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Understanding the Meaning of a Shifted Sky
A General Framework on Extending Skyline Query
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Abstract Skyline queries are often used on data sets
in multi-dimensional space for many decision-making
applications. Traditionally, an object p is said to domi-
nate another object q if, for all dimension, it is no worse
than q and is better on at least one dimension. There-
fore, the skyline of a data set consists of all objects not
dominated by any other object.

To better cater to application requirements such as
controlling the size of the skyline or handling data sets
that are not well-structured, various works have been
proposed to extend the definition of skyline based on
variants of the dominance relationship. In view of the
proliferation of variants, in this paper, a generalized
framework is proposed to guide the extension of skyline
query from conventional definition to different variants.
Our framework explicitly and carefully examines the
various properties that should be preserved in a vari-
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ant of the dominance relationship so that: (1) main-
taining original advantages, while extending adaptiv-
ity to application semantics, and (2) keeping compu-
tational complexity almost unaffected. We prove that
traditional dominance is the only relationship satisfy-
ing all desirable properties, and present some new dom-
inance relationships by relaxing some of the properties.
These relationships are general enough for us to design
new top-k skyline queries that return robust results of a
controllable size. We analyze the existing skyline algo-
rithms based on their minimum requirements on dom-
inance properties. We also extend our analysis to data
sets with missing values, and present extensive experi-
mental results on the combinations of new dominance
relationships and skyline algorithms.

1 Introduction

Given a set P of d-dimensional points, point p is said to
dominate point q if p is no worse than q on any dimen-
sion and better than q on at least one. The subset of all
points not dominated by others is called the skyline of
P . A skyline query retrieves from P its skyline, which
is interesting to users with multiple criteria, especially
from economical perspective [15,24]. These are the tra-
ditional skyline concepts that have formed the basis for
most previous works on skyline queries [4,22,13,18,10].
The essence of a skyline query is its dominance defi-
nition, which not only determines the relationship be-
tween any pair of points but also shapes the final query
result. There are both benefits and negative effects in
adopting the traditional dominance relationship for the
definition of a skyline point.

In terms of benefits, the traditional dominance re-
lationship guarantees the robustness of the query re-



2

sult. This is because scaling and shifting on any dimen-
sion do not impact the query result. For example, if
the objects are associated with two attributes, includ-
ing temperature and weight, the skyline points remain
the same regardless of whether temperature is repre-
sented in Fahrenheit or Celsius, or whether weight is
measured in kilograms or pounds. This property is the
most important advantage of the skyline query, mak-
ing it the only option for the user when dealing with
incomparable dimensions.

As for negative effects, the rigorous definition of
the traditional dominance relationship restricts the use-
fulness of the skyline query in real-life applications,
which usually demand additional requirements of sky-
line points. One common requirement is the control
over the result size of a skyline query, i.e., the num-
ber of skyline points being returned. This has in fact
motivated the introduction of variances into traditional
skyline queries [12,16,6]. Another requirement is to pro-
vide systematic flexibilities in tuning skyline points se-
lection. Given a variant definition of skyline query, the
result returned is expected to be both meaningful on
semantics and controllable on cardinality. Yet another
requirement is to apply skylining power to handle data
sets that are not so well-structured, such as tables with
missing values.

In view of these trends, in this paper, we formulate a
generalized framework to serve as the basis for defining
and examining variants. To formulate the framework,
we carefully examine various properties that should be
preserved in a variant of the dominance relationship so
that: (1) the definition of skyline maintains its orig-
inal advantages as much as possible while remaining
adaptive to application semantics, and (2) the compu-
tational complexity of skyline based on a new variant
is not too adversely affected. Through the introduction
of this framework, we hope to remove the needs for re-
searchers to re-examine these properties whenever there
is a necessity to define a variant of the dominance rela-
tion or re-develop a new algorithm for computing sky-
line based on the new variant. This is done in the same
spirit as previous work like [21] which provides theoreti-
cal answer to the question on when is nearest neighbors
indexable.

Unlike previous studies on preference queries in rela-
tional databases [7,11] that focus on traditional prop-
erties for total and partial orders, we emphasize two
important properties in the traditional dominance re-
lationship: scaling robustness and shifting robustness.
With these two properties, the skyline set remains ro-
bust even when the dimensions are totally incomparable
[4]. Besides these two properties, we are also interested
in the rationality property and the transitivity prop-

erty, both of which are crucial to algorithm design for
the skyline query. It is also interesting to see the tra-
ditional dominance relationship being the only binary
relationship satisfying all the properties above.

Further, we consider relaxing one of the following
properties: transitivity, scaling robustness and shifting
robustness, as doing so allows us to design dominance
relationships such that the size of the skyline can be
controlled. We show that these relationships are likely
to form an ordered class {D1, D2, . . . , Dn}, with the
property that object p can dominate object q under Di

for any i ≤ j if p can dominate q under Dj . Based
on such an ordered class property, we propose a new
type of top-k skyline query which attempts to find the
smallest Di such that the corresponding skyline is of a
size smaller than a user specified parameter k.

On the efficiency issue of skyline query computa-
tion, we study some existing skyline algorithms, such
as BNL[4], SFS [8], TSA[6] and BBS [19]. We analyze
their applicable ranges by looking at the minimum re-
quirement on the properties of the underlying domi-
nance relationship. Additionally, we propose two algo-
rithm frameworks for the top-k skyline query, namely
Binary Search and Progressive Search, as well as their
applicability conditions.

To illustrate the extensibility of our proposal, we ap-
ply our principles in two contexts. First, we apply our
analysis to design a new dominance relationship called
cone dominance which allows us to reduce the skyline
size while sacrificing either scaling or shifting robust-
ness. Second, we apply our analysis to handle data sets
with missing values without losing any of the desirable
properties. In both cases, we then select the appropriate
algorithms for finding skyline and top-k skyline based
on the exhibited properties.

The rest of the paper is organized as follows. Section
2 introduces some basic properties of the dominance
relationship and reviews some related works. Section 3
studies dominance relationships that satisfy all or parts
of the properties. Section 4 summarizes the current al-
gorithms based on their basic requirements on domi-
nance properties. Section 5 looks at the design of cone
dominance in order to control the size of the skyline.
Section 6 extends the analysis to data sets with miss-
ing values. Section 7 presents the experimental results
and Section 8 concludes the paper.

2 Preliminaries

In this section, we first give the common definitions
and notations used in rest of the paper. Then, we re-
view some related work in the literature of skyline query
processing.
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2.1 Definitions and Notations

Given a d-dimensional numerical space S, a point p
in the space S is represented by a d-dimensional vector
(p[1], p[2], . . . , p[d]). In this space, we can define a binary
relationship D : S ×S called a dominance relationship.
A point p is said to dominate another point q, if (p, q)
is in D, denoted as D(p, q). We will also use D(p, q) to
denote that (p, q) is not in D, or p cannot dominate q.
Based on the dominance relationship, we can define the
skyline of a data set P ⊆ S as a subset S(P, D) of P ,
which contains all points not dominated by any point
in P , i.e., S(P, D) = {p ∈ P |∀q∈DD(q, p)}. Since every
dimension is simply numerical, the basic preference fol-
lows one of the two cases that, smaller value dominates
larger value, or opposite. Without loss of generality, we
simply assume that a point p is better than another
point q on a dimension i, if p[i] < q[i].

In most of the previous studies on skyline, a skyline
query typically employs the traditional dominance re-
lationship, where a point p dominates another point q,
if p is not worse than q on all dimensions and p is better
than q on at least one dimension. To distinguish the tra-
ditional dominance relationship from other dominance
relationships, we shall call it TD.

Definition 1 Dominance Region
Based on the specified dominance relationship D, the
dominance region of a point p is the largest region in S
such that every point in the region must be dominated
by p with respect to D.

The dominance region of a point p in the traditional
dominance relationship TD, for example, is the hyper-
rectangle in the space for points with no smaller values
on all dimensions, except for the position of p itself.

In this paper, we focus on the study of dominance
relationships for the skyline query. The basis of our
study builds on the important properties of these re-
lationships.

Definition 2 Rationality Property
A dominance relationship D satisfies the rationality
property, if D(p, q) for any pair of p and q that q[i] < p[i]
for all 1 ≤ i ≤ d.

The rationality property gives us the basic standard
as to what is good and what is bad. A point cannot
dominate another point if it is worse on all aspects.

Definition 3 Transitivity Property
A dominance relationship D satisfies the transitivity
property, if D(p, q) when there exists another point r
such that D(p, r) and D(r, q).

This property is intuitive since preference usually
embodies the transitivity property.

Given a d-dimensional vector α = (α[1], . . . , α[d])
and a point p in S, we define the scaling operation as
αp = (p[1]α[1], . . . , p[d]α[d]), where α[i] ≥ 0 for all i
and α[j] > 0 for some j. α[i] is the scaling factor of
dimension i.

