
ShowNTell: An easy-to-use tool for answering

students’ questions with voice-over recording

Anand Bhojan‡, Kwan Yong Kang Nicholas‡, Nidhi Sharma†

‡School of Computing and †School of Science, National University of Singapore

Email: ‡banand,nichkwan@comp.nus.edu.sg, †phyns@nus.edu.sg

Fig. 1. ShowNTell Editor

Abstract—The use of recording applications for teaching is
increasingly popular, with tools such as Ink2Go and ShowMe
being available on many platforms and at reasonable cost.
However, most recording applications available are typically
native applications and do not work within the web browser. In
this work, we study the feasibility of implementing a recording
solution in the web browser environment.

I. INTRODUCTION & MOTIVATION

ShowNTell is an implementation of a screen recording

application that runs within a web browser on a mobile device

[1]. The application will provide an interface similar to a

virtual whiteboard, and allows the recording and playback

of drawings made on the whiteboard (see Figure 1). Audio

recordings are supported to facilitate the creating of lessons

and tutorials within the application for the purposes of eLearn-

ing.

We describe our motivations for this work in the following

sections:

A. Web platforms

New browser technologies under the umbrella group of

HTML5 technologies have provided new opportunities for new

This work is supported in part by the National University of Singapore
Learning Innovation Fund Technology (LIF-T) under the research grants
C-252-000-113-001 and C-252-000-117-001. Any opinions, findings, conclu-
sions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the granting agency, National
University of Singapore.

types of applications to run within the web browser, providing

services normally done by native applications. For instance,

the introduction of the 2D Canvas API allows images to be

generated in real-time within the web browser, instead of being

generated on the server [2]. This paves the way for applications

such as interactive games and media that requires graphical

content to be updated in response to user input.

Improvements in communication technologies such as ac-

cess to higher and more stable bandwidth as well as faster

transfer speeds can allow us to provide real-time services that

may require continuous transfer of relatively sizeable amounts

of data from the client device. This is crucial for ensuring

responsiveness of the application which has data dependencies

on content on the server.

As many mobile devices have access to the Internet, we

would also perform user experience studies on the use of

touch-based interfaces for the use of recording and drawing,

which would be one of the primary input interfaces for

ShowNTell. Many mobile browsers also support the new

APIs that are available on desktop browsers, allowing our

application to potentially work on those platforms without the

user requiring installation of an application.

As a result of these emerging changes, it is now possible to

implement a recording solution that runs on a web browser.

Thus this acts as a primary motivation for pursuing this project.

Our project would attempt to implement an application with

native-like capabilities on the web platform by using APIs

available on web browsers, as well as evaluate techniques that

can potentially improve its usability or responsiveness in a

web browser environment. Additionally, we would attempt to

test our implementation on multiple platforms under different

conditions, in particular the desktop and mobile browser

environments.

B. eLearning

Recording applications are increasingly popular tools for

the purposes of education and entertainment. For instance,

the webcast system provided by the National University of

Singapore (NUS) is able to generate automated recordings of

a lecture in modules supporting that feature. Other modules

have used other creative means aside from recordings such as

gamification to improve the learning experience of the content

in the module [3][4]. eLearning serves as an alternative or

supplementary means for students to revise on topics that were

covered earlier through traditional mediums. For our project,

our main focus would be towards approaches that involve

recordings.

Recordings are also used as tools to illustrate ideas that are

typically difficult to describe as text or images [5]. This is

because with the inclusion of time-based events, animations

such as circling or highlighting become more prominent. Ad-

ditionally, annotation mechanisms such as free-style drawing

are easier to use than other traditional inputs for displaying

mathematical equations or simple diagrams. This coupled with

audio capture can allow for easier conveying of ideas that

might be difficult to convey with a static document.

In ShowNTell, we attempt to build a recording tool that

works in a web browser, allowing the application to work on

a wide variety of platforms without requiring the installation

of additional software. Unlike recordings used for lectures,

ShowNTell is designed for shorter recordings that typically last

for a few minutes, typically sufficient for answering questions

or explaining concepts. The tool would act as a complement

to the existing eLearning tools available.

II. RELATED WORK

The idea of a whiteboard and video recording application is

not a new concept, with many such applications available in

the market. In this section we study several different types

of applications that support screen recordings, enabling us

to adopt similar techniques that allow us to manage data

generated in recordings.

