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ABSTRACT
In this paper, we examine the problem of indexing over
non-metric distance functions. In particular, we focus on
a general class of distance functions, namely Bregman Di-
vergence [6], to support nearest neighbor and range queries.
Distance functions such as KL-divergence and Itakura-Saito
distance, are special cases of Bregman divergence, with wide
applications in statistics, speech recognition and time series
analysis among others. Unlike in metric spaces, key prop-
erties such as triangle inequality and distance symmetry do
not hold for such distance functions. A direct adaptation of
existing indexing infrastructure developed for metric spaces
is thus not possible. We devise a novel solution to han-
dle this class of distance measures by expanding and map-
ping points in the original space to a new extended space.
Subsequently, we show how state-of-the-art tree-based in-
dexing methods, for low to moderate dimensional datasets,
and vector approximation file (VA-file) methods, for high
dimensional datasets, can be adapted on this extended space
to answer such queries efficiently. Improved distance bound-
ing techniques and distribution-based index optimization are
also introduced to improve the performance of query an-
swering and index construction respectively, which can be
applied on both the R-trees and VA files. Extensive exper-
iments are conducted to validate our approach on a variety
of datasets and a range of Bregman divergence functions.

1. INTRODUCTION
Efficient indexing for similarity search is a well studied

topic in different contexts, including database [3, 13, 26],
machine learning [4] and computational geometry [1]. While
extensive efforts have been devoted to index structure de-
sign for similarity search, most of the existing work in this
area target metric spaces, e.g. Euclidean space. The dis-
tance functions in these metric spaces strictly satisfy some
important properties, including non-negativity, symmetry
and triangle inequality, which are fully exploited in existing
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Figure 1: Examples of images for metric comparison

index structures.
However, in a number of real world applications, the dis-

tance measure of choice is often not a metric. Such mea-
sures arise when comparing probability distributions, time
series, images and matrices among others. To illustrate the
ubiquitous nature of this concept consider Figure 1. When
viewing the first and the second image (shape) and again
when viewing the second and third image (color) one is able
to immediately perceive a notion of similarity. On the other
hand when viewing the first and third image one is forced
to conclude that there is basically no similarity between the
two images. Our notion of similarity in this context violates
the notion of triangular inequality and illustrates that hu-
man beings are often comfortable when deploying or using
non-metric dissimilarity measures instead of metric ones es-
pecially on complex data types [21]. To support such notions
of similarity in a database context however is challenging.

First, as noted earlier, most indexing schemes implicitly or
explicitly rely on features like triangle inequality and sym-
metry to deliver good performance. Second, even if one is
able to design a specialized structure for a particular ap-
plication it may not have general utility or interoperability
across other domains. The difficulties stem from the fact
that most of these non-metric spaces employ totally different
representations, requiring the implementation of specialized
index structures supporting each of them. Third, even if an
interoperable solution is designed it may require a grounds
up change to current database infrastructure that may limit
its widespread adaptation and use.

In this paper we overcome these challenges, by designing a
unified indexing mechanism for a general class of non-metric
distance measures. The specific nature of our solution relies
on effectively adapting existing indexing infrastructure in
modern database systems with minimal changes, specifically
to support similarity search on the general class of Bregman
divergence measures.

First introduced by Bregman [6] as a way to solve con-
vex programming (a subclass of nonlinear programming that
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Figure 2: Geometrical interpretation of Bregman
divergence

unifies and generalizes least squares, linear programming,
and convex quadratic programming), Bregman divergence
has attracted interest from a wide range of fields [5, 2, 11,
19, 17] because of its ease of representation and good exten-
sibility in a number of areas such as text analysis[20], image
retrieval[11, 21], motion tracking[5], graph analysis[17], and
speech recognition[19, 17, 14]. We next briefly review the
definition of Bregman divergence.

Assume we are given a d-dimensional space S on which
each object p in the space is represented by a vector p =
(p[1], p[2], . . . , p[d]). Every Bregman divergence in S is as-
sociated with a convex function f(x) : S → R, mapping
objects in S to real numbers. Given objects p and q in S,
their dissimilarity w.r.t. the function f(x) is defined as:

Df (p, q) = f(p) − f(q) − 〈∇f(q), p − q〉 (1)

Here, ∇f(q) is the gradient of the function f(x) at q,
and 〈x, y〉 denotes the dot product between two vectors. In-
tuitively, Equation (1) can be explained as the difference
between f(p) and the first-order Taylor expansion of the
function f(x) at position q. In Figure 2, the geometrical in-
terpretation of Bregman divergence in 1-dimensional space
S is illustrated. In this figure, the function curve y = f(x)
and the line h : y = f(q) + 〈∇f(q), x − q〉, both through
the point (q, f(q)) in the figure, are plotted separately. The
vertical difference at position x = p (resp. x = r) is the
measure of Bregman divergence, Df (p, q) (resp. Df (r, q)).
Bregman divergence admits several well known divergence
functions when employing different convex function f(x) in
the definition. These include:

Example 1. KL-Divergence

When f(x) =
∑d

i=1 x[i] log x[i], the distance is KL-divergence,

i.e. Df (p, q) =
∑d

i=1 p[i] log p[i]
q[i]

. KL-divergence is a com-

mon measure used for comparing distributions[17].

Example 2. Itakura-Saito Distance

When f(x) = − log x, the distance function becomes Itakura-
Saito distance, i.e. Df (p, q) = x

y
− log x

y
− 1. Itakura-Saito

distance is a common measure for representing the difference
between two signals in frequency domain and is often applied
in speech recognition [19].

Example 3. Von Neumann Entropy

Given two semi-definite matrices X and Y , when f(X) =
tr(X log X − X), the distance Df (X, Y ) = tr(X log X −
X log Y − X + Y ). Von Neumann Entropy is used to mea-
sure the difference between two semi-definite kernel map-
pings [16].

In all of the examples above, despite their differences in
definition, nearest neighbor and range queries play impor-
tant roles in their applications. In probabilistic databases
[23], for example, uncertain tuples with similar distributions
(with KL-divergence) are of special interests since they may
have stronger correlations. Similarity search on large sig-
nal and time series database (with Itakura-Saito distance)
and matrix set (with Von Neumann Entropy) also dramati-
cally decides the efficiency of speech recognition and kernel
learning algorithms respectively.

To show a more specific example, in Table 1, we present
three vectors generated from the DBLP data set1 with each
representing an author. Each dimension of the vector rep-
resents the probability of the author publishing in a major
field of computer science. From the record of Jim Gray, it is
apparent that he is closely connected to database commu-
nity.