Definition 4 Property of Scaling Robustness
A dominance relationship D satisfies the property of
scaling robustness if D(αp, αq) when D(p, q) for any
valid α.

Similarly, given a d-dimensional constant vector β =
(β[1], . . . , β[d]) and a point p, we define the shifting op-
eration as p + β = (p[1] + β[1], . . . , p[d] + β[d]), where
β[i] is any real number for all i. β[i] is said to be the
shifting factor of dimension i.

Definition 5 Property of Shifting Robustness
A dominance relationship D satisfies the property of
shifting robustness if D(p + β, q + β) when D(p, q) for
any β.

The properties of scaling robustness and shifting
robustness are important in real applications. This is
because many real data sets contain incomparable di-
mensions. For example, in the case of hotel selection
[4], the room price and distance to the beach are dif-
ferent in nature. The properties of scaling robustness
and shifting robustness enable comparisons to be made
among points with totally different dimensions, which
is one of the most important advantages in the original
skyline query.

With the concept of dominance relationship, we can
provide a generic definition of skyline query as follows.

Problem 1 Skyline Query
Given a data set P and a dominance relationship D,
locate the skyline S(P, D).

In the following, we define the concept of dominance
class. Given a group of dominance relationships, we de-
fine the ordering property as follows.

Definition 6 Ordering Property
Given a fully sorted index set Θ, a set of dominance
relationships indexed by Θ i.e., D = {Di|i ∈ Θ}, D
embodies the ordering property if for any i ¹ j, Di(p, q)
must be valid if Dj(p, q) is valid.

Lemma 1 Given a dominance relationship class D in-
dexed by Θ and a data set P , we have S(P, Di) ⊆
S(P, Dj) for i ¹ j.
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Fig. 1 Example of traditional dominance definition

Dominance ε Skyline Dominated Set

D1 0.5 {B} {A, C, D, E, F, G}
D2 0.2 {B, C} {A, D, E, F, G}
D3 0.1 {A, B, C} {D, E, F, G}
D4 0 {A, B, C, D} {E, F, G}

Table 1 Example of Top-k Skyline Query

If Θ is a finite set, we say D is a finite ordered dom-
inance class; otherwise, we say D is an infinite ordered
dominance class. For example, Θ can be an integer set
on [1, n] or a real number interval [a, b]. In the rest of
the section, we will assume D is finite and Θ contains
all integers in [1, n]. The definitions can be easily ex-
tended to infinite cases. Given an ordered dominance
class D = {D1, D2, . . . , Dn}, we can define the new
problem in a way similar to the traditional top-k query
in database systems.

Problem 2 Top-k Skyline Query
Given the specified parameter k and an ordered dom-
inance class D, find a dominance relationship that (1)
Di ∈ D, that |S(P, Di)| ≥ k and |S(P, Di−1)| < k, if
S(P, Dn) ≥ k, or (2) Dn, if S(P, Dn) < k.

In other words, the top-k skyline query tries to dis-
cover the dominance relationship in D with the mini-
mal skyline cardinality but above k. If all of them in
the dominance class lead to small skyline, the one with
the maximal cardinality is returned instead. The top-k
skyline query (Problem 1) is more attractive than the
original skyline query (Problem 2) in many real appli-
cations since users can relate to results of manageable
size more easily. Given the data shown in Figure 1, for
example, if we construct an ordered dominance class
based on ε-ADR [12], the corresponding skyline and
dominated sets are as shown in Table 1. Therefore, the
original skyline is {A,B, C, D} while the top-2 skyline
based on this ordered class will return {B,C} as results.

For convenience and readability, we summarize the
notations used in the rest of this paper in Table 2.

Notation Description

S underlying numerical space

d dimensionality of S
p, q, r points in S

D dominance relationship

D(p, q) p dominates q by D

P a data set in S
S(P, D) skyline of P with D dominance

Θ index set for dominance class

α, β scaling and shifting vector

D a set of dominance relationships

TD traditional dominance relationship

CDγ cone dominance with parameter γ

E(p, q) Euclidean distance between p and q

f ,g mappings from a distribution to a point

MDλ mapping dominance with parameter λ

Table 2 Table of Notations

2.2 Related Work

We next review the existing dominance relationship def-
initions that are relevant to the skyline query. While
the definition of skyline query was previously known
as maximal vectors problem in algorithm community,
the earlier studies only focuses on the computational
complexity [3,2]. In the literature of database system,
instead, I/O cost becomes the bottleneck as the data
grows beyond the capacity of the memory. In this pa-
per, we emphasize the skyline query processing algo-
rithms capable on large database. Specifically, we con-
sider five important aspects of interest. For each domi-
nance relationship definition, we first consider whether
its query result is deterministic, which indicates that
re-executions (or different evaluations) of a given in-
stance of a query type always produce the same subset
as the query result. In addition, we look into whether
each dominance relationship conforms to the four prop-
erties of: rationality, transitivity, scaling robustness and
shifting robustness. All existing dominance relationship
definitions and respective properties are listed in Ta-
ble 3.

We include the top-k query as it can be regarded
as a special case of the skyline query with multiple di-
mensions for comparison degenerating into only one. A
top-k query yields deterministic results, and it conforms
to the rationality and transitivity properties. Whether
it exhibits the property of scaling robustness or shift-
ing robustness is dependent on the concrete aggregation
functions that are used for ranking purposes.

A traditional skyline query [1,4,22,13,19,10,23,14]
yields deterministic results. It also conforms to all the
four properties described in the previous subsection.
The detailed proofs will be presented in Section 3.1. An-
other instance employing the traditional skyline is the
recent k most representative skyline operator [16]. It
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Dominance Definition Determin. Ration. Transi. Scaling Robust Shifting Robust

Top-k + + + - -
Traditional dominance [4,22,13,19,16] + + + + +

Partially-ordered domain dominance [5] + + + N.A. N.A.

ε-ADR dominance [12,9] - - - + +
k-dominance [6] + + - + +

Table 3 Revisiting existing dominance relationships

introduces a constraint on the number of skyline points
to be returned, and selects from the traditional skyline
those points that maximize the total number of domi-
nated points.

The skyline query on partially ordered domains [5]
and categorical domain [20,17] are special cases of the
traditional skyline query, but the properties of scaling
robustness or shifting robustness are not applicable be-
cause partially ordered domains do not support scaling
or shifting operations.

In the approximate dominating representatives prob-
lem [12,9], each point is boosted (if larger values are
preferred) by ε in all dimensions when being compared
with other points. We call the underlying dominance re-
lationship ε-dominance, and the corresponding skyline
query ε-ADR skyline query. The ε-ADR skyline query
does not have deterministic results, and ε-dominance
violates both rationality and transitivity properties. How-
ever, ε-dominance conforms to the properties of scaling
robustness and shifting robustness.

The k-dominant skyline [6] problem also alters the
traditional dominance definition. Given a d-dimensional
data set, a point p is said to k-dominate another point
q if there exists a k-dimensional subspace (k ≤ d) within
which p traditionally (fully) dominates q. The k-dominant
skyline query yields deterministic results, but it does
not conform to the transitivity property [6].

3 Analysis on Relationship and Properties

In this section, we analyze the connections between
dominance relationships and desired properties, and show
how relaxations on some of the properties reshape the
dominance relationships.

3.1 Traditional Dominance Relationship

We first consider the traditional dominance relation-
ship (TD). In the following, we use TD(p, q) to repre-
sent that p dominates q based on the definition of the
traditional dominance relationship.

Theorem 1 TD satisfies the properties of rationality,
transitivity, scaling robustness and shifting robustness.

Y

Z

X

q

Fig. 2 Example of octants in three-dimensional space

Proof TD must satisfy the rationality property since a
point p dominates another point q only when p is not
worse than q on all dimensions.

As pointed out in [4], TD satisfies the transitivity
property.

Given that TD(p, q), we have p[i] ≤ q[i] for any
1 ≤ i ≤ d, and there is at least one j that p[j] <

q[j]. Consider the relationship between αp and αq. Since
α[i] > 0, α[i]p[i] ≤ α[i]q[i] for any 1 ≤ i ≤ d and
α[j]p[j] < α[j]q[j]. This shows that TD(αp, αq) satisfy
the property of scaling robustness.

The proof for shifting robustness is similar to that
of scaling robustness. Thus, we omit the detail here.

In the rest of the section, we will show that TD
is the only binary relationship satisfying all the four
properties. The proof begins with several lemmas.

Definition 7 Hyper-Octant
Given a point p in d-dimensional space S, the point
can divide the whole space into 2d hyper-octants. For
any two points q and r in the same octant, we have
(q[i]− p[i])(r[i]− p[i]) ≥ 0 for any 1 ≤ i ≤ d.

