Technical Guide

This document provides overview of the game’s most important Java classes, gives the installation instructions as well as target hardware and software requirements.

Important Java Classes

Categories of Classes

In this discussion, we will only cover the important classes in our source code. Our source code has numerous classes, grouped into the following categories:

· Game objects

· RoadMap, Cab, CabDriver, CabManager, CabDriverManager
· Graphical user interface

· MainForm, NickForm

· Networking

· Server, ServerHandler, Client, ClientSender

· Game logic

· CabHijackCanvas, MissionGenerator, Mission, GameState, MissionTimer, GameTimer

· Game graphics and sound
· MiniMap, SplashScreen, EndGameScreen, ScoreScreen, SoundEffects, BestScoreScreen
· Persistency

· GameScoreRecordStore
Class RoadMap
This class defines the world of the game. We use TiledLayer to split the world into regions and associate different elements of background to the cells. The cells contain either a piece of road, which is the only type of tile on which the cab can travel on, or trees and buildings.

This class implement methods for checking whether a given tile is passable, which are used for collision detections.
Class Cab and CabManager
Class Cab is the extension of the MIDP API’s Sprite class. It defines our cab and the associated actions and movements. We allow the car to move in 12 different directions (steps of 30 degrees), and change speed by accelerating or decelerating.

When the car is moving forward and hits within a certain distance from the screen’s edges, the map is scrolled in the opposite direction in order to bring the new part of the world into view. Thus the car always remains at a certain distance from the edge of the map in order to maintain the best visibility of the environment. It actually allows players to anticipate junctions in the roads and turn in a timely and accurate fashion with practice.
CabManager is a manager class which holds references to all cabs, and is in charge of creating them as well as updating their movements every tick of the game loop.
Class CabDriver, CabDriverManager
Here we come to the definition of our main hero, which is a cab driver. Every player starts off initially by controlling a cab driver. The driver is represented with a strange acting character that moves in a crazy manner before he commits his first crime of stealing a car. This game is based on the existing game GTA and Crazy Taxi, so we tried to capture some features of that game, namely the hijacking aspect of GTA, and the cab missions of Crazy Taxi.
The CabDriverManager class is tasked with holding references to and managing all the cab drivers of the players, running amok around the game world.
Classes MainForm and NickForm
These two classes serve to create a basic user interface that allows the player to either create or join a game. Moreover we have the possibility of supporting any number of players as this number can be set by the player that creates the game. The field Time Limit allows the host player to set a time limit to the duration of the game. Each player can also identify himself by a nickname, which will appear in the score screens.
Class Server and ServerHandler
When a player creates a new game, an instance of Server is created as well. The Server class starts by creating a listening Bluetooth connection, and waits for connections from the clients and delegates the responsibility of each client to a separate ServerHandler thread.

The Server class itself provides methods for broadcasting messages to all clients, as well as a message dispatch loop which does the actual broadcasting.

ServerHandler handles the communication protocol between the client and server by receiving the information from the client when he performs actions and relaying this information to the Server class, which then distributes it to other clients.

Our game implements a centralized architecture, therefore all the information is sent to the server which checks for its validity and distributes it to all the participants.
Class Client and ClientSender
The Client class creates the Bluetooth connection which connects to the server. After receiving from the server information such as the number of players and the difficulty level, the client creates the GameCanvas and everybody starts playing at the same time.
We ensure that all players start at the same time, by having clients wait at a loading splash screen until the server gives the go ahead to all clients simultaneously.

In order to keep network transactions running on a separate thread to prevent network calls from blocking the game, we have a ClientSender class which runs on a separate thread and sends out messages from a queue.
CabHijackCanvas

Although this is a class derived from the MIDP API’s GameCanvas class, the bulk of the functionalities in our CabHijackCanvas class is actually concerned with the game loop. Here we perform the necessary updates, drawings, network updates and more with every tick of the game loop.
Classes MissionGenerator and Mission
These two classes are in charge of handling the cab missions. A cab mission consists of picking up a passenger at a pick-up point represented by a blue triangle on the map, and giving him a lift to the drop-off point denoted by a green triangle (as well as a flashing blip on the mini-map).

MissionGenerator’s task consists in generating missions at valid and accessible locations on the map, as well as performing collision detection between cab and pick-up and drop-off points in order to execute pick-up and drop-off actions. We determine if the cab has triggered pick-up and drop-off points by calculating the cab’s distance from the pick-up and drop-off points.
Class GameState

If we store information regarding the state of the game in different classes, we will face the ordeal of passing object references all over the game so that different parts of the game is able to access information stored in other classes. Such an implementation is confusing and potentially buggy.
Instead, we choose to have a GameState class which stores all important game state information which will be used by many different classes. The GameState class is a singleton class, and many of the methods are marked as synchronized in order to prevent concurrency problems (since our game is multi-threaded due to the networking components).

