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ABSTRACT
Data cube pre-computation is an important concept for sup-
porting OLAP(Online Analytical Processing) and has been
studied extensively. It is often not feasible to compute a
complete data cube due to the huge storage requirement.
Recently proposed quotient cube addressed this issue through
a partitioning method that groups cube cells into equiva-
lence partitions. Such an approach is not only useful for
distributive aggregate functions such as SUM but can also
be applied to the holistic aggregate functions like MEDIAN.
Maintaining a data cube for holistic aggregation is a hard

problem since its difficulty lies in the fact that history tu-
ple values must be kept in order to compute the new ag-
gregate when tuples are inserted or deleted. The quotient
cube makes the problem harder since we also need to main-
tain the equivalence classes. In this paper, we introduce
two techniques called addset data structure and sliding
window to deal with this problem. We develop efficient
algorithms for maintaining a quotient cube with holistic ag-
gregation functions that takes up reasonably small storage
space. Performance study shows that our algorithms are
effective, efficient and scalable over large databases.

Categories and Subject Descriptors: H.2.8 [Database
applications]: Data mining

General Terms:Algorithms

Keywords: Data Cube, Holistic Aggregation.

1. INTRODUCTION
Data cube pre-computation is an important concept for

supporting OLAP(Online Analytical Processing) and has
been studied extensively. It is often not feasible to com-
pute a complete data cube due to the huge storage require-
ment. Recently proposed quotient cube [10] addressed this
issue through a partitioning method that groups cube cells
into equivalence classes, thus reducing computation time
and storage overhead.
The intuition behind quotient cube is that many cube cells

in a data cube are in fact aggregated from the same set of
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base tuples (and thus have the same aggregate value). By
grouping these cube cells together, the aggregate values of
these cells need only to be stored once. This gives substan-
tial reduction in cube’s storage while preserving cube’s roll
up and drill down semantics.
Consider a data warehouse schema that consists of three

dimensions: A, B, and C. The schema includes a single mea-
sure M. The domain values for these three dimension at-
tributes are domain(A)={a1, a2, a3}, domain(B)={b1, b2,
b3}, domain(C)={c1, c2, c3, c4}. We use relation R in Fig-
ure 1(a) as the base relation table. A data cube lattice
expressed by the following query:

SELECT A, B, C, SUM(M)
FROM R
CUBE BY A, B, C

has 22 distinct cube cells as shown in Figure 1 (b). The
cube lattice can be partitioned into 9 disjointed equivalence
classes, each represented by a circle as shown in Figure 1(b).
All cells in an equivalence class are aggregated from the same
set of the base relation tuples. For example, cells a1 and a1b1

are both aggregated from tuple 3 and tuple 4, thus they are
grouped together and their aggregate values can be stored
only once. The nine equivalence classes in Figure 1(b) can
be represented with another lattice (so called quotient cube)
shown in Figure 1(c), where a class C(e.g. C1) is above
another class C′ (e.g. C2) exactly when we can drill down
from some cell in C(e.g. b1) to some cell in C′ (e.g.a1b1).
Thus the roll up and drill down semantics among the cube
cells are preserved.
Such an approach is not only useful for distributive aggre-

gate functions such as SUM but can also be applied to holis-
tic aggregate functions like MEDIAN which will require the
storage of a set of tuples for each equivalence partition. Un-
fortunately, as changes are made to the data sources, main-
taining the quotient cube is non-trivial since the partitioning
of the cube cells must also be updated. If some tuples are in-
serted to the base relation R, some equivalence classes need
to be updated or split.
Existing proposals for incremental quotient cube main-

tenance [11] are not able to maintain a quotient cube with
holistic aggregation functions such as MEDIAN and QUAN-
TILE. Incremental updating holistic aggregations is difficult
since in the case of changes to base tuples, the new aggre-
gate value cannot be computed incrementally based on the
previous aggregate value and the new values of the changed
tuples. In this paper, we will propose a solution for the
incremental maintenance of a quotient cube with holistic
aggregation. We identify our contributions as follows:

• We introduce the concept of addset data structure
that is able to substantially cut down the size of stor-
age space required for each equivalence class. In order
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Figure 1: (a)Base table R; (b)Cover partition on data cube cells; (c)Quotient cube Φ

to achieve a compromise between time and space, we
enrich the addset data structure with both material-
ized nodes and pseudo nodes to represent equivalence
classes.

• We propose a novel sliding window technique to ef-
ficiently recompute the updated MEDIAN for all equiv-
alence classes.

• By relating quotient cube to well established theory
of Galois lattice [6, 4, 5], we derive principles of main-
taining quotient cube. With the principles, addset
data structures and sliding window technique, we de-
velop efficient algorithms for maintaining a quotient
cube with holistic aggregation MEDIAN that takes up
reasonably small storage space.

• We conduct a comprehensive set of experiments on
both synthetic and real data sets. Our results show
that our maintenance algorithms are efficient in both
space and time.

The remaining of the paper is organized as follows. Sec-
tion 2 gives the background information of our study. Sec-
tion 3 introduces our techniques for maintaining holistic ag-
gregation function median. Section 4 presents two incremen-
tal maintenance algorithms for holistic aggregate function
MEDIAN. A performance analysis of our methods is pre-
sented in section 5. We give other related works in section
6 and make some conclusions in section 7.

2. BACKGROUND
In this section, we will provide the necessary background

for discussion in the rest of this paper. We first define some
notations in section 2.1 and then briefly explain the main-
tenance principles of quotient cube in section 2.2.

2.1 Notation Definitions
The base relation of a data warehouse is composed of one

or more dimensions D1,...,Dn and a measure M . We denote
the domain of a dimension Di as dom(Di)

Definition 1 (Relational Tuple). A tuple t in a
base relation R of a data warehouse has the form t=(tid,
dvalue, m), where tid is the unique tuple identification of t,
dvalue ∈ dom(D1)×dom(D2)...×dom(Dn) is the dimension
value set of t, and m is the measure value of t. We use
t.tid, t.dvalue, and t.m to represent each component of t
respectively. ✷

As an example, for tuple t =(2, a3b2c1, 10), t.tid is 2,
t.dvalue is {a3, b2, c1}, and t.m is 10. For convenience, we
use a3b2c1 to represent the dimension value set {a3, b2, c1}.