If Euclidean distance is applied on the table to search for
an author who is similar to Jim Gray, the distances between
Jim Gray and R1/R2 are exactly the same. However, if the
KL-divergence is applied instead, the distances from Jim
Gray to R1 and R2 become 0.08 and 0.014 respectively im-
plying that R1 is more similar to Jim Gray than R2. This
can be explained by the fact that both Jim Gray and R1
has higher probability of publication on System and lower
probability of publication on Bioinformatics while R2 have
equal probability to publish in almost all the fields except
Database. KL-divergence generally captures such kinds of
dissimilarities between distributions more accurately than
Euclidean distance, since it gives higher weights to dimen-
sions with larger probabilities.

In this paper, we propose a framework for supporting
Bregman divergence in an effective way with existing index
structures that are well tested and commonly supported by
current DBMS. To overcome the non-metric dilemma we rely
on an important observation about Bregman divergences
and transform data points in the original d-dimensional space
into an extended d + 1 dimensional space. Subsequently
we show how existing indexing infrastructure (R-trees and
VA-files) can be leveraged with minimal change on this ex-
tended space to efficiently support nearest neighbor and
range queries on the general class of Bregman divergences.
A key element here is a novel query transformation method
to facilitate effective pruning on both the R-Tree and VA file.
Finally, we perform detailed analysis to show that contrary
to metric space, the performance of indexes under Bregman
divergence can be very sensitive to the query workload. We
show that some knowledge on the query distribution can be
exploited to improve indexing structure dramatically.

In short, the contributions of this paper are as follow:

1. We present a general framework to index Bregman di-
vergence with existing index structures, such as the
R-tree and VA file.

2. We re-formulate the problem of Bregman divergence as
a projection problem in an extended space, and derive
better pruning strategies for existing index structures.

3. We propose a distortion model with query distribution
and show how it can be utilized in the construction of
both the R-Tree and VA file.

1Details on how these vectors are computed can be found in
Section 6



Author AI Application Bioinformatics Database Hardware Software System Theory

Jim Gray 0.109 0.109 0.059 0.314 0.0987 0.091 0.123 0.093
R1 0.141 0.101 0.069 0.276 0.094 0.089 0.123 0.103
R2 0.1 0.1 0.1 0.299 0.1 0.1 0.1 0.1

Table 1: An example data set. Like Jim Gray, R1 has higher chance of being associated with System than
Bioinformatics while R2 have almost equal distribution in all dimensions except Database.

Notation Explanation

S the space for data points
d dimensionality of S

x, p, r data points
q query point

f(x) a convex function defined in S

f ′(x)[i] partial derivative of f(x) on x[i], i.e.
∂f(x)
∂x[i]

Df (x, q) Bregman divergence defined on f(x)
∇f(x) gradient of f(x) at x, i.e. ∇f(x) =

(f ′(x)[1], . . . , f ′(x)[d])
〈x, y〉 dot product between two vectors x and y

S+ extended space with d + 1 dimensions
x+, p+, r+ corresponding mapping point of x, p, r in S+

bi number of representation bits on dimension i in
VA-File

R bounding rectangle in S+

LB(R, q) lower bound on distance from R to q

UB(R, q) upper bound on distance from R to q

vi
max maximal value of all points on dimension i

vi
min minimal value of all points on dimension i

AP
i the expectation on the positive values of vq [i]

AN
i the expectation on the negative values of vq [i]

Table 2: Notation Table

4. We analyze the performance of the proposed methods
with extensive experimental studies.

To improve the readability, we summarize the notations
in Table 2.

2. RELATED WORK
Applications of Bregman Divergence: KL-divergence,
is utilized frequently in text analysis [20], image classifica-
tion [21] and content-based image retrieval problems [22].
Recently, Long et al.[17], propose a new graph partitioning
method, that relies on KL-divergence as a distance measure.
In the context of kernel methods, Kulis et al.[16] present a
new technique that relies on Von Neumann Entropy. The
Itakura-Saito distance [14], is often employed to measure the
difference between signals [12], with applications in speech
recognition.

Recently, researchers have examined the use of Bregman
divergence for generalized clustering problems [2]. In a re-
lated context [19], Nielsen and Rock focus on discovering
the Bregman ball with the minimal radius to cover the given
point set for a better summarization (clustering) of speech
data.

In computer vision and multimedia systems, KL-divergence
is usually adopted to compare objects. For example, in
[21], different color and textures are compared using differ-
ent measures, among which KL-divergence shows promising
performance. In [11], Goldberger et al. modeled the images
with Gaussian Mixture Models, and measured the difference
between images by computing the KL-divergence between
Gaussian components. In [5], Boltz proposed a region-of-
interest (ROI) tracking method that relied on a distribution-
based representation. The target can be efficiently discov-

ered in videos by searching for k-th nearest neighbor of ob-
jects in the frames, with KL-divergence as the underlying
distance measure. The work presented in this article can be
effectively utilized to speed up such applications.
Indexing for Similarity Search: Indexing is a well stud-
ied topic in the database community. KD-Tree [10] is one of
the first index structures proposed for nearest neighbor and
range search. In database systems, R-Tree and its variants
[13, 3] are well recognized as an effective index structure for
multi-dimensional indexing and can dramatically reduce the
disk I/O operations for query processing when the dimen-
sionality of the domain is low to moderate. In high dimen-
sional spaces, VA file and its variants [26, 9], are typically
the indexing methods of choice and are typically shown to
outperform tree-based index structures. As noted earlier,
most previous proposals on indexing in the database com-
munity implicitly rely on the notion of a metric. In iDistance
[15], B+-tree is adopted to index high-dimensional data by
mapping the objects onto some space filling curve, such as
Hilbert curve and Z-curve.

Some specific non-metric distances have been studied in-
dividually in database research community. The k-match
distance [25], for example, measures the distance between
two d-dimensional records depending on the minimal k out
of d dimensions. In [8], some embedding method was intro-
duced to index distance function without triangle inequality.
Both of the studies mentioned above cannot be implemented
directly in commercial database system and not applicable
to Bregman divergence.

The work most closely related to the theme of this paper
is recent work by Cayton on Bregman Ball (BB-)Trees[7].
BB-tree is a main-memory baseed data structure where ev-
ery node is associated with a Bregman ball that covers all
data points indexed in the subtree rooting at the node. The
tree is constructed from root to leaves recursively. K-means
clustering is employed to generate children nodes from the
parent. For nearest neighbor query, despite the lack of tri-
angle inequality, the minimal and maximal distances from
a Bregman ball to the query point can be estimated by a
binary search on the line connecting the ball center and the
query. This facilitates the pruning of nodes that will not
contain any potential nearest neighbor points.

