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ABSTRACT
Tree-structured data are becoming ubiquitous nowadays and
manipulating them based on similarity is essential for many
applications. The generally accepted similarity measure for
trees is the edit distance. Although similarity search has
been extensively studied, searching for similar trees is still
an open problem due to the high complexity of computing
the tree edit distance. In this paper, we propose to trans-
form tree-structured data into an approximate numerical
multidimensional vector which encodes the original struc-
ture information. We prove that the L1 distance of the
corresponding vectors, whose computational complexity is
O(|T1|+ |T2|), forms a lower bound for the edit distance be-
tween trees. Based on the theoretical analysis, we describe
a novel algorithm which embeds the proposed distance into
a filter-and-refine framework to process similarity search on
tree-structured data. The experimental results show that
our algorithm reduces dramatically the distance computa-
tion cost. Our method is especially suitable for acceler-
ating similarity query processing on large trees in massive
datasets.

1. INTRODUCTION
The use of tree-structured data in modern database ap-

plications is attracting the attention of the research com-
munity. Typical examples of huge repositories of rooted, or-
dered and labeled tree-structured data include the secondary
structure of RNA in biology or the XML data on the web.
In this paper, we study the structure similarity measure and
similarity search on large trees in huge datasets. These prob-
lems form the core operation for many database manipula-
tions (e.g., approximate join, clustering, k-NN classification,
data cleansing, data integration etc). Our findings are use-
ful in numerous applications including XML data searching
under the presence of spelling errors, efficient prediction of
the functions of RNA molecules, version management for
documents, etc.

Trees provide an interesting compromise between graphs
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and the linear representation of data. They allow the expres-
sion of hierarchical dependencies where the semantics are
specified implicitly by the relationship between their com-
ponents; thus, the structure of the tree plays an important
role in differentiating the data. The most commonly used
distance measure on tree-structured data is the tree edit dis-
tance [23]. However, computing the tree edit distance can
be very expensive both in terms of CPU cost and disc I/Os,
rendering it impractical for huge datasets.

In this paper, we utilize a structure transformation to de-
velop a novel distance function for rooted, ordered, labeled
trees based on both the structure and the content. We prove
that the proposed distance function is a lower bound of the
tree edit distance. The idea is similar to using a set of
q-grams to bound the edit distance of strings and thus fil-
ter out dissimilar strings [19]. Given a string S, a q-gram
is a contiguous substring of S of length q. If S1 and S2

are within edit distance k, S1 and S2 must share at least
max(|S1|, |S2|)− (k−1)q−1 common q-grams. Similarly we
characterize a tree as a set of q-level binary branches, and
we show that two trees T1 and T2 are within edit distance k
precisely when they share [4 ∗ (q − 1) + 1] ∗ k q-level binary
branches. Furthermore, just as string edit distance can be
tightened if the positions of the q-grams in the string are
also taken into account [17, 5], so too tree-edit distance can
be tightened by using information detailing the positions of
q-level binary branches in the trees.

By employing our distance function as the lower bound of
the edit distance in the filter-and-refine framework, we can
evaluate similarity queries in two steps: In the filtering step,
the lower bound is used to filter out most objects which are
not possible to be in the result. The remaining objects are
candidates which are validated by the original complex sim-
ilarity measure during the refinement step. This strategy
greatly reduces the number of expensive distance computa-
tions in the original space.

Summarizing, the contributions of our paper are:

• We propose a transformation which maps tree-structured
data with the edit distance measure to numerical vec-
tors with the standard L1 distance. The method main-
tains the structure information of the original data.
The novel distance is proved to be the lower bound of
the general tree-edit distance.

• We describe a generalization of our mapping method
which approximates the tree-edit distance at different
resolutions.

• By adapting q-grams methods to use the lower bound



property of the new distance, we propose novel meth-
ods to embed it into the filter-and-refine framework to
facilitate the processing of similarity search.

• We present a set of experiments which compare the
performance of our algorithm with the histogram fil-
tration methods proposed in Ref. [7].

The rest of the paper is organized as follows: In Sec-
tion 2 we provide the background and an overview of the
related work. Section 3 presents the definition of the trans-
formed vector space and the new distance based on it, to-
gether with the formal proof of the lower bound theorem.
In Section 4 we discuss how to embed our distance function
as the lower bound of edit distance into the framework for
similarity search, while in Section 5 we present a thorough
experimental study of our algorithms. Finally, Section 6
concludes our paper.

2. PRELIMINARIES AND RELATED WORK
In this paper, we focus on the huge dataset D of rooted,

ordered, labeled trees. Here, a tree is defined as a data
structure T = (N, E, Root(T )). N is a finite set of nodes.
E is a binary relation on N where each pair (u, v) ∈ E
represents the parent-child relationship between two nodes
u, v ∈ N . Node u is the parent of node v and v is one of the
child nodes of u. There exists only one root note, denoted as
Root(T ) ∈ N , which has no parent. Every other node of the
tree has exactly one parent and it can be reached through
a path of edges from the root. The nodes which have a
common parent u (i.e., all the children of u) are siblings.
|T | is the number of nodes in tree T , or the size of T .

A rooted ordered tree is a tree in which the order of the
siblings from left to right is significant. A rooted, ordered,
labeled tree is an ordered tree structure T = (N, E, Root(T ),
label), where label : N → Σ is a total function and Σ is the
finite alphabet of vertex labels. In our paper, we focus on
rooted ordered labeled trees. Fig. 1 is an example of two
trees T1 and T2.

2.1 Structural Similarity Measure
The measure of similarity between two trees T1 and T2

has been well studied in combinatorial pattern matching.
Most studies use edit distance to measure the dissimilarity
between trees (notice that similarity computation is the dual
problem of distance computation). Usually there are three
kinds of basic edit operations on tree nodes [23]: (i) Rela-
beling means changing the label of nodes; (ii) Deleting a
node n means assigning the children of n to be the children
of the parent of n and removing n; (iii) Inserting node n
under n′ means assigning a consecutive subsequence of the
children of n′ as the children of n, and appending n under
n′. As mentioned in Ref. [23], a mapping between two trees
can specify the edit operations applied to each node in the
two trees graphically. The mapping must be one-to-one and
it must preserve the sibling order and ancestor order at the
same time. If node u ∈ T1 is mapped to node v ∈ T2 and
label(u) �= label(v), u is relabeled to v. If u ∈ T1 has no cor-
respondence in the mapping, u is deleted. If v ∈ T2 has no
correspondence in the mapping, v is inserted. For example,
the mapping, represented by the dashed line in Fig. 1 shows
a way to transform T1 to T2.

For the general case, functions γ(e) are defined to eval-
uate each edit operation e. The cost of a sequence of edit

operations e1, e2, · · · , ek is
∑k

i=1 γ(ei). The edit distance
between T1 and T2, denoted as EDist(T1, T2), is defined
as the minimum cost of edit operation sequences that can
transform T1 to T2. If the cost for each operation equals 1,
the edit distance, referred to as unit cost tree edit distance,
is the minimum number of operations required to transform
one tree into the other. The unit cost edit distance is a dis-
tance metric and is adopted in this paper for its simplicity.
However, our algorithm can be easily extended to the gen-
eral edit distance measure if there is a lower bound on the
cost for each edit operation.

