity join, a setup procedure
is invoked on each data node to load token file and
sorting rules used to generate global orderings (line 1

9

of Algorithm 5). The token file and sorting rules are
distributed as cache files before executing the task.

In Map, for each string, a prefix token set is derived
for each global orderings (line 7). In the paper, the
ascending order of token’s term frequency is applied
as the first global ordering to generate signatures
for each string (line 8). The other prefix token sets
generated by other global orderings are used as fil-
tering features, which are treated as a piggyback of
the string (lines 9-13). Take the first string of Figure
4 for example, each character represents a word. The
prefix tokens under two order strategies are AB and
CB respectively. The first string will generate two
key/value pairs with A and B is two keys. The value
is a new string constituted by three parts: record iden-
tity (1 in this example), other prefix token sets (C,B),
and original record content A B C. Therefore, the two
new key/value pairs generated from the first string in
Map are < A 1, CB,ABC > and < B 1, CB,ABC >.
Following the Map phase, the string pairs with the
same key will be shuffled to the same node.

In Reduce, the strings with the same key will be ver-
ified. To improve performance of verification, multiple
prefix filtering will be applied in the Reduce proce-
dure. If two strings of a candidate pair don’t share any
common prefix token for one global ordering, they
will not be similar and are pruned directly (line 20).
The Testify function is the same with Algorithm 2.

5.1 Optimizations

When applying multiple prefix filtering, the simple
way is to obtain prefix tokens using each global
ordering and append them to the record. However,
this will incur much cost for data transferring. In
order to achieve better performance, we adopt some
strategies to optimize the implementation.

• Balancing the Workload
As the processing cost and output on each node
are related to the length of records, we par-
titioned the dataset into multiple parts in the
second MapReduce procedure. In all these splits,
the records with different length are evenly dis-
tributed into each split.

• Reducing Sorting Cost
For each global ordering, its reverse ordering is
also applied so that we only sort the records once
for these two global orderings.

• Reducing the Shuffle Cost
In order to minimize the cost of shuffling, we
don’t extract all prefix tokens using all global
orderings and append them to the record. Con-
versely, we canonicalize the record using another
global ordering and output it as the new record.
In Reduce, we can easily extract the prefix tokens
for the global ordering and its reverse ordering.

• Ranking Records over the same Reducer
As MapReduce framework shuffles the

TABLE 7
Data Set Information

Data Set Scale Times Record Number Size

IMDB
1x 1,568,893 43M
5x 7,844,465 215M

DBLP

1x 1,021,062 218M
5x 5,105,310 1090M
10x 10,210,620 2.12G
15x 15,315,930 3.19G
20x 20,421,240 4.26G
25x 25,526,550 5.32G
30x 30,631,860 6.39G
40x 40,842,480 8.5G

Twitter 1x 2,753,005 250M

Yago

1x 17,630,489 1G
10x 176,304,890 10G
20x 352,609,780 20G
30x 528,914,670 30G

0

5

10

15

20

25

30

35

40

45

 5 10 15 20 25 30 35 40 45 50
C

ou
nt

(1
04)

Length

TWITTER
DBLP
IMDB

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6

C
ou

nt
(lo

g
sc

al
e)

Token Frequency(log scale)

TWITTER
DBLP
IMDB

(a) Record Length (b) Term Frequency

Fig. 5. Distribution Statistic

key/value pairs according to the keys, the
records that with the same key(signature) will
arrive at the reduce node randomly. In order
to ensure the records that with the same prefix
token can arrive at the reduce node according
to their length. We use the composite key for
each record, including the generated signature
and the length of the record. The records that
with the same generated signature (prefix
token) will be shuffled to the same node, then
the records arriving at the same node will be
grouped together and sorted by their length
automatically.

6 EXPERIMENTS

In this section, we compare our proposed approach,
MGJoin with the state-of-the-art methods (using
publicly available implementation) under the same
conditions.

6.1 Experiments Setup

We select four publicly available real data sets and
multiple synthetic data sets in the experiment. They
cover a wide range of data distributions and are
widely used in previous studies.