By the definition, we know that for any two points
in the same octant, both of them are of larger (smaller)
values than p’s value on any dimension i. In Figure
2, we present an example in three-dimensional space,
where the cube with thick edges is the octant containing
points of smaller values than q on the X and Z axes but
of larger values than q on the Y axis.

Lemma 2 Given a dominance relationship D that sat-
isfies the properties of scaling robustness and shifting
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robustness, a point p and the octants induced by p, if
D(p, q) for some q in an octant X, D(p, r) for any
r ∈ X − {p}.
Proof Consider any r in X, we construct a vector δ =
{δ[1], . . . , δ[d]} such that δ[i] = (r[i]− p[i])/(q[i]− p[i]).
By the property of octant, we are sure δ[i] ≥ 0 for all
i. Then, we know that δp + (1− δ)p = p and δq + (1−
δ)p = r. By applying the property of scaling robustness,
we have D(δp, δq). By applying also the property of
shifting robustness, we have D(δp + (1− δ)p, δq + (1−
δ)p), which directly leads to the conclusion that D(p, r).

The last lemma implies that any dominance rela-
tionship D exhibiting scaling robustness and shifting
robustness has some ability to expand from a single
dominated point to the whole hyper-octant.

Given a dominance relationship D, if D(p, q) and
D(p, r), we say D is convex if D(p, γq + (1 − γ)r) for
any constant real value 0 ≤ γ ≤ 1.

Lemma 3 Given a dominance relationship D satisfy-
ing the properties of scaling robustness, shifting robust-
ness and transitivity, D must be convex.

Proof Given p, q and r that D(p, q) and D(p, r), by the
properties of scaling robustness and shifting robustness,
we have D(p, p+γ(q−p)) and D(p+γ(q−r), p+γ(q−
p)+(1−γ)(r−p)). By the transitivity property, we have
D(p, p + γ(q− p) + (1− γ)(r− p)). Since p + γ(q− p) +
(1− γ)(r − p) = γq + (1− γ)r, we reach the convexity
condition by D(p, γq + (1− γ)r).

Theorem 2 If D is a dominance relationship satisfy-
ing all the properties proposed in the last section, D
must be equal to TD in some subspace S ′ ⊆ S.

Proof Given any point p in the space S, by the ra-
tionality property, p dominates the hyper-octant that
contains points worse than p on all dimensions. If this
is the only hyper-octant dominated by p, it is TD in S.
If p dominates another hyper-octant with points better
than p on some dimensions in S ′′ ⊆ S, by the convex-
ity property, p dominates all points worse than p on
dimensions in S ′ = S − S ′′.

By Theorem 2, we have proved that the traditional
dominance relationship is the only dominance relation-
ship satisfying the properties of rationality, transitivity,
scaling robustness and shifting robustness.

3.2 Relaxation of Properties

Although Theorem 2 shows that TD is the only option
for a dominance relationship to satisfy all the four prop-
erties, we can obtain some other relationships if we are

Y

Z

X

q

Fig. 3 Example of dominance region after relaxing transitivity
property

able to relax some of the properties. In this part of the
section, we investigate along this direction by relaxing
one of the following properties: transitivity, scaling ro-
bustness and shifting robustness. We will also discuss
the scenarios in real applications when the relaxations
are reasonable. Note that the rationality property can-
not be relaxed since doing so can lead to unreasonable
results.

3.2.1 Relaxing the Property of Transitivity

By relaxing the transitivity property, a point p may not
be able to dominate another point r, even if it domi-
nates some point q that dominates r. However, Lemma
2 still applies since we have not relaxed the properties
of scaling robustness and shifting robustness. Therefore,
the dominance region of a point p will occupy arbitrary
hyper-octants divided by p in the space. By the ratio-
nality property, p cannot dominate the hyper-octant
with points better than p on all dimensions. Therefore,
the dominance region of p can be non-convex as shown
in the example of Figure 3.

In this example, the dominance relationship defi-
nitely does not follow the transitivity property since
the dominance region is not convex. We call this type
of dominance relationship Octant Dominance, or OD
in short.

We use Φ to denote the set of all OD relationships
satisfying all the properties except transitivity. Since
there are 2d − 1 hyper-octants to choose for the domi-
nance relationship, there are 22d−1 dominance relation-
ships in Φ. Unfortunately, there does not exist a total
order on these 22d−1 relationships. Therefore, Φ cannot
be an ordered class of dominance relationships, which
prohibits the top-k skyline query directly over Φ. How-
ever, it is possible to find some ordered subset of Φ. It
is not difficult to verify that the k-dominance proposed
in [6] is a subset of Φ and is an ordered dominance class
with d dominance relationships.
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The property of transitivity is important in some ap-
plications, especially when consistent result is expected
in recommendation system. However, with the increase
of dimensionality, the property of transitivity incurs
cost on the decreasing meaning of selective result, since
the points become hard to dominate. Therefore, the re-
laxation of transitivity is a natural option for data in
high dimensional space. More details on this can be re-
ferred to [6]

3.2.2 Relaxing the Property of Scaling Robustness

If we relax the property of scaling robustness, we can
have many different variants of the traditional domi-
nance relationship since it will be unnecessary to con-
sider the scaling factor any more. The dominance region
of a point p can even be discrete. For example, we can
define a dominance relationship, D, which only allows
a point p to dominate another point q if q[i]−p[i] ∈ Z+

for all i. It is not hard to verify that such dominance re-
lationship must follow all properties except for scaling
robustness.

Compared to the limited number of OD relation-
ships introduced above, there are infinite dominance
relationships satisfying all properties except scaling ro-
bustness. Moreover, in these relationships, we can find
some ordered classes of infinite size. For example, an in-
finite ordered class can be defined as follows. Given the
index set on all positive integers, Θ = {1, 2, . . . , i, . . .},
a dominance relationship Di is defined as Di(p, q) if
q[k]−p[k] is divisible by 2i−1 for all 1 ≤ k ≤ d. Each Di,
as defined above, must be a valid dominance relation-
ship, satisfying all properties except for scaling robust-
ness. Each pair of Di and Dj (i < j) must also satisfy
the requirement of Definition 6. Thus, these dominance
relationships form an infinite ordered class and top-k
skyline query can be issued on them.

The property of scaling robustness is helpful when
the dimensions are in totally different domains. In the
classic example of hotel selection [4], with two dimen-
sions on price and distance to beach, scaling robustness
plays an important role on deriving meaningful result.
However, this property is no longer important if the di-
mensions are recorded with the same measurement. In
movie rating data set with every user as a single dimen-
sion, such as Netflix1, the score on each dimension can
only be some integer between 1 and 5. In such cases,
scaling robustness can be relaxed without affecting the
meaningfulness of the skyline query result.

1 http://www.netflix.com

3.2.3 Relaxing the Property of Shifting Robustness

We can easily extend the analysis on relaxing scaling
robustness to the new case where shifting robustness is
relaxed instead. The key observation is that the prop-
erty of scaling robustness is equivalent to the property
of shifting robustness in the log-scale space logS, in
which every point p is transformed to another point
p′ = (log p[1], . . . , log p[d]) with the assumption that
p[i] > 0 for all i.

Based on this observation, there is a mapping be-
tween the set of all relationships violating only scal-
ing robustness and the set of relationships violating
only shifting robustness. Given a relationship D sat-
isfying all properties except for scaling robustness, we
can construct a new relationship D′ that D′(p, q) if
D(log p, log q). D′ must satisfy scaling robustness, since
D(log pα, log qα) = D(log p + log α, log q + log α) with
any scaling vector α. Since the reverse mapping can be
constructed similarly, we can prove that the number
of relationships violating only scaling robustness must
be equal to the number of relationships violating only
shifting robustness.

Shifting robustness is an valuable property if some
of the dimensions are error sensitive or subjective. Con-
sidering the example of movie rating data set, some of
the raters are prone to give higher scores to all movies
while some others always give low scores. Shifting ro-
bustness is able to remove the influence of these factors,
rendering consistent results. In some applications with
relatively stable and pointive values on all dimensions,
such as climate data collected over sensor network, the
necessity of shifting robustness does not exist any more,
allowing relaxation on this property.

4 General Algorithm Design

In this section, we discuss how existing skyline algo-
rithms can be modified to answer skyline query as well
as top-k skyline query, based on the properties of the
underlying dominance relationship used. Note that all
the algorithm designs here assume the complete infor-
mation of every point on all dimensions. The extensions
to data with missing values will be discussed in later
sections.