The main differences between various tree edit distance
algorithms lie in the set of allowed edit operations. Earlier
work allows insertion and deletion of single nodes at the
leaves only and relabeling of nodes anywhere in the tree [14].
The definitions in Ref. [23, 16, 18, 22] allow insertion and
deletion of single nodes anywhere in a tree. In Ref. [22] a
new distance metric based on a restriction of the mappings
between two trees is proposed. The intuition is that two
separate sub-trees of T1 should be mapped to two separate
subtrees in T2. In Ref. [18], on the other hand, insertion is
allowed only before deletion.

Dynamic programming algorithms are frequently used to
solve the edit distance problem. To the best of our knowl-
edge, the most commonly cited algorithm to compute gen-
eral edit distance between rooted ordered labeled trees ap-
pears in Ref. [23]. The algorithm runs in O(|T1||T2|) space
and O(|T1||T2| min(depth(T1), leaves(T1)) min(depth(T2), lea
ves(T2))) time, where depth(Ti), leaves(Ti), i = 1, 2 are the
depth and the number of leaf nodes of tree Ti respectively.
In the worst case, the time complexity of the algorithm is
O(|T1|2|T2|2). Obviously, the tree-edit distance computa-
tion is both CPU and I/O expensive and is not scalable for
similarity search on large trees in huge datasets.

2.2 Related Work on Tree Similarity
Although similarity search on numerical multidimensional

data has been extensively studied [6, 12, 2, 20, 13], similar-
ity search on tree-structured data has only recently attracted
the attention of the research community [7]. As mentioned
above, similarity evaluation of tree structured data in mas-
sive datasets based on the tree-edit distance is expensive
both in terms of CPU and I/O cost; therefore, most of
the previous work utilizes the filter-and-refine approach. To
guarantee the filtration efficiency, the lower bound function
should be a relatively precise approximation of the tree-edit
distance. At the same time, it should be computationally
much less expensive than the real distance. The authors of
Ref. [15] proposed a pivot based approximate similarity join
algorithm on XML documents. In their method, XML docu-
ments are transformed into their corresponding preorder and
postorder traversal sequences. Then the maximum of the
string edit distance of the two sequences is used as the lower
bound of the tree-edit distance. They also proposed addi-
tional heuristics to reduce the amount of edit-distance com-
putations between pairs of trees. However, the complexity
of computing the proposed lower bounds is still O(|T1||T2|)
(i.e., the complexity of sequence edit distance computation),
and it is not scalable to our problem. In order to correlate
XML data streams, Garofalakis et.al. [4] proposed embed-
ding the tree-edit distance metrics (allowing a move oper-
ation in addition to the basic operations) into a numeric
vector space with L1 distance norm. In their method, XML



trees are hierarchically parsed into valid subtrees in differ-
ent phases. Then the multi-set of valid subtrees is obtained
by parsing the tree. The vector representation is defined as
the characteristic vector of the multi-set. The L1 distance
of the vectors guarantees an upper bound of distance distor-
tion between two trees. However, the method fails to give a
constant lower bound on the tree-edit distance to facilitate
the retrieval of exact answers to the similarity queries based
on similarity measure.

In their recent work, Kailing et.al. [7] presented a set of
filters grounded on structure and content-based information
in trees. They proposed using the vectors of the height his-
togram, the degree histogram and the label histogram to
represent the structure as well as content information of
trees. The lower bound of the unordered-tree edit distance
can be derived from the L1 distance among the vectors.
They also suggested a way to combine filtration to facilitate
similarity query processing. However, their filters are for
unordered trees and cannot explore the structure informa-
tion implicitly depicted by the order of siblings. Moreover,
their lower bounds are obtained by considering structure and
content information separately. In our approach, we suggest
combining the two sources of information to provide accu-
rate lower bounds for the tree-edit distance. In Section 5
we compare the performance of our algorithm against the
histogram filtration methods.

2.3 Binary Tree Representation of Forests (or
Trees)

Our proposed mapping of tree structures into a numeric
vector space is based on the binary tree representation of
rooted ordered labeled trees. For completeness, we briefly
describe the binary tree representation of forests (or trees).
We cite the formal definition of the binary tree from Ref. [9]:

Definition 1 (Binary Tree) A binary tree consists of a
finite set of nodes. It is:

1. an empty set. Or

2. a structure constructed by a root node, the left subtree
and the right subtree of the root. Both subtrees are
binary trees, too.

In a binary tree, the edges between parents and the left
child nodes are different from those between parents and
the right child nodes. We use TB = (N, El, Er, Root(T ))
to represent a binary tree. ∀u, v1, v2 ∈ N , if v1 (v2 resp.) is
the left (right resp.) child of u, then 〈u, v1〉l ∈ El (〈u, v2〉r ∈
Er resp.). A full binary tree is a binary tree in which each
node has exactly zero or two children.

There is a natural correspondence between forests and bi-
nary trees. The standard algorithm to transform a forest
(or a tree) to its corresponding binary tree is through the
left-child, right-sibling representation of the forest (tree): (i)
Link all the siblings in the tree with edges. (ii) Delete all the
edges between each node and its children in the tree except
those edges which connect it with its first child. Note that
the transformation does not change the labels of vertices in
the tree. We can transform1 T1 and T2 of Fig. 1 into B(T1)

1The appended nodes labeled ε and the numbering of the
nodes are explained in sections 3.2 and 4.2, respectively.

and B(T2) shown in Fig. 2, respectively. The binary tree rep-
resentation is denoted as B(T ) = (N, El, Er, Root(T ), label)
in our paper.
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Figure 2: Normalized Binary Tree Representation

3. TREE STRUCTURE TRANSFORMATION
The key element of our algorithm is to transform rooted,

ordered, labeled trees to a numeric multi-dimensional vector
space equipped with the norm L1 distance. The mapping of
a tree T to its numeric vector ensures that the features of
the vector representation retain the structural information
of the original tree. Furthermore, the tree-edit distance can
be lower bounded by the L1 distance of the corresponding
vectors. The lower bound distance evaluation is computa-
tionally much less expensive than that of EDist(T, T ′). In
this section, we present the transformation methods and the
proof of the lower bound theorem.

3.1 Observation
We observe that edit operations change at most a fixed

number of sibling relationships. This is because each node in
a tree can have a varying number of child nodes but at most
two immediate siblings. This is illustrated in the example
of Fig. 1. The deletion of node b in T1 incurs five changes in
parent-child relationships: It destroys the (a, b), (b, c), (b, d)
edges, while generating the (a, c), (a, d) edges. At the same
time, this edit operation only incurs four changes in sibling
relationships: The one between b and b, and the one between
b and e are destroyed. The sibling relationship between b
and c, and the one between d and e are generated by the
deletion operation.