Definition 2 (Cell). A cell, c, in a data cube is a
tuple over the dimension attribute domains where the spe-
cial value “all” is allowed i.e. c ∈ (dom(D1) ∪ “all′′) ×
...(dom(Dn) ∪ “all′′). A cell c = {d1, ...dn} is said to be
more general than another cell c′ = {d′1, ..., d′n} if for all i,
either di = d′i or di = “all′′. ✷

The special value “all” in this case represents a don’t care
condition in a particular dimension. For clearer representa-
tion, we will assume it to be the default whenever a dimen-
sional value is missing. For example the cell {a1, all, c1} will
be represented as {a1, c1} (or a1c1 to simplify further).

Definition 3 (Matching). A tuple t is said tomatch
a cell c if t.dvalue matches c in all dimensions except for
those dimensions in which the value for c is “all”. Given a
set of cells, C, a tuple t is said to match C if it matches all
the cells in C. ✷

For example, the tuple t =(2, a3b2c1, 10) matches both
the cell a3b2 and also the set of cells in Class C8 of Figure
1(b).
All the possible cells in a data cube can be organized into

a lattice and each cell is represented with an element of
a lattice. A lattice is a partially order set (L,
) in which
every pair of elements in L has a Least Upper Bound(LUB)
and a Greatest Lower Bound(GLB) within L.
Formally, a partially ordered set is defined as an ordered

pair P = (L,
), where L is called the ground set of P and

 is the partial order of P. For the case of data cube, the set
of cells are in the set L and 
 will be defined in Definition
5. Since the lattice theories are well studied, we can borrow
some ideas from lattice to design incremental maintaining
algorithms by relating data cubes with lattices.

Definition 4 (LUB and GLB). Given a set of ele-
ments E′ in a lattice (L,
), the least upper bound(LUB) of
E′ is an element u ∈ L such that e 
 u for all e ∈ E′ and
there exists no u′ such that e 
 u′ for all e ∈ E′ and u′ 
 u.
Likewise, the greatest lower bound(GLB) of E′ is an element
l ∈ L such that l 
 e for all e ∈ E′ and there exists no l′

such that l′ 
 e for all e ∈ E′ and l 
 l′. LUB and GLB
are unique. ✷

If L is finite, then (L,
) is a finite lattice. A finite lattice
can be represented using a lattice diagram in which elements
in L are nodes and there is an edge from a node representing
an element e to a node representing another element e′ iff
e 
 e′ and there exists no other element e′′ such that e 

e′′ 
 e′.

Definition 5 (Cube Lattice). A cube lattice for a
data cube is a finite lattice (L,
) in which L contains all
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Figure 2: The quotient cube Φ′ after insertion of (5,a1b3c1,5)

possible cells in the data cube plus a special cell “false” (the
least general cell) and two cells c′, c satisfies c 
 c′ iff c is
more general than c′ or c′ equals to “false”. ✷

An example of a cube lattice is shown in Figure 1(b)(cell
“false” is not shown for clarity). For example, the cell
”ALL” 
 a1 and there is an edge from cell ”ALL” to cell a1.
We can now formally define the concept of an equivalence
class of cells in a cube lattice.

Definition 6 (Equivalence Class). A set of cells
in a cube lattice is said to belong to the same equivalence
class, C, if

1. Given any two cells c, c′ in C which satisfy c 
 c′, any
intermediate cell c′′ satisfying c 
 c′′ 
 c′ will also be
in C.

2. C is the maximal set of cells that are matched by the
same set of tuples.

✷

Since all cells in an equivalence class are matched by the
same set of tuples, it is possible to find a unique cell which
is the upper bound for the whole class by simply selecting
those dimension values that are the same for every tuple in
the matching set. For example, all cells in Class C2 of Figure
1(c) are matched by tuples 3 and 4 in Figure 1(a) and thus
the upper bound of Class C2 is a1b1 which is common to all
the tuples.
In general, a class C can be represented by a structure,

C=(upp,m), in which upp is the upper bound of the class
and m is the aggregated value for the set of tuples that
match the cells in C. We use C.upp and C.m to represent
each component of C respectively. For example, class C2 in
Figure 1(c) has the form of C2= (a1b1, 9).

2.2 Maintenance of Quotient Cube
In this section, we will revise the underlying principles

for maintaining the equivalence classes in a quotient cube
[11]. We observe that the cube lattice that is formed from
the upper bounds of all equivalence classes in the quotient
cube in fact has similar structure with a Galois lattice [6,
5]. Because of space limitation, we will not explain the re-
lationship between the Galois lattice and the QC-tree [11]
here.
We denote the set of equivalence classes in the original

quotient cube as Φ, and the new set of equivalence classes
as Φ′. In this section, we only consider the case that the
incremental update is composed of a single tuple t. We will
extend our method for bulk update with a set of new tuples
later in Section 4.

New tuple t can affect an equivalence class in Φ in several
ways. First, it can cause the aggregate value of the equiv-
alence class to change without affecting the partitioning of
the lattices. Second, it might cause the equivalence class
to be split, creating some new equivalence classes. The final
possibility is that the equivalence class might not be affected
at all. When a new tuple matches the upper bound of an
equivalence class, the new tuple t will cause the aggregate
value of the equivalence class to be changed. More impor-
tantly, we know that the tuple will match every cell in the
equivalence class since the class’s upper bound is the most
specific cell in the whole equivalence class. The equivalence
class in this case needs not to be split.

