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INSPIRE: A Framework for Incremental
Spatial Prefix Query Relaxation

Yuxin Zheng, Zhifeng Bao, Lidan Shou, and Anthony K.H. Tung

Abstract—Geo-textual data are generated in abundance. Recent studies focused on the processing of spatial keyword queries which

retrieve objects that match certain keywords within a spatial region. To ensure effective retrieval, various extensions were done including

the allowance of errors in keyword matching and autocompletion using prefix matching. In this paper, we propose INSPIRE, a general

framework, which adopts a unifying strategy for processing different variants of spatial keyword queries. We adopt the autocompletion

paradigm that generates an initial query as a prefix matching query. If there are fewmatching results, other variants are performed as a

form of relaxation that reuses the processing done in the earlier phase. The types of relaxation allowed include spatial region expansion

and exact/approximate prefix/substring matching. Moreover, since the autocompletion paradigm allows appending characters after the

initial query, we look at how query processing done for the initial query and relaxation can be reused in such instances. Compared to

existing works which process variants of spatial keyword query as new queries over different indexes, our approach offers a more

compelling way to efficient and effective spatial keyword search. Extensive experiments substantiate our claims.

Index Terms—Query relaxation, spatial keyword search, typeahead search, fuzzy search

Ç

1 INTRODUCTION

AS the growth in geographical applications like Google
Earth and Foursquare, geo-textual data are generated

in abundance. To retrieve such data effectively, recent stud-
ies focused on the processing of spatial keyword queries
which retrieve objects that match certain keywords within a
spatial region. In order to ensure effective and user-friendly
retrieval, a popular paradigm is to support search-as-you-
type as illustrated in Example 1.

Example 1. In Fig. 1a, a user wants to search for “Staples
Center”. He zooms in the region of Staples Center and
types “staples ce”. Object A is returned because it is in
the viewport and starts with “staples ce” in its text.

We call this query a Spatial Prefix (SP) query [1], and
a point of interest (POI) is returned if it is located in the
query region and the query text is a prefix of its textual
content.

However, it is possible that no or few POIs are returned
due to human error: (1) the query range (represented by the
viewport) is wrongly specified by the user who is not famil-
iar with the query region; (2) the query text does not satisfy
the prefix condition due to typos in the query text or data
uploaded by users. Query relaxation must be done to ensure

that useful answers are returned. Such relaxation can be
done in two ways: (1) expand the spatial region to a larger
region; (2) relax the prefix condition to more general textual
conditions. To relax the prefix condition, the first natural
choice is to relax it to the substring query, which requires that
the query text is an exact substring of the textual content of
an object. A second type of relaxation is performed by
allowing mismatches in keyword search but limiting the
matching to start at the prefix. This is called approximate pre-
fix query (ap). If both of these types of relaxation fail to pro-
duce enough number of results, we would then allow
approximate string matching to be applied to any part of
the textual content. This third type of relaxation is named
approximate substring query (as).

Example 2. Fig. 1b shows a case of relaxing the spatial con-
straint. The considered spatial region is enlarged and
object B is added to the result. Figs. 1c, 1d, 1e show the
cases of relaxing the prefix condition. In Fig. 1c, the prefix
constraint is relaxed to the substring matching and object
C is added. In Fig. 1d, the constraint is relaxed to the
approximate prefix matching and object D is added. If at
least three objects are required, the approximate sub-
string matching is applied as in Fig. 1e. Objects A, C, D
and E are returned.

As shown in Example 2, different queries may need dif-
ferent types and degrees of relaxation. Determining what
relaxation to perform and performing each type of relaxa-
tion efficiently are major challenges. While existing works
handle some of these types of relaxation as a single query
[1], [2], [3], [4], performing all these different types of relax-
ation means re-issuing a new query every time. This is
inefficient especially when these queries are answered
using different indexes in different works. Moreover, in
the context of search-as-you-type, users can append char-
acters to the initial query even as the initial query is being
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processed, giving rise to a new query which we refer to as
an appending query.

Example 3. In an interactive search, the user types two more
characters “nt” to the query in Example 2. The text of the
appending query becomes “staples cent”. Instead of
processing the appending query from scratch, we can
use the results of the previous query and start processing
it from the last type of relaxation, which is the approxi-
mate substring matching. Therefore, objects A, C, D and
E are returned.

Again, it is obvious that the appending query in the
example can be handled by issuing it as a completely new
query, but doing so will obviously be not efficient.

In order to provide better solutions for the issues we dis-
cussed, we propose a general two-level inverted index that
can support all types of relaxation that we have mentioned.
The proposed structure has an object-level index to support
functionalities and a node-level index to accelerate query
processing. Using this two-level index, we propose several
variants of the string filtering techniques to effectively
remove data objects that do not satisfy the query condition.

Having observed that different types of relaxation have
different levels of complexity and have dependencies among
themselves, we propose INSPIRE, an INcremental Spatial
PrefIx query RElaxation framework, to process the spatial
prefix query and its relaxation. Similar to the strategy shown
in Fig. 1, the initial query is a spatial prefix query. If no or
few results are returned, we incrementally process different
types of relaxation until sufficient results are returned. In
particular, the spatial region of the prefix query is first
expanded, followed by relaxation of different degrees on the
string dimension: the substring query, the approximate pre-
fix query and the approximate substring query.

By ordering these types of relaxation in an appropriate
order, we can use the dependencies between them to optimize
our query processing through the reuse of previous results.
To further reduce the computational cost, we adapt selectivity
estimation techniques to determinewhether certain relaxation
should be conducted. If the estimated selectivity does not

meet a given threshold, we can simply go to the next-level
relaxation. We will refer to the intermediate result reuse and
selectivity estimation as intra-query optimization.

If a query is an appending query that is formed from a
previous query by appending characters, we also look into
how processing can be reused in such cases. In particular, we
notice that a time-consuming process for answering a query
is to merge inverted lists to obtain candidate results. We thus
further optimize the processing of merging lists in append-
ing queries. This is formalized as our inter-query optimization.

Our main contributions are summarized as follows:

1) We first identify the relationships among different
types of relaxation for the spatial prefix query, and
then propose a framework to incrementally process
the relaxation for a spatial prefix query (in Section 2).

2) We build a one-size-fits-all index (in Section 3) to
support all types of relaxation (in Section 4).

3) During the incremental relaxation paradigm, we pro-
pose various result reuse methods to accelerate the
processing of both non-appending and appending
queries, namely intra-query optimization (in Section 5)
and inter-query optimization (in Section 6).

4) We conduct a comprehensive experimental study
over three real data sets to demonstrate the efficiency
and effectiveness of our methods (in Section 7).

2 THE INSPIRE FRAMEWORK

Our objective is to build a one-size-fits-all search engine for
spatial prefix query and its various types of relaxation. In
this section, we first introduce the preliminaries for such a
search engine. Then we formally state our problem and
introduce our INSPIRE framework.

2.1 Preliminary

Hilbert-encoded Quadtree: Quadtree [5] is widely adopted to
facilitate fast retrieval of objects in multi-dimensional space.
In a two-dimensional Quadtree, each node represents a
bounding box covering a part of the space. The root node
covers the whole space, and the leaf node contains indexed
points, while the internal node has four children, one for
each quadrant obtained by dividing the area covered in half
along both axes.

A Hilbert curve [6] is a space-filling curve, which maps
multi-dimensional data to one dimension. The Hilbert curve
is defined recursively: each cell is divided into four subcells
at each subsequent level. The sequential order of a cell in a
curve is identified by its Hilbert code (hc).

Definition 1 (Hilbert Code). Given a Quadtree node n, its Hil-
bert code hc is a concatenation of the Hilbert code of its parent
node and n’s local order. Hilbert code hc1 is defined to be ahead
of hc2, if hc1 has a smaller value at the first different bit of hc1
and hc2.

Example 4. The Hilbert curve of level-two in Fig. 3 is con-
structed from the Hilbert curve of level-one in Fig. 2.
When the local order is defined in range ½0; 3�, the Hilbert
codes of the nodes in the left-upper corner are 1.0, 1.1, 1.2
and 1.3 respectively. Node 1.0 is ahead of node 1.1.