4.1 General Algorithms for Skyline Queries

There are four algorithm discussed below, including
Block Nested Loop, Sort Filter Skyline, Two Scan Al-
gorithm and Branch-and-Bound Skyline.
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Algorithm 1 General Block Nested Loop (data
set P , dominance relationship D)
1: clear the skyline buffer S
2: for each point p in P do

3: for each point q in S do
4: isSky=TRUE

5: if D(q, p) then

6: isSky=FALSE
7: end if

8: if D(p, q) then
9: remove q from S

10: end if

11: end for

12: if isSky then
13: move p into S

14: end if
15: end for
16: return S

4.1.1 Block Nested Loop

In Algorithm 1, we list the details of the General Block
Nested Loop algorithm, which was first proposed in [4].
In this algorithm, a buffer S is maintained for the cur-
rent skyline on the data seen so far. If a new point p

dominates some current skyline point q, q is removed
from S. If no point in S dominates p, p is moved into
S. This simple algorithm is of the widest applicability
range, as stated in the following theorem.

Theorem 3 Algorithm 1 can be applied on any domi-
nance relationship satisfying the transitivity property.

Proof By Algorithm 1, S must contain all the true sky-
line points S, since no other points dominates them by
definition. On the other hand, assume S contains a false
skyline point p, and p is dominated by another point q.
If q ∈ S, q must be eliminated when the algorithm visits
p or q. If q 6∈ S, q must be dominated by another point
r. By the transitivity property r, r must dominate p.
Following the logic, we can always find a skyline point
dominating p, which contradicts the assumption.

If the underlying dominance relationship does not
have the property of transitivity, BNL will fail to re-
trieve the correct skyline set, since some dominance
pairs can be missed when some points are dropped from
the temporary skyline buffer S.

4.1.2 Sort Filter Skyline

Next, we consider the General Sort Filter Skyline al-
gorithm, which was first proposed in [8]. In this algo-
rithm, a pre-sorting topologically on all dimensions is
conducted before the block nested loop algorithm is ap-
plied. The benefit of pre-sorting is that any point moved
into the skyline buffer must be a true skyline point at

Algorithm 2 General Sort Filter Skyline (data set
P , dominance relationship D)
1: sort the data set P on the sum of all dimensions for every

point.

2: clear the skyline buffer S
3: for each point p in P do

4: for each point q in S do

5: if D(q, p) then
6: go to line (3)

7: end if
8: end for
9: move p into S

10: end for

11: return S

the end, which saves time spent on pruning false skyline
points.

The applicability range of Algorithm 2 is smaller
than that of Algorithm 1.

Theorem 4 Algorithm 2 can be applied on any domi-
nance relationship satisfying the rationality and transi-
tivity properties.

Proof This algorithm must rely on the transitivity prop-
erty since all points are pruned by only those skyline
points. On the other hand, sorting can avoid a current
skyline point being dominated only when the domi-
nance relationship follows the rationality and transi-
tivity properties.

If any of the two properties does not hold, SFS al-
gorithm cannot output the correct result, because 1)
the sorting of the points implicitly assumes the prop-
erty of rationality when points with smaller values are
preferred, and 2) the skyline buffer S may not con-
tain enough points to dominate non-skyline points if
transitivity is violated. Based on this observation, the
requirements on SFS is tight.

4.1.3 Two Scan Algorithms

The third algorithm in our consideration is the General
Two Scan Algorithm, which was first proposed in [6].
This algorithm consists of two scans. In the first scan,
SFS is run on the data set to obtain a candidate set
S. In the second scan, points in S are compared with
all points in P to eliminate false skyline points. The
details are summarized in Algorithm 3. This algorithm
returns correct results even on a dominance relationship
without the transitivity property.

Theorem 5 Algorithm 3 can be applied on any domi-
nance relationship satisfying the rationality property.
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Algorithm 3 General Two Scan Algorithm (data
set P , dominance relationship D)
1: get candidate set S by running SFS
2: for each point p in P do

3: for each point q in S do
4: if D(p, q) then

5: remove q from S

6: end if
7: end for

8: end for
9: return S

Proof Compared against the SFS algorithm, Algorithm
3 employs a second scan. The second scan enables the
algorithm to find skylines even when the dominance
relationship does not follow the transitivity property.

The tightness of the requirement on TSA comes
from the simple observation that the employment of
SFS leads to the sorting of points depending on the
property of rationality. As is discussed in SFS algo-
rithm, rationality is underlying reason on the validity
of the sorting process.

4.1.4 Branch-and-Bound Skyline

Finally, we look at the complicated General BBS al-
gorithm, which was first proposed in [19]. In this algo-
rithm, there exists an index structure, such as the R-
Tree, where every point can be found efficiently. Each
node in the index has an MBR (minimum bounding
rectangle), which is the bounding range of all the points
stored in its descendant nodes.

To facilitate the adoption of indexing tree structure,
we propose a new concept, Common Dominating Po-
sition, over the Minimum Bounding Rectangles. Intu-
itively, common dominating position can be abstracted
as some location in the space, which is able to dominate
any possible point in the MBR. The following lemma
implies the existence of common dominating position
for any MBR.

Lemma 4 If the dominance relationship satisfies the
properties of rationality and transitivity, common dom-
inating position always exists for any MBR.

Proof We prove this by construction. Given two points
p1 and p2, there is definitely at least one common dom-
inating position for {p1, p2} because of the property of
rationality. Assuming there is a set P = {p1, p2, . . . , pn}
containing points stored in some MBR M , the common
dominating position for M can be constructed in n− 1
steps. In the first step, the common dominating position
p′2 is discovered for {p1, p2}. In step i (1 < i ≤ n− 1), a
new position p′i+1 is found as common dominating po-
sition for {p′i, pi+1}. Because p′i+1 dominates p′i, it also

Algorithm 4 General BBS Algorithm (data set P ,
dominance relationship D, index tree T )
1: clear a heap H and skyline buffer S
2: put root node N of T into H

3: while H is not empty do
4: pick a node n from H with the minimum possible distance

to the space origin, and remove n from H.

5: Set M as the MBR on node n
6: for each point p in S do

7: if DP (M) is dominated by p then
8: go to line (3)
9: end if

10: end for

11: if n is a single point then
12: move n into S

13: else
14: retrieve all children of n in T , and insert them into H
15: end if

16: end while
17: return S

dominates any pj (j ≤ i) due to the property of transi-
tivity. Therefore, the final position p′n must be common
dominating position for the whole set P , which com-
pletes the proof of the lemma.

In the rest of the paper, we use DP (M) to denote
the common dominating position for some MBR M .
The computation of the positions will be covered when
the specific dominance relationship is introduced. Gen-
erally speaking, the applicability of BBS algorithm can
be summarized by the following theorem.

Theorem 6 Algorithm 4 can be applied on any domi-
nance relationship satisfying the rationality and transi-
tivity properties.

Proof Considering a node n in the indexing tree, if there
is at least one skyline point q in node n, n can never
been removed by BBS algorithm because of the prop-
erties of rationality and transitivity. Otherwise, some
point p in the buffer S is able to dominate the MBR
of n, contradicting to the fact that q is a skyline point.
Therefore, every skyline point must be included in the
buffer S. On the other hand, S can never contain any
false positive skyline point q, because there is at least
one dominating point in S for q based on the property
of transitivity. As a summary, the output of BBS must
be the correct skyline set.

To discuss the tightness of BBS algorithm, we first
look at the property of rationality. If the dominance re-
lationship violates rationality, there is no longer guar-
antee on the correctness of step (4), since the point se-
lected may not be a skyline point. Secondly, when there
is no property of transitivity, the skyline buffer S does
not have full capacity to prune all non-skyline points,
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for similar reason for BNL and SFS. This leads to the
conclusion that either property is removable from the
requirements for BBS algorithm.

We summarize the necessary conditions of the four
algorithms in this part in Table 4.

Algo Name Rationality Transitivity

BNL
√

SFS
√ √

TSA
√

BBS
√ √

Table 4 Necessary Properties of Algorithms 1,2,3 and 4

4.2 General Algorithms for Top-k Skyline Queries

To support efficient computation of top-k skyline queries,
we summarize two general methods which are based on
the general algorithms proposed for skyline queries.

In this subsection, we also assume D is finite, where
there are n dominance relationships D = {D1, D2, . . . , Dn}
with index set Θ on [1, n]. To handle the infinite domi-
nance class with a dominance index Θ on real interval
[a, b] with the same algorithm, we can use a minimum
gap ε to discretize the class, i.e., constructing n = ba−b

ε c
dominance relationships where Di (1 ≤ i ≤ n) equal to
the original relationship with index a + ε(i− 1).

4.2.1 Binary Search

The first general algorithm in our consideration is a
binary search on the index of dominance relationships
Di ∈ D. It is so general that any algorithm proposed in
Section 4.1 can be directly used to find the dominance
relationship Di, satisfying the condition in Problem 2,
with the smallest index i in D.

The correctness of Algorithm 5 is straightforward.
Since the skyline monotonically shrinks with the de-
crease of the dominance relationship index i, binary
search can definitely reach the smallest Di with exactly
k results (or smallest one above k). However, in some
cases, even the weakest dominance relationship in the
class cannot return a skyline of size no smaller than
k. The simplest example is the construction of a dom-
inance class with only one dominance relationship. In
such cases, the algorithm can only return the maximal
skyline calculated based on the weakest dominance re-
lationship in the dominance class. Generally speaking,
different Dis in different iterations in the binary search
do not correlate. Therefore, Algorithm 5 computes each
S(P, Di) by calling the most appropriate algorithm as
presented in Section 4.1.