A. Desktop Implementations

There are many applications that support recording capabili-

ties available on computers, such as CamStudio, Camtasia, and

Open Broadcasting Software [6][7][8]. These applications are

typically screen recorders which capture video input from the

graphics hardware, usually through system APIs such as bitblt

[9]. Screen recorders are applications that poll the screen and

stores what is displayed into a file, thus capturing all visual

details that are visible to the user. Screen capture applications

may also capture audio from the audio input hardware. Other

screen recording software may support annotation capabilities

that allow adding details to the currently displayed screen,

such as Ink2Go [10].

As recording generates cumulative data, different appli-

cations have different methods of handling the recording.

Typically, a video recorder will continuously write frames to

a file rather than retaining them in memory in order to keep

memory footprint low. Ideal file formats for this include AVI

files [11], as these files support the appending of video data

into the file with minimal performance overhead. In other

implementations such as Fraps [12], the recording may be

distributed into multiple files, moving from one file to the

next when a file size reaches a certain threshold . Distributing a

recording into multiple files enables longer duration recordings

on file systems that have an inherent file size limit, such as

the 4GB limit in FAT32 systems [9].

In ShowNTell, we have adapted the file splitting approach

which splits recording data into multiple fragments. This

enables handling of certain data types such as audio much

more easily, as well as allowing for responsive save times by

allowing part of the document to be saved in the background

while recording is ongoing. This approach is preferred over

the single-file method because in a web browser environment,

uploading of data to the server takes much more time com-

pared to writing a file to the hard disk. Thus, we can reduce

the perceived upload time by simply uploading parts of the

earlier recording during the recording process.

B. Mobile Implementations

Mobile applications that support recording capabilities do

not typically capture the screen, in contrast to desktop ap-

plications. Due to the sandboxed nature of mobile appli-

cations, capturing the screen is typically not allowed [13].

However, recording software with annotation capabilities and

microphone support are widespread, such as ShowMe and

ExplainEverything [14][15]. These fully utilize the touch-

screen to provide an input suitable for free-style drawing.

Mobile applications face a larger resource constraint com-

pared to desktop applications; in particular file-system access

and computational resources are not a luxury. Thus recordings

will typically record the input or the sequence of actions

used to render the current scene, instead of recording the

entire screen as a video. For example, when the user performs

a free-style drawing, instead of capturing the image of the

screen, it captures the coordinates needed to reproduce the

same effect. This method of replaying events to simulate a

recording will greatly reduce the storage, computational, and

memory footprint of the recording, since only events will need

to be stored instead of image frames. In the event a video

output is desired, those events can be replayed to generate the

video frames to produce the video.

In ShowNTell, we have attempted to emulate the same

feature set provided by these applications, which include

slide support, document import, and video export. Similar to

ShowMe and ExplainEverything, ShowNTell will not actually

record the screen contents, but instead the events to reproduce

the visual state of the screen.

C. Web-based Implementations

Due to the resource requirements and limitations of existing

browsers, there are not many recording applications available

as a web application. There are some implementations such

as BigBlueButton that provides recording and collaboration

capabilities [16]. However, those implementations require the

use of plugins such as Adobe Flash. Such plugins are typically

not available on mobile devices due to either deprecation of

the existing software packages or prevention of installation of

the plugins by the operating system [17][18][19].

While there are web-based applications that provide draw-

ing/annotation capabilities, or even provide the ability to

collaborate with others over the internet, there are not many

TABLE I
API SUPPORT ON DIFFERENT BROWSERS.

C FF IE S C(A) FF(A) S(iOS)

Version 42 37 11 8 42 37 8.3

Canvas Y Y Y Y Y Y Y

IndexedDB Y Y Y Y Y Y Y

UserMedia Y Y N N Y Y N

Audio Y Y N Y Y Y Y

Worker Y Y Y Y Y Y Y

Fullscreen Y Y Y Y Y Y N

FileReader Y Y Y Y Y Y Y

XHR2 Y Y Y Y Y Y Y

Blob Y Y Y Y Y Y Y

C = Chrome, FF = Firefox, IE = Internet Explorer, S = Safari

C(A) = Chrome (Android), FF(A) = Firefox (Android), S(iOS) = Safari
(iOS)

complete solutions that support the ability to record the anno-

tations and drawings for later playback. However, with newly

available HTML5 APIs, it is now possible to implement a

drawing and annotation web-based application with recording

support.

Because HTML5 is in the emerging state, most browser

vendors have only implemented a subset of it [20]. Nonethe-

less, some browsers such as Google Chrome have implemented

most of the required APIs on publicly available versions of

the browser, providing feasibility to the implementation and

deployment of our application.

III. SYSTEM DESIGN

As ShowNTell is a web-based application, we have chosen

to use a client-server model for the application. The client

will be designed to run within a web browser, and does not

require the installation of additional software aside from the

web browser. The server will use a normal LAMP stack to

serve web pages and store data, as well as NodeJS for the

video rendering and document import systems.