This approach has several drawbacks. First, the construc-
tion of Bregman ball on large datasets is expensive. The BB-
tree relies on a clustering step, which can be very slow and
often unstable. Second, updating the BB-tree is extremely
expensive with respect to both insertion and deletion opera-
tions. Third, complete infrastructure modification is needed
if any commercial database needs to incorporate Bregman
ball tree within existing system. In this work we provide a
scalable solution that addresses these limitations.

3. GENERAL INDEXING FRAMEWORKS
Our objective is to provide efficient access methods to sup-

port range and k-nearest neighbor queries for different in-



stantiations of Bregman divergence i.e. our solution should
be applicable regardless of the convex function selected.

In this paper, we first present a simple and general scheme
that enables the employment of traditional Euclidean space
indexing techniques, such as R-tree and VA file to be di-
rectly applied for any Bregman divergence. Specifically, our
scheme involves a vector transformation which creates a
mapping from the original d-dimensional space S to some
new (d + 1)-dimensional space S+. For every point x =
(x1, x2, . . . , xd) in S, it is mapped to another point x+ =
(x1, x2, . . . , xd, f(x)) in the new space S+.

Intuitively, the new space S+ includes an additional di-
mension containing information on the function f(x). Us-
ing the example in Table 1 and adopting KL-divergence, the
record of Jim Gray will be transformed to a 9-dimensional
vector with value

∑8
i=1 x[i] log x[i] = −0.841 on the addi-

tional dimension. In Figure 2, p+ and q+ are 2-dimensional
points on the curve y = f(x).

All the index structures proposed in this paper are based
on the extended space S+. Both the R-tree and VA file
rely on some bounding rectangle to prune points that cannot
be in the query results. A bounding rectangle R usually
consists of d × 2 boundaries, where d is the dimensionality
of the space. For each dimension, an upper boundary R.u[i]
and lower boundary R.l[i] indicate the maximal and minimal
values of the points stored in R. For example, the Minimum
Bounding Rectangle(MBR) in the R-tree and the Cell in
the VA file are two special cases of the general bounding
rectangle. Given a query point q, the effectiveness of these
index structures depend on the estimation of the distance
from points in a bounding rectangle to the query point q.
In particular, the computation of lower and upper bound on
the distance must be efficiently supported. In the following
lemma, we will show that Bregman divergence on bounding
rectangles in the extended space S+ can also be computed
easily like in Euclidean space.

Lemma 3.1. Given a bounding rectangle R in S+ and a
query point q in S, lower bound and upper bound on Breg-
man divergence from any point in R to q can be computed
in O(d) time, where d is the dimensionality of S.

Proof. Assume that the lower bound and upper bound
of R on dimension i are R.l[i] and R.u[i] respectively. For
each point x ∈ S and its corresponding mapping location
x+ ∈ S+, x+ is covered by R, if and only if R.l[i] ≤ x+[i] =
x[i] ≤ R.u[i] for 1 ≤ i ≤ d and R.l[d + 1] ≤ x+[d + 1] =
f(x) ≤ R.u[d + 1].

Given the query point q = (q[1], . . . , q[d]) and the gradi-
ent ∇f(x)|x=q = (f ′(q[1]), . . . , f ′(q[d])) with respect to the
function f(x), we have

Df (x, q) = f(x) − f(q) −
d

∑

i=1

f ′(q[i]) ∗ (x[i] − q[i])

= x+[d + 1] − f(q) −

d
∑

i=1

f ′(q[i]) ∗ (x+[i] − q[i])

≤ R.u[d + 1] −
d

∑

i=1

min{f ′(q[i])R.l[i], f ′(q[i])R.u[i]} −

f(q) +

d
∑

i=1

f ′(q[i])q[i]

Algorithm 1 K-Nearest Neighbor Search (R-tree T ,
Query q)

1: Set the k-nearest neighbor set S as empty
2: Set threshold distance θ = ∞
3: Clear a priority queue Q
4: Enqueue the root of T into Q
5: while Q is not empty do

6: Dequeue the head node N from Q
7: if N is a leaf node then

8: for each point p stored in N do

9: if Df (p, q) < θ then

10: Insert p into S and update θ
11: else

12: for each child node M of N do

13: Retrieve the MBR R of M
14: if LB(R, q) < θ then

15: Enqueue M into Q with LB(R, q)
16: Return points in S

Since f(q)−
∑

i f ′(q[i])q[i] is a constant and independent
of x, the upper bound only involves finding the smaller value
between f ′(q[i])R.l[i] and f ′(q[i])R.u[i] for each dimension,
which takes O(d) time. Similarly for the lower bound we
have:

Df (x, q) ≥ R.l[d + 1] −

d
∑

i=1

max{f ′(q[i])R.l[i], f ′(q[i])R.u[i]} −

f(q) +

d
∑

i=1

f ′(q[i])q[i]

This completes the proof of the lemma.

In the rest of paper, we use LB(R, q) and UB(R, q) to
denote the lower bound and upper bound on the distance
from R to q respectively, as derived in the lemma above. We
next show how the above lemma facilitates the employment
of the R-tree and VA file as the underlying index structure
for nearest neighbor and range query search.

3.1 R-tree Index
To handle Bregman divergence, the R-tree is built on the

extended (d+1)-dimensional space S+ by transforming each
point x ∈ S to the new point x+ ∈ S+ as described earlier.
The insertions and deletion of points in the tree follow the
traditional strategies in the literature of the R-tree. For each
intermediate node N in the tree, an MBR is constructed to
approximate the locations of all points stored in the sub-
tree, while leaf node is linked to a disk page containing all
original points for the index. In Algorithm 1, we present
the details on how to discover the k nearest neighbor to the
given query point q. The algorithm essentially follows the
branch-and-bound strategy in traditional query processing
with one exception that in line 14 we leverage the lower
bound estimation from Lemma 3.1. Due to limited space,
we skip the details on range query search with the R-tree
structure since it requires only some simple extensions to
the above nearest neighbor search algorithm.

3.2 VA file Index
The VA file is another popular index structure, that is

shown to be effective, especially on high dimensional data.
The general idea of the VA file is to partition the indexed
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space into small cells. Points in the same cell are represented
by the a bit string called Vector Approximation which can
approximate the location of the cell. On each dimension i,
a positive integer bi is specified, dictating that dimension
i should be partitioned into 2bi intervals of equal length.
Each of these interval can then be uniquely represented by
a bit string of length bi based on their ordering. Given
any point, its vector approximation can be computed by
concatenating the bit string of the interval that it falls in
for each dimension.