• DBLP is a snapshot of the bibliography records
downloaded from DBLP website2. It contains
1,021,062 records, each of which is the concate-
nation of author name(s) and the title of a publi-
cation. The minimum, maximum, average length

2. http://www.informatik.uni-trier.de/∼ley/db

10

(number of tokens) of records in this data set are
2, 207, 13, respectively.

• IMDB is a snapshot of movie names taken from
the IMDB website3. It contains 1,568,893 records.
The minimum, maximum, average length of
records in this data set are 1, 29, 3, respectively.

• Twitter is extracted from the Twitter website4. It
contains 2,753,005 records. The minimum, maxi-
mum, average length of records in this data set
are 1, 33, 10, respectively.

• Yago is downloaded from the website5. It con-
tains 17,630,489 records. It is widely used in
semantic web research.

• Synthetic Data Sets are generated with different
scales based on the above two real data sets
according to the generation rule [22]. The genera-
tion rule is described as follows. We first compute
the token set U that contains all tokens of strings
in the dataset, and rank tokens in U based on
some order O. For each string s, we split it into
a set of tokens, and rank these tokens based
on O. The first synthetic string s1 based on s
is generated as follows: (1) for each token t in
Ts, we select the next token of t in O as a new
token t′; (2) these tokens constitute the token set
of s1. Also, the second synthetic string s2 can
be generated similarly by selecting the next next
token of t as the new token t′. Note that for a
token t in s, if there does not exist the new token
t′, then t will be set as t′. Obviously, according
to this generation rule, different scales of the
synthetic datasets are able to be generated. Figure
7 shows the synthetic datasets based on DBLP
and IMDB that will be used in the experiments.
In which, 5× is to indicate that the synthetic data
set is 5 times larger than original data set.

The Figure 5 shows the distribution of record lengths
and term frequency in DBLP, IMDB and Twitter re-
spectively. We conduct all experiments in both the
centralized system and distributed system.

• Centralized System: All experiments in the cen-
tralized system are carried out on a single ma-
chine with AMD 15 × 4 cores 1GHz and 60GB
main memory. The operating system is Redhat
Enterprize Linux AS 4. All algorithms are imple-
mented using C++ and compiled with GCC4.3.0.

• Distributed and Parallel System: The perfor-
mance of MGJoin is evaluated on Hadoop plat-
form. The cluster consists of 41 computer nodes,
among which one is configured as the master
and the others are configured as slaves. All
nodes have the same configurations as follows.
(1) CPU: Intel(R) Xeon(R) 2.40GHz with 4 × 4
cores; (2) Main memory: 8GB; (3)Disk: 160GB; (4)

3. http://www.imdb.com
4. http://www.twitter.com
5. http://www.mpi-inf.mpg.de/yago-naga/yago

OS: CentOS; (4) software environment: Hadoop-
0.20.2 and JDK-1.6.0.

Unless otherwise specified, we use Jaccard as the
default similarity function, and the join threshold is
set to 0.8. The global orderings are selected according
to TF as 1st and three pairs of them are applied in the
centralized system experiments.

6.2 Experiments on the Centralized System

We use the following algorithms in the experiment.

• AllPairs AllPairs [3] algorithm takes two records
that share at least one common token in their
prefixes as a candidate pair, and verify each can-
didate pair by directly computing their similarity.

• PPJoin Different from AllPairs, in the candidate
generation phase, PPJoin[27] utilizes the position
information of the common tokens for each candi-
date pair so as to apply some pruning techniques
before adding to candidate set.

• PPJoin+ Based on PPJoin, in PPJoin+ [27], extra
pruning techniques based on the suffix tokens
(tokens that ranked after the prefix tokens) is
used to prune more false positives.

6.2.1 Number of Global Orderings
We study the effect of the number of global orderings
for MGJoin on the synthetic dataset of 5× DBLP. The
number of global orderings varies from 1 to 6, and
they are generated as follows. The first global ordering
is based on the ascending order of token frequency
in the data set, and the second is its reverse order.
The rest of global orderings are two randomly selected
orders and their reverse orders.