A. Feasibility Analysis

Prior to and during the implementation of the project, we

have evaluated whether the project can be implemented using

available APIs and tools. Preliminary analysis has given the

conclusion that majority of the browsers on desktop environ-

ments have support for the features that we require for our

application, particularly Canvas 2D and Media Capture APIs

[2][21].

On the mobile platform, Google Chrome and Firefox on

Android offer the features that we require. Browsers such as

Safari on iOS and Internet Explorer on Windows RT do not

support the Media Capture API, thus features requiring the

use of the microphone would be disabled on these platforms.

Nonetheless, because a sizeable fraction of the browser market

supports the APIs that we require, we have decided to proceed

with the implementation of the project. A comparison between

the different browsers as well as their support for key HTML5

API features our application requires is summarized in Table

I. We have attached the version number as the feature set

Fig. 2. Components in ShowNTell

available in a browser may change in later revisions of the

browser.

B. Program Design

Our application uses a client-server model. Our client is

designed to run within a web browser, and does not require

the installation of any software aside from the browser itself,

which is assumed to already be available on the user’s device.

The architecture used by ShowNTell is summarized in Figure

2.

The client is the front-end of our system, which is a website

which the user can visit in order to use the services offered by

our application. Using Canvas, we can implement whiteboard-

like functions easily. We have also added other annotation

tools such as highlighters and erasers which are tools available

in similar software in other platforms. Browsers with Media

Capture API support allow us to access the microphone on the

user’s device, allow us to capture audio for recording purposes.

The Web Worker API which is commonly available on most

modern browsers allows us to perform computationally expen-

sive operations in the background, thus we usually perform

data-related operation such as compression and conversion in

workers.

The editor handles run-time drawing of visual data, as

well as handles the state that will be displayed to the user.

The editor includes the user interface such as the toolbar

buttons, as well as the canvas drawing interface. The event

recorder handles the capturing and replay of user input such as

mouse coordinates. It also provides audio input capture if there

is a microphone available. The storage component manages

data belonging to the document and automated saving. The

renderer renders the current document state to the user such

as drawings, images, and textual objects.

On the server-side, we have two major servers, which are

the HTTP and Dispatcher servers. The HTTP server hosts

the web application for clients to access. The main scripting

language used on this server is primarily PHP, which is a

server-side language. The HTTP server also exposes external

APIs for the uploading and retrieval of document data. The

VMS (Video Management System) provides the front-end

for users to manage their documents as well as share the

documents with other users. Like typical HTTP servers, it uses

Fig. 3. Main timeline structure

normal LAMP stack which includes the Apache web server

and MySQL database.

The dispatcher server is used to provide features that require

long-running operations that should not be performed by the

client due to its resource requirements. This server uses the

JavaScript scripting language, and is run via NodeJS. The dis-

patcher server provides video rendering and PDF conversion

capabilities.

IV. IMPLEMENTATION

A. Recording

During recording, audio from the microphone and user ac-

tions are captured simultaneously. In ShowNTell, user actions

are referred to as events.

Events stored on the main timeline include slide change

events and audio playback, which are typically global events

that do not belong to any particular slides. Each document

will only have one main timeline. During recording, events are

added into the data structure representing the main timeline.

Because recording involves time, time information has to be

attached to each event. Playback requires an efficient means

of traversing through events in the correct order.

Timeline data for the main timeline is represented in a 2-

dimensional structure. The first dimension is the time, while

the second is an ordered set of events occurring at that specific

time. A visual representation of the timeline structure is shown

in Figure 3.

During playback, we traverse across the time dimension, and

process each event individually for each time slot. To reduce

the amount of processing needed, each play-through will only

go through the entire timeline once. Cumulative states are used

to allow pause and resume without incurring significant costs.

Fast forwarding of events is also efficiently supported.

B. Audio Recording

Audio capture is performed using the Media Capture API

available in browsers such as Google Chrome and Mozilla

Firefox. The API offers the ability to access raw audio PCM

(Pulse-Code Modulation) data as it is generated [21].

In order to reduce the amount of time needed to save the

document, we have chosen to upload audio as it is generated,

rather than upload it at the end of the recording. Thus the audio

is no longer a single contiguous file but instead distributed over

multiple fragments. During recording, audio data is streamed

to a buffer until a threshold is met. An interval of five seconds

is chosen as the threshold as it offers a balance between the

amount and size of fragments generated.

The number of fragments may increase complexity during

playback and could also introduce additional overhead as each

fragment is treated as an individual unit. However the size of

a fragment should not be too large as it can incur additional

computational requirements in processing of each fragment.