We integrate a Hilbert curve with a Quadtree as in [7].
As a result, we sequentialize the cells of a Quadtree to

Fig. 1. Spatial prefix query and its relaxation.
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efficiently retrieve places located in a given spatial region.
We call this a Hilbert-encoded Quadtree, on which we will
build our novel index to handle the spatial prefix query and
its various types of relaxation.

Example 5. Fig. 4 shows a Hilbert-encoded Quadtree of
eleven objects. A Quadtree is first built. The maximum
capacity of each leaf node is set to two. Then a Hilbert
curve is built to link the nodes of the Quadtree, which
is plotted as the dotted curve. Each leaf node is
attached with a Hilbert code to represent its sequential
order in the Hilbert curve.

String filtering: The approximate search is used to handle
cases when queries have errors. Most works build solutions
based on the concept of q-grams [8], [9], [10], [11].

Definition 2 ((Positional) q-gram). A q-gram tk is a sequence
of q characters in string s. A positional q-gram (tk,p) is a pair
of q-gram tk with its position p in string s.

To support approximate string queries, Gravano et al.
proposed an efficient solution for edit similarity join [8].
The edit distance constraint is relaxed to a weaker constraint
based on the number of matching q-grams.

Definition 3 (Matching (Positional) q-gram). A q-gram tk1
matches tk2 if tk1 ¼ tk2. Given an edit distance threshold t, a
positional q-gram (tk1, p1) matches (tk2, p2) if tk1 ¼ tk2 and
jp1 � p2j � t.

However, one problem of [8] is that a string candidate
pair cannot be discarded unless all their q-grams have
been compared. To quickly filter out candidate pairs,
a prefix-based filtering is proposed [9]. We summarize
some widely adopted filters in the approximate string
search as follows.

Definition 4 (Filters of String Approximation). Given
strings s, t, and an edit distance threshold t, the following fil-
ters are used to check whether the edit distance between s and t
is within t.

1) Length Filtering (LF) [8]: jjsj � jtjj � t.
2) Count Filtering (CF) [8]: s and t must share at

least LBs;t;t;q ¼ðmax(jsj; jtjÞ � q þ 1Þ � q � t match-
ing q-grams.

3) Position Filtering (PoF) [8]: s and tmust share at least
LBs;t;t;q matching positional q-grams.

4) Prefix Filtering (PrF) [9]: the first (q � t þ 1) posi-
tional q-grams of s and t must have at least one match.

2.2 Problem Statement

The problem we are going to address is to efficiently answer
the spatial prefix query and its various types of relaxation. It
can be reduced to two problems: (1) To design an incremen-
tal relaxation paradigm, and the relaxation is triggered if no
or few results are returned. (2) To provide the search-as-
you-type feature for the interactive search.

The frequently used notations are summarized in Table 1.
Each spatial objectO is defined as a tuple (O:id,O:loc,O:str),
where O:id is an identification, O:loc ¼ ðlat; lngÞ the latitude
and longitude, andO:str the textual content. A spatial prefix
query is defined as:

Definition 5 (Spatial Prefix Query). A Spatial Prefix query Qp

¼ (rng, str) consists of two parts: (1) the spatial region
Qp:rng, which can be retrieved from the user’s viewport; (2)
the query string Qp:str.

A spatial object O is an answer to a SP query Qp if: (1)
O:loc is in Qp:rng, and (2) Qp:str is a prefix of O:str. When a
spatial prefix search returns no or few results, we relax the
query in order to obtain sufficient results. The spatial prefix
query can be relaxed in two ways: (1) relax the spatial con-
straint, or (2) relax the prefix constraint.

Definition 6 (Relaxation of Spatial Region). Given an SP
query Qp ¼ (rng, str), the relaxation on the spatial region
leads to a Spatial Prefix query in a Relaxed region (SPR) Qr

p ¼
(rng0, str), where Qp:rng � Qr

p:rng
0.

Definition 7 (Relaxation of Prefix Constraint). Given an SP
query Qp ¼ (rng, str), the relaxation on the prefix constraint

Fig. 3. Level-two Hilbert Curve.

Fig. 2. Level-one Hilbert Curve.

Fig. 4. Hilbert-encoded Quadtree of 11 objects.

TABLE 1
Table of Notations

n a node of a Quadtree O a spatial object

n:hc the hilbert code of n p> reserved position

u result size threshold t edit distance threshold

v string query type < prefix ratio

Q0v appending query Qv previously-formed query

ResðQvÞ result set of Qv � scarce threshold

SðQvÞ estimated selectivity of Qv

Svðn; sÞ estimated selectivity of string s in n for string type v

qc (qp) q value for q-gram (positional q-gram)

NSðn;QvÞ node snippet of node nwith respect to Qv

LBs;t;q min match threshold, (jsj � q þ 1Þ � q � t
UBp> ;t;q length bound, ðp>� t þ q � 1)

ZHENG ET AL.: INSPIRE: A FRAMEWORK FOR INCREMENTAL SPATIAL PREFIX QUERY RELAXATION 3
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leads to a relaxed query Qv ¼ (rng, str, (t)), where v is one of
the following string queries: exact substring query (s), approxi-
mate prefix query [11] and approximate substring query [12]. t
is an edit distance threshold for the latter two types of approxi-
mations. Therefore, the three types of relaxation of the prefix
constraint are:

1) Spatial Substring (SS) query: Qs.
2) Spatial Approximate Prefix (SAP) query: Qap.
3) Spatial Approximate Substring (SAS) query: Qas.

Example 6. Fig. 4 shows a spatial database. The textual con-
tents of the objects are shown on the right, while the loca-
tions are shown on the left. Table 2 illustrates an example
of an SP query, Qp ¼ (r, “star”), and its relaxation.

As reported in [13], users usually input a query letter by
letter, and newly typed characters are appended to the pre-
vious query forming a new query at any moment. We call
this type of query an appending query. Processing of append-
ing queries is important to achieve the search-as-you-type
paradigm for the interactive search.

Definition 8 (Appending Query Q0v). Given two queries Qv

and Q0v. Q
0
v is an appending query of Qv if

(1) Qv:rng ¼ Q0v:rng, and (2) Qv:str is a prefix of Q
0
v:str.

Example 7. In the interactive search, the user then issues
another query Q0p ¼ (r, “starbu”), which is an appending
query of Qp ¼ (r, “star”). The answer to Q0p is O6.

2.3 Framework

We use ResðQvÞ to denote the result set of a spatial query
Qv. For a spatial prefix query and its various types of relaxa-
tion, we identify the following relationships:

Observation 1 (Inter-relaxation Relationships).

1) ResðQpÞ � ResðQr
pÞ,

2) ResðQpÞ � ResðQsÞ � ResðQasÞ,
3) ResðQpÞ � ResðQapÞ � ResðQasÞ:

Besides, we observe the inter-query relationship between a
previously-formed query and its appending query. Further
details will be presented in Section 6.1.

Observation 2 (Inter-query Relationship).

1) ResðQpÞ 	 ResðQ0pÞ,
2) ResðQr

pÞ 	 ResðQ0rp Þ,
3) ResðQsÞ 	 ResðQ0sÞ,
4) ResðQapÞ 	 ResðQ0apÞ,
5) ResðQasÞ 	 ResðQ0asÞ:

The above two containment relationships motivate us to
propose an incremental relaxation strategy, called INcre-
mental Spatial PrefIx query RElaxation. As shown in Fig. 5,
the INSPIRE framework processes the spatial prefix query
in the following way. Given an incoming query Q0v, we first
check whether Q0v is an appending query of another query
Qv that has been processed previously.

Case 1. If Q0v is not an appending query, we process it as a
new SP query. If the result size of Q0p is not less than a cer-

tain threshold u, the results are returned. Otherwise, the
relaxation is applied incrementally: the SPR query is first
processed, followed by the SS, SAP and SAS queries.