Proposition 1 (Value Modified Class). Given an
equivalence class C in Φ, if a new tuple t matches C.upp,
then C needs not to be split but C.m must be modified. ✷

For example, in Figure 2, because c1 matches a1b3c1 (the
new inserted tuple), we update the aggregation sum of C7

from 20 to 25.
When t matches only a certain portion of C.upp, i.e. t

can only match a portion of the cells in C, C must be split
into two portions, one in which all cells match t and one in
which all cells do not. A new tuple t affects a class C only
if there is some intersection between t and C.upp.

Definition 7 (Intersection). We say that a tuple t
has an intersection with (or intersects) a class C if t does
not match C but t.dvalue ∩ C.upp �= ∅. Given Φ, we use
intersect(Φ, t) to denote the set of classes in Φ that intersect
t. ✷

Proposition 2 (New Class Generator). Given a
new tuple t, an existing equivalence class C must be split
if (1) C intersects t and C is the class that contributes the
GLB{Y |Y = C′.upp∩ t}, C′ ∈ Φ; and (2) there does not ex-
ist any class C′′ ∈ Φ such that C′′.upp = t∩C.upp; If these
two conditions are satisfied, we call C a new class generator
since the splitting will result in a new equivalence class. ✷

The first condition of Proposition 2 ensures that given all
classes which generate the same upper bound for the new
class Cn, the one that is the most general (i.e. the GLB)
will be the new class generator. For example in Figure 2,
given the new tuple t = (5, a1b3c1, 5), we have C2 ∩ t=C4 ∩ t
= {a1}. Since C4 is an upper bound of C2, C2 will become
a new class generator for t if it satisfies the second condition
of Proposition 2. Note that C4 will definitely not be split
since none of the cells in C4 matched t. This is to be
expected because C4 is more specific than C2 and since even
C2.upp can not match t, all cells in C4 will also not match
t.
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Explaining the second condition in Proposition 2 is more
simple. Since t ∩ C represents the upper bound of the po-
tential new class, there is no need to generate a new class if
such an equivalence class already exists as indicated by the
existence of a class C′′ ∈ Φ such that C′′.upp = t ∩ C.upp.
Note that in the situation in which t appears in R for

the first time, i.e., t has no duplication in R, in this case,
it is a new class itself but there will be no generator for it.
To ensure a generator for every new class, a virtual class is
added in Φ. The upper bound of the virtual class are the
union of all the possible dimension value set, DV.
The split operation of a class is defined as follows:

Definition 8 (Split Operation). Given a generator
class Cg, Cg ⊆ Φ and a new tuple t, a split operation on Cg

based on t generates a new class Cn and a modified generator
C′

g as follows:

• Cn.upp = Cg.upp ∩ t.dvalue

• Cn.m =Agg(Cg.m, t.m) 1

• C′
g.upp = Cg.upp

• C′
g.m = Cg.m

✷

The last proposition involves a simple category of equiv-
alence classes that neither match or intersect the new tuple
t.

Proposition 3 (Dumb Class). If an equivalence class
Cd in Φ is neither a modified class nor a generator, there is
no need to change Cd. We call Cd as a dumb class. ✷

Propositions 1-3 lay the foundation for maintaining a quo-
tient cube. Updating the value of distributive aggregation is
relatively simple. The new aggregate value can be computed
incrementally based on the previous aggregate value and the
new values of the changed tuple [11]. However, to update the
value of holistic aggregation, all history tuple values must be
kept and the new aggregate value needs to be recomputed
even after one tuple is inserted or deleted. Expensive space
and time cost make it to be unrealistic to incrementally up-
date a holistic aggregation. In the following section, we will
introduce two techniques called addset data structure
and sliding window to deal with this problem.

3. TECHNIQUES FOR MAINTAINING
MEDIAN

MEDIAN is a holistic function which “has no constant
bound on the size of the storage needed to describe a sub-
aggregate” [7]. It is obvious that MEDIAN cannot be main-
tained just by storing the final aggregation result from a
set of tuples. One naive approach to maintaining MEDIAN
value can be figured out as follows: (1) for each cell, we ex-
plicitly store a set of measures from the tuples which match
the cell. We call the set of measures, the measure set of
the cell; (2) for each cell, we update its measure set and re-
compute the aggregation MEDIAN value when new tuples
are inserted.
In the above naive approach, storing the measure set for

each cell can become prohibitively expensive because of the
large number of cells and tuples. The concept of quotient
cube helps to reduce this storage requirement as we can
group cells into equivalence classes and store only one mea-
sure set for each equivalence class. However, the size of

1Agg(a,b) means to apply the corresponding aggregate func-
tion to a and b

Figure 3: (a)Measure set; (b)Naive Addset

measure sets of quotient cube can be still prohibitively large
since each measure set can be large. Moreover, new arriving
tuples can result in more equivalence classes which again
bring up the storage requirement substantially.
In this section, we present our techniques for updating a

quotient cube with aggregate function MEDIAN. We will
leave it to readers to see that these techniques are also ap-
plicable in the maintenance of other holistic functions like
QUANTILE.

3.1 Addset data structure
This subsection first describes intuitively how the concept

of addset data structure can reduce the storage requirement
for maintaining measure set, then proposes a more practical
technique of addset data structure including both material-
ized nodes and pseudo nodes.
Because different equivalence classes in a quotient cube

may share some base tuples, there are some redundances
among their measure sets. Figure 3(a) shows the quotient
cube formed by the base table of Figure 1(a). The measure
set of class C9 is {6,3,4,10} and that of class C7 is {6,4,10}.
It can be observed that {6,4,10} is actually redundant be-
tween class C9 and class C7. If we can remove this kind of
redundance, lots of storage space can be spared.
Let us further the discussion to the scenario of updating

quotient cube when new tuples come. We find that the tu-
ples matching a newly generated equivalence class are always
the superset of the tuples matching its generator (Proposi-
tion 2).For example in Figure 2,C10 is a newly generated
equivalence class, and C2 is its generator.The tuples match-
ing C10 are T1={(3, a1b1c2, 3),(4, a1b1c1, 6),(5, a1b3c1, 5)}, while
the tuples matching C2 are T2={(3, a1b1c2, 3),(4, a1b1c1, 6).
We have T1⊃T2. Based on this property, we know that main-
taining the list of measures in the new equivalence class can
be done by simply storing the difference between the mea-
sure set of the new class and that of its generator. We call
this difference the addset of the new equivalence class.
Assuming that the four base tuples are inserted into a

