
Gamelets - Multiplayer Mobile Games with Distributed Micro-Clouds

Bhojan Anand, Aw Jia Hao Edwin
School of Computing, National University of Singapore

email: banand@comp.nus.edu.sg, faets@live.com.sg

Abstract—In recent years, cloud computing services have been
increasing in greater pace. High penetration rate of mobile
devices and resource limited devices escalate the demand for
cloud services further [1], [2]. Even though the cloud industry
continues to grow exponentially, the cloud gaming service has
been left behind due to the limitations in today’s technology.
There are three well known reasons for the slower growth -
latency, server scalability (esp. bandwidth) and lack of game data
at client side to use latency hiding and synchronisation techniques
such as Dead-reckoning. In this paper, we propose a novel
distributed micro-cloud infrastructure with a next generation
device called Gamelet to mitigate the limitations in traditional
cloud system for multiplayer cloud gaming on resource limited
mobile devices. The paper also investigates the opportunities,
issues and possible solutions for Gamelet infrastructure for
mobile games with a demonstrable prototype.

I. INTRODUCTION

Cloud computing conventionally follows three fundamental
models, Infrastructure as a Service(IaaS) , Platform as a
Service (PaaS) and Software as a Service (SaaS). At present,
although it is still a relatively young, cloud computing has
proven to be a very welcomed system, with revenue from
Software-as-a-Service (SaaS) alone reached an astonishing
$14.5 billion in 2012 [3] and forecasted to grow five times
faster than traditional software packages [4].

Lately games have also started to make an appearance
into the cloud scene with Games on Demand (GoD) which
has tapped onto the SaaS type of cloud technology. A cloud
gaming system must collect a player’s actions, transmit them
to the cloud server, process the action, render the results,
encode the resulting changes to the game world, compress,
and stream the video (game scenes) back to the player. To
ensure interactivity, all of these serial operations must happen
within milliseconds. Intuitively, this amount of time, which
is defined as interaction delay, must be kept as short as
possible in order to provide a rich Quality of Experience
(QoE) to cloud game players. This latency should be less than
100ms for FPS games, 500ms for RPG games and 1000ms
for RTS games [5]. This makes cloud gaming one of the most
challenging multimedia application. There are two distinct
methods used by cloud gaming services in general. In the
first method, the game is played on a virtual machine and
the rendered results are compressed and streamed. In the
second method, streaming is built-in into the game itself.
However, these conventional cloud gaming approaches suffer
from three fundamental issues - latency [5], server scalability
(in terms of bandwidth, computation, memory) and lack of
game data and game knowledge at the client side to use latency
hiding and synchronisation techniques such as Dead-reckoning
[6] and Local Perception Filters [7] for smooth gameplay.

While traditional client/server games are extensively relying
on various latency hiding techniques to provide good multi-
player gaming experience, current Cloud games system makes
these techniques hard to use, despite introducing additional
latency for cloud processing and encoding. Although the
rendering and encoding latency will likely fall with faster
hardware encoders, a significant portion of network latency
is unavoidable as it is bounded by the speed of light in fibre
[8].

In this work, we aim to improve performance of Cloud
games for resource limited mobile devices and alleviate chal-
lenges faced by game developers, by proposing the devel-
opment of a next generation infrastructure called Gamelet
system. Gamelet system is basically a distributed micro-
cloud system in which the computational intensive tasks are
offloaded to a Gamelet node that is few hops (most of the time
one or two hops) away from the mobile client. With Gamelets
the bandwidth and processing requirement of a game server
(which may be running in traditional Cloud system) will be
same as traditional game servers while the benefits of cloud
system can be availed.

II. RELATED WORKS AND MOTIVATIONS

There are two distinct methods used by cloud gaming ser-
vices in general. The first method, which is more conventional
SaaS, consists of remote gaming on virtual machines and
streaming the viewport of the virtual machine to the users.
Users are granted their own game cloud, which stores all the
games they have access to. This allows users who access
to a large set of games on their game clouds and users
can play from any location with a good connection with
the providers central servers. This approach, which has been
implemented by cloud gaming giants like Gaikai, has been
growing in popularity over the past years in locations, which
it is supported. Gaikai currently owns a Guinness world record
of fifty million gamers per month 1.

The main disadvantage to this approach is the need to be in
relatively close proximity from the provider’s central servers
[9]. Consumers, who are further away, will either be affected
by much higher latency making most games intolerable, or will
be prohibited from connecting to the server. Thus, global use
of this type of systems will require the introduction of servers
in a large number of regions, making it cost inefficient [10].
With cellular networks network latency goes up to 200ms [5]
even with very close proximity and these mobile clients are
completely eliminated from playing Cloud games.