Case 2. If Q0v is an appending query of Qv, we process it
from where Qv stops. We first reuse ResðQvÞ to form the
candidate results of Q0v. If sufficient results are found, proc-
essing for Q0v stops; otherwise, we further relax Q0v in an
incremental way as what we have done in Case 1.

In Case 1, the incremental relaxation for a non-append-
ing query may contain several phases, and Observation 1
identifies the commonality among relaxation at different
levels. It motivates us to reuse the results of the less relaxed
queries (computed in earlier phases) to process the query in
the new phase. Furthermore, we propose a method to esti-
mate the selectivity of a query, denoted as SðQ0vÞ, ahead of
processing it; as a result, if SðQ0vÞ is smaller than the thresh-
old, we can skip the relaxation and go to the relaxation at
the next level. The reuse and estimation form the intra-query
optimization, which will be presented in Section 5.

In Case 2, Observation 2 brings two optimization oppor-
tunities: (1) We can reuse the results of previously-formed
query Qv w.r.t. the appending query Q0v. (2) We do not pro-
cess Q0v from scratch; instead, we process Q0v from where
Qv stops. They are formalized as our inter-query optimization,
which will be presented in Section 6.

3 TWO-LEVEL INVERTED INDEX

To support INSPIRE, we need a one-size-fits-all index that
can answer the spatial prefix query and support the compu-
tation of its different types of relaxation. We propose an
index structure comprising two parts: a Hilbert-encoded
Quadtree in the main memory, which is described in
Section 2.1, and a two-level inverted index on the disk. We
introduce such an index in this section.

TABLE 2
Spatial Prefix Query and Its Relaxation

Query type Notation Query Result

SP Qp = (r, “star”) O5; O6

SPR Qr
p = (r0, “star”) O5; O6; O9; O10

SS Qs = (r, “star”) O5; O6

SAP Qap = (r, “star”, 1) O4; O5; O6; O7

SAS Qas = (r, “star”, 1) O3; O4; O5; O6; O7; O8

Fig. 5. INSPIRE.
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3.1 Spatial q-Gram

As shown in Section 2.1, building an inverted index on
q-grams is a natural choice in string search. To answer a spa-
tial prefix query and its relaxation, we propose a two-level
inverted index, which is essentially an adaption of the
inverted index from the granularity of q-gram to a finer level
of granularity called spatial q-gram.

Definition 9 (Spatial (Positional) q-gram). A spatial q-gram z

¼ (hc, tk) contains a Hilbert code hc and a q-gram tk. A spa-
tial positional q-gram � ¼ (hc, tk, p) consists of a Hilbert code
hc and a positional q-gram (tk, p).

The spatial q-gram links the Hilbert code and the q-gram
to capture the spatial and textual information of an object.
By extending the concept of matching q-gram in Definition 3,
the matching spatial q-gram is defined and will be used to
prune objects that cannot satisfy the textual constraint (see
Section 4.1).

Definition 10 (Matching Spatial q-gram). Spatial q-grams z1
and z2 match if z1:hc ¼ z2:hc and z1:tk ¼ z2:tk. Spatial posi-
tional q-grams �1 and �2 match w.r.t. a threshold t, if
�1:hc ¼ �2:hc, �1:tk ¼ �2:tk and j�1:p� �2:pj � t.

3.2 Object-Level and Node-Level Inverted Index

Once the Hilbert-encoded Quadtree is constructed, we build a
two-level inverted index. To obtain the spatial and textual
information of an object, we build an object-level inverted
index on spatial q-grams by setting a spatial q-gram as the
key and the objects containing the spatial q-gram as the value.

Besides the object-level inverted index, we need to know
the number of objects having a particular q-gram in a node
to estimate the selectivity to optimize the query processing.
Thus, we attach a count to each leaf node of the Quadtree to
record the number of objects containing a particular q-gram
in a node. By setting a q-gram as the key and a list of
(Hilbert-code, count) pairs as the value, we build a coarse-
grained index, called node-level inverted index. We will
present the selectivity estimation later in Section 5.1.

Example 8. Table 3a illustrates the object-level inverted
index of the database in Fig. 4. The first entry, (0.2,“sta”)
! {O2}, indicates that O2 is located in the leaf node with

Hilbert code “0.2” and has a 3-gram “sta”. Table 3b
shows the node-level inverted index. From the first entry
“sta” ! {(0.1, 1), . . ., (2.0.3.3, 1)}, we know that there is
one object located in node “0.1” and containing a 3-gram
“sta”, etc.

B+ trees are built on the keys in the inverted index for
quick access to index entries. The keys of the inverted index
are sorted. For example, the spatial positional q-gram is
sorted by then Hilbert code, then by the alphabetical order
of the q-gram and the q-gram position. The values of the
node-level and object-level inverted indexes are sorted by
the Hilbert code of a node and the object ID respectively to
support the filters in Section 4.1. Due to space limitations,
the index construction and maintenance are presented in
the technical report [14].

3.3 Combining q-Gram with Positional q-Grams

Positional q-gram is proposed to accelerate the processing
of SP, SPR and SAP queries at the expense of large storage
space [8], [9], [15]. However, as reported in [16], the aver-
age number of words per query is small (2.35) and the
number of words per query is smaller than three in most
cases (87.4 percent ). Thus, it is not worthwhile to store all
positional q-grams. Instead, we only store the positional
q-grams with position less than a certain value, referred to

as reserved position p>. The setting of p> will be presented
in the experiment.

A compromise between storage and efficiency is made
for storing less positional q-grams. However, it leads to a
problem that SS and SAS queries cannot be supported. As
compensation, we also store q-grams (NOTpositional). Com-
pared to the large storage required for positional q-grams,
the storage of q-grams is much smaller. Therefore, we can
store q-grams with larger q value to achieve better perfor-
mance. For ease of illustration, we use (qp) qc to denote the q
value for (positional) q-grams. As a result, inverted indexes
based on positional qp-grams and qc-grams are built as
shown in Table 3.

4 QUERY PROCESSING

In INSPIRE, the SP query is first processed. If its result size
is smaller than the result size threshold u, different types of
relaxation are applied incrementally. In this section, we
present how a single query is processed. For processing an
appending query, we will present it in Section 6.

Algorithm 1. Answering Qv

1: IntrðQvÞ  getIntrNodeSnippet(Qv)
2: CanNode nodeLevelFilter(IntrðQv), Qv)
3: for all n 2 CanNode do
4: CanObj objectLevelFilter(Objðn;QvÞ, Qv, n)
5: for all o 2 CanObj do
6: if verifyObject(o) then
7: Result Result [ o
8: return Result

As shown in Algorithm 1, processing a query Qv has two
key steps: (1) get the candidate nodes (lines 1-2), and (2) get
the results for each candidate node (lines 4-7).

TABLE 3
Two-Level Inverted Index

ZHENG ET AL.: INSPIRE: A FRAMEWORK FOR INCREMENTAL SPATIAL PREFIX QUERY RELAXATION 5
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First, we present how to get the candidate nodes. We get
the leaf nodes of the Quadtree that intersect with Qv:rng,
denoted as IntrðQvÞ (line 1). Then the node-level filter
takes IntrðQvÞ as the input and removes the nodes that can-
not satisfy the string constraint (line 2). For each node
n2IntrðQvÞ, its snippet is retrieved.
Definition 11 (Node Snippet). The node snippet of a node n

with respect to a query Qv, denoted asNSðn;QvÞ, contains:
1) n:hc: the Hilbert code of node n.
2) ObjðnÞ: the objects located in node n.
3) Obj(n, Qv): the objects located in node n and Qv.rng.

ObjðnÞ and Obj(n, Qv) are used to estimate the selectivity of a
query, which will be illustrated in Section 5.1.

Then we show how to get the result objects for each
candidate node. For a candidate node n, Obj(n, Qv) is
retrieved when getting the snippet of n. The object-level
filter of node n takes Obj(n, Qv) as the input and prunes
the objects that cannot meet the string constraint (line 4).
Finally, the candidate objects are verified whether they truly
satisfy the textual constraint (lines 5-7).