For example, in Figure 3, given the 2-dimensional space
S+ and bi = 2 for both dimensions, the space with the in-
dexed points is divided into

∏

2bi = 16 cells. Point p+ and
r+ are assigned with bit string “0001” and “1000” respec-
tively, according to the definition above.

The vector approximations of all points are stored in a
single file, called a VA file, in the order as in its original
storage structure. A reverse mapping from the bit string to
the cell is maintained by keeping the boundary values on all
dimensions. When answering queries, the vector approxi-
mations are loaded from the VA file into main memory. By
retrieving the cell containing the point p+ with the reverse
mapping, the system decides if p+ is likely to be included
in the result set by using the lower bound and upper bound
distance from the cell to the query q. If the lower bound
distance is already larger than the current threshold, this
point p+ is pruned, otherwise p+’s identifier is stored as a
candidate point. After scanning the complete VA file, ran-
dom accesses to the original storage structure is conducted
to verify the remaining candidate points.

In particular, the exact values of these candidate points
are retrieved in ascending order of their lower bound dis-
tance to the query and the search stops when minimal lower
bound distance is larger than the current maximal distance
of k-nearest neighbor result set. The details of the query
answering algorithm for k-nearest neighbor are summarized
in Algorithm 2.

Similar to the R-tree index structure, the lower bound
and upper bound computation depends on the correctness
of Lemma 3.1. We also skip the details of range search
algorithm with VA file here.

4. PROBLEM REFORMULATION AND IM-
PROVED BOUNDS

We next present a new geometrical interpretation of the
Bregman divergence which allows us to transform the dis-
tance measure into the dot product of two vectors in the
extended space S+ 2. Based on this interpretation, we de-
rive a new formulation of the nearest neighbor and range

2Incidentally, transforming the distance measure into dot
product also implies that our studies can be extended to

Algorithm 2 K-Nearest Neighbor Search (VA file F ,
Original Database D, query q)

1: Clear Candidate Set CS
2: Set threshold θ = ∞
3: for each vector approximation ai ∈ F do

4: Retrieve the cell R covering ai

5: Calculate LB(R, q) and UB(R, q)
6: if LB(R, q) < θ then

7: Insert ai into the CS
8: Find the new kth smallest upper bound as new θ
9: Sort the points in CS with non-descending order of lower

bound distance
10: Clear Result Set RS
11: Set threshold θ = ∞
12: for each ai in CS do

13: Retrieve the original point p of ai in D
14: Calculate Df (p, q)
15: if Df (p, q) < θ then

16: Update result set RS and threshold θ
17: Return points in RS
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Figure 4: Geometrical Interpretation

query problems over Bregman divergence. We will then de-
rive tighter lower and upper bound estimation for the dis-
tance between a query point and a bounding rectangle based
on this new formulation.

We will use Figure 4 to illustrate our query reformulation.
Given the query point q in the figure, the distance between
a point p and q is defined be the vertical difference between
the point (p, f(p)) on curve y = f(x) and the point (p, f(q)+
〈∇f(q), p− q〉) on h, which is tangent to the curve y = f(x)
at (q, f(q)).

Let h′ be the line that is parallel to h and passes through
the origin. h′ is a distance of f(q) − 〈∇f(q), q〉 above h

along the extended dimension y in S+. Correspondingly, the
distance between the point (p, f(p)) and h′ can be computed
as D∗

f (p, q) = f(p) − 〈∇f(q), p〉.
It is easy to verify that D∗

f (p, q) is proportional to the

projection length of the point p+ = (p, f(p)) on the vector
vq, where vq = (−∇f(q), 1) is orthogonal to h and h′. This
projection length can be computed as the dot product be-
tween p+ and vq i.e. 〈p+, vq〉. In the rest of the paper, we
will refer to vq as a query vector as there is a one-to-one
mapping between a query point q and a query vector vq.
Based on this observation, we will reformulate the nearest
neighbor and range query problem using 〈p+, vq〉. In the
following, we formally present and prove the reformulation
using the next two lemmas.

Lemma 4.1. Given a data set P , a query point q and a

the domain of kernel methods in the future. We will only
discuss this briefly in Section 7 due to lack of space.
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Bregman divergence Df , the nearest neighbor can be repre-
sented as the minimizer of

NN(P, q, Df ) = min
p∈P

〈p+
, vq〉

Proof. Based on the definition of nearest neighbor, the
nearest neighbor aims to minimize Df (p, q) for any p ∈ P .
The distance between p and q can be re-formulated as:

Df (p, q) = f(p) − f(q) − 〈∇f(q), p − q〉

= f(p) − 〈∇f(q), p〉 + 〈∇f(q), q〉 − f(q)

Since 〈∇f(q), q〉− f(q) is a constant for any Df (p, q), p is
the nearest neighbor to q iff p can minimize f(p)−〈∇f(q), p〉.
By the definitions of p+ and vq, we have f(p)−〈∇f(q), p〉 =
〈p+, vq〉, which completes the proof of the lemma.

Lemma 4.2. Given a data set P , a query point q, a Bergman
divergence Df and a threshold θ, any point p is in the range
query result if and only if

〈p+
, vq〉 ≤ θ + f(q) − 〈∇f(q), q〉

The proof of Lemma 4.2 is similar to that of Lemma 4.1.
The benefits of this reformulation include the fact that

projections between vectors are easier to visualize and the
fact that vectors are easier for distribution analysis (covered
in Section 5).
Revisiting the Rectangular Bounds: In the previous
section, we derived a lower bound and upper bound on the
distance between a point in some bounding rectangle to
some query point q. Here, we will first analyze the tight-
ness of the bound within the context of the new geometrical
interpretation introduced above. We then demonstrate how
better bounds can be derived to improve the effectiveness of
pruning for both the R-tree and the VA file structures.

As mentioned before, the Bregman divergence between a
point p and a query point q can be interpreted as the projec-
tion length from p+ to the vector vq. The lower and upper
bound derived in Lemma 3.1 can be regarded as finding the
minimum and maximum projection length on vq from the
rectangle R. In Figure 5, for example, we plot a bounding
rectangles covering a group of points. The lower bound and
upper bounds of the rectangle can be found by projecting
the whole rectangle onto the query vector vq. Note that
the lower bound can be a negative value, such as the lower
bound of the rectangle R in Figure 5.