We plot the number of candidate pairs after ap-
plying multiple global orderings in Figure 6(a). We
observe that when the number of global orderings
increases, the number of candidate pairs drops expo-
nentially. Nevertheless, there is an obvious trends of
diminishing returns. Further, the diminishing trends
of applying a reverse order (even numbers) is obvi-
ously larger than that of applying a new randomly
generated order (odd numbers). This is because the
order of tokens in the data set are completely changed
after applying a reverse order, which leads to reset the
prefix of each string. Figure 6(b) shows the running
time of MGJoin by using multiple global orderings.
We see that the trends of the running time is in
consistency with that of the number of candidate
pairs. The horizontal line in the figure indicates the
time cost of PPJoin+ with other things equal.

6.2.2 Effect of Thresholds
We compare the efficiency of MGJoin with other ex-
isting algorithms by varying the threshold from 0.6 to
0.9. Figure 7, Figure 8, Figure 9 and Figure 10 show the
running time for these algorithms over DBLP, IMDB,
5 × DBLP, 5 × IMDB and Twitter, respectively. Figure

11

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6

C
an

di
da

te
 N

um
be

r(
10

6)

Filter Number

Candidate

 40

 60

 80

 100

 120

 140

1 2 3 4 5 6

T
im

e
C

os
t(

S
ec

)

Filter Number

time
PPJoin+

(a) # of candidate pairs (b) running time

Fig. 6. Effect of Global Orderings over 5×DBLP

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0.6 0.7 0.8 0.9

T
im

e
C

os
t(

S
ec

)

Threshold

Allpairs
PPJoin

PPJoin+
MGJoin

 20

 30

 40

 50

 60

 70

0.6 0.7 0.8 0.9

T
im

e
C

os
t(

S
ec

)

Threshold

AllPairs
PPJoin

PPJoin+
MGJoin

(a) DBLP (b) IMDB

Fig. 7. Real Dataset

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

0.6 0.7 0.8 0.9

T
im

e
C

os
t(

S
ec

)

Threshold

3333.5
2150.5

1147.1 909.3

AllPairs
PPJoin

PPJoin+
MGJoin

Fig. 8. 5× DBLP

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

0.6 0.7 0.8 0.9

T
im

e
C

os
t(

S
ec

)

Threshold

AllPairs
PPJoin

PPJoin+
MGJoin

Fig. 9. 5× IMDB

 0

 50

 100

 150

 200

 250

 300

 350

0.6 0.7 0.8 0.9

T
im

e
C

os
t(

S
ec

)

Comparisons

AllPairs
PPJoin

PPJoin+
MGJoin

Fig. 10. Twitter

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

5x 10x 15x 20x

T
im

e
C

os
t(

S
ec

)

Data Size

AllPairs
PPjoin

PPjoin+
MGJoin

Fig. 11. Scalability

10 shows the results on Twitter. As the running time
for AllPairs and PPJoin is extremely high in IMDB
and 5 × IMDB data sets, we do not plot them in
the figures so as to simplify the presentation. As we
can see, MGJoin always performs the best, followed
by PPJoin+. When the threshold varies, Allpairs is the
most sensitive to the threshold while MGJoin is the
least.

6.2.3 Time Cost Analysis
We do experiments to analyze the time cost dis-
tribution on two phases: candidate generation and
verification. The comparison of time cost between
PPJoin+ and MGJoin is given in Figure 12(a). It shows
that PPJoin+ spends too much time on pruning false
positives. As the dataset size increases, the time cost in
candidate generation phase for PPJoin+ grows much
faster than MGJoin. Although the time cost in verifi-
cation of MGJoin is increasing more than PPJoin, the
increasement is much smaller compared with the time
saved in candidate generation phase. The variation
of time cost distribution with the number of filters
is plotted in Figure 12(b). Totally, the time cost in
candidate verification decreases exponentially when
use more filters, also the same to the total time cost. In
the figure, when using one filtering, scanning inverted
index with length filtering, the time cost in candidate
generation is small. But the time cost in verification is
very high, as too much false positives are not pruned.
When using more filters, more false positives are
pruned and the time spend in verification decreases
exponentially.

6.2.4 Effect of Similarity Functions
We compare the efficiency of MGJoin with other ex-
isting algorithms by varying different similarity func-
tions over the DBLP data set. We plot the running

time of these algorithms by applying Cosine and
Jaccard similarity functions, as shown in Figure 13. We
observe that MGJoin performs the best, followed by
PPJoin+, PPJoin, and Allpairs. This indicates that our
proposed technique is effective for both Cosine and
Jaccard similarity functions. In addition, the running
time for all algorithms almost keeps unchanged no
matter which similarity function is adopted.