null quotient cube one by one, Figure 3(b) shows the naive
addset data structure associated with the quotient lattice of
Figure 3(a)(detailed updating algorithm will be explained in
section 4). For each new class, it only stores the difference
between its measure set and the measure set of its generator.
For example, class C5 is the generator of class C6, so class C6

only stores {6} which is the measure set difference between
{6,4} and {4}. Class C0 is specially introduced as the virtual
class so that it can be the generator of the new classes formed
by the four base tuples themselves.
Note the space saving we have by adopting the concept

of addset in the simple example with only 4 tuples. Instead
of storing 18 measures in the naive quotient cube approach
in Figure 3(a), we now store only 10 measures (i.e. about
2 times better). The saving is expected to be much more
when the number of tuples is large.
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Figure 4: Dynamical Materialization of Addset

There is a linkage between the new class and its generator.
Since each new class has a unique generator, the addset data
structure is actually a tree. We call it a family tree 2.
We can get the actual measure set of a class by combining

the addsets along its family linkage path from the node rep-
resenting the class to the root. For example, to find the full
measure set of class C1, we combine the addsets of C1,C5

and C6 i.e. {3} ∪ {6}∪{4}={3,6,4}.
The naive addset data structure can work well if the fam-

ily path is not very long. However, the computation cost
of obtaining the measure set will increase with the length
of family path. This may deteriorate performance when the
family path is very long. In order to achieve some tradeoff
between the space and time, we can dynamically material-
ize some classes in the process of maintenance, i.e., compute
the measure sets of these classes and store them explicitly.
Henceforth, we will refer to an equivalence class that stores

the addset as a pseudo (equivalence) class and a class
that stores the actual measure set as amaterialized (equiv-
alence) class. To obtain the actual measure set of a pseudo
class, we only need to trace to its nearest materialized an-
cestor class instead of the tree root. Figure 4 shows an
example of dynamic materialization of addset, the grey cir-
cles in Figure 4 represent materialized classes and the blank
circles represent pseudo classes. The set of numbers besides
a materialized class is its measure set and the set of numbers
besides a pseudo class is its addset. (Note that the example
in Figure 4 is different from the example in Figure 3 since
the latter is too simple to explain the concept of dynamic
materialization.) To compute the measure set of class K
in Figure 4, we only need to trace to its first materialized
ancestor(class E) instead of the root node in naive addset
structure.
Next we will address the problems of which classes should

be materialized and when are they materialized. Similar
to the problem of the materialized view selection [16], we
should materialize those classes which can produce the largest
benefit. If there is sufficient space, we can materialize more
classes to save maintenance time; otherwise, we should keep
more classes to be pseudo to save storage space. In this
paper, we use a distance threshold to control the materi-
alization of pseudo classes. When the distance between a
pseudo class and its nearest materialized ancestor exceeds
the given threshold, it will be materialized.

Definition 9 (Distance). Given a pseudo class Cv

and its nearest actual ancestor Ca, the distance between Cv

2Although the construction of family tree from scratch is
not the focus of the paper, interested reader can find the
Algorithms 4 and 5 to be described can be used for the
purpose when assuming the existing quotient cube to be
null

and Ca is the total number of measures in the addset on
the path from Cv to Ca. ✷

For example in Figure 4, assuming that the distance thresh-
old is 3, the distance from classes E to its nearest material-
ized ancestor (tree root) is 3 (while there are only two link-
ages from E to the root), therefore E is materialized. Class
J is also materialized because its distance to the root is 3.
Once a pseudo class is materialized, its distance becomes 0.
When an equivalence class is generated or modified, we

determine whether to materialize the equivalence class or
make it a pseudo class. The details will be explained in
Section 4.

3.2 Sliding Window
The addset data structure (including both materialized

and pseudo nodes) seems to be promising to reduce the stor-
age requirement for maintaining MEDIAN values. However,
the computation of updated MEDIAN values for all equiv-
alence classes is still expensive by itself. Moreover, extra
processing is required to obtain the measure sets for pseudo
equivalence classes. In this subsection, we propose a novel
sliding window technique to compute updated MEDIAN val-
ues efficiently.
One important observation contributing to the sliding win-

dow technique is that given a set of n measures, the number
of elements that are larger and smaller than the median of
the n measures is the same. As a result, by keeping track
of the k (1 ≤ k ≤ n) measure values around the median
in a sliding window, we are able to ensure that the median
will still lie within the sliding window even with k inser-
tions. This forms the basis of our sliding window technique
for maintenance of MEDIAN.
With the above observation, we will look at how the slid-

ing window technique can be used to compute the median
for a pseudo class using the addset and its nearest materi-
alized ancestor. Given a materialized equivalence class Cm

with a sorted measure set S = {x0, x1, . . . , xn−1}, the me-
dian of one of its descendant pseudo class Cd is able to be
efficiently computed as follows:
(1) Let xmed represent the median of the n measures. We

maintain a sliding window of size k to keep track of the
middle k measures around xmed in S. Note that k must
be greater than the distance value between Cm and Cd(the
reason will be clear later). The sliding window is shown as
the area between xlow and xhigh in Figure 5, where xlow and
xhigh are the lowest and the highest measures in the sliding
window respectively.
(2) We insert each measure of the addsets of the nodes

between Cm and Cd into S. As a new measure x from an
addset is inserted into S, we adjust xmed, xlow and xhigh ac-
cording to the following criteria (implemented in algorithm
3 in section 4.1):

1. x<xlow: in this case, xmed needs to move 1/2 position
to the left.

2. x>xhigh: in this case, xmed needs to move 1/2 position
to the right.

3. xmed<x<xhigh: in this case, xmed needs to move 1/2
position to the right and xhigh needs to move one po-
sition to the left.