These bounds however can be improved by considering
that any point in the rectangle must ultimately stay on the
curve y = f(x) in the extended space. The improved scheme

of bound estimation stems from the observation that f(x) is
usually the sum of some function g(x[i]) on each dimension i.
If such function g(x[i]) exists, given a bounding rectangle R

with its lower and upper boundaries on all dimensions, we
can analytically calculate the exact minimal and maximal
values of g(x[i])−q[i]x[i] for each i. By summing up all these
extreme values, the exact minimal and maximal distances
can be found for the bounding rectangle R. In other words:

LB∗(R, q) =
d

∑

i=1

min
R.l[i]≤x[i]≤R.u[i]

(g(x[i]) − q[i]x[i])

and,

UB∗(R, q) =
d

∑

i=1

max
R.l[i]≤x[i]≤R.u[i]

(g(x[i]) − q[i]x[i])

Taking KL-divergence as an example, the convex func-
tion is defined as f(x) =

∑

i x[i] log x[i]. Thus, the func-
tion g(x[i]) = x[i] log x[i] is able to satisfy our condition
above. This works for Itakura-Saito distance as well with
g(x[i]) = − log x[i].

Leveraging some simple calculus, we know that the deriva-
tive of g(x[i]) − q[i]x[i] is g′(x[i]) − q[i]. Since f(x) is a
convex function, g′(x[i]) must be some monotonic function
on x[i], as well as g′(x[i]) − q[i]. Thus, the extreme val-
ues of g(x[i]) − q[i]x[i], for both maximum and minimum,
can be attained on three possible locations along the inter-
val of R on dimension i. These locations include the two
ending points of the interval, R.l[i] and R.u[i], as well as
the location with zero derivative, i.e. some x[i] satisfying
g′(x[i])− q[i] = 0. While the ending points can be found di-
rectly from the interval information, the zero-derivative lo-
cation will require the use of a binary search operation along
the interval [R.l[i], R.u[i]]. Fortunately, for most of the pop-
ular convex functions, this location can be pre-computed
explicitly in constant time. For KL-divergence, for exam-
ple, with the function g(x[i]) = x[i] log x[i], it is easy to
verify that x[i] = exp(q[i] − 1) is the location to satisfy
g′(x[i]) − q[i] = 0. For Itakura-Saito distance, as another
example, with the function g(x[i]) = − log x[i], the zero-
derivative location is x[i] = − 1

q[i]
. Note that there exists

only one location with zero derivative on the whole dimen-
sions. Therefore, this location may not be covered by every
bounding rectangle. After testing the three (or two) candi-
date locations, the maximal and minimal values on dimen-
sion i can be directly computed.

Using this strategy, the lower and upper bound computed
is much tighter than the naive bounding method. In Fig-
ure 6, we present the new bounds for the same bounding
rectangle R in Figure 5. The new bounds LB∗(R, q) and
UB∗(R, q) are achieved at the ending points of the interval
on x-axis, respectively. While the naive lower bound in Fig-
ure 5 is negative, the new lower bound LB∗(R, q) becomes
positive. Thus, the tightness on the bound from points in R

to query q is dramatically improved.

5. OPTIMIZATION WITH QUERY DISTRI-
BUTION

In traditional indexing problems over Euclidean distance,
query distribution often plays a limited role. Basically, adap-
tive optimization with query distribution does not greatly
enhance the query processing efficiency, but actually incurs
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huge costs on index construction and maintenance. How-
ever, when indexing over Bregman divergence, we argue that
query distribution can play a greater role in index structure
optimization. We make our case using analysis that de-
pends on the distance distortion of bounding rectangles and
through the maintenance of relevant summary statistics of
size O(d). Before delving into the details of our analysis
and method, some definition on the distortion of bounding
rectangles is stated below first.

Definition 5.1. Given a bounding rectangle R, the expected
distortion of R with respect to some query distribution 3 Q
is the expected difference between the lower bound and upper
bound on the distance from R to the query q following Q,
i.e.

D(R,Q) = E(UB(R, q) − LB(R, q))

Intuitively, the expected distortion, measures the variance
on the distance from points in the bounding rectangle to the
queries. When the distortion is small, the points are prone
to having similar distance with respect to the queries. This
can improve the pruning efficiency of our algorithms. To
reiterate, in Euclidean space, the expected distortion with
respect to the query distribution is not that important, since
the value of the expected distortion can be bounded by
the boundaries of the rectangle itself. The following lemma
proves this statement rigorously.

Lemma 5.1. In Euclidean space, the expected distortion of
a bounding rectangle R can be bounded by

D(R,Q) ≤

√

√

√

√

d
∑

i=1

(R.u[i] − R.l[i])2

Proof. Since Euclidean space obeys triangle inequality,
the difference between the lower bound and upper bound
w.r.t. a query q is no larger than the maximum distance
between any two points in R,

UB(R, q) − LB(R, q) ≤
√

∑

(R.u[i] − R.l[i])2

Assuming the probability density function p(x) for the
query distribution Q, the expected distortion can be mea-
sured by employing basic calculus as follows:

3Q can either be represented by some continuous statistical
function or by discrete samples of the query points.

D(R,Q) =

∫

x

(UB(R, x) − LB(R, x) dp(x)

≤

∫

x

√

∑

(R.u[i] − R.l[i])2 dp(x)

=
√

∑

(R.u[i] − R.l[i])2

This completes the proof of the lemma.

The above lemma implies that query distribution does not
have great impact on the expected distortion of the bound-
ing rectangle in Euclidean spaces. Unfortunately, this prop-
erty does not hold for Bregman divergence. Given some
Bregman divergence Df (x, q) and some bounding rectangle
R for data points, there does not exist a constant to bound
the expected distortion. In KL-divergence, for example, the
distance tends to be infinity between a query point q and
a bounding rectangle R if q[i] is close to zero for some di-
mension i and R.l[i] > 0. This highlights the difficulty in
constructing and maintaining an index structure for Breg-
man divergence. However, it also enables us to reason about
improving performance with some knowledge of the query
distribution. We next describe the summary statistics we
maintain in order to estimate the distortion.

Given a query distribution Q, we use AP
i (resp. AN

i ) to
denote the average value of the query vector vq on dimen-
sion i, with q following the distribution Q and vq[i] > 0
(resp. vq[i] ≤ 0). Therefore, the query statistic set contains
d + 1 pairs of (AP

i , AN
i ) for 1 ≤ i ≤ d + 1. The following

lemma proves that these statistics are sufficient to estimate
the expected distortion of a bounding rectangle R.

Lemma 5.2. Given ∪d+1
i=1 {A

P
i , AN

i } and a bounding rectan-
gle R, the expected distortion of R is bounded by the following
inequality

D(R,Q) ≤

d+1
∑

i=1

(R.u[i] − R.l[i])(AP
i − AN

i )

Proof. From the definition of expected distortion, if the
query distribution Q has probability density function σ(x)
for query vector x, we have

D(R,Q) =

∫

x

UB(R, x)σ(x) dx −

∫

x

LB(R, x)σ(x) dx

In the following, we use σi(xi) to denote the probability
density function of Q on dimension i. Simply employing
the naive bound derived in Section 3, we have the expected
upper bound as follows.