As mentioned in 2.3, a binary tree corresponding to a for-
est retains all the structure information of the forest. Partic-
ularly, in the binary tree representation, the original parent-
child relationships between nodes, except the ones between
each inner nodes and its first child, are removed. The re-
moved parent-child relationships are replaced by the link



edges between the original siblings. This property makes
the transformed binary tree representation appropriate for
highlighting the effect of the edit-based operations on origi-
nal trees.

3.2 Vector Representation of Trees
To encode the structural information we normalize the

transformed binary tree representation B(T ) of T . In B(T ),
for any node u, if u has no right (or left) child, we ap-
pend a ε node (i.e., nodes labeled as ε do not exist in T )
as u’s right (or left) child. Thus we make T a full binary
tree in which all the original nodes have two children and
all the leaves are labeled as ε (as in Fig. 2). The nor-
malized binary tree representation is defined as B(T ) =
(N

⋃
{ε}, El, Er, Root(B(T )), label), where ε denotes the

appended nodes as well as their labels. To simplify the no-
tation, in this paper u ∈ N represents the node as well as its
label where no confusion arises. In order to quantify change
detection in a binary tree, we define the binary branch on
normalized binary trees:

Definition 2 (Binary Branch) Binary branch (or branch
for short) is the branch structure of one level in the binary
tree. For a tree T , ∀u ∈ N there is a binary branch BiB(u)
in B(T ) such that BiB(u) = (Nu, Eul , Eur , Root(Tu)),
where Nu = {u, u1, u2} (u ∈ N ; ui ∈ N

⋃
{ε}, i = 1, 2),

Eul = {〈u, u1〉l}, Eur = {〈u, u2〉r} and Root(Tu) = u in the
normalized B(T ).

According to the properties of normalized binary trees,
we have Lemma 3.1:

Lemma 3.1 For each node u ∈ N of a tree T , u may appear
in at most two binary branches in the binary tree represen-
tation B(T ).

PROOF:

1. u can occur as root in at most one binary branch. This
is obvious.

2. u can occur as the left (or right) child in at most one
binary branch. u can not occur as the left child in
one branch and as the right child in another branch at
the same time; otherwise, u must have two parents in
B(T ). That is contrary to the properties mentioned in
section 2.

Assume that the universe of binary branches BiB() of all
trees in the dataset composes alphabet Γ and the symbols
in the alphabet are sorted lexicographically on the string
uu1u2. A representative vector of dimension |Γ| can be
built for each tree-structured data record, with each dimen-
sion recording the number of occurrences of a correspond-
ing branch in the data. The formal definition of the binary
branch vector is given in Definition 3.

Definition 3 (Binary Branch Vector) The binary branch
vector BRV (T ) of a tree T is a vector (b1, b2, · · · b|Γ|), with
each element bi representing the number of occurrences of
the ith binary branch in the tree. |Γ| is the size of the binary
branch space of the dataset.

We can first build an inverted file for all binary branches,
as shown in Fig. 3(a). An inverted file has two main parts:

a vocabulary which stores all distinct values being indexed,
and an inverted list for each distinct value which stores the
identifiers of the records containing the value. The vocab-
ulary here consists of all existing binary branches in the
datasets. The inverted list of each component records the
number of occurrences of it in the corresponding trees. The
resulting vectors of our transformation for the trees in Fig. 1
and the normalized binary trees in Fig. 2 are shown in
Fig. 3(b).
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Figure 3: Binary Branch Vector Representation

Based on the vector representation, we define a new dis-
tance of the tree structure as the L1 distance between the
vector images of two trees:

Definition 4 (Binary Branch Distance) Let BRV (T1) =
(b1, b2, · · · , b|Γ|), BRV (T2) = (b′1, b

′
2, · · · b′|Γ|) be the binary

branch vectors of trees T1 and T2 respectively. The binary

branch distance of T1 and T2 is BDist(T1, T2) = Σ
|Γ|
i=1|bi−b′i|

The binary branch distance has the properties listed be-
low: For all T1, T2 and T3 in the dataset,

1. BDist(T1, T2) ≥ 0, and BDist(T1, T1) = 0

2. BDist(T1, T2) = BDist(T2, T1)

3. BDist(T1, T3) ≤ BDist(T1, T2) + BDist(T2, T3)

PROOF

The first two properties are obvious. For the third
property, let BRV (Ti) = (bi1, bi2, · · · , bi|Γ|) for i =
1, 2, 3.

BDist(T1, T2) + BDist(T2, T3)

= Σ
|Γ|
j=1|b1j − b2j | + Σ

|Γ|
j=1|b2j − b3j |

≥ Σ
|Γ|
j=1|b1j − b3j | = BDist(T1, T3)

The third property means that the binary branch distance
satisfies the triangular inequality. However, BDist(T1, T2) =
0 cannot imply that T1 is identical to T2. This is illustrated
in Fig. 4, where both trees have the same binary branch
vector. So the binary branch distance is not a metric on
tree-structured data.
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3.3 Lower Bound of Edit Distance
In this section, we prove our main theorem.

Theorem 3.2 Let T and T ′ be two trees. If the tree-edit
distance between T and T ′ is EDist(T, T ′), then the bi-
nary branch distance between them satisfies the following:
BDist(T, T ′) ≤ 5 × EDist(T, T ′)

PROOF: The theorem follows if we show that at most
5×k binary branch distance is incurred by k edit operations.
Assume that edit operations e1, e2, · · · , ek transform T to
T ′. Accordingly, there is a sequence of trees T = T0 →
T1 → · · · → Tk = T ′, where Ti−1 → Ti via ei for 1 ≤ i ≤ k.
Let there be k1 relabeling operations, k2 insertions and k3

deletions. k1 + k2 + k3 = k. It is sufficient to prove the
theorem for one step of the transformation.

1. Assume that ei is a relabeling operation on some node
v of the tree. According to Lemma 3.1, v occurs in
at most two binary branches in B(Ti−1). In these two
branches, label(v) is changed to the new one in the
target tree B(Ti). Assume that the count of the two
binary branches in BRV (Ti−1) is in dimension l1 and
l2, while the two new binary branches are in dimension
l3 and l4. Then BRV (Ti−1)[lm] − BRV (Ti)[lm] = 1,
for m = 1, 2. BRV (Ti−1)[lm′ ] − BRV (Ti)[lm′ ] = −1,
for m′ = 3, 4. So, BDist(Ti−1, Ti) ≤ 4.