Algorithm 5 General Binary Search Algorithm
(data set P , dominance class D, skyline algorithm A,
skyline size k)
1: set l = 1 and u = n
2: compute S(P, Du) by running a skyline query algorithm

3: if |S(P, Du)| ≤ k then
4: return S(P, Du)
5: end if

6: i = b(l + u)/2c
7: while |S(P, Di)| 6= k and l 6= u do

8: if |S(P, Di)| < k then

9: l = i
10: else
11: u = i
12: end if
13: i = b(l + u)/2c
14: end while
15: return S(P, Di)

4.2.2 Progressive Algorithm

The second general method is to modify any progressive
skyline algorithm to return top-k skyline query results.
A progressive skyline algorithm keeps all current sky-
line points in a buffer, which we use to answer top-k
skyline queries. The general progressive algorithm is as
shown in Algorithm 6. The algorithm starts with the in-
put largest dominance index i = n doing a progressive
skyline search with dominance relationship Di being
decreased when a full buffer is encountered.

When the buffer contains k + 1 points, at least one
point will be removed from the buffer. To guarantee the
correctness of the current top-k result, we need to find
the point easiest to dominate than any other points in
S. This is implemented by Algorithm 7. Every pair of
points in the buffer is examined, and the point p dom-
inated by some q with the largest Di will be exactly
the one wanted. The efficiency of the algorithm can be
further improved if we store the previous pair-wise com-
putation result, since there is only one new point after
Algorithm 7 is applied once.

The correctness of the algorithm depends on two
conditions. First, the underlying skyline algorithm A
must be progressive. Only with progressive algorithms,
we can make sure points in the buffer are definitely top-
k skyline query result after the algorithm completes its
run. Second, it must be easy to find the largest Di ∈ D
for q to dominate p. Fortunately, all dominance rela-
tionships and their relaxed variants listed in this paper
meet this condition. Therefore, we can focus on the un-
derlying skyline algorithm in analyzing the applicability
of the progressive scheme.

In Table 5, we list the analysis of the possible com-
binations of general skyline algorithms and the general
top-k skyline algorithms. We can see that all the four
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Algorithm 6 General Progressive Algorithm
(data set P , dominance relationship class D, progres-
sive skyline algorithm A, expected skyline size k)
1: construct a skyline buffer S of size k + 1
2: set i = n and use Di as the current dominance relationship

3: run A on P with Di, run Skyline Pruning when the S is
full

4: return S

Algorithm 7 Skyline Pruning (Skyline Buffer S,
current relationship Di, dominance class D)
1: set θ = 1

2: for each point p ∈ S do
3: for each point q ∈ S and p 6= q do
4: compute the largest j that Dj(q, p)
5: if j ≤ θ then
6: θ = j and mark p

7: end if
8: end for

9: end for
10: set Dθ as new relationship and remove the last marked point

from S

algorithms can be directly used in binary search while
only SFS and BBS can be used in the progressive algo-
rithm.

Algo Name Binary Search Progressive

BNL
√

SFS
√ √

TSA
√

BBS
√ √

Table 5 Combinations of Algorithms and Top-k Skyline

5 Cone Dominance with Arbitrary Resolution

A common problem with skyline query is its uncontrol-
lable result size. Although there are studies on skyline
variants to reduce the result size when conventional
skyline is too large, there does not exist any system-
atic method which can adaptively output result with
specified size, no mater whether conventional skyline is
over-sized or under-sized.

In this section, we apply our framework on the de-
sign of some generalized dominance relationships. We
propose a new class of dominance relationships, namely
Cone Dominance, with arbitrary selection resolution if
the parameters are set appropriately. In the following,
we use E(p, q) to denote the Euclidean distance between
p and q in the space S.

Definition 8 Cone Dominance
In Cone Dominance, given the bias parameter γ, p dom-
inates q if (1)

∑
p[i] <

∑
q[i], and (2) p[i] ≤ q[i] +

E(p, q)γ for all i, while there is at least one dimension
j that p[j] < q[j]) + E(p, q)γ. We use CDγ(p, q) to de-
note such a relationship.

In Figure 4, an example is shown in two-dimensional
space. Given a point p in the space, the dominance re-
gion can be represented by a cone region with the top
point at p. In the figure, for example, there are three
pairs of boundary lines of the dominance region, repre-
sented by dashed, normal and thick lines respectively.
These dominance regions are achieved by assigning neg-
ative, zero and positive γs respectively. When γ = 0, as
the pair of normal lines show, cone dominance degener-
ates to traditional dominance TD. The following lemma
states the valid index set on γ.

X

Y

p

Fig. 4 Example of cone dominance relationships

Lemma 5 CDγ satisfies all properties except scaling
robustness, if γ is chosen from index set

Θ =
[
−

√
1/d,

√
(d− 1)/d

]

Proof First, CDγ is null if γ is smaller than −
√

1/d.
Given any two point p and q in the space, if γ <
−

√
1/d, E2(p, q) =

∑
(p[i] − q[i])2 <

∑
E2(p, q)/d =

E2(p, q). Thus, we cannot find any dominance pair in
the space, making the dominance relationship useless.

Assuming there two points p, q holding the dom-
inance relationship CDγ(p, q) and γ >

√
(d− 1)/d,

there is at least one dimension i satisfying that p[i] >
q[i] + E(p, q)

√
(d− 1)/d. Therefore, we have

∑
p[i] −∑

q[i] > E(p, q)
√

(d− 1)/d−(d−1)E(p, q)
√

1/d(d− 1) =
0, contradicting to the first condition in the definition
of cone dominance. Thus, CD with γ >

√
(d− 1)/d

must be an empty relationship.
The shifting robustness property on cone dominance

is straightforward since the distance between two points
does not change after shifting operations. Rationality
property is proved directly by the definition.
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Considering transitivity property, given three points
p, q, r, if CDγ(p, q) and CDγ(q, r), we have

∑
p[i] <∑

q[i] and
∑

q[i] <
∑

r[i]. So,
∑

p[i] <
∑

r[i], which
proves the first condition of cone dominance. On the
other hand, since p[i] ≤ q[i] + E(p, q)γ and q[i] ≤ r[i] +
E(q, r)γ, p[i] ≤ r[i]+E(p, q)γ+E(q, r)γ. By the triangle
inequality of Euclidean distance, we have p[i] ≤ r[i] +
E(p, r)γ.

Based on the last lemma, the index set Θ can be
defined as all real numbers in the interval

[
−

√
1/d,

√
(d− 1)/d

]

Lemma 6 If CDγ(p, q), CDγ′(p, q) for all γ′ ≥ γ.

Proof If CDγ(p, q), p[i] ≤ q[i]+E(p, q)γ. When γ′ ≥ γ,
p[i] ≤ q[i]+E(p, q)γ′. Since the first condition does not
change when changing γ to γ′, CDγ′(p, q) is valid in all
cases.

Therefore, top-k skyline query can be issued on cone
dominance class indexed by Θ =

[
−

√
1/d,

√
(d− 1)/d

]
.

Note that the generic full order, ¹, in Definition 6 is in-
stantiated as γ1 ≥ γ2 in cone dominance relationship.

Intuitively, we can interpret cone dominance as fol-
lows. If γ is negative, a point p dominates another point
q only when every dimension contributes enough to the
difference between p and q. In other words, thorough
advantage to some extent is expected on all dimensions.
On the other hand, if γ is positive, the definition allows
p to dominate q even when p does not show too much
disadvantage on all dimensions compared to the total
difference between them. Based on the adjustment on
the parameter γ, cone dominance can adaptively choose
the resolution on the query, leading to controllable size
of query output.

By the mapping method derived in Section 3.2.3,
Log-Scale Cone Dominance(LCDγ) can be defined as
LCDγ(p, q) if and only if CDγ(log p, log q). Log-Scale
Cone Dominance is thus only violating shifting-robustness
but satisfying all other properties.

Since cone dominance and log-scale cone dominance
follow both rationality and transitivity property, all of
the algorithms presented in Section 4 can be used to
answer skyline query and top-k skyline query on them.

As presented in Section 4, the adoption of index-
ing tree structure depends on the existence of common
dominating position for MBR M . Here, we discuss the
details of the computation on the common dominating
position with respect to cone dominance relationships.
The extension to log-scale cone dominance is straight-
forward.