4. xlow<x<xmed: in this case, xmed needs to move 1/2
position to the left and xlow needs to move one position
to the right.

By doing so, the median for a pseudo class can be effi-
ciently computed only based on the sliding window of its
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Figure 5: An example of sliding window

nearest materialized ancestor so long as distance between
them does not exceed the size of the sliding window. When
the distance exceeds the size of the sliding window, extra
I/O is required to read more measures to compute new me-
dian. In order to avoid the extra I/O, we require the distance
threshold defined in section 3.1 to be equal to or smaller than
the size of sliding window. When maintaining the quotient
cube, we will materializes a pseudo class if its distance to its
materialized ancestor exceeds the distance threshold.
Note that the size of the sliding window can be set flex-

ibly by the user. For example, we might let the size of the
sliding window to fit within a page so that I/O cost is min-
imized. Alternatively, we can let the size of sliding window
to be the sum of distance threshold and the batch size of
insertion. In this case, the new aggregation value of both
the materialized classes and pseudo classes can be computed
using sliding windows without extra I/O cost. Interestingly,
it can be shown that when the size of the sliding window is
equal to 1, all equivalence classes in the family tree are ma-
terialized classes, which is the implementation of the naive
quotient cube maintenance we mentioned at the beginning
of section 3. On the other hand, when the size of the slid-
ing window is equal to or larger than the total number of
tuples in the base relation, all classes in the family tree are
pseudo classes. Although we can obtain the highest space
reduction with such a setting, efficiency is affected as we
need to sort the whole measure set of a class when comput-
ing the median. The size of the sliding window can thus be
seen as a parameter to balance the space-time tradeoff in
the maintenance of a quotient cube for MEDIAN.

4. MAINTENANCE ALGORITHMS
This section illustrates how to maintain the MEDIAN

quotient cube incrementally using addset data structure and
sliding window technique. Four components dist, msset, par-
ent and chdlist are added to the structure of an equivalence
class as defined in Section 2. An equivalence class C is now
represented by the structure (upp, m, dist, msset, parent, chdlist).
For a materialized class, dist = 0 and msset registers the

actual measure set. For a pseudo class, dist refers to the
distance to the nearest materialized ancestor and msset reg-
isters the addset relative to its generator. When a new
equivalence class is generated or when an existing equiva-
lence class is modified, the values of components dist and
msset are updated simultaneously. If the value of dist for
a pseudo class is larger than the size of the sliding window,
it is converted into a materialized class by backtracking to
its nearest materialized ancestor to compute the complete
measure set for the pseudo class. Parameters parent and
chdlist register the parent-child relationship between a new
class and its generator in a family tree.
In what follows, we first introduce the algorithm Inc Single,

which updates a quotient cube for one new tuple. Based on
Inc Single, a more practical algorithm, Inc Batch, which up-
dates a quotient cube in batches will be given.

4.1 Single Tuple Maintenance of Insertion
In this section, we first look at algorithm Inc Single, which

applies the three propositions in section 2, addset structure
and sliding window for updating a quotient cube.

Algorithm 1 Inc Single(Φ, t, size)
{Φ is old quotient cube, t is the new tuple, and size is the size of
sliding window}
1. Create a virtual class VC={DV, {DV}, 0}
2. Divide classes with the same upper bound cardinality

into buckets B[0]...B[n+1], VC is in B[n+1]
3. let B′[i]=Ø(i=0 ... n) {initialize another bucket set}
4. for i=0 to n+1 do
5. for each class C in B[i] do
6. if t.dvalue matches C.upp then

{C is a value modified class}
7. ModifyClass(C,t.m,size), add C to B′[i]
8. else
9. MaxMatch = C.upp ∩ t.dvalue
10. let k = |MaxMatch|
11. if (k=0) then continue
12. if ¬∃Z ∈ B′[k] s.t. Z.upp=MaxMatch then

{C is a new class generator}
13. split C into Cn and C′; Cn.parent = C′,

add Cn to C′.chdlist, Cn to B′[k] and C′ to B′[i];
if (C.dist=0) then Cn.msset = t.m, Cn.dist = 1;
else Cn.msset = t.m, Cn.dist = C.dist+1;

if (Cn.dist≥size) then materialize Cn;
14. end if
15. end if
16. end for
17. end for
18. df output(r, size){r is the root of the family tree}

Algorithm 2 ModifyClass(C, r, size)

1. if C.dist=0 then C.msset=C.msset ∪ r
2. else{C is a pseudo class}
3. if t.dvalue does not match C.Parent.uppthen
4. C.msset=C.msset ∪ r,update the dist of C and

all its direct pseudo descendants Cd
if ∃ dist ≥ size, materialize C or Cd corresponding
to the dist

5. end if
6. end if

Algorithm 1 shows the pseudo code for Inc Single. Having
generated a virtual class V C for reason explained in Section
2, Inc Single divides V C and all classes of Φ into buckets
B[0], ..., B[n+1] in line 2. A bucket B[i] contains all equiv-
alent classes C, such that |C.upp| = i i.e. there are exactly i
dimensions in C.upp which do not have “all” as their values.
The only exception here is for V C which is in the (n+ 1)th

bucket. We will henceforth refer to |C.upp| as the cardi-
nality of C. A different set of buckets B′[0], ..., B′[n] are
initialized to store the updated and new equivalent classes
for Φ′ (line 3).
The main loop (lines 4-17) iterates through the classes in

each bucket in the order B[0],...,B[n+1]. For each class C in
a bucket B[i], Inc Single first tests for a value modified class
(line 6) by checking whether C.upp is a subset of t.dvalues.
Corresponding update is performed (line 7) for such a case.
For example, if tuple (a1b1c1, 15) is added to Figure 3(b),
all update is done in line 7 and split will not occur.
Otherwise, a test for a new class generator is done (line