2. Assume that ej inserts a node v to transform Tj−1 to
Tj. Obviously, when v has a parent, a left sibling, a
right sibling and child nodes, this operation leads to
the maximum number of changes on the structure in-
formation. Fig. 5 and Fig. 6 demonstrate the insertion
operation and the changes it causes on the binary tree
representation. Let v be inserted under node v′ and
child nodes wl+1, · · ·wl+m of v′ in Tj−1 become the
child nodes of v in Tj.
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We show that at most five changes occur on the edges
of B(Tj−1): Two edges 〈v, wl+1〉l and 〈v, wl+m+1〉r
representing the structure information rooted on v are
added into the binary tree. These edges comprise the
binary branch BiB(v). So, assuming that it corre-
sponds to dimension l in BRV (Tj), then BRV (Tj)[l]−
BRV (Tj−1)[l] = 1. In addition, the sibling relation-
ship between wl and wl+1, and between wl+m and wl+m+1
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in Tj−1 (represented by 〈wl, wl+1〉r and 〈wl+m, wl+m+1〉r
respectively in B(Tj−1)) are destroyed. This leads to
the destruction of one of each binary branch BiBTj−1 (wl)
and BiBTj−1 (wl+m). Thus, the values for the two cor-
responding dimensions in BRV (Tj) are less than those
in BRV (Tj−1) by 1. Finally, 〈wl, wl+1〉r is replaced
by 〈wl, v〉r in B(Tj) for v is the right sibling of wl after
being inserted in Tj . 〈wl+m, wl+m+1〉r is replaced by
〈wl+m, ε〉r for wl+m is the right most child of v in Tj

after insertion. Then the values of the corresponding
two dimensions in BRV (Tj) are larger than those in
BRV (Tj−1) by 1 each. To sum up, BDist(Tj−1, Tj)
is at most 5.

3. Deletion is complementary to insertion. Therefore the
number of affected binary branches must be bounded by
the same amount as for insertion.

According to the triangular inequality property of binary branch
distance, we have

BDist(T, T ′) ≤ BDist(T0, T1) + BDist(T1, T2) + · · ·
+BDist(Tk−1, Tk)
≤ 4 × k1 + 5 × k2 + 5 × k3 ≤ 5 × k
≤ 5 × EDist(T, T ′).

3.4 Extended Study
Our generalized analysis is similar to the q-gram method

[19] for solving the k-difference problem of strings. The num-
ber of occurrences of each q-gram (i.e., all strings of length
q over the alphabet) in any two strings are counted. If two
strings are similar, they have many q-grams in common.
Formally, if the edit-distance of strings S1 and S2 is k, then
they have at least max(|S1|, |S2|) − (k − 1)q − 1 q-grams
in common. When applied to similarity search problems
in which the full strings are involved, the q-gram method
usually trades off the false positive for the false negative
rate by adjusting the length of the q-gram searched [8]. Bi-
nary branches can be viewed as playing the role of q-gram
structures for tree data. The vector images of trees can be
extended to record multiple level binary branch profiles. We
first give the formal definition of the q-level binary branch:

Definition 5 The q-level binary branch BiB Q(n0, n1, · · ·
, n2q−2) is the perfect binary tree of height q − 1, where
n0, n1, · · · , n2q−2 is the sequence obtained by preorder
traversing the perfect binary tree (with all leaf nodes at the
same depth and all internal nodes having degree 2).



The binary branch defined in the previous section is in-
deed the two-level binary branch. Similar to the computa-
tion of q-grams for strings, our sliding window is a perfect
binary tree with height q−1. The sliding window shifts one
level each time along the path from the root to the leaves.
For each node u in the tree, there is a q-level binary branch
rooted at u in the binary tree representation. If the subtree
of height q−1 rooted at u is not a perfect binary tree in the
transformed representation, we can append ε-nodes to com-
plete it. The multiple level binary branch is used to maintain
structures of fixed size and fixed shape in the original data.
Obviously, it encodes more information than the two-level
binary branch. We can extend the binary branch vector to
the characteristic vector BRV Q(T ), which includes all the
elements in the q-level binary branch space. The q-level bi-
nary branch distance BDist Q(T, T ′) is defined as the L1

vector distance between the images of the trees T and T ′

under the q-level mapping.

Theorem 3.3 Let T and T ′ be two trees. If the tree-edit
distance between T and T ′ is EDist(T, T ′) = k, then the q-
level binary branch distance between them BDist Q(T, T ′) ≤
[4 × (q − 1) + 1] × k

The proof methods here are similar to those of Theorem 3.2.
Note that each node in T appears in at most q q-level binary
branches in B(T ). We do not include the details of the proof
due to space constraints.

The binary branch distance BDist Q(T1, T2) increases as
the level of the binary branch q increases. This is due to
the fact that the higher the level is, the more information of
the tree structure is encoded in the binary branches. At one
extreme, q is equal to the height of the normalized trans-
formed binary tree; then all the structural information of
the original tree is encoded. However, in such a situation,
the filter algorithm is of no use. At the other extreme q is
equal to 1; in this case, the filter efficiency is too low. We
do not discuss this option as it records no structure infor-
mation of the original tree at all. According to Theorem
3.3, BDist Q(T, T ′)/[4(q − 1) + 1] can be used as a series
of approximations for the tree-edit distance with different
resolutions. So the level q of the binary branch can be ad-
justed to improve filter efficiency when solving the similarity
search problem.

4. ENHANCEMENT OF SIMILARITY
SEARCH

Previously, we mapped the tree structures and the tree
edit distance metric to a numeric vector space and the L1

norm distance. Although, according to its properties, the
binary branch distance is not a metric, it approximates and
lower bounds the tree-edit distance metric. Just as q-gram
methods can be used to speed up similarity search for strings,
the distance-embedded lower bounds can be integrated into
the filter-and-refine framework to speed up similarity search
by reducing the number of expensive similarity distance com-
putations. In this section, we present our filter-and-refine al-
gorithm for processing similarity search on the tree-structured
data by exploiting the lower bounds.

4.1 Basic Algorithm
Similarity search on various data usually refers to range

queries and k nearest neighbor queries. Range queries find

all objects in the database which are within a given distance
τ from a given object; k nearest neighbor (k-NN) queries find
the k most similar objects in the database which are clos-
est in distance to a given object. Other types of search can
be composed by these two similarity queries. When search-
ing tree-structured data, similarity is measured by tree-edit
distance.

As mentioned above, the similarity evaluation of large
trees in massive datasets based on tree-edit distance is a
computationally expensive operation. Traditionally, the filter-
and-refine architecture is utilized to reduce real distance
computation by employing the lower bounds of the real dis-
tance [13]: In the first step (i.e., filtration), objects that can-
not qualify are filtered out. In the second step (i.e., refine-
ment), verification of the original complex similarity mea-
sure is necessary only for the candidates filtered through.
The objects satisfying the query predicate are reported as
results. The completeness of the results is guaranteed by
the lower bound property: If the lower bound distance is
greater than the query range, it is safe to filter out the data
since its real edit distance cannot be less than that range.

Our method is to embed an easy-to-compute distance
function that is the lower bound of the actual tree edit dis-
tance into the filter-and-refine framework. The optimistic
bound used by the similarity search is based on the binary
branch vector distance of the trees. In addition to the num-
ber of occurrences of individual binary branch, the positional
information of the binary branch is also important in explor-
ing the structure information of the trees. We will focus on
the two-level binary branch. However, our approach can be
easily generalized to q-level binary branches.