For a MBR M , the lower and upper boundaries of
M on dimension i are represented by M.l[i] and M.u[i]

Algorithm 8 Find Common Dominating Position
(MBR M , parameter γ)
1: if γ ≥ 0 then
2: Return (M.l[1], M.l[2], . . . , M.l[d])
3: end if

4: Find j with minimal M.u[j]−M.l[j]
5: Find the minimal α that (M.u[j] − M.l[j] + α)2 ≤

(
∑

i
(M.u[i]−M.l[i] + α)2)γ2

6: Return (M.l[1]− α, . . . , M.l[d]− α)

respectively. In Algorithm 8, we present some method
computing the common dominating position, with in-
put MBR M and the cone dominance parameter γ.

In Algorithm 8, if γ is not negative, the method sim-
ply returns the left-bottom corner of the MBR, since
the corner position is enough to dominate all points
in it. It can be easily interpreted by the example in
Figure 4. When γ is negative, the problem becomes
more complicated because the corner is not capable
enough. To discover a stronger position, the algorithm
searches on the line crossing the the corner position, i.e.
pα = (M.l[1] − α, . . . , M.l[d] − α) with α as a positive
parameter. When the condition on line (4) of Algorithm
8 is satisfied, it is easy to verify that the whole MBR
is covered by the dominance region of the position pα.
Since condition on line (4) is actually a quadratic in-
equality on variable α, a simple solution can be derived
in constant time. Therefore, pα can be easily calculated
and returned as the common dominating position for
the MBR M .

6 Dominance Relationships on Data with
Missing Values

Data tuples with missing values are a common kind
of data found in many databases. In a movie rating
data set, for example, if we consider every rater as a
dimension, every dimension has only very few entries
in which a value is present, while others are filled with
NULL values. This is because every user can possibly
watch some small fraction of all movies. However, such
uncertainties can lead to difficulty in using the skyline
query on high-quality movie selection since it is diffi-
cult to compare a pair of movies when they have been
watched and rated by totally different users.

In this section, we extend our analysis from cer-
tain data to data with missing values. We first propose
a mapping-based dominance relationship definition for
data with missing values. Then, we study the proper-
ties of rationality, scaling robustness, shifting robust-
ness and transitivity for the mapping-based dominance
relationship. We also discuss the combinations of map-
ping dominance with other relaxed dominance relation-
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ships presented in previous section, as well as the algo-
rithm applicabilities on the computation of both skyline
and top-k skyline queries with mapping dominance.

Note that mapping dominance is not the only op-
tion on possible dominance relationships defined on in-
complete data tuples. The more important implication
provided in this section is that well-defined dominance
relationships can be easily incorporated into our gen-
eral skyline framework, which facilitates easier analysis
and querying algorithm design.

6.1 Mapping Dominance

Given a space S defined by a set of d dimensions {1, 2,
. . . , d}, without loss of generality, we suppose that miss-
ing values appear on the first k dimensions, i.e., from
dimension 1 to dimension k. For a dimension i (1 ≤
i ≤ k), we use φi(xi) to denote the probability distri-
bution function (or pdf) of the value xi on dimension
i. Such a distribution can be retrieved by observing all
the non-missing values on dimension i.

Now consider a point p(x1, x2, . . . , xd) with miss-
ing values on some dimensions. A generic mapping h
is defined as a function converting incomplete point p
to a fixed point p′(x′1, x

′
2, . . . , x

′
d) in S, i.e., h(p(x1, x2,

. . . , xd)) = p′(x′1, x
′
2, . . . , x

′
d), where

x′i =
{

Fi(φi(xi)), if xi is NULL
xi, otherwise

The generic mapping h retains each concrete value of p,
and estimates a concrete value for each missing value
based on the known pdf on that relevant dimension.
The estimation is accomplished by a function Fi, which
takes a pdf as input and outputs a fixed value.

To facilitate comparison of an arbitrary pair of points
p and q with possible missing values in a generic way,
we define two mappings, f and g, as instances of the
general mapping h aforementioned. Based on these two
mappings, we define a special dominance relationship
called Mapping Dominance, or MD, as follows:

MD = {(p, q) | TDS(f (p), g(q))},

where TDS is the traditional dominance relation-
ship over S. We call the mapping f dominating posi-
tion mapping and g dominated position mapping, in the
sense that f tends to leave point p dominating others
while g tends to leave point q being dominated by oth-
ers.

Now we consider the properties of the mapping dom-
inance (MD) relationship that we have proposed for
data with missing values. The following theorems state

the conditions that enable the MD relationship to sat-
isfy the properties of scaling robustness, shifting robust-
ness and transitivity.

Lemma 7 Given any point p with possible missing val-
ues, the two mappings f and g that satisfy αf(p) =
f(αp) and αg(p) = g(αp) for any scaling factors α,
then MD satisfies the property of scaling robustness.

Proof Assume two points p, q and MD(p, q). If αf(p) =
f(αp) and αg(q) = g(αq), (αp, αq) must be in MD

since (f(p), g(q)) is in TD and TD satisfies scaling ro-
bustness for any scaling factor α.

Lemma 8 If for any point p, the mappings f and g
satisfy that f(p) + β = f(p + β) and g(p) + β = g(p +
β) for any shifting factors β, then MD satisfies the
property of shifting robustness.

Proof Assume two points p, q and MD(p, q). If f(p) +
β = f(p + β) and g(q) = g(q + β), (p + β, q + β) must
be in MD, since f(p), g(q) is in TD and TD is shifting
robust.

Lemma 9 If for any point p with possible missing val-
ues, (g(p), f(p)) ∈ TD or g(p) = f(p), MD embodies
the transitivity property.

Proof Assume three point p, q, r that MD(p, q) and
MD(q, r). Since TD(f(p), g(q)) and TD(g(q), f(q)), we
have TD(f(p), f(q)) by the transitivity property of TD.
Since TD(f(q), g(r)), TD(f(p), g(r)) and MD(p, r) by
using the transitivity property again.

To satisfy the conditions of the lemmas above, we
propose a new type of dominance relationships called
MDλ. If Oi is the set of observed values on non-NULL
entries on dimension i, we can construct the observation
sets O1, O2, . . . , Ok by visiting the data set once. The
dominating position mapping fλ,i for missing values on
dimension i is thus defined as fλ,i(NULL) = x′i that
(1−λ)|Oi| values in Oi are smaller than x′i, while domi-
nated position mapping gλ,i is defined as gλ,i(NULL) =
x′′i that λ|Oi| values in Oi are smaller than x′′i .

Point Dimension 1 Dimension 2

A NULL 0.5

B 0.3 NULL

C 0.5 0.4

D 0.7 0.5

E 0.9 0.6

Table 6 Example of Mapping Dominance

In Table 6, we present a small example of mapping
dominance over a data set with missing values. In this
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data set, the values on the first dimension of point A

and on the second dimension of point B are missing. If
λ = 0.25, fλ,1(A[1]) = 0.9 and gλ,1(A[2]) = 0.3, since
one out of four existing values over the first dimension
is no larger than 0.3 while only one value is above 0.9.
If λ = 0.5, fλ,2(B[2]) = 0.5 and gλ,2(B[2]) = 0.5, since
half of the existing values is no larger than 0.5 while
the other half is no smaller than 0.5.

Theorem 7 If 0 ≤ λ ≤ 1/2, then the MDλ relation-
ship satisfies the properties of rationality, scaling ro-
bustness, shifting robustness and transitivity.

Proof MD definitely follows the rationality property
since it degenerates to TD when two points have no
missing values. Given any scaling factors α and shifting
factors β, the mappings fλ,i and gλ,i follow the condi-
tion of Lemma 7 and Lemma 8. Therefore, it must be
scaling and shifting robust. Finally, when 0 ≤ λ ≤ 1/2,
gλ,i(xi) must be smaller or equal to fλ,i(xi) for any xi;
this property satisfies the condition of Lemma 9, mak-
ing the transitivity property valid.

Even when λ is larger than 1/2, MDλ only violates
the transitivity property while keeping all the other
properties valid. Another advantage of MDλ is its nat-
ural extension to ordered dominance class based on the
following lemma.

Lemma 10 If MDλ(p, q), MDλ′(p, q) for all λ′ ≥ λ.

Proof Since fλ′,i(xi) ≤ fλ,i(xi) for any xi when λ′ ≥
λ, and gλ′,i(xi) ≥ gλ,i(xi) for any xi when λ′ ≥ λ, p
dominates q when λ increases to λ′.

Therefore, mapping dominance is an ordered dom-
inance class with index set Θ based on all λ values on
the real number interval [0, 0.5].

We note here that our method for data with miss-
ing values should not be seen as a simple plug-in of
constants for missing values. The reasons are twofold.
First, we decide concrete values for missing values care-
fully based on the probability distribution of the cor-
responding dimension, rather than on an ad hoc basis.
Second, our concrete value selection is enabled within
the general framework we have established in this pa-
per, which ensures solid semantics which simple plug-
ins of constants apparently lack.