9-12) by computing MaxMatch = C.upp ∩ t.dvalue and
testing for its existence in line 12. In between, dumb classes
are filtered off if C does not intersect t (line 11). Having
confirmed that C is a new class generator, C will be split
based on Definition 8. The new classes, Cn and updated
generator C′ will be added into B′[k] and B′[i] respectively.
The algorithm ends when all equivalence classes in Φ are
processed.
Note that checking the buckets in ascending cardinality

order is important in verifying two conditions of Proposition
2. This order guarantees that the first encountered class, Cf ,
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Algorithm 3 df output(C, k) {k is the size of sliding window}
1. if C is a new or modified class then
2. if C.dist=0 {C is a materialized class} then
3. sort measure set C.msset and get median
4. LRDiff=0
5. put middle k measures into window s[0]∼s[k-1]
6. else {C is a pseudo class}
7. for each data d in C.msset do
8. if d <s[k/2] then LRDiff++ else LRDiff–
9. if s[0]< d <s[k-1] then update sliding window
10. end for
11. get the new median at s[(LRDiff+k)/2]
12. end if
13. Output the info of the class
14. end if
15. for each child Cchild of C do

{recursive output} df output(Cchild) end for

which produces MaxMatch as the intersection of Cf .upp
and t must be the Greatest Lower Bound (GLB) for all sub-
sequent classes, Cs, that also have Cs.upp∩t = MaxMatch.
Also, since MaxMatch is a subset of C.upp, k will be less
than i. Thus bucket B′[k] is already updated before classes
in B[i] are processed, making it possible to check for the sec-
ond condition of Proposition 2 by verifying that MaxMatch
is not already in bucket B′[k].
Now we will explain how procedure ModifyClass (Algo-

rithm 2) works. If a class satisfies the proposition 1 de-
scribed in section 2, procedure ModifyClass is called. In
case that the class is a materialized class, its measure set
should be modified (line 1). If it is a pseudo equivalence
class, the updating is a bit complicated. First, not all the
pseudo classes that satisfy Proposition 1 need to be modi-
fied. For example, when a new tuple t5 =(5, a4b1c1, 12) is
added to Figure 3(b), both equivalence classes C6 and C1

satisfy Proposition 1. We only need to modify the addset of
C6 while the addset of C1 needs not to be modified since the
new measure can be obtained from the addset of its parent
(i.e. C6). Second, the parameter dist must be updated for
all pseudo equivalence classes. For example in Figure 4,if
pseudo class B is modified, the parameter dist of class F
must also be updated.
The new median values of all new and modified classes

must be computed after the measure sets and addsets are
updated. Algorithm 3 computes the median value for the
updated equivalence classes in a depth-first order. Note that
the depth-first order is extremely important for the sliding
window technique to be efficiently adopted. Variable LRDiff
registers the distance that the window should be slided to
the left or right. For a materialized class, line 3 sorts all
measures and selects the middle measure as the median.
Lines 4-5 initialize LRDiff to 0 and place middle k measures
into the sliding window, which makes preparation for later
computation of its pseudo descendants. For a pseudo class,
it only needs to compare and slide the window (line 7-11).
Since the number of the measures in addsets cannot exceed
the size of the sliding window k, this method needs at most k
comparisons and thus is very efficient. After outputting the
information of the current class, the algorithm is recursively
called for each of its child (line 15).

4.2 Batch Maintenance of Insertions
We next introduce Algorithm Inc Batch for batch updat-

ing of a MEDIAN quotient cube. Inc Batch is inspired by
the BUC algorithm proposed by Bayer and Ramakrishnan
[3] which recursively partitions tuples in a depth-first man-
ner so that tuples involved in computing the same cell are
grouped together at the time of computation for the cell’s

value. The partitioning is performed on different dimensions
at each level of the recursion so that different groupings can
be formed.
The novelty of Algorithm Inc Batch over BUC is that

Inc Batch is a maintenance algorithm which performs par-
titioning on both the existing classes in Φ (represented by
their upper bounds) and the new set of tuples. We will refer
to a partition of the new tuples as a tuple partition and a
partition of equivalence classes as class partition.
To ensure the effectiveness of Inc Batch, we “synchro-

nize” the tuple and class partitioning in such a way that a
particular tuple partition that is being processed at one time
is guaranteed to affect only the corresponding class partition
that is being processed at the same time. This enhances ef-
ficiency in two ways. First, by grouping tuples that share
similar dimensional values together, the search for affected
equivalence classes needs only to be done once. Second, as
the partitioning of equivalence classes done in synchroniza-
tion with the tuple partitioning, the number of equivalence
classes that are being checked is substantially reduced. This
“synchronization” is performed in a function of Inc Batch
called Enumerate().
We now explain Inc Batch in details. The pseudo code

of Inc Batch is shown in Algorithm 4. The main algorithm
simply calls the Enumerate() function by providing the set
of new tuples R′, the original set of equivalent classes Φ, the
number of dimensions in the cube and the size of the sliding
window. The function Enumerate() will then perform recur-
sive partitioning of both the tuples and equivalent classes
and update the changes that will be made to various classes
in Φ. The main algorithm will then output these changes
which will produce value modified classes and new classes.
We next look at the function Enumerate(). Given the in-

put tuple and class partition, input t and input c, Enumer-
ate() iterates through all the remaining dimensions (from
dim onwards) and partitions both input t and input c based
on the dimensional values of each individual dimension D
(line 3 and 4). The inner loop from line 5 to 11 will then go
through each individual dimensional value of D and recur-
sively call Enumerate() to perform further partitioning on
the corresponding partitions of the dimensional value.
Finally, we look at procedure CheckandUpdate in the first

line of function Enumerate(). Given the input cell, the tuple
partition input t and the cell partition input c, CheckandUp-
date’s task is to determine how input t will affect the equiv-
alence classes in input c. The approach in this procedure
is similar to Inc Single except for some changes due to the
batch processing. One main difference is that the cell from
the input is used as a representative to compare against the
equivalent classes in input c.
Algorithm 5 lists the pseudo code for procedure Checkand-