4.2 Optimistic Distance for Similarity Queries
The efficiency of the filter-and-refine architecture is based

on the hypothesis that the lower bound function is much
quicker to evaluate than real distance. As shown in Sec-
tion 3.3, binary branch distance lower bounds edit distance
effectively: The lower bound function can be computed in
O(|T | + |T ′|) time, which is much more succinct than edit
distance computation. Like using the q-gram methods to
solve the approximate string matching problem, not only
the occurrences of the q-grams, but also their positions can
be exploited to measure the similarity of the pattern and
certain subsequence of the strings [17, 5]. The idea is that:
given two strings with distance less than l, two identical q-
grams in the two strings respectively cannot be matched if
their positions differ by more than l.

Binary branch filtration also exhibits this property. First,
we give the following proposition:

Proposition 4.1 Given T1 and T2 with edit distance less
than l, we number each node u by its position in the preorder
traverse of its tree. In the mapping corresponding to the edit
distance, the node u ∈ T1 cannot be mapped to v ∈ T2 if the
difference of the numbers of u and v is larger than l.

PROOF(sketch): In the preorder traversal numbering,
the numbers which are smaller than that of u are assigned
to ancestors of u or the nodes that are to the left of u, while
the ones that are larger than that of u are assigned to de-
scendants or the nodes to the right of u. Since the edit op-
eration mapping preserves sibling order and ancestor order,
if the two nodes are matched, and their number difference
is larger than l, then there must be more than l deletions



or insertions. This is contrary to the premise that the edit
distance is less than l.

The property is also applicable to postorder numbering of
the nodes.

For each binary branch BiB(u, u1, u2), we define the po-
sitional structure (BiB(u, u1, u2), pre(u), post(u)), where
pre(u) and post(u) denote the position of u in the preorder
and the postorder traversal sequence of T respectively (resp.
the preorder traverse and inorder traverse of B(T )). Based
on the positional binary branch, we define the mapping
M(T1, T2, pr) between the positional binary branches of T1

and T2 with positional range pr, which is any set of pairs of
positional binary branches ((BiB(u, u1, u2), pre(u), post(u)),
(BiB(v, v1, v2), pre(v), post(v))) satisfying:

1. the mapping is one-to-one;

2. BiB(u, u1, u2) = BiB(v, v1, v2);

3. |pre(u) − pre(v)| ≤ pr and |post(u) − post(v)| ≤ pr.

For the example in Fig. 2, the numbering beside each node is
the position specification of the corresponding binary branch.
Assume the positional range pr = 1. It is obvious that
(BiB(c, ε, d), 3, 1) in T1 can only be mapped to (BiB(c, ε, d),
3, 1) in T2; While (BiB(c, ε, d), 6, 4) and (BiB(c, ε, d), 7, 6)
cannot be mapped to each other. (BiB(e, ε, ε), 8, 7) in T1

can be mapped to (BiB(e, ε, ε), 9, 8) in T2, but cannot be
mapped to (BiB(e, ε, ε), 6, 3).

For two trees T1 and T2, we denote the maximum-sized
mapping as Mmax(T1, T2, pr). The subset of it which is
related to a given binary branch BiB ∈ Γ is denoted as
M ′

max(T1, T2, BiB, pr). Obviously, M ′
max(T1, T2, BiB, pr) is

the maximum-sized mapping on the binary branch BiB.
Given the preorder and postorder position sequences of BiB
in T1 and T2 in ascending order, |M ′

max(T1, T2, BiB, pr)|
(size of M ′

max(T1, T2, BiB, pr)) can be computed in linear
time. We define a new distance between two trees based on
|M ′

max(T1, T2, BiB, pr)|:

Definition 6 (Positional Binary Branch Distance) Gi-
ven two trees T1 and T2, their binary branch vectors BRV (Ti)
= (bi1, bi2, · · · , bi|Γ|) (i = 1, 2) and the positional range spec-
ification pr, the positional binary branch distance with range

pr is PosBDist(T1, T2, pr) =
∑|Γ|

j=1(b1j+b2j−2|M ′
max(T1, T2,

j, pr)|)

Proposition 4.2 If PosBDist(T1, T2, l) > 5×l, then EDist
(T1, T2) > l.

PROOF(sketch): We prove the contrapositive proposi-
tion: If the edit distance is less than l, then PosBDist(T1, T2,
l) ≤ 5 × l. According to the definition of positional binary
branch, PosBDist(T1, T2, l) differs from BDist in that, in
T1 and T2, it does not match the same binary branches whose
position differences are larger than l. For any positional bi-
nary branch (BiB(u, u1, u2), pre(u), post(u)), if there is no
element in Mmax(T1, T2, l) that corresponds to it, the node u
should be changed by some edit operation. According to Def-
inition 6, the positional binary branch distance is the sum of
the differences on the binary branch incurred by the edit op-
erations to change T1 to T2. And according to Theorem 3.2,
one edit operation changes at most 5 binary branches. Thus
PosBDist(T1, T2, l) ≤ 5 × l.

Obviously the positional binary branch distance is related
to the positional range specification. Theoretically, the po-
sitional range for two trees T1 and T2 can increase from
prmin = 0 to prmax = |T1| + |T2| and the positional bi-
nary branch distance decrease correspondingly. Given pr =
prmin, the corresponding positional binary branch distance
computed has the maximum possible value: PosBDist(T1, T2,
prmin) = PosBDistmax, computed by matching only the
identical binary branches which have the same positions.
Apparently, PosBDistmax/5 > prmin. Given pr = prmax,
the corresponding positional binary branch computed has
the minimum possible value PosBDist(T1, T2, prmax) =
PosBDistmin = BDist (T1, T2). It is obvious that

PosBDistmin/5 ≤ EDist(T1, T2) ≤ prmax

Then, there must be a given positional range pri s.t. prmin ≤
pri ≤ prmax which is the maximum positional range that
satisfies PosBDist(T1, T2, pri)/5 > pri. According to the
analysis of Proposition 4.2, EDist(T1, T2) ≥ (pr+1), where
pr = prmin, · · · , pri. Thus, (pri + 1) is a lower bound of
edit distance. Note that BDist(, ) is the minimum value
for PosBDist and that for pri + 1, PosBDist(T1, T2, pri +
1)/5 ≤ (pri + 1), so we have:

BDist(T1, T2)/5 ≤ PosBDist(T1, T2, pri + 1)/5 ≤ (pri + 1)

Thus, pri + 1 is a closer lower bound of edit distance be-
tween T1 and T2 than BDist(T1, T2)/5. A better optimistic
bound, propt, of the edit distance can be obtained by search-
ing the minimum value of the positional range pri (prmin ≤
pri ≤ prmax) satisfying PostBDist(T1, T2, pri)/5 ≤ pri. In
practice, we can reduce the search range further. Since
EDist(T1, T2) ≥ ||T1| − |T2||, prmin = ||T1| − |T2||. At the
same time, it is meaningless to set the prmax to be larger
than max(|T1|, |T2|);

4.3 Similarity Search Algorithm
In this section, we present the algorithm for constructing

vectors and a novel filter-and-refine algorithm for similarity
search utilizing the positional binary branch distance. The
steps of vector construction and k-NN search are listed in
Algorithm 1 and Algorithm 2 respectively.