4.1 Node-Level and Object-Level Filters

Filters are used at two levels: nodeLevelFilter() and object-
LevelFilter() to filter nodes and objects that cannot satisfy
the string constraint respectively. Recall Definition 4, string
filters have been proposed in the literature for approximate
queries. To cater for the processing of query Qv based on
our two-level inverted index, we propose variants of them
at the node level and object level respectively. Given a query
text s and an edit distance threshold t, the node-level and
object-level filters are:

Definition 12 (Node-level Filters).
CFn: a node n must have at least LBs;t;qc ¼ (jsj� qc þ 1Þ �

qc � t matching qc-grams.
PoFn: a node n must have at least LBs;t;qp matching posi-

tional qp-grams.
PrFn: a node n must have at least one matching positional

qp-gram in the first (qp � t þ 1) positional qp-grams of s.

Definition 13 (Object-level Filters in Node n).
CFo: an object o must have at least LBs;t;qc matching spa-

tial qc-grams in node n.
PoFo: an object o must have at least LBs;t;qp matching spa-

tial positional qp-grams in node n.
PrFo: an object o must have at least one matching spatial

positional qp-gram in the first (qp � t þ 1) spatial positional
qp-grams of s in node n.

Table 4 shows the filters used for each type of query. Col-
umn 1 is the query type, columns 3 and 2 specify the filters
adopted and the condition to trigger such filters, while col-
umn 4 specifies the minimum match threshold for a quali-
fied candidate to pass the filter.

In particular, PoF can only be applied when the query
length is not greater than UBp>;t;qp , where UBp>;t;qp ¼
(p> � t þ qp � 1). Similarly, PrF can be applied when t is not

greater than (p>=q) in SAP queries. Otherwise, we cannot
get all the matching positional qp-grams from the proposed
index because we only store the positional qp-grams with

position less than p> (recall Section 3.3).

The essence of the node-level and object-level filters is
to obtain the candidate nodes and objects that appear
at least a certain number of times on the given inverted
lists. It is formalized as the list merging problem in [10],
[17]. The minimum number of appearances corresponds
to the min match threshold in the 4th column of Table 4.

For the node-level filters, the lists are retrieved from
the node-level inverted index using the matching (posi-
tional) q-grams. For the object-level filters, the lists are
retrieved from the object-level inverted index using the
matching spatial (positional) q-grams. Please refer to the
technical report [14] for the analysis of query processing.

Here, we present how a query is processed using an
example. We show how to answer an SAP query, Qap ¼ ðr,
“star”, 1), where t ¼ 1 and Qap:r is shown in Fig. 4.

Example 9. First, we retrieve the intersecting leaves
IntrðQapÞ: {0.2, 1, 2.0.0, 2.0.3.0, 2.0.3.1, 2.0.3.2, 2.0.3.3}.

Second, we use the node-level filters to prune
the nodes that cannot satisfy the string constraint.
Here, we only describe PoFn. PoFn with minimum
match LBs;t;qp ¼ 1 is used. The matching positional 2-

grams for Qap:str = “star” are (“st”, 0), (“st”, 1), (“ta”,
0), (“ta”, 1), (“ta”, 2), (“ar”, 1), (“ar”, 2), (“ar”, 3). The
inverted lists for the matching positional 2-grams are
retrieved and the intersection operation is performed
between each inverted list and IntrðQapÞ. The nodes
appearing at least LBs;t;qp ¼ 1 time in the inverted

entries are candidates. By employing the list merging
algorithms [10], we get the candidate nodes, CanNode:
{2.0.3.0, 2.0.3.2, 2.0.3.3}.

Third, we apply the object-level filters to prune objects
in each candidate node. The procedure is similar to that
of node-level filters. The major difference is that we
retrieve objects from the object-level inverted index using
matching spatial positional q-grams. Take node 2.0.3.0 as
an example. The Hilbert code (2.0.3.0) and the matching
positional 2-grams form the matching spatial positional
2-grams (recall Definition 10). By employing the object-
level filters in node 2.0.3.0, we obtain the candidate
objects: {O5, O6}.

Finally, O5 and O6 are checked by the query con-
straints. They are returned as answers.

5 INTRA-QUERY OPTIMIZATION

Recall the framework in Section 2.3, since we adopt an
incremental relaxation, it will be beneficial if we could

TABLE 4
Filters Used in a Particular Query

Query Condition Filter min match

SP & SPR jsj � UBp>;0;qp PoF LBs;0;qp

jsj > UBp>;0;qp CF LBs;0;qc

SS CF LBs;0;qc

SAP t � p>=qp PrF 1
jsj � UBp>;t;qp PoF LBs;t;qp

jsj > UBp>;t;qp CF LBs;t;qc

SAS CF LBs;t;qc

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. X, XXXXX 2015



IE
EE

Pr
oo

f

skip processing a certain type of relaxation, whose result
size does not exceed the result size threshold. It moti-
vates our first optimization: estimating the selectivity of
a query before its processing is triggered. In addition,
we can use the dependencies between the relaxation at
different levels to optimize our query processing through
reuse of intermediate results. These two form intra-query
optimization. In this section, we present how to exploit
such intra-query optimization to accelerate the process-
ing of the incremental relaxation.

5.1 Selectivity Estimation

Given a spatial query Qv ¼ ðrng; str; t), we compute its
selectivity SðQvÞ in a bottom-up manner. We first retrieve
the set of leaf nodes that intersect with Qv.rng, denoted as
IntrðQvÞ. For each node n 2 IntrðQvÞ, we estimate the selec-
tivity for string Qv:str of query type v in node n, denoted as
Svðn;Qv:strÞ. As we calculate SðQvÞ, we need to multiply
Svðn;Qv:strÞ by the proportion of node n inside Qv:rng.
Similar to [18], we assume that objects are uniformly distrib-
uted inside each node. Thus this proportion is calculated as
jObj(n, Qv)j/jObjðnÞj. Finally, we sum up the calculated val-
ues to obtain SðQvÞ:

SðQvÞ ¼
X

n2IntrðQvÞ

jObjðn;QvÞj
jObjðnÞj Svðn;Qv:strÞ; (1)

where IntrðQvÞ, jObjðn;QvÞj and jObjðnÞj can be retrieved
from getIntrNodeSnippet(Qv) (line 1 in Algorithm 1). Next
we show how to compute Svðn;Qv:strÞ.

5.1.1 Baseline Method: Markov Estimator (ME)

The Markov Estimator is used to estimate the substring
selectivity in relational databases [19], [20]. It is based on
the Markov chain assumption, which states that “the proba-
bility of observing a q-gram in a sequence depends only on
the q-gram immediately preceding it, and is independent of
all other preceding q-grams.” We apply the Markov Estima-
tor to estimate the substring selectivity of a node. For exam-
ple, the substring selectivity of “star” in node n is:

MEsðn; “star”Þ ¼ P ð“star”j“sta”Þ � P ð“sta”Þ � jnj

 P ð“tar”j“ta”Þ � P ð“sta”Þ � jnj
¼ Cnð“sta”Þ � Cnð“tar”Þ=Cnð“ta”Þ;

(2)

where CnðtkÞ is the number of objects containing the q-gram
tk in node n, and can be retrieved from the node-level
inverted index using tk as the key. The same example can
be used to present the prefix selectivity estimation of a node

MEpðn; “star”Þ ¼ P ðð“star”; 0Þj“star”Þ � P ð“star”Þ � jnj

 ðCnð“st”; 0Þ=Cnð“st”ÞÞ �MEsðn; “star”Þ;

(3)

where Cnðtk; pÞ is the number of objects containing the
positional q-gram (tk; p) in n, and can be retrieved from the
node-level inverted index using (tk; p) as the key. The term
ðCnðtk; pÞ =CnðtkÞÞ is denoted as the prefix ratio <.

However, Chaudhuri et al. [20] discovered that the Mar-
kov Estimator underestimates the true selectivity when a
query contains a short identifying substring.