When the threshold is met the buffer is encoded as a WAV

file and uploaded to the server, after which the buffer cleared.

Not all browsers support the Media Capture API, thus we

have developed a fallback which will involve the use of the

Adobe Flash plugin. However, this fallback may not work on

platforms that do not support the plugin, particularly mobile-

based platforms. In the event whereby the application is unable

to gain access to the microphone due to the software or hard-

ware environment, the audio recording feature in ShowNTell

will be disabled.

C. Audio Playback

Because we are pushing data as soon as it is available

during recording, the audio recordings are not available as

a contiguous audio stream but instead as fragments. In order

to play the audio as a contiguous track, we have to perform

audio chaining. Audio chaining involves preparing each audio

to be played at some point in the future. The process of audio

chaining is summarized below

1) Obtain list of fragments belonging to an audio collection

2) Playback is paused to buffer audio fragments in the

collection

3) Relevant audio fragments are downloaded

4) Once sufficient fragments are downloaded, the fragments

are arranged to play at a specific time

a) Fragments whose end time precedes the current

time marker are skipped.

b) Fragments whose start time precede the current

time marker, but end time does not will be played

partially. These fragments will have their playback

time set to the appropriate location, and played

immediately.

c) Fragments whose start time occurs after the time

marker is to be played at a future time are queued

at the appropriate time.

5) Once audio arrangement is done, playback is resumed

For smooth and seamless playback during audio chaining,

each audio fragment should be encoded in a format that allows

playback without any “gaps” or distortions. Formats such as

MP3 and AAC may insert silence at the beginning of the

audio file during the encoding process as compression artifacts

[22]. Other formats such as Ogg and WebM do not have

gaps as silence introduced as compression artifacts are already

accounted for in the format. Lossless formats such as WAV

will be gapless because there is no change in information in

decoded audio data. We have used avconv which is part of

libav [23] to perform audio compression on the server-side.

The file sizes of the different formats are summarized in Figure

4.

The measured time (in milliseconds) to complete compres-

sion for a five second audio fragment is summarized in Figure

5. WAV is uncompressed data thus can be used as benchmark.

Fig. 4. Audio file sizes (in bytes)

Fig. 5. Time taken (milliseconds) to compress and retrieve audio

Note that these timings do not include network transfer, thus

while WAV takes the least processing time, the actual time

taken to load a WAV file in the live environment could be

slower than that of compressed files simply because com-

pressed data is smaller in size. As compression of fragment

can be done quickly, we can simply invoke the compression

tool via PHP.

We have used caching to improve the server responsiveness

during fetching of the compressed audio. Because audio data

do not change, we can reuse data that was already compressed.

Audio that have already been compressed are stored into the

cache table in a similar manner as regular audio fragments, and

retrieved when the relevant audio file is requested. Because the

compressed audio fragments are small in size, storing them on

the server will not require a large extra storage overhead.

D. Drawings

In order to generate drawings that appear smoother com-

pared to the naive implementation (connecting points with

straight lines), we have decided to employ a basic curve-fitting

algorithm [24]. The following code snippet shows a portion

of the curve drawing code that we have used when drawing a

particular point:

i f (t h r e s h o l d m e t) {
v a r midX = (l a s t . x + c u r r e n t . x) / 2 ;
v a r midY = (l a s t . y + c u r r e n t . y) / 2 ;
c o n t e x t . q u a d r a t i c C u r v e T o (l a s t . x , l a s t . y ,

midX , midY) ;
l a s t 2 . x = l a s t . x ; l a s t 2 . y = l a s t . y ;
l a s t . x = c u r r e n t . x ; l a s t . y = c u r r e n t . y ;

}

The above code generates a curve that passes near to the

points, making it an approximation of a curve-fit. As we

Fig. 6. Angle-based heuristic to account for changes in curve trajectory

are using Bezier curves[24], it will have the C-1 continuity

property, giving a smooth appearance for the curve. Although

the approximation introduces some small errors to the result,

it still yields reasonable quality since the errors are usually

small enough and not noticeable to the user. We are aware that

there are algorithms that can produce curve-fits pass through

all points however they will introduce greater complexity to

the system [25]. Bezier curves require 3 control points. Hence,

if there is only 2 points in the drawing we default to a straight

line, and if there is only 1 point we simply render a dot.

Even with Bezier curves, the resulting curve still suffers

from a “wavy” effect as a result of having points that deviate

from the general path of the curve. These points are usually

introduced due to vibrations during motion of the input device

or by the user’s hand. We have applied a simple de-noising

algorithm to produce even smoother curves by eliminating

points that do not contribute to the overall shape of the curve,

but are significant enough that they introduce artifacts in the

curve.