∫

x

UB(R, x) dx

≤

d+1
∑

i=1

(
∫

xi>0
R.u[i]xiσi(xi) dxi +

∫

xi≤0
R.l[i]xiσi(xi) dxi

)

=

d+1
∑

i=1

(

R.u[i]

∫

xi>0
xiσi(xi) dxi + R.l[i]

∫

xi≤0
xiσi(xi) dxi

)

=

d+1
∑

i=1

(

R.u[i]AP
i + R.l[i]AN

i

)

(2)

The last equality is because AP
i =

∫

xi>0
xiσi(xi) dxi and

AN
i =

∫

xi≤0
xiσi(xi) dxi. Similarly, we can derive the in-

equality on the lower bound



∫

x

LB(R, x) dx ≥

d+1
∑

i=1

(

R.l[i]AP
i + R.u[i]AN

i

)

(3)

By (2)-(3), we arrive at the conclusion of the lemma with
simple algebra.

The last lemma implies that the average positive and neg-
ative values on the query vectors contain enough information
to help us estimate the distortion on bounding rectangles.
The maintenance on these averages are affordable for most
database systems, since both the storage and computation
cost is negligible. This enables the system to organize the
data either into bounding rectangles or cells such that query
performance over these index can be improved substantially.
In the rest of the section, we will specifically detail how we
apply this technique on the R-tree and VA file respectively.

5.1 Application on the R-tree
In traditional R-tree and its variants, an important oper-

ation is the selection of nodes when inserting a new point
into the index tree. The selection is optimized by picking up
the node with the minimal expansion of the MBR. Different
implementations employ different measures on the expan-
sion of MBR, such as the volume and the sum of the edge
length etc.

To incorporate our new distortion measure into the con-
struction and maintenance of the R-tree, we just need to re-
place the existing expansion measure with the new expected
distortion according to the query distribution statistics, as
summarized above. The node, whose MBR needs the min-
imal increase of expected distortion to include the newly
added point, is chosen as the insertion node.

When dealing with split operation, the seeds of the split-
ting nodes are also selected according to the expected distor-
tion. In our experimental studies, the tree randomly picks
up pairs of children nodes (or points), and finally selects the
pair whose minimal bounding rectangle has the maximal
expected distortion with respect to query distribution.

5.2 Application on VA file
The cell structure in the VA file is fairly different from the

MBRs in the R-tree. While MBRs are frequently updated
during the insertion and deletion operations, the boundaries
on the cells in VA file are pre-defined before the computation
of vector approximations. Updates on such boundaries are
very expensive since the vector approximations of the whole
data set have to be re-computed.

However, if the statistical information on the query dis-
tribution is available before the construction of the index
structure, the system can then leverage this by selecting bet-
ter boundaries potentially improving query processing per-
formance. The main idea of this optimization technique is
to minimize the maximal expected distortion of all cells by
carefully selecting the number of bits on each dimension as
well as the boundaries on the dimensions. The following
lemma shows that equal division is optimal if the numbers
of bits on all dimensions are fixed.

Lemma 5.3. If every dimension i is approximated with bi

bits, the optimal interval length on dimension i is (vi
max −

vi
min)2−bi .

Proof. If summing up the expected distortion of all cells,
the following equation holds with Lemma 3.1, when iterating
each cell R in the VA file.

∑

R

D(R,Q) =
∑

R

d+1
∑

i=1

(R.u[i] − R.l[i])(AP
i − AN

i )

=

d+1
∑

i=1

∏

j 6=i

2bj (vi
max − vi

min)(AP
i − AN

i )

Leveraging the pigeonhole principle, the maximal expected
distortion is no smaller than

∑

R D(R,Q)
∏d

i=1 2−bi. Com-
bining this with the equality above, we obtain:

max
R

D(R,Q) ≥

d+1
∑

i=1

2−bi (vi
max − vi

min)(AP
i − AN

i )

By applying equal division on all dimensions, the expected
distortion of all cells can be computed as:

∑d+1
i=1 2−bi(vi

max−

vi
min)(AP

i − AN
i ). Therefore, equal division must be the op-

timal boundary selection.

While the above lemma justifies the selection of equal
width division, the next lemma implies how to optimally
select number of bits on the dimensions.

Lemma 5.4. If the total number of bits on all dimensions
is fixed, i.e.

∑

i bi = B, the optimal number of bits bi on
dimension i is

bi =
B −

∑d+1
i=1 log2 wi

d + 1
+ log2 wi

with wi = (vi
max − vi

min)(AP
i − AN

i ).

Proof. In last lemma, we have shown that expected dis-
tortion over all cells is no better than

∑d+1
i=1 2−biwi with

wi = (vi
max − vi

min)(AP
i − AN

i ). To optimize it with con-
straint

∑

bi = B, we apply the method of Lagrange multi-
pliers on the expected distortion. With λ as the Lagrange
operator on the constraint, the new objective function can
be re-written as.

F =
∑

2−biwi + λ(
∑

bi − B)

To reach the optimal solution, each partial derivative on
bi must be zero, as

∂F

∂bi

= − ln 2 · wi2
−bi + λ = 0

Solving the equation array with (d + 1) equality, for each
i we have

log2 wi − bi =

∑

log2 wi − B

d + 1

Thus, we prove the lemma.

This lemma can thus be directly applied on the selection
of appropriate number of bits for each dimension, depending
on wi = (vi

max − vi
min)(AP

i − AN
i ).

6. EXPERIMENTAL STUDIES
To evaluate the effectiveness of the methods proposed in

this paper, we conduct extensive experimental studies on
both synthetic and real data sets. We begin by describing
the data sets.
KDD99 Data Set: This is a probability vector data set
with 72 dimensions and 489794 tuples, constructed from the



KDD Cup 1999 dataset which has been used for research
on intrusion detection and network attack analysis. The
original data set contains 4898431 TCP packet records on
41 dimensions. In the pre-processing step, we transform the
original records into a probability vector by recording the
number of packets that belong to each of the 72 different
types of network connections over a sliding window of 500
consecutive packets. By continuously moving the sliding
window, a snapshot distribution is recorded and stored as
a data point, after 10 new packets replace the 10 oldest
packets. KL-divergence is the dissimilarity measure applied,
which is helpful in discovering points in time with similar
packet distributions.
DBLP Data Set: This is a probability vector data set
with 8 dimensions and 279124 records, generated from the
DBLP database retrieved in October 2007. The original
data set contains a connected graph of 279124 authors with
edges representing co-authoring relationship between the au-
thors, as well as bipartite graph between authors and papers.
To analyze the research area that the authors are working
on, the number of top-tier conference papers in 8 different
fields are counted for each author according to the confer-
ence ranking retrieved online4. To smoothen the vectors,
we further calculate the average on the probabilities over
the neighborhood of each author, which consists of authors
within 10 hops on the co-author graph, as his final proba-
bility vector related to the fields. Similar to KDD99 data,
we apply KL-divergence on this data set. 5