In the vector construction algorithm, we utilize an ex-
tended inverted file IFI to build the vector representation.
The inverted list of each binary branch records the data
record T id, the number of occurrences of this branch and
the respective positions at which it appears in the corre-
sponding data. Firstly, each tree-structured data is recur-
sively traversed and the IFI is constructed by calling the
function Traverse( ) to obtain the binary branch informa-
tion in Fig. 2. In the function, the binary branch BiBR of
the current node is built by calling the getF irstChild() and
getNextSibling() functions of the parser. Then, in func-
tion insertPreOrder( ), the corresponding entry of BiBR

in IFI is found by some hashing function. Then the com-
ponent for data T (identified by T id) at the end of inverted
list is updated: The number of occurrences is increased by 1.
The preorder position of the branch is recorded. In function
insertPostOrder( ), the postorder position is recorded. Af-
ter the construction of IFI , we build the sparse vector rep-
resentation of each data by scanning IFI : For each branch
that occurs in the data, we record the id of the branch and
the number of its occurrences in the vector. In addition,
two arrays recording the branch positions (for preorder and



Algorithm 1 vector construction

Input:
The data set D
Output:
The vector representations of the data BRV ,
The preorder positions preOrderPos,
The postorder positions postOrderPos,

1: initialize the inverted file index IF I to be empty;
2: for each record T ∈ D do
3: PrePosition = 0;
4: PostPosition = 0 ;
5: Traverse(Root(T ), P rePosition,PostPosition, IF I);
6: l = 0;
7: for each entry i in IF I do
8: for each entry j in the inverted list of i do
9: k = IF I[i][j].T id;

10: BRV [k][l].Bib← i;
11: BRV [k][l + +].Count← IF I[i][j].occurrence;
12: Build positional sequence preOrderPos[k];
13: Build positional sequence postOrderPos[k];

Function:
Traverse(R, & Preorder,& Postorder, IF I)

1: construct binary branch BiBR of R by calling
getF irstChild(R) and getNextSibling(R);
{two level binary branch}

2: Preorder++;
3: insertPreOrder(T id,BiBR, IF I,P reorder);
4: for each child node ri of R do
5: Traverse(ri, P reorder, Postorder, IF I);
6: Postorder++;
7: insertPostOrder(T id,BiBR, IF I,Postorder);

postorder respectively) are constructed from IFI . Both are
sorted according to the branches and in ascending order.

The procedure for k-NN search is shown in Algorithm 2.
First, the query Tq is preprocessed to construct the vector
representation and position sequences. In line 3, the op-
timistic bound of the distance between the query and each
data object is computed by calling function SearchLBound;
In the function, the optimistic bound is searched for in the
range [diff(size(vecTq ), size(BRV [i])), max(size(vecTq),
size(BRV [i]))]. Since the search range is ordered, we use
the binary search algorithm. In line 3 and line 8 of func-
tion SearchLBound( ), the distance PosBDist() are com-
puted based on |M ′

max()|. After the optimistic bounds of
all the vectors are obtained, at line 4 of the main function,
the LowerBound array and the data tree id are sorted in as-
cending order of the optimistic bounds to ensure that vectors
of high possibility in being the results are processed before
others. Second, the pruning procedure of traditional filter-
and-refine similarity search steps are adopted [13, 1, 10, 11]
to reduce real distance computation. Finally, refinements
are done by verifying the candidates.

Range query processing is similar to k-NN query process-
ing; The difference is that there is a specified range τ for the
query. According to Proposition 4.2, max(PosBDist(T, Tq, τ )
/5, propt) should be considered as the optimistic bound in
the filtering step.

4.4 Complexity Analysis
In this part, we analyze the time and space complexities of

our vector construction method and optimistic bound com-
putation method. In order to calculate running time com-
plexity, we consider each step of the algorithm. Assume
that the size of the dataset, i.e., the total number of tree

Algorithm 2 k-NN on tree-Structured data

Input: The data set D,
The vector representation of data BRV ,
The preorder positions preOrderPos,
The postorder positions postOrderPos,
The query Tq;
Output:
The result set of k nearest neighbors of Tq

1: construct vector and position arrays vecTq ,
preOrderPosTq and postOrderPosTq for Tq;

2: for each vector i in BRV do
3: LowerBound[i] = SearchLBound(vecTq , BRV [i],

preOrderPos[i], postOrderPos[i], preOrderPosTq ,

postOrderPosTq );

4: sort the LowerBound and D into LowerBound′ and D′ in
ascending order of the lower bound distances;

5: initialize the max heap KNN , s.t. capacity(KNN)=k;
6: for i From 0 To |D| do
7: if (KNN.size = k)AND(LowerBound′[i] >KNN [0].key)

then
8: BREAK;
9: Retrieve the corresponding data Ti;

10: editDist = EDIST (Ti, Tq);
11: if KNN.size is less than k then
12: insert Ti with the key editDist in KNN ;
13: else
14: pop up KNN [0];
15: insert and push down Ti with the key editDist in KNN ;
16: return KNN ;

Function:SearchLBound(vecTq , BRVi, preOrderPosi,

postOrderPosi, preOrderPosTq , postOrderPosTq )

1: prmin = diff(size(vecTq ), size(BRVi));

2: prmax = max(size(vecTq ), size(BRVi));

3: PosBDistmax = PosDiff(vecTq , BRVi, preOrderPosi,

postOrderPosi, preOrderPosTq , postOrderPosTq , prmin);

4: if PosBDistmax/5 ≤ prmin then
5: Return prmin;
6: while prmin ≤ prmax do
7: prhalf = (prmin + prmax)/2;
8: PosBDist = PosDiff(vecTq , BRVi, preOrderPosi,

postOrderPosi, preOrderPosTq , postOrderPosTq , prhalf );

9: if PosBDist/5 ≤ prhalf then
10: prmax = prhalf − 1;
11: else
12: prmin = prhalf + 1;
13: Return prhalf + 1;

data objects, is |D|. For record Ti, there are |Ti| nodes in
it. The vocabulary of inverted file IFI is implemented by
one hashing function. According to Algorithm 1, function
Traverse() is called recursively to traverse each node and
insert the binary branch information of the current node into
IFI . Each time the new entries are appended at the end of
the inverted list. So each update of IFI is of constant time
complexity. Thus, the IFI construction is of linear complex-
ity. As we store in IFI only the existing vocabulary of the
dataset, the worst case is that all the nodes in the datasets
have got different binary branches. Thus, the size of the

vocabulary is at most
∑|D|

i=1 |Ti|. In addition, each node in
each tree has one corresponding entry in the inverted list.