We have used two factors to determine whether a point

should be rejected, these are Euclidean distance and the angle.

If a point is very close to the last accepted point, it should be

rejected as it is likely to not contribute much to the shape of

the curve. An exception would be the case of sudden changes

in curve trajectory, whereby we will need to keep the points as

they contribute to the shape of the curve even though they are

close to each other. We define a sudden change in trajectory

as a significant change in the relative angles of the points in

the trajectory (see Figure 6).

The last (V1) and second last (V2) points are points that have

already been accepted in the curve. The candidate point (C) is

the one which will be added. We measure the angle θ between

the two vectors which can be obtained via dot-product between
−−→
V2V1 and

−−→
V1C unit vectors. A larger angle implies significant

deviation in trajectory. We still apply a distance condition to

prevent points from clustering near each other. The conditions

for accepting a point are summarized below:

• First point (0 points): Starting point is always accepted

• Euclidean distance (≥ 1 point): |
−−→
V1C|> 4 pixels.

• Trajectory angle (≥ 2 points): cos−1
−−→
V2V1•

−−→
V1C

|
−−−→
V2V1||

−−→
V1C|

> 1 radi-

ans, and |
−−→
V1C|> 2 pixels.

Figure 7 illustrates the difference between the scenario

where no de-noising is applied, and when de-noising is ap-

plied. The overall shape of the curve should be the same,

although in the de-noised version there are less “wavy”

patterns, particularly at gentler curves. The algorithm used

Fig. 7. Comparison between non-denoised (left) and noise reduction (right)

Fig. 8. Storage mechanism in ShowNTell

gave reasonably good quality drawings, and does not require

expensive computation, allowing it to be deployed for the web

browser.

E. Storage

Like most typical client-server and web-based solutions,

data is stored on the server as the persistency of data on the

client is not guaranteed. There are two common mechanisms

for storing data for a client-server application, one of which is

storing as records in a relational database such as MySQL, and

the other is storing as regular files in the file system. As data

is associated with a document, we represent this property as a

relationship, thus the relational database was initially chosen

as the storage mechanism. However, in practice we find that

we can yield greater performance by storing larger records in

the file system [26], thus we have adopted a hybrid storage

mechanism which is shown in Figure 8.

Because we need to preserve relational information of all

records in order for other components to perform lookups of

document data, all units of data would have an entry in the

database, including those that are stored on the file system

instead of as a record on the database. If a unit of data exceeds

a certain size threshold, it would be stored on the file system,

thus we set a flag in the record to determine if the data returned

would be from the database value or from the file system.

There will be some overhead when storing data correspond-

ing to a record into a file, since the file must be created or

overwritten on top of setting a flag in the database record. We

observed that for file sizes less than 100KB, the difference

in timings between the file system and database are minor

and comparable to each other. The variance in timings is

observed to be due to io-bound operations and network latency

which affects both mechanisms. Beyond 100KB, we find that

the database method will require significantly more time to

Fig. 9. Comparison between file and database storage

perform the put operation, and at sufficiently large sizes,

the put operation would fail. We also observed that the get

operations for both systems are comparable. The following

experimental results were captured from our experiments. In

the experiment we simulate a client-server interaction and

measure the time taken (in milliseconds) to upload or retrieve

fragments of different sizes (in kilobytes) from the browser to

the server using both methods. The results are summarized in

Figure 9.

For our system, we have set 128KB as a threshold for

determining which storage system to use. Small records such

as metadata are stored in the database. Records larger than

128KB, which are typically audio fragments, images, and

timeline data, are stored into the file system.

F. Other services

There are some services that do not run within the web

browser, but instead performed on the server as it requires

significant computational resources. These are usually handled

by the dispatcher server, which provides video rendering

services. Our video renderer is written using JavaScript and

runs as a NodeJS application. When a user requests for a

document to be rendered, the document ID is passed to the

dispatcher service, which spawns the video rendering process.

The video rendering process performs the following actions:

1) Download the document chunks.

2) Render the timeline data into a video frame-by-frame,

using avconv (from libav) “pipe2image” feature. Each

frame is rendered as a JPEG using node-canvas. The

intermediate video (without audio) generated uses the

MKV format.

3) Combine the audio chunks into a contiguous audio file.

We are using SoX to perform the splicing of audio. The

intermediate audio file generated uses the WAV format.

The audio file may be re-encoded to 44100 sample rate

to ensure that all fragments have the same sample rate.

4) Combine the generated video and audio into a single

video file. The resultant file uses the MP4 (H.264)

format. We are using avconv to combine the files.