6.2.5 Scalability Comparison

We study the scalability by comparing MGJoin with
other existing methods by varying different scales
{5×, 10×, 15×, 20×} of DBLP synthetic data set. The
results are shown in Figure 11. As we can see, our
method scales well, and the trend of differences for
running time between MGJoin and other existing
methods turns larger as the scale size increases.

6.2.6 Global Ordering Selection

The key problem of applying multiple prefix filtering
is to select appropriate global orderings. We compare
four strategies for global ordering selection, including
Random, Random with Reverse and two kinds of TF
as the 1st Order including TF1 and TF2. TF1 is the
same to the definition of TF as the 1st Order, but
in TF2 the reverse order of term frequency O−1

tf is
removed. Random and Random with Reverse take the
same random global ordering as their first global
ordering; TF1 and TF2 take the Otf as their first global
ordering. We study their efficiency in two aspects,
time cost and candidate set reduction scale, using
DBLP dataset. The results are given in Figure 14,
Figure 15 and Figure 16.

In all these four methods, the first global ordering is
applied to normalize each string into token sequence
and build inverted index for prefix tokens. In Figure

12

 0

 200

 400

 600

 800

 1000

 1200

5x 10x 20x 5x 10x 20x

T
im

es
 C

os
t(

S
ec

)

Candidate
Verification

MGJoinPPJoin+

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6

T
im

es
 C

os
t(

S
ec

)

Filter Number

Candidate
Verification

(a) On Different DataSet (b) With Filter Number

Fig. 12. Time Cost Distribution

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0.6 0.7 0.8 0.9

T
im

e
C

os
t(

S
ec

)

Threshold

Allpairs
PPJoin

PPJoin+
MGJoin

 0

 20

 40

 60

 80

 100

 120

 140

 160

0.8 0.85 0.9 0.95

T
im

e
C

os
t(

S
ec

)

Threshold

AllPairs
PPJoin

PPJoin+
MGJoin

(a) Jaccard (b) Cosine

Fig. 13. Effect of Similarity Functions

 100

 200

 300

 400

 500

 1 2 3 4 5 6 7 8 9 10

T
im

e
C

os
t(

S
ec

)

Filter Number

Random
Ramdom with Reverse

Fig. 14. Random Methods

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 1 2 3 4 5 6 7 8 9 10

T
im

e
C

os
t(

S
ec

)

Filter Number

TF1
TF2

Fig. 15. TF as 1st Methods

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8 9 10

R
ed

uc
tio

n
R

at
e

Filter Number

Random
Ramdom with Reverse

TF1
TF2

Fig. 16. Reduction Rate

 0

 500

 1000

 1500

 2000

 2500

 3000

10x 20x 30x

T
im

e
C

os
t(

S
ec

)

Comparisons

RIDPairsImproved
RIDPairsPPJoin
RIDPairsMGJoin

Fig. 17. Yago Dataset

14, it compares the time cost between Random and
Random with Reverse. The results demonstrate that the
Random with Reverse is more efficient than Random,
especially when using the second(reverse) filtering.
In Figure 15, it compares the time cost between two
kinds of TF as the 1st Order, TF1 and TF2. From the
figure we can observe that TF1 is better than TF2
when applying the second filtering. From Figure 14
and Figure 15, we observe that the difference in time
cost between each pairs of selection methods become
less as more filters are applied. In TF1 and TF2, as the
tokens with low frequency are to be selected as prefix
tokens, most false positives are pruned off in the first
two filters. TF1 and TF2 are far better than Random
and Random with Reverse.

Figure 16 demonstrates the variation of candidate
set reduction rate of four methods. We can observe
that the reduction rate of TF1 and TF2 are more stable
than the other two methods. When using the second
filtering, the reduction rate of Random with Reverse and
Random is 0.8 and 0.52, respectively. So, one global
ordering and its reverse ordering can get high prune
power when applied in pairs. This situation can also
be found in TF1 and TF2. For TF1 and TF2, we can
found their lines in Figure 16 are interleaved with
each other. This is due to the different sequence to
apply the reverse global orderings. As more filters
applied, more false positives are pruned off and the
reduction rate difference between TF1 and TF2 be-
come less.