6.2 Combination with Other Dominance Relationships

In the original MDλ relationship, the points are com-
pared with respect to traditional dominance relation-
ship after the mapping values are calculated. A nat-
ural question arises here on the possibility of combin-
ing mapping dominance with other dominance relation-
ships on certain data, such as Cone Dominance and

Log-Scale Cone Dominance introduced in the previous
section. In this part of this section, we provide some
positive answers to this question.

Here, let MDD
λ denote a new relationship on missing

value, with another certain dominance D replacing TD

in the original definition of mapping dominance. The
following lemmas imply that the properties are very
likely to be inherited from D to MDD

λ .

Lemma 11 If the properties of scaling robustness or
shifting robustness hold for D, they also hold with MDD

λ

The proof of the lemma above is similar to those for
Lemma 7 and Lemma 8.

Lemma 12 If the property of transitivity holds for D
and TD(g(p), f(p)) → D(g(p), f(p)), transitivity is also
valid with MDD

λ .

Proof If MDD
λ (p, q) and MDD

λ (q, r), it implies that
D(f(p), g(q)) and D(f(q), g(r)), based on the defini-
tion of mapping dominance. Due to the condition of the
lemma, we have D(g(q), f(q)) because TD(g(q), f(q)).
With the property of transitivity on D, it is easy to
derive that D(f(p), g(r)), leading to MDD

λ (p, r). This
completes the proof on the validity of transitivity prop-
erty on MDD

λ

Last lemma implies that when D is stronger than
TD, the property of transitivity in D can be passed to
MDD

λ . Considering the employment of CD and LCD

in the generalized definition of mapping dominance, we
can verify the properties of new mapping dominance
relationship based on the lemmas above. To simplify
the notation, we use MCDλ,γ and MLCDλ,γ to de-
note the new mapping dominance with these two dom-
inance relationships respectively, with λ and γ being
the parameters for them correspondingly. When γ ≥ 0,
both MCDλ,γ and MLCDλ,γ have property of transi-
tivity, since CD and LCD are stronger than TD when
γ ≥ 0. Therefore, MCDλ,γ (γ ≥ 0) is consistent with
the properties of shifting robustness and transitivity,
and MLCDλ,γ with the properties of scaling robust-
ness and transitivity.

6.3 Algorithm Applicability

In Section 4, we present some general algorithms for
skyline queries and discuss their applicabilities with re-
spect to the properties of the underlying dominance re-
lationship. However, all of the algorithms are designed
for data sets with complete information on all dimen-
sions. In this part of the section, we will present some
extensions over the algorithms to handle mapping dom-
inance over incomplete data.
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For the BNL algorithm, no modification is necessary
for the extension to mapping dominance. The only op-
eration called in BNL is some verification between some
pair of points on their dominance relationship, which
can be simply implemented by an independent compo-
nent. Since the mapping dominance relationship can be
verified based on the definition, this component can be
seamlessly integrated with BNL algorithm.

For SFS, TSA and BBS algorithms, the problem
remains when they need to use some sorting function
or indexing structure, which does not support points
with missing values directly. To overcome the difficul-
ties with these three algorithms, we hereby propose two
simple schemes, enabling the system to employ tra-
ditional sorting and indexing component without too
much modification.

6.3.1 Sorting for Mapping Dominance

When some sorting function is invoked over the points
with missing values, a virtual position p′ for the orig-
inal point p is constructed by filling the missing value
on dimension i with f0.5,i(p). Given the virtual posi-
tions for all data points, some conventional sorting al-
gorithm will be called to order the points based on their
virtual positions on the sum of all dimensions in non-
descending order.

Lemma 13 If p′ is sorted before q′ with the new sort-
ing method, q cannot dominate p based on dominance
relationship MDD

λ , if 1) D is stronger than TD, i.e.
TD(p, q) → D(p, q) and 2) D has the property of tran-
sitivity.

Proof We prove this lemma by contradiction. If the
lemma does not hold, meaning that we can find some
p′ sorted before q′ but q dominates p by MDD

λ . Then,
the dominance must be valid on D(f(q), g(p)). By the
condition 1) on the dominance relationship D, we have
D(g(p), p′), D(q′, f(q)). It leads to D(q′, p′) if combin-
ing the previous result with the property of transitivity.
This is contradicted to property of rationality, which
implies that D(q′, p′) since p′ is sorted before p′.

The correctness of last lemma directly implies that
all of the mapping dominance relationships, proposed in
this section, are consistent with the new sorting scheme,
since the correctness of sorting in SFS and TSA algo-
rithms depends on the result of the lemma.

6.3.2 Indexing for Mapping Dominance

When indexing the points with missing values, each
point p is represented by some rectangle with two cor-
ners at f(p) and g(p). Thus, given a node in the in-
dexing tree, such as R-Tree, the Minimum Bounding

Box is the minimum rectangle in the space covering all
the rectangles created for the points stored behind this
node.

Lemma 14 Given two MBRs M1 and M2, if one point
p ∈ M1 cannot be dominated by any other point q ∈
M2 by the definition of mapping dominance, M2 cannot
dominate M1.

Proof Since no point q in M2 dominates p in M1, we
know that g(p) cannot be dominated by any f(q). Con-
sidering the MBRs M1 and M2, there is at least one
dimension that minimum boundary of M1 cannot be
bounded by the maximum boundary of M2. Thus, M2

cannot dominate M1.

Based on the last lemma, the pruning strategies in
any indexing tree must be valid, because no pruning will
remove real skyline point from the candidate set. There-
fore, it is safe to use the indexing scheme for mapping
dominance relationship when computing skyline query
or top-k skyline query.

7 Experiments

In this section, we evaluate the efficiencies of the algo-
rithm on variants of skyline queries, and effectiveness
of the new dominance definitions, on synthetic and real
data sets.

7.1 Experimental Settings

In the experiments, both synthetic data sets and real
data sets are used to evaluate the performance. There
are three common types of synthetic data sets that
have been used in previous studies of skyline queries
[4], including correlated (C), independent (I) and anti-
correlated (A) data sets. In correlated data sets, the di-
mensions of the points are positively correlated, mean-
ing a point with a better value on one attribute is
very likely to have better values on other attributes.
In independent data sets, the dimensions are indepen-
dent and uniformly distributed. In anti-correlated data
sets, the dimensions are anti-correlated, which is imple-
mented by keeping the sums on all dimensions for all
points around the same value [4]. We also adopt two
real data sets: the NBA data set2 and the MovieLens
data set3, both of which have been used in the study
of k-dominant skyline queries in [6]. The NBA data set
contains more than 17,000 records of players’ season

2 http://www.databasebasketball.com
3 http://movielens.umn.edu/
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Parameter Range

Dimensionality 5,10,15,20

Data Size (100K) 1,2,3,4,5,6,8,10

Distribution C,I,A

Top-k Size 50,100,150,200,250

Parameter γ for CD (0.01) 5,10,15,20

Table 7 Parameters in Tests on Synthetic Data Sets

statistics on 17 attributes from the first season of NBA
in 1945 to the season in 2002. The MovieLens data set
was collected by the movie-lens web site from Septem-
ber 1997 to April 1998. There are 100,000 ratings from
943 users on 1682 movies in the data set. All the users
in the data set have rated at least 20 movies. However,
this data set is still very sparse, with missing values in
most of the entries.

We compare the performances of different algorithms
and different dominance relationships. The skyline al-
gorithms evaluated here include: General Block Nest
Loop (BNL), General Sort Filter Skyline (SFS) and
General Branch-and-Bound Skyline (BBS). The top-k
skyline algorithms evaluated include: Binary SFS (B-
SFS), Progressive SFS (P-SFS), Binary BBS (B-BBS)
and Progressive BBS (P-BBS). The dominance rela-
tionships tested include the three new variant relation-
ship proposed in this paper: Cone Dominance (CD),
Log-scale Cone Dominance (LCD) and Mapping Dom-
inance (MD).

All experiments are run on a PC with PIII 1.8GHz
CPU, 1GB main memory and 20GB hard disk. The pro-
grams are compiled with GCC v3.4.3 in Linux Fedora
3 system.

7.2 Experiments on Synthetic Data Sets

In the experiments on synthetic data sets, we vary some
parameters of the data sets, such as dimensionality and
data size. Since LCD is not very different from CD, we
only test the performances of CD on the data sets. For
skyline queries and top-k skyline queries, we also vary
the dominance parameter γ and specified result size
k, respectively. The varying ranges of the parameters
are summarized in Table 7, in which default values are
marked in bold font.