5) Upload the final video file to the CDN (Content Delivery

Network).

6) Send an email to the owner of the document informing

them that the video has been rendered completely.

When rendering the frame, we have chosen JPEG as it

provides a smaller sized image while retaining image quality,

reducing the amount of time needed to transfer the image

from our renderer to avconv. We have used WAV as the audio

input since WAV files are generated by our client application.

The intermediate video format is MKV as we find that the

generated video track is of good quality, and does not suffer

from significant compression artifacts when re-encoded to

MP4 in the final stage. The resultant video format is MP4

with H.264/AAC encoding as it is supported by most od the

modern CDNs and our CDN of school’s Integrated Virtual

Learning (IVLE) platform [27].

In addition the the video renderer, ShowNTell supports

PDF documents which can be imported as slides used by

ShowNTell. Document conversion uses the imagemagick tool

which has support for PDF to image conversion [28]. The

output image chosen is PNG as it offers good image quality.

V. EVALUATION

In this section, we highlight the usability, performance

and scalability of ShowNTell system. The evaluations include

analysis of user feedback on our system, as well as other

evaluations we have drawn from our testing of the system.

A. User Study

We conducted field tests on our application with users.

Most of these users came from the Faculty of Computing,

although there were others from the Faculty of Science of our

University. In this initial study, students and instructors from

the following modules tried the system: PC1431 (Physics IE),

CG3204L (Computer Networks) and CS3247 (Game Develop-

ment). Our user study primarily focuses on participants from

the CS3247 module.

During the March of 2015, we allowed students from the

class of CS3247 to complete their assignments using our

implementation of ShowNTell, thus allowing us to gather

some information on user behavior, preferences, as well as the

readiness of our system in terms of scalability. Altogether there

were over 40 participants. The experiment was conducted over

a period of one week, thus the load on the system could be

confined and evaluated during this period. Prior to the student

study, we had also opened up the system to other educators

who were interested in our implementation so as to make any

adjustments to the system if needed.

During this experiment, participants were to complete a

recording to answer two technical questions of the module

assignment using ShowNTell tool. The use of slides was

required for the assignment, and was limited to 10 slides, thus

it was expected that most students would attempt to use the

PDF import feature. As the presentation was to be delivered

orally, the students must also use the audio recording feature.

There was an original requirement to use the video export, but

that was lifted due to technical issues experienced towards the

end of the experiment. The expected recording duration was

at most five minutes. Upon completion of the experiment, the

students were asked to fill in a feedback form.

TABLE II
USER STUDY DEMOGRAPHICS

Participants 45 (30 respondents)

Participant type
Students (97%)
Academic Staff (3%)

Browser used

Google Chrome (80%)
Mozilla Firefox (17%)
Safari (7%)

Recording duration

<3 minutes (7%)
3 to 5 minutes (49%)
5 to 10 minutes (42%)
>10 minutes (2%)

Input used

Mouse (93%)
Touch (40%)
Stylus (50%)

Fig. 10. User responses to various aspects

B. Evaluation Results

The survey primarily covered on user demographics as

well as their preferred methods of using the system. Other

feedback questions were also designed so as to inspire future

iterations of our project. The survey results are summarized

in table II. Majority of the users used ShowNTell on Google

Chrome for Windows. Most of the participants were familiar

with other video recording solutions, in particular Camtasia,

Camstudio and OBS. The most common recording duration

created by users was approximately five minutes long. The

most commonly used input device was the mouse, as many

students were using ShowNTell on a computer instead of a

mobile device.

In general, most participants (76%) find our implementation

easy to use and adequate (see Figure 10). The participants

have indicated that ShowNTell provided sufficient capabilities

to complete the requested assignment, although most have

indicated the system could be improved further. Participants

have indicated that ShowNTell is usable with the mouse and

stylus, although participants who have used touch-based inputs

mentioned them to be less comfortable. We hypothesize that

touch-based input is harder to draw objects accurately for

extended periods of time compared to a stylus or mouse.

Most participants (93%) have indicated that the performance

of ShowNTell is adequate. Playback, recording, and saving of

documents were perceived to be completed within reasonable

time, fulfilling the main objective of our project which is to

implement a responsive and usable recording solution in a web

browser. Most actions on a recording can be completed within

seconds, without the user needing to wait too long before

getting a response.

In terms of features, many participants (43%) find the PDF

import function to be the most useful feature. It is observed

that most participants (97%) have used the feature to import

their slides, allowing them to quickly create the materials for a

recording. Users have also found the sharing functions useful

and easy-to-use.