Definition 14 (Short Identifying Substring [20]). A sub-
string t0 of t is a short identifying substring if

1) the selectivity of t0 is close to the selectivity of t, and
2) t0 is much shorter than t.

5.1.2 Scarce q-Gram Method

As shown in [20], if string t contains a short identifying
string t0, the estimated selectivity of t0 is much closer to the
true selectivity of t. It motivates us to define scarce q-gram at
the node level, which is an analogy of t0, and use the selec-
tivity of the scarce q-gram to estimate the selectivity of the
query text t in the node.

Definition 15 (Scarce q-gram in a Node). A q-gram tk in node
n is scarce if the proportion of objects containing tk in node n
is less than a threshold �.

A scarce q-gram is actually a short identifying sub-
string, because: (1) the selectivity of the scarce q-gram in
a node is close to the selectivity of the original query in
the same node because its value is small and is an upper
bound of the true selectivity, and (2) q-grams are short.

For each q-gram of string t, the number of objects con-
taining the q-gram in node n can be retrieved from the
node-level inverted index. Among all the retrieved val-

ues in node n, we use C?n ðtÞ to denote the minimum

value for the q-grams of t. Similarly, we use C?
0

n ðtÞ to
denote the minimum value for the positional q-grams of
t in node n.

As stated in Equation (1), we use Ssðn; tÞ to denote the

substring selectivity of string t in node n. If (C?n ðtÞ=jObjðnÞj)
< �, there exist scarce q-grams in node n for t. Then we set

the value of Ssðn; tÞ to C?n ðtÞ. Otherwise, we set the value of
Ssðn; tÞ toMEsðn; tÞ. Therefore, we get:

Ssðn; tÞ ¼ C?n ðtÞ if ðC?n ðtÞ=jObjðnÞjÞ<�
MEsðn; tÞ otherwise:

�

By integrating the scarce q-gram with the Markov
Estimator, the prefix selectivity of a string t in node n is:

Spðn; tÞ ¼

minðC?n ðtÞ; C?
0

n ðtÞÞ if ((C?
0

n ðtÞ=jObjðnÞj<�)
ðC?n ðtÞ=jObjðnÞj<�ÞÞ

C?
0

n ðtÞ else if C?
0

n ðtÞ=jObjðnÞj<�
C?n ðtÞ � < else if C?n ðtÞ=jObjðnÞj<�
MEpðn; tÞ otherwise:

8
>>>><

>>>>:

The selectivity is estimated for SPR and SS queries only,
but not for SAP and SAS queries because additional infor-
mation is required [21], which will bring more storage cost.

5.2 Reuse of Query Results

Besides the selectivity estimation, our incremental process-
ing provides another optimization opportunity: reusing the
result of the relaxation in earlier phases to accelerate the
processing of a relaxed query.

ZHENG ET AL.: INSPIRE: A FRAMEWORK FOR INCREMENTAL SPATIAL PREFIX QUERY RELAXATION 7
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Rule I. Reusing final results of the relaxation in earlier phases.
The inter-relaxation relationships (Observation 1) indicate
the inclusion relationships between relaxation at different
levels. Therefore, we can reuse the less relaxed query’s
results as a part of the more relaxed query.

Rule II. Reusing common intermediate results. Recall Section
4, all types of relaxation are processed over our one-size-
fits-all index, many intermediate results among queries can
be reused as well, including:

a) Reusing the snippets (Definition 11). When the spatial
region is relaxed, the SPR query is applied. Suppose
that the snippet of node n is NSðn;QpÞ ¼ (n:hc,
ObjðnÞ, Objðn;QpÞ) for a SP query Qp, it becomes
NS(n, Qr

p) ¼ (n:hc, ObjðnÞ, Objðn;Qr
pÞ) for the relaxed

SPR query Qr
p. When processing node n in Qr

p,

we only need to verify the objects in (Objðn;Qr
pÞ n

Objðn;QpÞ).
When the prefix constraint is relaxed, the SS, SAP

and SAS queries are applied. Since they share the
same spatial region, the intersecting nodes remain
the same. In addition, the snippet of each intersect-
ing node remains unchanged. Thus, this information
can be reused.

b) Reusing filtering results. As shown in Table 4, we
notice that (1) SP and SPR queries share the same
PoF and CF filters; (2) SP and SS queries share the CF
filter when the query length is greater than UBp>;0;qp ;
(3) SAP and SAS queries share the CF filter when the
query length is greater than UBp>;0;qp . These filtering

results can be reused.
c) Reusing the result of an SP query in the selectivity estima-

tion. We can use the number of results of an SP query
as the lower bound when estimating the selectivity
of the SPR and SS queries (if needed), instead
of computing the selectivity from scratch for these
types of relaxation.

d) Reusing SPR’s selectivity to estimate SS’s selectivity.
Based on Equation (3), MEsðn; tÞ can be computed
using MEsðn; tÞ ¼ MEpðn; tÞ=<. Since MEpðn; tÞ is
already computed in estimating SPR’s selectivity, we
can reuse MEpðn; tÞ to compute the selectivity of the
later SS query.

Example 10. Suppose we have answered an SP query Qp

¼ (r,“star”) in Example 6, we need to answer its
relaxed SPR query Qr

p ¼ (r0, “star”). By Observation 1,

we obtain ResðQpÞ � ResðQr
pÞ and ResðQpÞ ¼ {O5; O6}.

Thus, ResðQr
pÞ must contain {O5; O6}. This shows the

application of Rule I.
According to the framework shown in Fig. 5, before

the processing of Qp:r is triggered, we estimate S(Qr
p)

first. By Rule II.c, we only need to estimate the selectivity
for the nodes that are not contained in Qp:r. We are not
required to estimate the selectivity for the nodes that are
contained in Qp:r, such as node 2.0.3.0, because we have
obtained their results.

By Rules I and II.a, we do not revisit the objects in
Qp:r. We only need to visit object O2, node 0.1 and 2.0.1.
By Rule II.b, SP and SPR queries share the same PoF
filter. We notice that node 0.2 is removed by PoFn

previously. Consequently, we do not visit node 0.2
when we process Qr

p.

6 INTER-QUERY OPTIMIZATION

Recall the framework in Section 2.3, we point out the
relationship between a query and its appending query,
and highlight the relationships between their results in
Observation 2. Next, we present how to exploit the inter-
query relationship to accelerate the processing of app-
ending queries.

6.1 Processing Appending Queries

Before discussing how to process appending queries, we
need to prove Observation 2, because it is a foundation of
our methods. For a string query and its appending query,
we observe the following properties.

Observation 3. Given strings s, t, u, where s is a prefix of t,
and an edit distance threshold t, these properties hold:

1) If s is not a prefix of u, t is not a prefix of u.
2) If s is not a substring of u, t is not a substring of u.
3) If s is not an approximate prefix of u under t, t is

not an approximate prefix of u under t.
4) If s is not an approximate substring of u under t, t

is not an approximate substring of u under t.

Proof. Properties (1), (2) and (3) can be easily derived from
property (4). Here we prove property (4) by contraposi-
tive. We use D(*,*) to denote the edit distance between
two strings, which is calculated by:

Dða½0; i�; b½0; j�Þ

¼ min

Dða½0; i� 1�; b½0; j� 1�Þ þ dðai; bjÞ
Dða½0; i� 1�; b½0; j�Þ þ 1

Dða½0; i�; b½0; j� 1�Þ þ 1;

8
><

>:

where dðai; bjÞ ¼ 0 if ai ¼ bj, and dðai; bjÞ ¼ 1 if ai 6¼ bj.
When we match ai to bj, one substitution is required if
ai 6¼ bj. The substitution is not needed if we do not match
ai to bj. Therefore, we get D(a[0, i], b[0, j]) � D(a[0,
i� 1�; b[0, j� 1]).

By the definition of approximate substring, we
suppose D(t, u½i; j�Þ ¼ t. We get D(t[0, jtj � 1�; u½i; j�Þ �
D(t[0, jtj � 2�, u[i, j� 1�Þ � � � � � D(t[0, jsj � 1�, u[i,
j� ðjtj � jsj)]) ¼ D(s, u[i, j� ðjtj � jsj)]).