7.2.1 On Skyline Algorithms for Cone Dominance

In Figures 5-7, we show the result on skyline queries
with varying dimensionality. On correlated data, BBS
is more CPU and IO efficient than the other two algo-
rithms when the dimensionality is not very large. When
the dimensionality grows, the CPU time performance of

γ(0.01) C I A

5 441 40999 81527

10 134 16214 58205

15 52 4908 32450

20 28 1165 8961

Table 8 Skyline Cardinalities on Synthetic Data Sets with Vary-

ing Dominance Parameter

BBS deteriorates rapidly mainly because of the worse
indexing quality in high dimensional space. This phe-
nomenon happens even earlier on independent data sets
when the dimensionality remains small. On indepen-
dent data sets, SFS is usually the fastest method on
high dimensional space. On anti-correlated data sets,
the performances of the algorithms tend to converge
when dimensionality increases since all of them have to
compare every pair of points.

When γ increases from 0.05 to 0.2, the expansion of
dominance ability leads to the quick decrease of skyline
cardinalities (Table 8). All the three algorithms, BNL,
SFS and BBS can be more CPU and IO efficient when
given a larger γ (Figures 8-10). BNL is faster than SFS
on high dimensional correlated data sets since the sort-
ing in SFS takes too much time. SFS is more efficient on
high dimensional independent data sets due to the ad-
vantage of sorting. The performances of SFS and BBS
in CPU and IO are almost the same on anti-correlated
data sets.

In Figures 11-13, we present the experiment results
when the size of the synthetic data set is varied from
100K to 1M. In this group of tests, BNL is worse than
SFS on CPU and IO on all data sets. BBS is much
slower than SFS, but with almost the same IO cost
since the IO cost of retrieving new points from the un-
derlying indexing structure is much smaller than the IO
cost spent on comparing a point with all current skyline
points.

7.2.2 On Top-k Skyline Algorithms for Cone
Dominance

The experimental results on varying dimensionality are
presented in Figures 14-16. The figures show the overall
optimality of progressive search over binary search. Bi-
nary search with SFS or BBS can only work in data sets
with less than 10 dimensions while progressive search
with SFS or BBS can be very scalable to high dimen-
sional data sets. On all three types of data sets, P-SFS
is quicker than P-BBS while the IO costs of P-SFS and
P-BBS are about the same. Since B-SFS and B-BBS
are much worse than P-SFS and P-BBS, we will only
evaluate P-SFS and P-BBS in the rest of the section.
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Fig. 5 Skyline Queries with Varying Dimensionality on Correlated Data Sets
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Fig. 6 Skyline Queries with Varying Dimensionality on Independent Data Sets
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Fig. 7 Skyline Queries with Varying Dimensionality on Anti-Correlated Data Sets

In the experiments of varying the specified skyline
size k on correlated datasets as shown in Figure 17,
both the P-SFS and P-BBS algorithms scale well with
k. P-BBS has the advantage of IO efficiency while P-
SFS is better on CPU time. This is due to the fact that
simple sorting is more effective than indexing in high
dimensional space, but indexing is better on reducing
IO. We omit similar results on independent and anti-
correlated data sets.

In the results shown in Figure 18, we can conclude
that both computation costs and IO costs of P-SFS and
P-BBS are linear to the data size on correlated data
sets. Similar results on independent and anti-correlated
data sets are also omitted here.
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Fig. 8 Skyline Queries with Varying γ on Correlated Data Set
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Fig. 9 Skyline Queries with Varying γ on Independent Data Set
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Fig. 10 Skyline Queries with Varying γ on Anti-Correlated Data Set

7.3 Experiments on Real Data Sets

7.3.1 CD and LCD on NBA data set

In Table 9, we show the two skylines retrieved by the
top-k skyline query with cone dominance and log-scale
cone dominance respectively. By simple observations,
we can see that the skyline with cone dominance (on
the left) prefers center players while the skyline with
log-scale cone dominance (on the right) prefers guard
players. The difference stems from the Euclidean dis-

tances used in cone dominance and log-scale cone dom-
inance. In cone dominance, the Euclidean distance be-
tween two players are dominated by those “large” at-
tributes, such as points, rebounds and assists, which
leads to bias to centers with high scoring and rebounds.
In log-scale cone dominance, the Euclidean distance is
a more average aggregation of all attributes, preferring
who are more average on different attributes.



19

 0.1

 1

 10

108654321

C
P

U
 T

im
e 

(S
ec

on
ds

)

Data Set (100K)

BNL
SFS
BBS

(a) CPU time

 1

 10

 100

 1000

 10000

108654321

IO
 T

im
e 

(1
K

)

Data Set (100K)

BNL
SFS
BBS

(b) IO cost

Fig. 11 Skyline Queries with Varying Data Size on Correlated Data Sets
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Fig. 12 Skyline Queries with Varying Data Size on Independent Data Sets
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Fig. 13 Skyline Queries with Varying Data Size on Anti-Correlated Data Sets

7.3.2 Mapping Cone Dominance on Movie Data Set

Although we can construct an ordered dominance class
{MDλ} by gradually increasing λ from 0 to 1/2, the
skyline size can still be much larger than expected. Ex-
periments of MD on the MovieLens data set shows that
even if we set λ to 0.5, there are still more than 1000
skyline points returned, which makes the result mean-
ingless. This indicates that mapping dominance itself
may not be plausible in reducing skyline size to user’s

expectations. A straightforward alternative is employ-
ing other mapping dominance relationships, combined
with other dominance on certain data, such as MCD
and MLCD, introduced in Section 6.2. Since MCD and
MLCD have two parameters, with λ controlling the
mapping procedure and γ controlling the degree of cone,
the index set on the ordered dominance class for top-k
skyline query becomes hard to define. To simplify the
problem, we fix λ at 0.5 and give freedom on γ when
computing the top-k skyline query.
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Fig. 14 Top-k Skyline Query with Varying Dimensionality on Correlated Data Sets
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Fig. 15 Top-k Skyline Query with Varying Dimensionality on Independent Data Sets
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Fig. 16 Top-k Skyline Query with Varying Dimensionality on Anti-Correlated Data Sets

In Table 10, we present the top-k skyline set with
Mapping Cone Dominance (left) and Mapping Log-Scale
Cone Dominance (right) as underlying dominance rela-
tionships. In terms of their IMDB scores4, our method
does discover the popular movies. The advantage of the
top-k skyline query is that we do not need to manually
adjust the aggregation function as IMDB does. By com-
paring the two results of MCD and MLCD, we find five
movies shared by both skylines, all of which are well rec-

4 www.imdb.com

ognized classic movies. The left ones indicate the differ-
ence on the preference of the two skylines. MCD prefers
artistic movies, which are liked by a small fraction of
reviewers, while MLCD biases to mass entertainment
movies, such as two animations “wrong trousers” and
“close shave”. This is still due to the distance used by
these two dominance relationships, as is discussed in
relation with the results of the NBA data set.
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Fig. 17 Top-k Skyline Query with Varying k on Correlated Data Set
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Fig. 18 Top-k Skyline Query with Varying Data Size on Correlated Data Sets

Movie & Year IMDB score Movie & Year IMDB score

Star Wars 1977 8.8 Living in Oblivion 1995 7.3

Forbidden Planet 1956 7.7 Godfather 1972 9.1

Manchurian Candidate 1962 8.4 Wrong Trousers 1993 8.5

Big Sleep 1946 8.3 As Good As It Gets 1997 7.7

Killing Fields 1984 8.0 Schindler’s List 1993 8.8

As Good As It Gets 1997 7.7 One Flew Over the Cuckoo’s Nest 1975 8.8

Godfather 1972 9.1 Close Shave 1995 8.3

8 1/2 1963 8.2 Star Wars 1977 8.8

Wings of Desire 1987 8.0 Wild Bunch 1969 8.1

One Flew Over the Cuckoo’s Nest 1975 8.8 Manchurian Candidate 1962 8.4

Table 10 Top-10 Skylines with MCD and MLCD on Movie Data Set

Name & Year Position Name & Year Position

G. Mcginnis 1974 Forward C. Barkeley 1987 Forward

M. Malone 1978 Center C. Barkeley 1988 Forward

M. Malone 1981 Center M. Johnson 1989 Guard

C. Barkley 1987 Forward M. Jordan 1989 Guard

H. Olajuwon 1989 Center S. Pippen 1994 Forward

J. Stockton 1990 Guard A. Walker 1997 Forward

J. Stockton 1991 Guard V. Carter 2000 Guard

G. Payton 1999 Guard A. Walker 2000 Forward

A. Walker 2000 Forward K. Bryant 2002 Guard

P. Pierce 2001 Guard T. McGrady 2002 Guard

Table 9 Top-10 Skylines on NBA data set

8 Conclusion

In this paper, we have investigated the possibility of us-
ing dominance relationships other than the traditional
one in skyline queries. Among the extensive studies on
skyline queries recently, we are the first to present a
general framework on the robustness of skyline query
results. While traditional dominance is the only binary
relationship satisfying all desired properties, as we have
proved, we have proposed some new dominance rela-
tionships with relaxed properties to improve the flexi-
bility of skyline queries. Our study has also identified
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the basic requirements for use as a guide in designing
specific skyline queries with expected results.
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