1http://www.gaikai.com/

bhojan
Text Box
IEEE-ISPN Seventh International Conference on Mobile Computing and Ubiquitous Networking (ICMU), Singapore 2014

IEEE-ISPN Seventh International Conference on Mobile Computing and Ubiquitous Networking (ICMU), Singapore 2014

The second method is to have the streaming technology
built into games. For convenience sake, we will call the games
developed this way ’pure cloud games’. Pure cloud games are
usually played on a browser. Users connect to game servers
on their browsers and are fed a stream (video/image) of what
is happening in the game. This method is supported by a large
array of devices and has been extremely successful on social
media platforms such as Facebook [11]. The current problem
with this approach is the genre of games that can be played is
greatly limited. At present, only games, which are not affected
by high latency and delays such as turn-based games, can
effectively market on this approach. This heavily limits the
types of games, which can be developed on this paradigm.

Apart from latency, in both methods server scalability is
affected due to high bandwidth (also, processor and memory)
requirement to stream image/video instead of small game
update packets of traditional client/server games. In addition,
with cloud based games the client is just a video/image render-
ing and UI device and it cannot run additional algorithms to
hide latency as the game data is not available at the client side.
We introduce Gamelet system to mitigate these drawbacks.

Distributed Rendering: There are several solutions to dis-
tributed rendering, with the most prominent one being, di-
viding a viewport into multiple sections and rendering each
section in parallel using a different core, processor, graphic
card, or device. Figure 1 illustrates how the rendering is
divided into sections by Digipede’s [12] parallel rendering so-
lution. On the left, the entire viewport is rendered sequentially
using only one device. On the right, the viewport is broken
down into 25 sections and rendered in parallel on multiple
devices, increasing the speed of rendering exponentially as
more devices are dedicated to it.

Fig. 1. Distributed Rendering via Parallel Processing

III. GAMELET VISION & CHALLENGES

Gamelet is a minimal-set hardware required to run, render
and stream 3D games placed in the same local network or
few hops (most of the time one or two hops) away from
the mobile client. Adjacent Gamelets running the same game
can communicate with each other for information sharing and
distributed rendering for increased efficiency. Gamelets run
client portion of the game with conventional latency hiding

Fig. 2. Gamelet Communication Structure

and synchronising techniques such as Dead-reckoning [6] and
Local Perception Filtering [7] to provide good QoE.

The Gamelet is designed to take over the rendering task
from game cloud servers.The Gamelet can process the players’
actions and give players immediate feedback, which helps to
mask the latency between the Gamelet and the central game
servers where the players’ actions are processed. The image or
video are streamed only in the local wireless network which
means each user will be able to receive a larger dedicated
bandwidth, without incurring larger Internet costs. In addition
it reduces the transmission time of the image/video frame and
improves network latency.

We envision Gamelet as a modified version of today’s ever-
common public WiFi access points with some additional hard-
ware (Figure 2). However, Gamelet can be separate hardware
connected to the local wireless network access points or power
full peer game client rendering for itself and other players. For
example, a Gamelet can be a common processing box in the
home network which can stream game to multiple devices in
the home. Proposed basic hardware includes: Processing Unit,
RAM , Graphics Card, Flash Drive (For lightweight operating
system).

1) Deployment: Gamelets can be deployed and managed
by third party (not the game developers) service providers to
provide subscription based value added service to their clients.
For example, public/private WiFi service provider (shopping
complex, airport lounge or coffee shop management). The
mobile client playing the streamed game can be very thin
with a capability to play the video stream provided by the
Gamelet and transfer the user inputs to the Gamelet. In an
extreme case the client player can be simply a display or
projector device with some interface for human interaction
(eg. touch sensors or hand movement sensors). For example,
the game can be simply projected on the wall and the player
can play by directly manipulating (with hand/finger sensor) the
displayed contents. The Gamelet system can provide resource
adaptive resolution. For example, a power full Gamelet or
set of connected Gamelets can provide resolution beyond the
mobile screen resolution for big displays adaptively depending
on the amount of free resources they have.

2) Key Challenges of the Gamelet System: Overall, the
Gamelet system looks very interesting and promising solution

Bhojan Anand, Aw Jia Hao Edwin 2

IEEE-ISPN Seventh International Conference on Mobile Computing and Ubiquitous Networking (ICMU), Singapore 2014

to improve the efficiency of cloud games. However, the system
has some key challenges. The challenges and our initial
solutions are given below.

• Zone Distribution. 3D games of today require a lot of
data to run. The average size of present day 3D games is
approximately 5 Gbytes. For example, the recommended
system configuration for Battlefield 3, a highly popular
FPS game is 4 GB RAM and 20 GB storage space [5].
Hence, the gamelet may not be able to host more than a
1-2 games. Also, it takes up to 56 minutes to download
a game, assuming 1.5 Mbps bandwidth. We address this
by dividing the game world and game resources to zones.
Each Gamelet download the zone in which its client is
playing. In addition, adjacent Gamelets holding different
zones share the rendered data to improve efficiency. For
example, if two players are playing different zones in
a game served by adjacent Gamelets and they swap
zones, the rendered zone data will be exchanged between
Gamelets instead of downloading and rendering again.