As a result, we get a substring of u, whose edit dis-
tance to s is within t. In other words, s is an approximate
substring of u under the edit distance threshold t. tu
By Definition 8, the difference between a spatial query

Qv and its appending query Q0v is: Qv:str is a prefix of
Q0v:str. Thus, we can easily derive the inter-query relationship
(Observation 2) from Observation 3.

Based on the inter-query relationship, we process a query
in the following way, as shown in Fig. 5. Whenever a query
Q0v is coming, we first check whether it is an appending
query of the previous query Qv. If Q0v is an appending
query of Qv, we process Q0v from where Qv stops. In addi-
tion, we use the results of Qv to form the candidate results
of Q0v. Otherwise, Q0p is a non-appending query. We process

it as a fresh SP query.

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. X, XXXXX 2015
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Such inter-query relationship plus our incremental para-
digm bring two immediate benefits: (1) When processing
Q0v, instead of starting from scratch, we could start from the
type of relaxation where Qv stops. Therefore, processing
relaxation at previous levels can be skipped. (2) The result
of Qv, i.e. ResðQvÞ, can be output to Q0v as candidates in
the corresponding relaxation, and we only need to check
whether each object in ResðQvÞ satisfies the string condition
for Q0v, as Qv:rng ¼ Q0v:rng.

6.2 Merging Inverted Lists for Appending Queries

When the above reuse does not bring enough number of
results for Q0v, we need to further relax Q0v and process
it by adopting Algorithm 1. The most time consuming
part is to get candidates by applying the filters shown in
Section 4.1, i.e. to get the objects that appear at least m
times in the given inverted lists. It is formalized as the
list merging problem in [10], [17]. Note that the value of m
corresponds to the minimum match threshold, which is
shown in Table 4.

Now, our problem becomes: given a set of lists Lold, we
have found the candidate set Cold, of which an id appears at
least m times in Lold. When a new set of inverted lists Lnew

comes for the appending query (brought by the new
q-grams), we need to find a set of candidates Cnew, of which
an id appears at leastm0 times in the set (Lold

S
Lnew).

We propose a novel algorithm to address this problem,
where our idea is to reuse the results computed for Qw to
efficiently merge the lists when processing its appending
query Q0w. When processing Qw, we find these properties:

Property 1. For each id in Cold, we have its number of occurrences
in Lold, which is at leastm.

Property 2. For all the ids not in Cold, they appear at most
(m� 1) times in Lold.

Based on the above two properties, we process the ids in
and outside Cold separately. There are three cases.

Case (1). m0 � ðmþ jLnewj). For each id in Cold, by Prop-
erty 1, we do not need to visit Lold again and can directly
check whether it has enough number of appearances in
Lnew. For all the ids not in Cold, by Property 2, they appear at
most (m� 1þ jLnewj) in (Lold

S
Lnew), which is less than

m0. Thus, they cannot be in Cnew.
Case (2). m � m0 < ðmþ jLnewj). For each id in Cold, the

same method is applied as Case (1). For the ids not in Cold,
we present how to process them in Section 6.2.1.

Case (3).m0 < m. We need to restart merging the inverted
lists in (Lold

S
Lnew) to get Cnew.

6.2.1 Processing the ids Not in Cold of Case (2)

We continue to show how to process the ids not in Cold of
Case (2). Based on Property 2, we find:

Property 3. For the ids not in Cold, if a minimum of m0 occur-
rences is required in (Lold

S
Lnew), they must appear at least

(m0 �mþ 1) times in Lnew.

The MergeSkip algorithm [10] is proposed to efficiently
merge lists using a heap structure. The heap is used to
record the frontiers of the inverted lists. If a minimum of m

occurrences is required, the heap returns the ðmÞth smallest
record in each round, whose value is t. The records smaller
than t are skipped in the inverted index because they cannot
appear more thanm times.

Example 11. Fig. 6a shows an example of the MergeSkip
algorithm. Records which appear at least m ¼ 3 in the
inverted lists Lold are returned. The MergeSkip algorithm
uses a heap to record the frontier of each inverted list. In
round one, the heap returns the 3th smallest record, 23.
The records smaller than 23 are skipped, as the red doted
arrows on the left show.

Similar to the MergeSkip algorithm, we maintain a heap
Hall for frontiers of the lists in (Lold

S
Lnew). In addition, we

maintain another heap Hnew for frontiers of the lists in Lnew.
In each round, Hall returns the ðm0Þth smallest record,
whose value is tall, while Hnew returns the (m0 �mþ 1)th
smallest record whose value is tnew. By Property 3, the
records smaller than max(tall, tnew) are skipped because they
cannot appear more thanm0 times.

Example 12. Fig. 6 shows an example of merging lists for the
ids not in Cold. Given m ¼ 3, we need to get the candi-
dates with minimum m0 ¼ 4 occurrences in (Lold

S

Lnew). We use Hall to store the frontiers of all the lists in
Fig. 6b and Hnew to store the frontiers of the lists in Lnew

in Fig. 6c. In round one, Hall outputs the 4th smallest
number, which is 24. Hnew outputs the 2nd smallest num-
ber, which is 50. Since max(50, 24) ¼ 50, the records
smaller than 50 are skipped, as the black arrows on the
right show. In contrast, only the records smaller than 24
are skipped in MergeSkip algorithm.

When the new inverted lists are added for the appending
query, the MergeSkip algorithm merges the lists from
scratch, while our algorithm optimizes this process by reus-
ing the intermediate results computed from the previously-
formed query. Therefore, we do not need to merge the lists
from scratch for Cases (1) and (2).

7 EXPERIMENT

In this section, we aim to study four issues: (1) how the intra-
query optimization boosts the performance of INSPIRE

for non-appending queries, i.e. query reuse and selectivity
estimation; (2) how the inter-query optimization accelerates
the processing of the appending queries in INSPIRE; (3)
compare INSPIRE against existing works for each specified
type of relaxation to show that there is a need for a single,
unifying framework to support spatial prefix query and its
different types of relaxation; (4) compare INSPIRE against
existing map services to show the effectiveness of our

Fig. 6. Merging lists of case (2).

ZHENG ET AL.: INSPIRE: A FRAMEWORK FOR INCREMENTAL SPATIAL PREFIX QUERY RELAXATION 9
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approach in the context of local search. An online demo [22]
can be found here.1

7.1 Experiment Setting

Data sets. We report results over three real POI data sets in
the United States: OSM, GNIS and SGP. OSM is down-
loaded from the OpenStreetMap project2 which contains
around 1.6 million POIs. GNIS is extracted from the Geo-
graphic Names Information System3 and contains the
geographic name usage in the U.S. Government, including
about two million records. SGP is obtained from the
SimpleGeo’s Places4 and has 13 million records. The statis-
tics are shown in Table 5. We observed that the results have
similar patterns in our experiment on these data sets. Due
to space limitations, we mainly plot the results on the SGP
data set. Please refer to our technical report [14] for the com-
plete experiment results.

Query set. To ensure that queries have nonempty results,
we generate queries in the following way: we randomly
select 1,000 objects with the length of the textual content
larger than 5. Unless otherwise specified, we use the first
keyword as the query text to make it compatible with some
existing works that can only process queries at the word
level. The result size threshold u is set to 10. The edit dis-
tance threshold t is set to 20 percent of the query length for
SAP and SAS queries.

We normalize the latitude and longitude into [0, 1]. Thus,
the query range is denoted by the percentage of coverage in
the geographic space. Six spatial ranges with the selected
object as the center are generated: 0.0052, 0.012, 0.022, 0.042,

0.062 and 0.082. The first (last) range is at a town (state/
province) level. By default, we use the 0.01  0.01 range at a
city level and expand the query region by doubling the area
in the SPR query.