6.2.7 Hybrid Method Study

The multiple prefix filtering can be used as a com-
plementary filtering method with other methods. In
this experiment, we study the function of MGJoin
used as a complementary method to PPJoin+. The

time cost trend with the variation of filter number
is plot in Figure 18(a). We do the experiment on 5×
DBLP dataset and set similarity threshold at 0.8. From
the figure we can see that the time cost decreases
firstly with the filter number increasing and reaches
the lowest point when using the 6th filter. But, when
we use the 7th filter the time cost trend become
increasing.

We compared the hybrid method, PPJoin+ comple-
mented with MGJoin, with PPJoin+ and MGJoin. We
conduct the experiment on DBLP dataset with scale
varying from 5× to 20× and set threshold to 0.8. The
results are shown in Figure 18(b). The results demon-
strate that MGJoin can improve the performance of
PPJoin when used an complementary method. But, the
hybrid method cannot outperform the MGJoin, as the
expensive filter strategy in PPJoin+.

6.3 Experiments on the MapReduce System

We extend MGJoin on Hadoop platform, called as
RIDPairsMGJoin. We compare it with RIDPairsIm-
proved and RIDPairsPPJoin [22] on the Hadoop system.

• RIDPairsImproved implements the PPJoin+ on
the MapReduce. In Map, it extracts the prefix
tokens from each string and assign each of them
as a key. In Reduce, the strings with the same key
will be in the same group for further verification.

• RIDPairsPPJoin has the same implementation in
the Map phase as the above method, but the
records are sorted by their length during shuffle
procedure, before arriving the Reduce node. In
Reduce, the inverted index is built for each group
to accelerate processing.

13

 70

 75

 80

 85

 90

 95

 100

 105

0 1 2 3 4 5 6

T
im

e
C

os
t(

S
ec

)

Filter Number

Hybrid

 0

 200

 400

 600

 800

 1000

 1200

5x 10x 15x 20x

T
im

e
C

os
t(

S
ec

)

Data Size

PPJoin+
Hybrid

MGJoin

(a) Time Cost (b) Comparisons

Fig. 18. Hybrid Method Study

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0.5 0.6 0.7 0.8 0.9

R
ed

uc
ed

 S
ca

le

Threshold

25x
20x
15x
10x

5x

 200

 400

 600

 800

 1000

 1200

 0.5 0.6 0.7 0.8 0.9

T
im

e
C

os
t(

S
ec

)

Threshold

25x
20x
15x
10x

5x

(a) Candidates Reduction (b) Time Cost

Fig. 19. MGJoin On Cloud

 100

 200

 300

 400

 500

 600

 700

 800

 900

10x 20x 30x 40x

T
im

e
C

os
t(

S
ec

)

Data Size

RIDPairsImproved
RIDPairsPPJoin
RIDPairsMGJoin

 100

 200

 300

 400

 500

 600

 700

 800

 900

0.8 0.85 0.9 0.95

T
im

e
C

os
t(

S
ec

)

Threshold

RIDPairsImproved
RIDPairsPPJoin
RIDPairsMGJoin

 100

 200

 300

 400

 500

 600

 700

 800

 900

20 30 40

T
im

e
C

os
t(

S
ec

)

Node Number

RIDPairsImproved
RIDPairsPPJoin
RIDPairsMGJoin

(a)Comparison on Data Scale (b) Scalability on Threshold (c) Scalability on Data Nodes

Fig. 20. Comparison On Cloud

6.3.1 MGJoin in MapReduce

The filtering function of our proposed method is eval-
uated on Hadoop platform, in which 20 data nodes are
used. The experiments are carried on the synthetic
datasets of DBLP with the scale from 5× to 25×.
As demonstrated in the first experiment, MGJoin out-
performs all other methods when using three global
orderings. In this experiment the ascending ordering
of term frequency and its reverse order are applied,
including the alphabetical ordering. The similarity
threshold varies from 0.5 to 0.9.