Update. The tuple-class comparison is again made in in-
creasing order of cardinality for the equivalent classes. Lines
5 and 6 in the procedure will call procedure ModifyClass to
update C.msset or to materialize C if it detects that a class
C is a value modified class. If C.upp ⊃ cell, we compute
uppcell by appending all dimensional values that have 100%
occurrence in input t to the cell. If uppcell equals C.upp,
C.upp will be updated from input t in future recursion and
no action needs to be taken . However, if uppcell �= C.upp,
we will create a temporary class Ct at Line 13. If the class
Ct is not in C.tempset, which contains all new classes that
are generated from C and will be output later in the main
algorithm of Inc Batch, we add it to C.tempset and modify
its msset and dist. If there already exists a temporary class
C′

t such that C′
t.upp = Ct.upp, Ct is simply discarded since

they are in fact the same class.
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Algorithm 4: Inc Batch(R′,Φ,numDims, size)
Input:

R′: A new set of tuples.
Φ: Existing quotient cube.
numDims: The total number of dimensions.
size: The size of sliding window.

Output:
Φ′: Updated set of equivalence classes.

Method:
Enumerate({}, R′, Φ, numDims)
Output value modified classes and new classes.

Function Enumerate(cell, input t, input c, dim)
Input:

cell: cube cell to be processed.
input t: a tuple partition.
input c: a class partition.
dim: the starting dimension for this iteration.

1. CheckandUpdate(cell, input t, input c, size)
2. for D=dim to numDims do
3. partition input t on dimension D
4. partition input c on dimension D
5. for i=0 to cardinality[D]-1 do
6. p t= tuple partition for value xi of dimension D
7. p c= class partition for value xi of dimension D
8. if |p t|>0 then
9. Enumerate(cell∪xi, p t, p c, D+1)
10. end if
11. end for
12. end for

Algorithm 5 CheckandUpdate(cell, input t, in-
put c, size)

1. place all measures in input t to measure set r
2. add the virtual class VC={DV, {DV}, 0} to input c
3. sort input c based on ascending cardinality
4. for each class C in input c do
5. if C.upp=cell then
6. ModifyClass(C,r,size); break for
7. else
8. if C.upp⊃cell
9. find the upper bound uppcell of the class of cell
10. if uppcell=C.upp then
11. break for
12. end if
13. generate temp class Ct, Ct.cpp=uppcell
14. if ¬∃C′ ∈C.tempset s.t. C′.upp=Ct.cpp then
15. add Ct to C.tempset
16. Ct.msset=r
17. Ct.dist =C.dist + |r|
18. if Ct.dist ≥ size, materialize Ct

19. end if
20. break for
21. end if
22. end if
23. end for

5. PERFORMANCE ANALYSIS
To evaluate the efficiency and effectiveness of our update

techniques, extensive experiments are conducted. In this
section, we report only part of our results due to space lim-
itation. All our experiments are conducted on a PC with
an Intel Pentium IV 1.6GHz CPU and 256M main memory,
running Microsoft Windows XP. Experiment results are re-
ported on both synthetic and real life datasets.
All run time reported here includes I/O time. We com-

pare our update algorithms with a re-run of the depth-first
search algorithm in [10] when an update is made to the orig-
inal base table. Although we realize that it is not viable to
re-generate quotient cube every time the base table is up-
dated, there is no other reasonable benchmark for compar-
ison. Our experiments show that single tuple maintenance
algorithm Inc Single can be up to a hundred time slower
than batch maintenance, as such we will only report results
for batch maintenance algorithm Inc Batch which is fed

with the update tuples and existing quotient cube. Note
that the order of update tuples does not have any effect
on the performance of Inc Batch while it may affect the
performance of algorithm Inc Single.

5.1 Experiments on synthetic datasets
We randomly generated two synthetic datasets with uni-

form distribution. Both datasets contains 1 million tuples
and each tuple has 9 dimensions. Cardinality C is set at
100 for all 9 dimensions of one dataset and 1000 for the
other dataset. Measure for the tuples are randomly gener-
ated within the range of 1 to 1000. By default, we set the
size of sliding window as 1000, the number of tuples as 200k,
the dimensionality of each tuple as 6, the cardinality of each
dimension as 100, and the update ration as 50%. An update
ratio of k% implies |∆T|= (k%)*|R| tuples are added to the
base datasets.

Efficiency: We vary the update ratio from 5% to 50%.Fig-
ure 6(a) shows the run time of both Inc Batch (represented
with Inc Med B) and the depth-first algorithms (represented
with Dfs Med) on dataset with cardinality C=100. Fig-
ure 6(a) shows that Inc Batch achieves substantial saving
in time than a re-run of the depth-first algorithm. For a
update ratio of 50%, we enjoy a 75% saving in processing
time. The results clearly indicate that our maintenance al-
gorithm for aggregate function MEDIAN is efficient. The
savings in time mainly come from the fact that Inc Batch
reuse previous computation.
Figure 6(b) shows the run time of both algorithms when

the dimensionality is increased from 2 to 9. The performance
gap between the batch maintenance algorithm Inc Batch
(represented with Inc Med B) and the depth-first algorithm
(represented with Dfs Med) grows with the dimensionality
of the dataset.

Data Skew: To study the effects of data skew, we vary the
distribution of the dimension values in each dimension by
changing the zipf factor from 0.0 to 3.0. A zipf factor of 0
means that the dimensional values are uniformly distributed
while a high zipf factor will generate a highly skewed dataset.
Figure 7 shows the run time of both algorithms as the zipf
factor is varied. As the zipf factor increases, the run time
of both algorithms decreases. This is because as the zipf
factor increases tuples in the dataset are highly similar to
each other and the number of equivalence classes will de-
crease, thus requiring less time for both maintenance and
re-computation of the quotient cube.

Scalability: We next look at the run time of algorithm
Inc Batch as the number of tuples increases. We increase
the number of tuples from 100k to 1 million. Figure 8 shows
that although both algorithms have linear scalability, the
run time of the incremental maintenance algorithm scales
better than a complete re-computation.