In total, the space complexity of IFI is also O(
∑|D|

i=1 |Ti|).
To build the vector representation, the whole IFI has to
be scanned once. So the time and space complexities of the

whole vector construction algorithm are both O(
∑|D|

i=1 |Ti|).
Next, we analyze the optimistic bound computation com-



plexity in our query processing method. Given one query
Tq, we need to compare its vector and its positional se-
quence with those of each data Ti. As mentioned in sec-
tion 4.3, we use the binary search algorithm to obtain the op-
timistic bound between ||Ti|−|Tq|| and max(|Ti|, |Tq|). Each
search process is of linear complexity O(|Ti| + |Tq |). Then

the time complexity for this step is O(
∑|D|

i=1(|Ti| + |Tq|) ×
log(min(|Ti|, |Tq|))), and the space complexity is O(

∑|D|
i=1 |Ti|+

|Tq |).

5. EXPERIMENTAL RESULTS
In this section, we compare the performance of our filter-

and-refine similarity search algorithm which integrates bi-
nary branch distance and the lower bound of edit distance
(denoted as BiBranch in Figure 7 through 15) against the
histogram filtration methods proposed in [7] (denoted as
Histo in those figures). Through experiments on synthetic
datasets, we show our algorithm’s sensitivity to different fea-
tures of the data. We also present our experiments on real
dataset to show the algorithm’s performance on different
query characteristics. Finally, we discuss the effect of level
q on the algorithm. We conducted all the experiments on a
workstation with Intel Pentium IV 2.4GHz CPU and 1GB of
RAM. We implemented our algorithms and the algorithms
proposed in [7] in C++.

The synthetic data generator is similar to that of [21], ex-
cept that we do not need to simulate website browsing be-
havior, but instead have to control the data distance. The
program constructs a set of trees based on specific param-
eters. Four groups of parameters, the fanout of tree nodes,
the size of trees, the number of labels and the edit operations
are all random variables conforming to some distributions.
The fanout and the size of the trees are sampled from nor-
mally distributed values, denoted by N{x1, x2}, where x1

and x2 are the mean and standard deviation of the normal
distribution. The number of labels in the dataset is denoted
by Ly, where y is its value. We allow multiple nodes in each
tree to have the same label. For example, the specification
N{4, 0.5}N{50, 2}L8 means that in the generated trees, the
fanout of nodes conforms to normal distribution with mean
4 and variance 0.5. The total number of nodes in each tree
conforms to normal distribution with mean 50 and standard
deviation 2. And there are eight labels in the whole dataset.
We also use another parameter Dz, the decay factor, to ex-
plicitly specify the distribution of the edit operations. The
generator consists of the following steps: Firstly, a given
number of seeds of the dataset are generated according to
the first three groups of parameters. At the beginning of
each seed generation, the maximum size is randomly sam-
pled from N{50, 2}. Then, the tree grows by breadth first
processing. The label of current node is sampled uniformly
from the eight labels. Next, we check whether the current
size of the tree exceeds the maximum size. If so, the process
terminates. Otherwise, the number of children of current
node is sampled from N{4, 0.5}. Secondly, new tree is gen-
erated from one of the seeds by changing each node of it with
the probability specified by Dz. The changes are equiprob-
ably insertion, deletion, and relabeling. The data generated
from the seeds is used as the seed for the next data gen-
eration. In our experiments, we adopted 0.05 as the decay
factor. Experiments with other settings had similar results.

For the real datasets, we used DBLP, which consists of

bibliographic information on major computer science jour-
nals and proceedings. It is of XML document format and
includes very bushy and shallow trees in the repository. The
average depth is 2.902, and there are 10.15 nodes on average
in each tree.

In each experiment, 100 queries were randomly selected
from the dataset. The results shown in this paper were
all averaged on the queries. We adopt the CPU time con-
sumption as performance measures. As real edit distance
computation is the most costly part of similarity search on
tree-structured data, the percentage of data which are not
filtered out and for which the real distances have to be eval-
uated is an important measure of the algorithm efficiency.
It is defined as:(

|True Positive| + |False Positive|
|Dataset|

)
× 100%

Timings were based on processor time. As the source code
of histogram filtration was not available, for time consump-
tion, we compared our filter-and-refine algorithm with the
sequential search algorithm.

For the histogram filtration algorithm, three types of his-
togram vectors are used: One histogram records the distri-
bution of heights of every node in the tree, a second records
the fanouts for each of the nodes, and a third records the
distribution of labels used. As mentioned in section 4.3, in
the binary branch vector, only the non-zero dimension is
stored. Also, the positional information for binary branches
is stored for each node which equals to the size of the trees.
To use equal amount of space, we set the sum of dimension
of the three type histogram vectors for one tree to be the
averaged vector size plus two averaged tree size in a given
dataset.

5.1 Sensitivity Test
In the first set of experiments, we carried out a series of

sensitivity analysis to the parameters of the dataset. The
first three arguments of the data generator were set with
different distributions. All the datasets generated included
2000 trees. Figure 7 to Figure 11 show the relative per-
formance of the methods for various parameter settings.
They compare the percentage of accessed data for the binary
branch filtration and the histogram filtration (shown as the
bars in the figures) and the CPU time consumption of the
binary branch filtration and the sequential search (shown as
the lines). The results shown are for range queries as well as
k-NN queries. Each range was set to be the 1/5 of the aver-
age distance among the whole datasets. For k-NN queries,
we retrieved 0.25% of the trees of the dataset.

Figure 7 and figure 8 illustrate the performance of the two
algorithms when the fanout varied. The mean values of it
in the four datasets increased from 2 to 8 with the variance
fixed to be 0.5. In order to analyze the effect of fanout, we
diminished the effect of tree size and label number. The
mean values of the tree size in the four datasets were all
50, and the standard deviation was limited to 2. Thus most
trees in the datasets should have a size range from 46 to 54.
The label number for each dataset was fixed at 8. We can
see that the binary branch filtration accessed at most 3.35%
of the number of data objects accessed by the histogram
filtration for the range queries and at most 23.08% for the
k-NN queries. We can see that when fanout was 2, both
filtration methods accessed the most data. The reason is
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Figure 7: Sensitivity to Fanout Variation
for Range Queries
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Figure 8: Sensitivity to Fanout Variation
for k-NN Queries

that the probability that the fanout of nodes is 0 is much
higher when the mean is set to be 2. Then the structure
distance in this dataset is larger since the variation of height
is larger than other sets. When the fanout is increased to 4,
the height difference becomes much less. We also see that
with increasing fanout, the histogram filtration accessed less
data for range queries. This is because degree histogram
yields better filtration power for larger fanout. However, for
the k-NN queries, similar trends did not appear since the
mean of the real distance increased as the fanout increased,
and the search radius had to grow to retrieve the k most
similar data [3]. In Figure 8, for the binary branch filtration,
when the access rate is only 1.4%, the time consumption of
binary branch distance evaluation is only 1.92% of the CPU
cost of sequential query processing. This is consistent with
the theoretical analysis that real distance consumption is
overwhelming. So the extra costs incurred by the filtering
can be ignored.