It is observed that a number of documents (32%) have no

additional drawings/image annotations. As the use of slides

coupled with audio overlay is sufficient to complete the assign-

ment, we suppose that these users do not use the annotation

functions simply because it is not needed to complete the task.

Among those who have tried adding annotations, there

were some who have found it frustrating to use the feature,

particularly those using only a mouse-based input, thus only

use the annotations in a limited way. For users who have tried a

stylus or touch-based input, their rating is split between easy-

to-use and challenging-to-use. We find that most users who

have prior experience with recording solutions that do not have

annotation capabilities (such as Camstudio) are more likely to

indicate a negative experience with annotations.

Many users have suggested non-linear editing of the record-

ings. While we have evaluated the idea of introducing non-

linear editing to ShowNTell, we find that it might be too

technical challenging to implement it in the remaining time

frame, thus we would leave this challenge as a form of future

work that others could take up.

C. Evaluation Conclusions

We find that ShowNTell is a reasonably good implementa-

tion of a browser-based recording solution. However, we find

that most users prefer to use it as a simple recording tool

that overlays audio on top of slides. Nonetheless, we find that

ShowNTell offers sufficient capabilities to act as an eLearning

tool, and thus is capable of satisfying the tasks outlined in

the experiment. There are many possible improvements that

could be done to improve the usefulness of ShowNTell, such

as support for rewriting past recordings.

Most users indicated that ShowNTell is responsive, implying

that our performance optimization techniques and management

of data is adequate for our solution to deliver a responsive

experience within a web browser. Users were able to create

recordings up to 10 minutes or longer, showing that ShowN-

Tell is capable of supporting recordings of sizeable duration.

An Individual educator’s evaluation statement: “The appli-

cation is very good for the modules such as physics and

mathematics which have lots of equations and drawings. I

have used the import pic, free hand drawing and writing

using stylus, highlighting, voice over recording and video

rendering to answer students query. All these features makes

the explanations very clear, with minimum text usage, saves

time to input equations and symbols and brings it to a level

which is comparable to face to face consultations with the

students”.

VI. LIMITATION

As some browsers have not implemented the APIs used by

ShowNTell, the application is not expected to work on all

browsers available in the market. However, as the application

uses standards compliant APIs that are in the W3C draft

specifications, the application will eventually be supported

by browsers in the future that eventually implement those

specifications.

At present, ShowNTell works well on Google Chrome and

Mozilla Firefox. For browsers that only support a subset

of the APIs required by ShowNTell, we may opt to use a

fallback mechanism or simply disable the feature that uses

the API. Due to performance limitations particularly in the

mobile environment, certain techniques such as client-side

compression might not be feasible in practice thus we use

alternative approaches like server-side compression to obtain

a similar result. However, this limitation is expected to ease

with better hardware in the future.

ShowNTell is currently supported on most browsers for

desktop and notebooks, which includes Internet Explorer,

Google Chrome, Mozilla Firefox, and Safari. For Internet

Explorer and Safari, we have taken steps to address the lack

of support for certain APIs by providing a fallback, such as

in the case of audio playback and recording.

On Android, ShowNTell is supported by Google Chrome

and Mozilla Firefox. Among these browsers, we find Google

Chrome to be more stable in performance compared to Firefox.

Other browsers on Android such as the stock browser is not

capable of supporting ShowNTell as it lacks many of the

required APIs needed by many basic functions in ShowNTell.

On iOS, ShowNTell is partially supported by Safari and

Chrome. As there are no browser-based APIs for microphone

access in these browsers on iOS, ShowNTell will not be able

to record any audio on those platforms. Nonetheless, other

features in ShowNTell are still supported, thus users can still

watch documents on these devices.

VII. CONCLUSION

We have found that it is feasible to implement a recording

solution for the web platform that is supported on most web

browsers. We have also presented solutions that can enable a

fairly responsive application even when manipulating sizeable

amounts of data. User studies have indicated that ShowNTell

is comparable to other similar tools in the industry.

Overall ShowNTell works well in providing the features

of a standard whiteboard recording system over the browser,

and provides sufficient features to accomplish the basic re-

quirements for its purposes in E-Learning. As ShowNTell

is supported across multiple platforms and does not require

installation of any software, it poses a low barrier to entry

for students and instructors to use it, making e-learning more

effective. ShowNTell is continuously evolving. Future releases

will include complete video editing and real-time collabora-

tive content editing modules to further enrich the learning

experience.

REFERENCES

[1] ShowNTell, “Showntell,” http://www.sntboard.com/, National University
of Singapore, 2015, (Accessed on Apr 25, 2015).