The Figure 19(a) plots the decreasing ratio of candi-
dates number by applying MGJoin. The more digit in
y-axis indicates the more false positives are pruned
out after applying MGJoin. In the figure, the digit
4 is to say that the candidate number become a
quarter less after applying MGJoin. From the figure we
observe that the filtering function of MGJoin is almost
the same on different datasets. When the threshold in-
creases, more false positives will be pruned, relatively.

Figure 19(b) shows the time cost of MGJoin on
different scale data sets. The time cost is more when
the data set scale is larger when using the same
threshold. Also, the time cost is more when the sim-
ilarity threshold is less on the same scale dataset, as
more candidates are produced.

6.3.2 Efficiency Comparison

In this experiment, we compare the efficiency of
MGJoin with state-of-the-art method, PPJoin+. The
synthetic DBLP datasets are used with different scale
from 10× to 40×, and the synthetic Yago datasets with
scale from 10× to 30×. The experiment is carried on 20
data nodes with threshold set to 0.8. The Figure 20(a)

and Figure 17 plot the time cost of the three methods
on two kinds of datasets. From the figures we observe
that MGJoin is more efficient than PPJoin+ on different
datasets. As the scale of dataset increasing, the time
cost for these two methods are all increasing, but
the time cost of MGJoin grows relatively slower than
PPJoin+.

6.3.3 Scalability
In this subsection, we study the performance and
scalability of the MGJoin by varying the similarity
threshold from 0.8 to 0.95 on the 40×DBLP dataset.
In this experiment, we use 20 nodes. The result is
presented in Figure 20(b). Obviously, the total time of
all three methods decreases as the similarity threshold
increases. This is because the candidate number is
decreased when the threshold increases. Among these
methods, the MGJoin performs the best with any
threshold.

We also plot the results of scalability by varying the
number of data nodes used in the cluster from 20 to
40 in Figure 20(c). We set the similarity threshold to be
0.8, and use the 40×DBLP dataset. It can be seen that
the MGJoin consistently outperforms the other two
methods with different node numbers in the cluster.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a new string similarity
join method called MGJoin. It is based on multiple
prefix filters, each of which applies different global
orderings. It’s the first work to explore the function of
multiple prefix filters with different global orderings.
The extensive experiments are conducted on central-
ize system and distributed computing environment.

14

The experiment results demonstrate that our pro-
posed method outperforms state-of-the-art methods
in efficiency and scalability. In next work, the further
research on global ordering number and sequence will
be carried.

REFERENCES

[1] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact set-
similarity joins. In VLDB, pages 918–929. ACM, 2006.

[2] A. Arasu, C. Ré, and D. Suciu. Large-scale deduplication with
constraints using dedupalog. In ICDE, pages 952–963, 2009.

[3] R. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs
similarity search. In WWW, pages 131–140. ACM, 2007.

[4] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator
for similarity joins in data cleaning. In ICDE, pages 61–72.
IEEE, 2006.

[5] S. Chaudhuri and R. Kaushik. Extending autocompletion to
tolerate errors. In SIGMOD, pages 707–718. ACM, 2009.

[6] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. Communications of the ACM,
51(1):107–113, 2008.

[7] X. Dong, A. Halevy, and J. Madhavan. Reference reconciliation
in complex information spaces. In SIGMOD, pages 85–96.
ACM, 2005.

[8] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank
aggregation methods for the web. In WWW, pages 613–622.
ACM, 2001.

[9] A. Elmagarmid, P. Ipeirotis, and V. Verykios. Duplicate record
detection: A survey. TKDE, pages 1–16, 2007.

[10] I. Fellegi and A. Sunter. A theory for record linkage. ASA,
64(328):1183–1210, 1969.

[11] L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas, S. Muthukr-
ishnan, and D. Srivastava. Approximate string joins in a
database (almost) for free. In VLDB, pages 491–500. ACM,
2001.

[12] S. Guha, N. Koudas, A. Marathe, and D. Srivastava. Merging
the results of approximate match operations. In VLDB, pages
636–647. ACM, 2004.

[13] M. Hernández and S. Stolfo. The merge/purge problem for
large databases. In SIGMOD, pages 127–138. ACM, 1995.

[14] R. Kumar and S. Vassilvitskii. Generalized distances between
rankings. In WWW, pages 571–580. ACM, 2010.