Figure 9 and Figure 10 show the percentage of accessed
data and CPU cost when the mean size of trees varied. The
results of the k-NN queries are similar to that of the range
queries. In these experiments, the fanout of the datasets
conformed to N{4, 0.5}. The label size is set as 8. The
mean tree size varied from 25 to 125, and in each of the
four datasets, all the tree size values conformed to normal
distribution with variance of 2. The results show that for
the range queries, the percentages of accessed data with bi-
nary branch filtration were almost the same as the result
size for various tree size values. Histogram filtration needed
to access much more data to process the same queries on the
same dataset. When the mean value of tree size was 125,
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Range Queries
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Figure 10: Sensitivity to Size of Trees for
k-NN Queries

the binary branch filtration outperformed histogram filtra-
tion by more than a factor of 70 for range queries. The
reason is that with label number and fanout almost fixed,
the height, degree and the label histograms could vary little.
The histogram information blurs the distance identification.
On the other hand, the increase of size led to the increase
of the edit distances. So the larger size caused worse perfor-
mance of both our algorithm and histogram filtration meth-
ods. However, binary branch filtration still outperformed
histogram filtration for various tree size. As can be seen,
when the mean values of the tree size increased, the time
consumption for the computation of the real distances in-
creased quadratically. So, although the result size was al-
most the same, the sequential search time was too long for
the datasets with large size. Thus, our algorithm is quite
efficient for the similarity search on the large trees.

Figure 11 and Figure 12 show how the algorithms per-
formed with the number of labels in the datasets increased.
The parameters for the tree size and the fanout conformed
to N{50, 2.0} and N{4, 0.5} respectively. We chose 8, 16,
32, 64 as the size of the label universals for the four datasets.
As shown in the figures, the binary branch filtration algo-
rithm always outperformed the histogram algorithm. When
there were eight labels in the dataset, the performance of
histogram filtration was less effective than binary branch
filtration by more than a factor of 20. In the two figures ,
we can see that with the increase of the number of labels
from 8 to 32, the histogram filtration improved much. The
reason is that the label histogram can perform better with a
large label size. However, since the histogram vector size was
set to be comparable to the binary branch vector represen-



Range: N{4,0.5}N{50,2.0}L{}D0.05

0

5

10

15

20

25

30

35

8 16 32 64
Label Number

%
 o

f A
cc

e
ss

ed
 D

at
a

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

C
P

U
 C

o
st

 (S
e

co
n

d)

BiBranch % Histo % Result %
BiBranch Sequ

Figure 11: Sensitivity to Number of La-
bels in Trees for Range Queries
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Figure 12: Sensitivity to Number of La-
bels in Trees for k-NN Queries

tation, and since the mean values of the distance increased
with the label size becoming larger, the performance began
to degrade when the number of labels was larger than 32 for
both the range queries and k-NN queries.

5.2 Similarity Query Performance
The experiments described in this part were conducted

to compare the performance of the two filtration algorithms
for the queries with different parameters. Figure 13 and
figure 14 show the performance of the two algorithms for
k-NN queries and range queries on the DBLP data. We
randomly chose 2000 data objects from the whole DBLP
dataset. 100 queries were randomly chosen from this set.
The average tree size of the the data was 10.15; And the
average distance among the data was 5.031;

Figure 13 displays the k-NN query results on DBLP data
with the k varied from 5 to 20. We have also plotted the
CPU time for sequential search in it. It can be seen that
the binary branch filtration accessed much less data than
the histogram filtration. It performed one to three times
better than the histogram filtration. Since the DBLP data
clustered very well, the percentage of the accessed data was
small and the search time of binary branch filtration was
only 1/6 of the sequential search time.

Figure 14 shows the results of range queries on DBLP.
When the range remained less than the average distance
among the data, the binary branch method clearly had bet-
ter filtration power than the histogram method. As the
range continued to increase to 10, the performance differ-
ence of the two methods decreased. The reason is that the
result set was almost the whole dataset. Compared to the
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Figure 13: k-NN Searches on DBLP
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Figure 14: Range Searches on DBLP

results of the percentage of data accessed in the previous ex-
periments, the binary branch filtration here showed a smaller
advantage over histogram filtration. This is due to the fact
that the DBLP data consists of shallow and small tree data,
and the relatively small size of the binary branch universal
set blurs the distinctions among data.

5.3 Pruning Power With Respect To Binary
Branch Levels

Fig. 15 shows the distribution of data according to dis-
tances between the data and the queries on DBLP. The re-
sults here were averaged on the query number. We plotted
the data distribution on three kinds of distance: edit dis-
tance, binary branch distance (BiBranch(2) in Fig. 15) and
histogram distance between each data and query. We also
plotted data distribution according to three and four-level
binary branch distances (BiBranch(3) and in BiBranch(4)
Fig. 15). We can see that two-level binary branch distance
is a better lower bound of edit distance than the histogram
distance. Thus it can filter out much more data than his-
togram filtration when processing similarity search. When
the distance is less than 3, three and four-level binary branch
distance are also better than histogram distance. When the
range is larger than 3, the data distribution is almost the
same for three and four-level binary branch distance and
histogram filtration distance. According to the definition of
the multiple level binary branch, we know that for the shal-
low tree-structured data like DBLP records, multiple level
binary branch distance is not an efficient lower bound for
edit distance.

From the above analysis, we can see that the binary branch
filtration is robust since it outperforms histogram filtration
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Figure 15: Data Distribution on Distance

on processing various types of datasets and on various set-
tings of the queries. It is particularly suitable for process-
ing real datasets in spite of their skewed nature. This may
be because we encode structure information as well as the
label information into the binary branch vector representa-
tions and positional sequences. In contrast, histogram filtra-
tion blurs the distinctions between trees since it uses only
the histogram information, and the height, fanout and label
histogram are considered separately.

6. CONCLUSION
Tree-structured data is becoming ubiquitous as it can ex-

press the hierarchical dependencies among data components
and can be used to model data in many applications. Just
as for other types of data, searches based on similarity mea-
sure are in the core of many operations for tree-structured
data. However, the computational complexity of the general
dissimilarity measure (i.e., the tree-edit distance) render the
brute force methods prohibitive for processing large trees in
huge datasets.

In this paper, we propose an efficient method based on the
binary tree representation, where we transform trees into
binary branch numerical vectors. This characteristic vec-
tor records the structural information of the original tree,
and the L1 norm distance on the vector space is proved to
be the lower bound of the tree-edit distance. Moreover, we
have generalized the vector representation of trees by using
multiple level binary branches; this enables the structural in-
formation to be encoded in different granularities. Since our
novel lower bound is much easier to obtain than the original
distance measure, we propose embedding the new distance in
the filter-and-refine architecture to reduce the computation
of real edit distance between data and queries and guaran-
tee no false negatives. We design a novel filter-and-refine
similarity search algorithm which exploits the positional bi-
nary branch properties to obtain a better lower bound of
edit distance. The results of our experiments show that our
algorithm is robust to varying dataset features and query
parameters. The pruning power of our algorithm leads to
CPU and I/O efficient solutions.
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