[2] W3C, “Html canvas 2d context,” http://www.w3.org/TR/2dcontext/,
World Wide Web Consortium, 2014, (Accessed on October 21, 2014).

[3] D. Manh Hung, “Coursemology: A gamified online education platform,”
National University of Singapore, 2012.

[4] T. Xiao, “Coursemology: A gamified online education platform,” Na-
tional University of Singapore, 2013.

[5] K. Haramundanis, “Why use screen captures? an experience report.”
New York, NY, USA: ACM, 2011.

[6] CamStudio, “Camstudio, free screen recording software.” http://
camstudio.org/, CamStudio, 2014, (Accessed on October 21, 2014).

[7] TechSmith, “Camtasia, screen recorder and video editor.” http://www.
techsmith.com/camtasia.html, TechSmith, 2015, (Accessed on March 10,
2015).

[8] OBS, “Open broadcaster software,” https://obsproject.com/, Open
Broadcaster Software, 2015, (Accessed on March 10, 2015).

[9] Microsoft, “Bitblt function (windows),” https://msdn.microsoft.com/
en-us/library/dd183370%28v=vs.85%29.aspx?f=255&MSPPError=
-2147217396, Microsoft, 2015, (Accessed on January 21, 2015).

[10] EyePowerGames, “Ink2go,” http://ink2go.org/, EyePower Games, 2014,
(Accessed on October 21, 2014).

[11] A. Noe, “Avi file format,” http://www.alexander-noe.com/video/
documentation/avi.pdf, 2006, (Accessed on March 10, 2014).

[12] Beepa, “Fraps - real-time video capture and benchmarking,” http://www.
fraps.com/, Beepa Pty Ltd, 2015, (Accessed on March 15, 2015).

[13] Android, “Manifest.permission,” http://developer.android.com/reference/
android/Manifest.permission.html#READ FRAME BUFFER, Google,
2015, (Accessed on March 31, 2015).

[14] ShowMe, “About the showme online learning community,” http://www.
showme.com/about showme/, ShowMe, 2014, (Accessed on October 21,
2014).

[15] MorrisCooke, “Explaineverything,” http://www.morriscooke.com/?p=
134, MorrisCooke, 2014, (Accessed on October 21, 2014).

[16] BigBlueButton, “Overview, bigbluebutton,” http://bigbluebutton.org/,
BigBlueButton, 2015, (Accessed on October 21, 2014).

[17] S. Jobs, “Thoughts on flash,” http://www.apple.com/hotnews/
thoughts-on-flash/, Apple, April 2010, (Accessed on March 31,
2015).

[18] S. Sinosky, “Metro style browsing and plug-in free
html5,” http://blogs.msdn.com/b/b8/archive/2011/09/14/
metro-style-browsing-and-plug-in-free-html5.aspx, Microsoft,
September 2011, (Accessed on March 31, 2015).

[19] Adobe, “Flash to focus on pc browsing and mobile apps; adobe to more
aggressively contribute to html5,” http://blogs.adobe.com/conversations/
2011/11/flash-focus.html, Adobe, November 2011, (Accessed on March
31, 2015).

[20] A. Barstow, J. Kostiainen, Anssi; Rabin, J. Manrique Lopez, M. Lam-
ouri, M. Caceres, F. Daoust, and R. Cremin, “Standards for web
applications on mobile: current state and roadmap,” pp. 5,11–13,28,48,
2014, (Accessed on March 10, 2015).

[21] W3C, “Media capture and streams,” https://w3c.github.io/
mediacapture-main/getusermedia.html, World Wide Web Consortium,
2014, (Accessed on March 29, 2015).

[22] M. Taylor, “Lame technical faq,” http://lame.sourceforge.net/tech-FAQ.
txt, June 2000, (Accessed on March 10, 2015).

[23] libav, “Open source audio and video processing tools,” https://libav.org/,
libav, 2015, (Accessed on March 15, 2015).

[24] K. Peter, Foundation ActionScript 3.0 animation: making things move.
New York: Apress, 2007.

[25] H. Akima, “A new method of interpolation and smooth curve fitting
based on local procedures.” New York, NY, USA: ACM, October
1970.

[26] R. Sears, C. Van Ingen, and J. Gray, “To blob or not to blob: Large
object storage in a database or a filesystem.” Microsoft, 2006.

[27] ”NUS”, “Integrated virtual learning environment,” https://ivle.nus.edu.
sg/, National University of Singapore, 2015, (Accessed on Apr 26,
2015).

[28] ImageMagick, “Imagemagick: Convert, edit, or compose bitmap im-
ages,” http://www.imagemagick.org/, ImageMagick, 2015, (Accessed on
March 15, 2015).