Comparisons. TAS [1] and FEH [2] are proposed to provide
type-ahead search in spatial databases. Besides, LBAK [4]
and MHR [3] are proposed to allow approximate keyword
matching in spatial databases. We compare with TAS for SP
queries, FEH for SP and SS queries, LBAK and MHR for SAP
and SAS queries. In particular, TAS and LBAK are memory
resident while FEH and MHR are disk resident. The parame-
ters of the baseline algorithms are set to the default values in
the original papers. Our methods are implemented in JAVA.
All experiments are run on a Quad-Core AMDOpteron Pro-
cessor 8356 @ 2.29 GHz with 128 GB main memory. Queries
are run under a heapwith amaximum size of 4 GB.

Parameter choice. According to [23], the performance of
a Quadtree depends on the tiling level, which in turn
depends on the max capacity of a Quadtree node. So we
study the performance of each type of relaxation w.r.t.
different choices of the max capacity. We test values
from 512 to 10,240 for all the three data sets. The average
running time for SGP is shown in Fig. 7. The time for the
values from 512 to 3,072 is omitted as it is much longer
than that of the rest.

We take all types of queries into consideration when
choosing an appropriate max capacity. For each type of
query, the max capacity with the shortest running time is
assigned a score of 1 while the scores for the rest are com-
puted as the proportion of the running time to the shortest
one. The score of the overall performance for each max
capacity is the summation of its scores for all the five types
of queries. We choose the parameter with the lowest score,
which indicates the best overall performance. As a result,
we set the max capacity to 3,072, 3,072 and 10,240 for OSM,
GNIS and SGP respectively.

The length of qc-grams and positional qc-grams is set to 3
and 2 respectively, which is the same as the setting in [24].

The reserved position p> is set to 9. By Definitions 12 and
13, up to four edit operations can be supported by PrF. If
there is an error in every five characters, PrF can be applied
when the query length is less than 20.

Index construction.We build our index based on the above
parameters. Table 6 shows the construction time and the
size of our proposed index for the chosen parameters and
the compared indexes. Overall, LBAK builds the index in
the shortest time, while TAS has the smallest index size.
Our index is around the medium in the term of construction
time and the index size.

7.2 Comparison between Variants of INSPIRE

In Sections 5 and 6, the intra-query optimization and
inter-query optimization are proposed to accelerate the
processing of non-appending and appending queries
respectively. So we would like to study the effectiveness
of these optimizations.

TABLE 5
Statistics of the Used Data Sets

Property OSM GNIS SGP

Number of records 1,616,295 2,078,921 12,918,933
Size (MB) 103.7 136.7 867.2
Max text length (characters) 173 104 200
Average text length (characters) 18 19 19

Fig. 7. Impact of the max capacity on SGP.

TABLE 6
Index Construction Time and Index Size

Index OSM GNIS SGP

Time(mins) Size(MB) Time Size Time Size

INSPIRE 2.7 346 3.6 448 21.5 3,857
TAS [1] 2.0 150 3.4 194 20.1 1,445
FEH [2] 5.1 306 7.3 405 33.6 2,704
MHR [3] 4.2 663 7.4 857 37.0 5,332
LBAK [4] 1.0 253 1.4 291 9.5 2,541

1. http://dbgpucluster-2.d1.comp.nus.edu.sg:8080/MESA/
2. http://www.openstreetmap.org/
3. http://geonames.usgs.gov/domestic/download_data.htm
4. http://s3.amazonaws.com/simplegeo-public/places_dump_

20110628.zip
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7.2.1 Intra-Query Optimization

We first study the impact of each of the two intra-query
optimization techniques to accelerate the processing of the
non-appending queries: result reuse and selectivity estimation
(in Section 5). Note that, for each technique under test, the
other one is turned on by default.

Result reuse. We compare the running time of the relaxed
queries with reuse to that without reuse. As shown in Fig. 8,
we find that the performance of each relaxed type boosts up
by four times for SGP on average. The SP query takes more
time for the reuse version as common intermediate results
and processing are saved. Compared to the extra cost of the
SP query, it is worth applying this optimization as the bene-
fit that it brings is significant for the relaxed queries. For
OSM and GNIS, the performance boosts up by three times
on average.

Selectivity estimation. We compare our method using the
scarce q-grams to the baseline method, which uses the Mar-
kov Estimator as described in Section 5.1.1.

Note that a query is triggered if its estimated selectivity is
greater than the result size threshold u. Therefore, the terms
positive and negative are defined as whether the estimated
selectivity is greater than or less than u respectively. Accord-
ingly, when both the true selectivity and the estimated
selectivity are greater than u, we refer to it as true positive.
The scarce threshold � is set to 0.01.

Fig. 9 shows the precision and recall for the SPR and SS
queries in different query ranges for SGP. Overall, our
approach has a much higher recall than the baseline
method, and it is at least 0.8 across all query ranges for SGP.
In contrast, the recall of the baseline is low for SS queries so
that many queries that should be processed are skipped.
The baseline approach has higher precision than ours,
because it underestimates the selectivity when a query con-
tains scarce q-grams. However, a potential problem of such
high precision is to bring more time complexity in process-
ing the relaxed query at the next level as they may lose the
possibility to reuse the results got in earlier phases.

7.2.2 Inter-Query Optimization

In this part, we would like to study the impact of the
inter-query optimization (proposed in Section 6) to accel-
erate the processing of the appending queries. The non-
optimized approach is the one treating an appending
query as a fresh query.

We first investigate the impact of the number of append-
ing characters, ranging from 1 to 5. From Fig. 10a, We find:
(1) The processing time increases as the number of append-
ing characters increases, because more inverted lists need to
be merged to get candidates. (2) On average our inter-query
optimization brings around three times acceleration on the
three data sets.

Next, we study how the performance of the appending
query varies w.r.t. different query ranges, while the number
of appending characters is randomly selected from one to
five for each query to simulate real cases. From Fig. 10b, we
find that the method with optimization scales better than
the one without optimization on SGP. This same finding
exists on OSM and GNIS as well.

7.3 Comparison to Other Approaches

In this section, we compare INSPIRE (which is equipped
with all the aforementioned optimizations) with existing
works. However, all state-of-the-art works only study a cer-
tain type of relaxation for the spatial prefix query (see
Section 8 for more details). As such, we have to compare
INSPIRE with each individual type of relaxation even
though it is not a fair comparison for a general framework.
For each type of relaxation, we divide the query set into two
parts: appending queries and non-appending queries.

7.3.1 SP & SS Queries

We compare with TAS [1] for SP queries, and FEH [2] for SP
and SS queries. Fig. 11a plots the average running time in
different query ranges. We find: (1) INSPIRE outperforms
TAS when the query range is small, while TAS has better
performance when the query range increases. This is
because TAS retrieves candidates on the textual dimension
first and then verifies candidates on the spatial dimension.
However, INSPIRE performs in the opposite way. (2)
INSPIRE outperforms FEH on both SP and SS queries. (3)
Moreover, the running time of appending queries is shorter
than that of non-appending queries. In particular, for SP
queries, the running time of appending queries is almost 0
because the results of previously-formed queries can be
used directly.

Furthermore, we investigate the impact of query lengths.
Fig. 11b demonstrates the query performance for lengths
ranging from 3 to 8. INSPIRE outperforms TAS when the

Fig. 8. Relaxation of the SP query for SGP.

Fig. 9. Precision and recall.

Fig. 10. Impact of inter-query optimization.
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query text is short. This is because TAS uses a trie-like index
to retrieve candidate objects that satisfy the prefix condition.
Then all the candidate objects are verified against the spatial
condition one by one to get the final results. When the query
text is short, the candidate size could be huge. Thus the veri-
fication time is long. We also find that INSPIRE outper-
forms FEH, mainly because FEH needs to retrieve inverted
entries at each level of its spatial index.

7.3.2 SAP & SAS Queries

For SAP and SAS queries, no existingwork has addressed the
search-as-you-type problem at the q-gram level, so no direct
comparison can be made. Instead, we compare with two
works (LBAK [4] and MHR [3]) at the word level. They require
users to type at least one full word for a query. Accordingly,
we form queries by extracting the first word from each query
of our query set. Again, we note that it is not a fair compari-
son because INSPIREworks at the q-gram level.