Effectiveness of Addset: To study the effect of addset
in reducing the storage requirement for maintaining the ag-
gregate function MEDIAN, we vary the size of the sliding
window from 1 to 200k on both two datasets , which means
that the distance threshold also changes from 1 to 200k. The
measure set and addset are stored in binary files and thus
we use the size of the binary files as a measure for space
requirement. Figure 9(a) shows the space requirement for
maintaining MEDIAN using Inc Batch. Table 1 gives more
detailed data. As shown in Table 1, when the size of the win-
dow is set to 100, the addset only needs 10% of the space
compared to the full measure set (when window size equals
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(a) Varying update ratio (b) Varying dimensionality
Figure 6: Maintenance Efficiency with C=100 Figure 7: Impact of data skew

1). We observe two tendencies:

Table 1: Space size (M)
Cardinality Fullset(size=1) Addset(size=100)

100 59.8 6.4
1000 22.1 5.7

First, as the size of sliding window increases, the space
requirement decreases sharply and then levels off. Second,
the reduction ratio decreases as the cardinality increases. In
other words, the lower the cardinality, the more effective the
addset data representation. This is due to the fact that low
cardinality dataset are denser which result in more redun-
dancies if the full measure sets are stored.

Effectiveness of sliding window: Figure 9(b) shows the
run time of algorithm Inc Batch with respect to varying
sliding window sizes. We can see that when the size of the
window increases from 1 to 1000, the run time of Inc Batch
decreases. However when the window size continues to in-
crease, the run time begins to increase a bit. This is because
too small a window size will result in many materialized
classes that require sorting computation. Too big a window
size will lead to more backtracking when computing the me-
dian for pseudo equivalence classes.

5.2 Experiments on real life data
We also evaluate our update techniques on a real life

weather dataset 3 which is commonly used in experiments in-
volving computation of data cubes [18, 17, 11]. The dataset
contains 1,015,367 tuples and the cardinalities of the di-
mensions are as follows: station-id (7037), longitude (352),
solar-altitude (179), latitude (152), present-weather (101),
day (30), weather-change-code (10), hour (8), and bright-
ness (2). We use the first 100k tuples to form the base
relation.
Figure 10 shows the maintenance efficiency of both algo-

rithms. As expected, Inc Batch (represented with Inc Med B)
has the modest run time growth as the update ratio in-
creases. The performance trends revealed by Figure 10 is
remarkably similar to those revealed by Figure 6.
We test the effectiveness of addset, and again obtain a

sharp decrease in space requirement when the size of sliding
window increases. The graph in Figure 11(a) shows that
substantial space reduction is obtained even with a sliding
window size of 100. Figure 11(b) shows the run time of
Inc Batch with respect to varying window sizes. The re-
sult of the algorithm is consistent with the observations we
obtain for the synthetic datasets.
In summary, our experiments show that Inc Batch is a

highly efficient algorithm and achieves a substantially bet-
ter run time reduction than deep-first algorithm. They also
show the effectiveness of the addset and sliding window tech-
niques.

3http://cdiac.esd.ornl.gov/cdiac/ndps/ndp026b.html

6. RELATED WORKS
Plenty of efforts have been devoted to fast computation

of the cube [1, 19]. Since the complete cube consists of
2n cuboids (n is the number of dimensions), the size of the
union of 2n cuboids is often too large to be stored due to the
space constraints. Thus it is unrealistic to compute the full
cube from scratch. There are currently many solutions to
the problem, such as choosing views to materialize [8], cube
compression [15], approximation [2], handling sparsity [13],
and computing the cube under user-specified constraints [3].
Recently, from a different aspect, Wang et al. proposed

a concept of condensed cube [18] that explores “single base
tuple” and “projected single tuple” to compress a data cube.
Lakshmanan et al. proposed a concept of quotient cube [10]
that extracts succinct summaries of a data cube based on
partition theory. Dwarf [17] identifies prefix and suffix struc-
ture redundancies and factors them out by coalescing their
storage. All three methods reduced the data cube (hence its
computation time and storage overhead) efficiently.
However, as changes are made to the data at the sources,

the maintenance work to these compressed data cube is non-
trivial. The incremental maintenance of quotient cube is
the most challenging since it not only has the largest data
compress ratio but also preserves a semantic structure. [11]
proposed a efficient data structure called QC-tree. While
the important incremental maintenance problem is tackled
in the paper, aggregation was considered only in a limited
sense. For example, aggregation with holistic aggregation
function was not allowed. In this paper, we introduced two
techniques called addset data structure and sliding win-
dow to maintain holistic function like MEDIAN. The con-
cept of a sliding window is also used in both [20] and top-k’
view in [21] but no in the context of a QC-tree.
Works on data warehouse maintenance such as [12, 9, 14]

are of clear relevance to us. However, none of them ad-
dresses the MEDIAN maintenance problem. Our study is
also closely related to incremental concept formation algo-
rithms based on Galois lattice [6, 4, 5].

7. CONCLUSION
In this paper, we address the problem of updating the ex-

isting MEDIAN quotient cube incrementally. We developed
a new data structure addset which is able to dramatically cut
down the size of storage space required to store measure set
for each equivalence class. Moreover, we proposed a sliding
window technique to compute the median over not the entire
past history of the data, but rather only the sliding windows
of middle data from the history. We designed two incremen-
tal maintenance algorithms: Inc Single and Inc Batch. The
former maintains the quotient cube tuple by tuple and the
latter maintains the quotient cube in batch. A comprehen-
sive set of experiments on both synthetic and real data sets
were conducted. Our results show that our maintenance
algorithms are efficient in space and time.
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Figure 8: Scalability with the
number of tuples

(a) Space (b) Runtime

Figure 9: Effectiveness of Addset and Sliding Window

Figure 10: Maintenance Efficiency
for Real Data

(a) Space vs Sliding Window Size (b) Runtime vs Sliding Window Size

Figure 11: Effectiveness of Addset and Sliding Window on real data
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