Synthetic Data: Uniform Distribution: This dataset is
generated in a manner such that the positions of the objects
follow uniform distribution on a d-dimensional unit hyper-
rectangle in domain [0, 1] on each dimension.
Synthetic Data: Clustered Distribution This dataset
is generated from a 4-component Gaussian Mixture Model
[18]. The center of the components are uniformly selected
in the unit hyper-rectangle [0, 1]d of dimensionality d. The
variances on the dimensions are independently chosen in
the interval [0, 0.5]. A noise uniformly distributed in the
whole domain is also generated, which consists of 1% of the
data set. The queries on the synthetic data are generated
at random and we employ both the KL-divergence and the
Itakura-Saito(IS) for experiments on this data.

In our experiments, we evaluate performance of the base-
line R-tree and VA file solutions described in Section 3, as
well as the optimized variants, namely Improved Bounding
for better pruning (Section 4) and Workload Optimization
for better index construction (Section 5). In the rest of the
section, we use ’R’ and ’V’ to denote the baseline R-tree and
VA file respectively, and use ’B’ and ’Q’ to denote the two
techniques for improved bounding and workload optimiza-
tion. Based on this notation, an algorithm marked “R-BQ”
would refer to an R-tree combined with both optimizations.

We also compare the proposed methods against Bregman
Ball tree6 (denoted by “BBT”) which is a main-memory al-
gorithm for processing nearest neighbor search under Breg-
man divergence. Another baseline algorithm we compare
with is the linear scan algorithm denoted “LS”.

To verify the efficiency of these index structures, we mea-
sure the Index Construction Time, Querying CPU Time and

4http://www3.ntu.edu.sg/home/ASSourav/crank.htm
5Both constructed datasets are available at:
http://www.comp.nus.edu.sg/ zhangzh2/bregman-data.zip
6http://lcayton.ucsd.edu/bbtree-code.zip

Parameter Varying Range

number of bits 4,6,8,10,12,14
dimensionality 2,4,8,16,32
result size k 5,10,20,40,80
search range θ 0.005,0.01,0.02,0.04,0.08
data size 1M,2M,3M,4M,5M
page size 4KB, 8KB, 16KB, 32KB

Table 3: Varying parameters

Querying I/O cost in our experiments. The query points are
randomly selected from the data set. The experiments are
repeated 10 times to obtain the average results. Since BBT
is a main-memory based algorithm that assumes all records
are loaded into the memory, the Querying I/O Time is not
measured for BBT.

In Table 3, we summarize the parameters tested in our
experiments, as well as their default values (in bold font)
and ranges that we tested on. Note that the first parameter,
number of bits is only applicable to the VA file, which is
studied separately in the following as a form of parameter
tuning before we compare VA file with other methods.

All the programs are compiled by gcc 3.4.3 in Red hat
Linux Operating system and run on IBM x255 server with
four Intel Xeon MP 3.0 GHz CPU, 18G DDR memory and
six 73.4GB Ultra320 SCSI hard disks.

6.1 Effect of Number of Bits on K-NN Queries
In this subsection, we test the impact of number of bits

on the efficiencies of VA file, and justify our selection of the
default value on the number of bits in Table 3.
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Figure 7: Effect of number of bits on Clustered Data
with KL

Since the results on different distributions and distance
functions are similar, in Figure 7, we only report the re-
sults of construction time and querying CPU cost of VA
file on clustered data with KL. The figure shows that both
construction cost and querying CPU cost increases linearly
with respect to the number of bits on each dimension. This
is because most of the CPU cycles are spent on calculating
and interpreting the approximation bit string during index
construction and query processing respectively.

Different from the construction and querying CPU costs,
the I/O cost of VA file is no longer linear to the number
of bits. In Figure 8, we show the I/O costs of VA file with
different number of bits on data sets with various dimen-
sionality. The results in the figure show that increase in
the number of bits will help to reduce I/O cost when the
dimensionality is low. However, when more bits are added
into the vector approximation, the size of the bit string file
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Figure 8: Effect of Bit Number on I/O Cost

grows substantially while the improvement on the pruning
efficiency is limited. Thus, the I/O cost on the scan of the
vector approximation file dominates the total I/O cost for
k-nearest neighbor query on high dimensional space. This
can be verified by the results in Figure 8(a) on uniformly
distributed data, in which linear increase of I/O cost can be
observed when there are more than 6 bits used on 16 and
32 dimensional space. Based on the results observed, we
decided to use 12 bits for each dimension in the rest of our
experiments, since it can achieve optimal or near-optimal
performance on almost all data sets under evaluation.

6.2 Effect of Dimensionality on KNN Queries
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Figure 9: Effect of Dimensionality on Clustered
Data with IS

Figure 9 summarizes the experimental results on construc-
tion time and querying CPU time on R-trees, VA files and
BBTree. VA file is the most efficient method for index con-
struction, which only takes one scan of the whole data set.
On the other hand, BBTree is always at least one magni-
tude slower than any other method in our tests because of
its employment of clustering algorithm as a splitting oper-
ator, leading to low effectiveness and efficiency particularly
in high dimensional spaces.

On querying CPU time, BBTree turns out to be CPU ef-
ficient when dimensionality is low. In 2-dimensional space,
it is better than the others by almost a magnitude of two.
However, the efficiency of BBTree drops quickly with the in-
crease of dimensionality. When the dimensionality reaches
16, it is clearly worse than the R-tree in terms of CPU time.
On 32 dimensional space with clustered distribution, almost
all methods proposed in this paper is competitive to BBTree
on CPU time. The R-tree and its variants always save more
CPU cycles than VA file based data structures on this set
of experiments. The optimization techniques, including im-
proved bounding and adaptive index construction, enables
the R-tree to achieve better efficiency when dimensionality
is not very high. But these techniques do not affect the

Data Set R R-BQ V V-BQ BBT

DBLP 14.5 15 1.5 1.5 141
KDD 91 232 9 9 2862

Table 4: Index Construction Time on Real Data Sets
(Seconds)