[15] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering
algorithms for approximate string searches. In ICDE, pages
257–266. IEEE, 2008.

[16] A. Monge and C. Elkan. The field matching problem: Algo-
rithms and applications. In Proceedings of the second interna-
tional Conference on Knowledge Discovery and Data Mining, pages
267–270, 1996.

[17] F. Naumann and M. Herschel. An Introduction to Duplicate
Detection. Synthesis Lectures on Data Management, 2(1):1–87,
2010.

[18] G. Salton and M. McGill. Introduction to modern information
retrieval. 1986.

[19] S. Sarawagi and A. Bhamidipaty. Interactive deduplication
using active learning. In SIGKDD, pages 269–278. ACM, 2002.

[20] S. Sarawagi and A. Kirpal. Efficient set joins on similarity
predicates. In SIGMOD, pages 743–754. ACM, 2004.

[21] J. Sivic and A. Zisserman. Video google: A text retrieval
approach to object matching in videos. In Computer Vision,
pages 1470–1477. IEEE, 2003.

[22] R. Vernica, M. Carey, and C. Li. Efficient parallel set-similarity
joins using MapReduce. In SIGMOD, pages 495–506. ACM,
2010.

[23] C. Wang, J. Wang, X. Lin, W. Wang, H. Wang, H. Li, W. Tian,
J. Xu, and R. Li. Mapdupreducer: detecting near duplicates
over massive datasets. In SIGMOD, pages 1119–1122. ACM,
2010.

[24] J. Wang, J. Feng, and G. Li. Trie-join: Efficient trie-based
string similarity joins with edit-distance constraints. VLDB,
3(1-2):1219–1230, 2010.

[25] W. Winkler. The state of record linkage and current research
problems. In Statistical Research Division, 1999.

[26] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes:
Compressing and Indexing Documents and Images, Second Edition.
Morgan Kaufmann, 1999.

[27] C. Xiao, W. Wang, X. Lin, and J. Yu. Efficient similarity joins
for near duplicate detection. In WWW, pages 131–140. ACM,
2008.

[28] Z. Zhang, M. Hadjieleftheriou, B. Ooi, and D. Srivastava. Bed-
tree: an all-purpose index structure for string similarity search
based on edit distance. In SIGMOD, pages 915–926. ACM,
2010.

Chuitian Rong is a Ph.D. student in School
of Information, Renmin University of China.
His main research interests include database
system, information integration and cloud
computing.

Wei Lu is a research fellow at NUS, Sin-
gapore. He received his Ph.D degree in
computer science from Renmin University of
China in 2011. His research interest includes
query processing in the context of spatio-
temporal, cloud database systems and appli-
cations.

Xiaoli Wang received her B.S. from School
of Information Science and Engineering,
Northeastern University, Shenyang, China, in
2008. She is current a Ph.D. student and
Research Assistant in School of Comput-
ing, National University of Singapore. Her
research interests are mainly in indexing and
query processing on the complex structure,
such as sequence, tree and graph.

Xiaoyong Du is a professor at Renmin Uni-
versity of China. He received his Ph.D. de-
gree from Nagoya Institute of Technology
in 1997. His research focuses on intelli-
gent information retrieval, high performance
database and unstructured data manage-
ment.

Yueguo Chen received the BS and Mas-
ter degree in Mechanical Engineering and
Control Engineering from Tsinghua Univer-
sity, Beijing, in 2001 and 2004. He earned
his Ph.D. degree in Computer Science from
National University of Singapore in 2009. He
is currently an Assistant Professor in the
Key Laboratory of DEKE, Renmin University
of China. His recent research interests in-
clude massive knowledge bases and seman-
tic search.
Anthony K.H. Tung received the BSc (Sec-
ond Class Honor) and MSc degrees in com-
puter science from the National University
of Singapore (NUS) in 1997 and 1998, re-
spectively, and the PhD degree in computer
sciences from Simon Fraser University (SFU)
in 2001. He is currently an Associate Pro-
fessor in the Department of Computer Sci-
ence, National University of Singapore. His
research interests involve various aspects of
databases and data mining (KDD) including

buffer management, frequent pattern discovery, spatial clustering,
outlier detection, and classification analysis.