Classes MissionTimer and GameTimer

In this game, we have two different time limits: a game time limit, and mission time limits. When creating the game, the host specifies a time limit for the entire game. This prevents players from playing forever with no conclusion and feeling extremely bored. 

Each mission also has a time limit associated with it, calculated based on the distance between the pick-up and drop-off points. This time limit varies according to the difficulty level specified by the host during game creation.
Class MiniMap

This class simply implements a miniature version of the entire world, which shows the location of the player as well as any destination mission drop-off points. This allows players to navigate to the drop-off point without having to drive blindly around searching for it.

Classes BestScoreScreen, EndGameScreen, ScoreScreen and SplashScreen

These classes implement various displays throughout the game play. The BestScoreScreen draws the screen showing the best score for the player. EndGameScreen draws the final scores for all players ranked in descending order of the scores. ScoreScreen shows the scores of all players at any instance in the game when a player invokes it. SplashScreen displays a loading splash screen before the game starts.
Class SoundEffects

The SoundEffects class provides an interface to playing various sounds corresponding to various events in the game, such as when the cab triggers a pick-up point or when the time is up and the game ends.

Class GameScoreRecordStore
This class provides the functionalities for storing the best score for the player onto his phone, so that he may refer back to it and ponder on his progress and skills in the game.

Game Architecture & Design
Our game is a top-down view scroller through vehicle navigation, with time limits, objective scores and final ranking as motivations. The multiplayer functionalities are accomplished using a client-server architecture typical of most First Person Shooter and Real Time Strategy games, where one player creates and hosts the game and other players join as clients.

Game Design & Logic

The game is written in an object oriented manner, where we model game objects as Java classes. For instance, the cab driver and cabs are modeled by Java classes Cab and CabDriver.

For portability, the game is written entirely in only the MIDP 2.0 API. Thus it should run on any MIDP 2.0 compliant mobile phones and devices.

We chose to model our game after GTA and Crazy Taxi, as we felt that games genres such as puzzle games, side-scrolling platformer, Space Invader clones and Pac-Man clones are too common. These games also either do not have much to offer in terms of multiplayer functionalities, or require only very simplistic multiplayer and network logic.
In CabHijack, we have drivers and cabs belonging to all the players moving about the map, as well as missions to manage. Collision detection is also much more complicated for the cab’s movement. For instance, if the cab is moving smoothly immediately next to a barrier/wall, when it rotates it may very well end up ‘inside’ the barrier/wall due to its rectangular shape. Thus we require more complicated collision detection and movement logic compared to very simple collision detection required for games such as side-scrolling platformers.
Game Loop

The game loop is the very core of the game itself, and can be considered the heart and clock. Let us term each pass of the game loop as a ‘tick’.

In each tick, we need to update all game objects to account for their movement in the time elapsed since the previous tick. We then need to perform collision detection, and draw the updated game objects onto the display screen. Player actions and crucial changes need to be sent to the server for broadcast to all other players.

Networking

The multiplayer functionalities of CabHijack run off a client-server architecture. One player creates and hosts the game on his phone. The program will run both the server and client code. The host can specify the number of players that will be joining the game, the difficulty level, the time limit for the entire game and other settings.

All other players run the game as normal players, which load the client code only. These clients then connect to the server mobile phone through the Bluetooth network.

When important changes occur, such as user generated movements of the driver or cab, or the cab triggering mission pick-up and drop-off points, we send update messages to the server. The server then broadcast these update messages to all other players. However, we also immediately process the changes locally without waiting for the server to acknowledge or broadcast back.

Although this model is inherently insecure, we adopt this approach for simplicity. Our game caters to a group of players coming together to the same geographical location to play. Thus it is safe to assume that they trust each other. Given the simple nature of the game, we can also assume that it is not worthwhile to hack the binary or network messages in order to cheat.
Development Environment

The game was developed on Windows XP and NetBeans IDE on the x86 platform. Testing was done using the emulator provided with the Java Wireless Toolkit. Since we only use features from the MIDP 2.0 API, we expect the game to be very portable.
Installation Instructions:
To install the game proceed as follows:
· Download the JAR and JAD file either from our webpage or directly from Install directory and place it in your mobile phone applications directory.

· Your game is now available in your applications menu and ready to be run.

Note: these steps may differ from mobile phone to mobile phone. If unsure please check the mobile phone’s user manual. Our game does not require any specialized installation steps other than installing the JAR and JAD files.

Target hardware/software requirements:

To run this game on your mobile pone make sure that it supports java MIDP 2.0. Secondly, your mobile phone needs to be Bluetooth aware so that you can play the game using the Bluetooth network. 

For example Nokia N80 and Motorola W220 could be two suitable phones to run our game.