CPU cost of VA files. This is because VA files spend most
of the CPU cycles in calculating the bounding boxes on the
points based on their bit string representations and is thus
oblivious to our optimization proposal.
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Figure 10: Effect of Dimensionality on I/O Cost

In Figure 10, we show the impact of dimensionality on
I/O cost. For dimensionality lower than 8, the R-tree and
its variants perform better than VA files on I/O cost. As
dimensionality increases, the advantage of the R-trees di-
minishes while VA file presents dramatic improvement on
I/O cost. The results in the figure also show that optimiza-
tion techniques can greatly improve the performance of the
R-tree. The improved bounding method reduces the I/O
cost by half in low dimensional space, while workload opti-
mization technique can further improve it for certain distri-
bution of the data. For example, on clustered data with KL
divergence (Figure 10(a)), workload optimization cuts 10%
of I/O cost on the R-tree structure under improved bound-
ing. We note that performance of basic R-tree is worse than
the naive linear scan (LS) on very high dimensional spaces.
For VA file, improved bounding does not show obvious im-
provements on the performance. This is because the cells are
sufficiently small after we divided them using large number
of bits. Workload optimization, on the other hand, is able
to significantly improve the performance of VA file if the
distribution is skewed. Such improvement can be observed
in Figure 10(b) on the clustered data set on the IS distance.

6.3 Effect of Result Sizek on KNN Queries
In Table 4, we list the CPU time for index construction,

which are similar to the results on synthetic data sets. The
construction of VA file is the fastest among all methods on
KDD data with 72 dimensions, while the R-trees with work-
load optimization takes about 4 minutes to finish. BBTree
takes almost 50 minutes to construct its index on KDD data
set, making it much less attractive in any real system.

In Figure 11, we provide results that vary k, which is the
number of nearest neighbors that must be returned. On
the 8 dimensional DBLP data set, BBTree shows an advan-
tage on CPU time. On the 72 dimensional KDD data set,
however, the advantage of BBTree no longer exists. These
results are consistent with the observations in Figure 9(b).
While no optimization techniques is able to claim improve-
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Figure 11: Result Size k vs. Querying CPU Time

ment upon the basic R-tree structure on DBLP data set
(Figure 11(a)), we observe efficiency lift of R-BQ on KDD
data set (Figure 11(b)). This improvement is due to the
characteristic of KDD data set, which consists of huge clus-
ters with highly similar points in the space.
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Figure 12: Result Size k vs. Querying I/O Time

The results on I/O cost with varying k in Figure 12 match
our expectation. In general, the basic R-tree has the worst
performance among all methods. However, our proposed op-
timization techniques are able to significantly bridge this gap
in performance. On the two real data sets, R-BQ enables
the R-tree to achieve the best performance with minimal
I/O cost compared to any other index structure. On clus-
tered data set over IS distance, VA file works better when
k is small. With larger k, VA file has to randomly access
the original data points more frequently, incurring large I/O
cost. Thus, VA file degrades linearly when k increases. Also,
V-BQ on KDD data set is able to utilize the distribution in-
formation with about 10% savings in I/O costs.

6.4 Effect of Page Sizes on KNN Queries
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Figure 13: Effect of Page Sizes on DBLP for KNN

Page size is another important parameter of the system.
The results in Figure 13(a) imply that the construction time
of VA file does not depend on the specified page size, since
the bit transformation is the dominant cost in index con-
struction, which is irrelevant to page size. However, the

construction time of the R-trees increases quickly with larger
page size, since the intermediate nodes in the R-tree can
store more detailed summarization information on its chil-
dren, given the larger page sizes. Updates on the R-trees,
such as split, take more time with larger page, because it
needs to iterate the entries to select the best splitting plan.

From Figure 13(b), we observe that the R-tree without
any optimization is the method spending the minimal CPU
cycles. With larger pages, VA file has very limited room to
improve its performance, because VA file usually accesses
the pages randomly when searching for nearest neighbor re-
sults. The optimization techniques on the R-tree cost more
CPU cycles, since the algorithm iterates every entry in the
the node page, leading to more computation.
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Figure 14: Effect of Page Sizes on I/O Cost

Based on the results in Figure 14, we make several impor-
tant observations. First, the R-tree performs much better if
more space is given for a single page on disk. When the page
size is 32KB, R-BQ is even better than VA files by two mag-
nitudes on I/O costs, on highly clustered KDD data. For VA
file, workload optimization technique is also able to utilize
the large page size and show a larger gap in performance
over VA files without adaptive construction.

6.5 Effect of Data Size on KNN Queries
We next study the effect of data size. In Figure 15. Here

we evaluate the querying CPU time and I/O cost of the pro-
posed methods. In a nutshell, all the methods show linear
increase on both CPU cycles as well as I/O cost, proving
that they are scalable to large data sets.
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Figure 15: Effect of Data Size on KNN Queries

6.6 Effect of Search Range on Range Queries
Due to the limited space, we skip most of the experimen-

tal results on range query. Instead, we only provide partial
results with varying search range θ in Figure 16. While the
search range does not affect the CPU time for VA file, the
performance of the R-tree is sensitive to θ. With a large
search range, the R-tree degrades quickly, since the bound-
ing techniques distinguish the distance better when points



are close to the query. Finally, when testing I/O cost with
varying search range, we find that the R-tree structures is
worse when θ increases. However, the R-tree is stable on I/O
costs on KDD data, because very few points are returned
even when the threshold on the search range increases.
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Figure 16: Effect of Search Range on Range Queries

Finally. we also conducted some experiments comparing
conventional R-tree for Euclidean distance and our Breg-
man R-tree for KL divergence, on KDD99 and DBLP data
sets. The performance of Bregman R-tree only deteriorates
with a very small margin on efficiency. These results will be
available in the extended version of the paper.

7. CONCLUSIONS AND FUTURE WORK
In this paper we investigate the problem of efficiently sup-

porting similarity search on a general class of non-metric
(Bregman) distance measures. We present a general purpose
solution relying on a novel mapping strategy and also one
which effectively leverages existing indexing infrastructure
present in modern database systems. We present several im-
portant optimizations based on improved bounding strate-
gies and query workload information to efficiently support
k-nearest neighbor and range queries. We find that both the
mapping and optimization strategies can be achieved with
minimal changes to existing database infrastructure. A de-
tailed experimental study verifies the efficacy and efficiency
of the proposed techniques on real and synthetic data.

In the future, we will conduct more detailed studies on in-
dexing objects in the kernel space which our framework can
be easily extended to handle. Kernel-based methods have
been shown to be effective in a number of applications with
nearest neighbor and range query being one of the principal
bottlenecks to realizing scalable solutions. For example, it
is interesting to investigate how to improve the performance
of LLE [24].
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