Fig. 12a shows the average running time of different
query ranges. LBAK achieves the best performance while
INSPIRE gives intermediate performance. One reason is
that INSPIRE is proposed in a more general setting, which
handles approximate queries in the search-as-you-type par-
adigm.5 Another reason is that LBAK is memory-based, thus
disk access is not required. Although it is not a fair compari-
son, the performance of INSPIRE is at the same level as that
of the state of the art.

Impact of edit distance threshold. Next, we test the perfor-
mance for different values of the edit distance threshold t.
We randomly select objects with the length of the first key-
word greater than 17 from both data sets. Then we add one,
two, three, and four errors respectively to the query to eval-
uate the performance. The errors are randomly generated
by skipping letter, doubling letters, reversing letters, replac-
ing letter, or inserting letter.

Fig. 12b shows the average running time for different t
values. For the non-appending queries, LBAK achieves the
best result. For the appending queries, INSPIRE is the best
because the results of the previously-formed queries can be
reused. We do not plot the results of MHR because the run-
ning time for MHR is at least 280 milliseconds.

7.3.3 Overall Performance

At the framework level, we would like to see INSPIRE’s
overall performance in a real usage scenario, where we do
not know which type of relaxation is sufficient to obtain

enough number of results. Since all of the existing works
study a single type of relaxation, we construct a baseline
framework as an integration of the state of the art for each
type of relaxation, and compare with INSPIRE equipped
with the proposed inter-query and intra-query optimiza-
tions. In particular, TAS is tailored for SP queries, while FEH
is tailored for SS queries and LBAK is tailored for SAP and
SAS queries.

Fig. 13a shows the accumulated time when different
types of relaxation stop. INSPIRE outperforms such an
integrated framework. Especially for appending queries,
INSPIRE handles them almost for free due to the various
result reuse algorithms that we have proposed. In contrast,
a simple integration of existing methods does not have
such benefit, because the existing methods answer one type
of particular query using an optimized index structure.
Although our method loses for some particular types of
queries, our INSPIRE framework outperforms the existing
methods as a system to provide relaxation for spatial prefix
query. This finding confirms the need for a single, unifying
framework to support the spatial prefix query and its differ-
ent types of relaxation.

7.4 Effectiveness Study

We conduct an effectiveness study on local search to simu-
late the real-life search scenario. Queries are issued in a
small spatial region such as a city. We test five online map
services, including Google Maps, Bing, Yahoo!, Here and
OpenStreetMap. Only Google and Yahoo! provide the
instant search feature. We use the SGP data set in INSPIRE

for this effectiveness study.
For the query set, we first find tourist attractions from

the five cities with the largest population in the USA:
New York (NY), Los Angeles (LA), Chicago (CH), Hous-
ton (HO) and Philadelphia (PH). Then we extract the
texts from these tourist attractions and generate four
types of queries:

Type I. the query is a prefix of the text;
Type II. the query is a substring of the text;

Fig. 11. SP & SS queries. Fig. 12. SAP & SAS queries.

Fig. 13. Framework comparison.
5. LBAK, for example, cannot handle both exact and approximate

substring queries.
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Type III. the query is a prefix of the text, with typos;
Type IV. the query is a substring of the text, with typos.

For each city, four types of queries are formed on the attrac-
tions in the city, and each type contains ten queries.

Evaluation method. We invite twenty participants to take
part in the task of scoring the top-five results from the three
systems. To conduct a fair evaluation, the source of each
result is kept anonymous. The participants are asked to
score the quality of each result by using the Cumulated
Gain-based evaluation [25] metric (from 0 to 5 points, 5
means the best while 0 means the worst). Each participant
grades the results of three cities. Therefore, for each result,
there are 12 participants grading it.

Results. We first report the summarized result, which is
shown in Fig. 13b. For query Types I and II, the three sys-
tems perform equally well. For Types III and IV, INSPIRE
outperforms Google Maps. The results of Yahoo! Maps are
not shown because it does not support error-tolerant search.
The reason why INSPIRE performs better is that INSPIRE
in essence is able to answer error-tolerant instant search.
Google Maps, though, probably adopts a global search strat-
egy to serve the users from all over the world.

We then explain the results using some selected exam-
ples, which are listed in Table 7. For Types I and II, the
three maps return correct results in most cases. Still,
some results are not related to the issued query. We show
two sample results for Q3. From the column on the right
side, INSPIRE returns a POI in Houston. The query text
is an approximate prefix of the text of the POI. However,
the POIs returned from the other two systems are spa-
tially far away from the query region. For Types III and
IV with typos, INSPIRE can correct the typos in the
queries and return reasonable answers. In contrast, Goo-
gle Maps does not always perform well. For Q5 and Q7,
Google Maps again returns distant POIs from the query
region, probably because their names match the queried
text. This approach is a double-edged sword. On one
hand, it suggests distant objects that possibly match the
query terms, which is pretty good if the user is searching
on a global scale. On the other hand, it dwarfs the
approximate answers which are local. Depending on
users’ intention, this may or may not be helpful. How-
ever, in our context of local search, the local answers
surely play a more important role.

From the above effectiveness study, we find: (1) the
search strategy proposed in INSPIRE fulfills the need for
context-aware local search; (2) INSPIRE is a good comple-
ment to online web services on context-aware local search.
When a user conducts a local search, the user would contin-
uously zoom in a particular spatial region in the viewport.
Therefore, the local search pattern can be easily detected
and the local search can be optimized using INSPIRE to
improve the user experience.

8 RELATED WORK

Spatial keyword search has been receiving significant atten-
tion recently. Chen et al. [26] summarized three types of
spatial keyword queries. They surveyed 12 state-of-the-art
geo-textual indexes and compared them.

In order to ensure effective spatial keyword search, vari-
ous extensions were done, including autocompletion [1], [2]
and the allowance of errors in keyword matching [3], [4].
Autocompletion is widely used to predict what words
users want to type without typing them completely [27]. In
particular, prefix search is a method to achieve the autocom-
pletion and is integrated into spatial databases [1], [2]. In
addition, approximate string search is an error-tolerant
technique to find strings that match a query approximately
and is combined with spatial keyword search [3], [4].

However, the approximate search proposed in [3], [4]
cannot support autocompletion. As stated in [11], real-time
search engines should be error-tolerant for autocompletion.
These approaches model the approximate search at the
word level and require users to type at least one full word
for a query. Therefore, they violate the concept of autocom-
pletion. To the best of our knowledge, supporting the error-
tolerant autocompletion has not yet been studied in the con-
text of spatial databases. In contrast, INSPIRE supports
error-tolerant autocompletion functions such as the approx-
imate prefix query and the approximate substring query.

In addition to being used to query POIs within a spatial
region, spatial keyword query is used to search travel routes
or trajectories [28], [29], [30], [31], [32]. Generally, it returns
optimal routes that cover or approximately cover a set of
user-specified keywords as results.

9 CONCLUSION

In this paper, we proposed INSPIRE, a general framework,
which adopts a unifying strategy for processing different
variants of spatial keyword queries. We observed that relax-
ation can be done by expanding the spatial region or loosen-
ing the prefix matching constraint. To maximize query
reusability, we adopted an incremental way to perform
relaxation. Then we built a one-size-fits-all index to support
all types of relaxation. To accelerate query processing, we
proposed our intra-query optimization covering common
result reuse and selectivity estimation. Moreover, we
observed that the search-as-you-type paradigm allows
appending characters after the initial query, so we proposed
the inter-query optimization to reuse the results of the initial
query in processing its appending query, instead of process-
ing it from scratch. As a result, INSPIRE is able to decide the
most appropriate relaxation for a spatial prefix query, and
outperforms most existing works.

TABLE 7
Query Examples
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In the future work, we would like to investigate other
relaxation strategies such as relaxing the edit distance
threshold progressively so that similar results are
returned first. Another possible improvement on spatial
prefix search is taking semantics into account and orga-
nizing results in appropriate orders by ranking and diver-
sifying results. In addition, we can extend the query
relaxation to other applications such as searching trajecto-
ries or graph data.
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