• Distributed Rendering. 3D computer graphics improves
rapidly over time, how will the Gamelet prevent itself
from becoming obsolete too quickly? Distributed render-
ing helps to slow down the process of obsoleting. By
exploiting the interconnectivity between Gamelets, pow-
erful adjacent Gamelets can provide rendering assistant
to old less powerful ones.

• Security. The biggest challenge is security, loss of cen-
tralised control and cheating. This is not new, the problem
is similar to traditional client/server games and there
are significant amount of research to address most of
the issues [13][14][15]. In fact, the problem can be
minimised - the problems should be handled only up to
Gamelet tire not up to the client device level.

• Content Based Adaptive Streaming. Unlike video stream-
ing, games have strict realtime constraints and hence more
effective and faster compression and encoding algorithms
required to minimise bandwidth requirement per client
while improving the end-user interaction latency and
QoE. In addition to the use of state-of-the art image/video
compression and encoding techniques, we have designed
Content Based Adaptive Streaming (CBAS) which ex-
ploits the properties of the Game content to reduce the
bandwidth usage further. For example, static game regions
are streamed at a lower frame rate.

We have developed a basic prototype to test and evaluate.
The proposed system opens up huge set of research challenges
(listed in Section VI) for large scale implementation, some
of which are also discussed below.

IV. IMPLEMENTATION

A. Zone distribution
Zone distribution divides the game world into a graph of

nodes. Each zone consists of all the information required for
a user to play the game in his specific zone. This includes
the player’s character models, skybox, terrain map and others
(Figure 3). Zone size is determined based on the following

factors: 1) Time to download the zone; 2) Time to load
the zone. Zone division procedure is given in Algorithm 1
and Figure 4 visually depicts the procedure. We can resize
the Zones dynamically based on network conditions by run-
ning the algorithm periodically. Zone request is processed as
follows by each Gamelet: 1)When user’s camera enters the
boundary (Figure 5) of the new zone a ’request to download’
is issued; 2) When the user’s far clip plane enters a new zone
a ’request to load’ is issued.

Fig. 3. Zones and what they contain

Algorithm 1 Game World Division
input: α = Estimated worst case RTT
input: β = Estimated worst case bandwidth per user
input: µ = Desired worst case total download time

maxZoneSize = β(µ + α)
Divide map into 4 zones over x,z axis about origin
if objects centre lie on the axis itself then

distribute to either side of axis based on how many
objects on either side
end if
Push zones into queue
while queue not empty do

Current zone = Pop top of queue
if Current zone size > maxZoneSize then

Subdivide zone by 4 again
Push all 4 zones back into queue

end if
end while

Finding Boundaries: Boundaries are the places in the world
which prompts the game to request additional game data for
downloading. The game will prompt a new zone download
when the player’s far clip camera enters the boundary area.
The algorithm (Algorithm 2) to find boundaries is quite simple
and is called after the zones are divided. With this algorithm,
we ensure that a zone is fully downloaded by the time the
player camera can render it.

Bhojan Anand, Aw Jia Hao Edwin 3

IEEE-ISPN Seventh International Conference on Mobile Computing and Ubiquitous Networking (ICMU), Singapore 2014

Fig. 4. Zone Division (Visual illustration)

Fig. 5. Zone Division - Zone Boundary

B. Distributed Rendering
Most distributed rendering frameworks build on two primary

modules: the Real-Time Scene Graph (RTSG) [16] and the
Network-Integrated Multimedia Middleware (NMM) [17].
And at present all of the top used game engines (Unity [18],
Unreal [19], RAGE [20] , cryENGINE [21]) do not have
the NMM layer, and do not allow developer access to the
RTSG layer so developers are not able to implement their
own NMM layers. Games today are developed in a way
that they can be rendered at a playable frame rate on the
minimum hardware specifications of the game, so there is little
motivation in investing in developing a distributed rendering
system. Thus, this paradigm of distributed rendering is not
usable if a developer chooses to use a game engine to develop
his game.

Although the RTSG layer of the development architecture
cannot be accessed by game developers developing on game
engines, there still exists a unique workaround catered specif-
ically for the Gamelet. Distributed rendering can still be done

Algorithm 2 Finding Boundaries
input: µ = Desired worst case total download time
input: φ = Player far clip plane distance
input: ω = Distance player covers in 1 second of movement
in game

for all zones do
BoundarySize == φ + ω / µ)
Propagate zone edges and boundary size to all neigh-

bouring zones
end for

by reducing the workload on one Gamelet rendering engine
and increasing the workload on another, without accessing the
RTSG layer. We reduce the camera view area, use more cam-
eras and then render each camera view in different Gamelet.
By decreasing the view of a camera, we indirectly decrease the
workload of the rendering engine (refer Table II). Compression
time for rendered images decreases linearly. We call this
method as Multi-Camera Distributed Rendering (MCDR).
C. Multi-Camera Distributed Rendering (MCDR)

There are two ways to do multi-camera distributed render-
ing. We will discuss them shortly here.

1) Rotating Camera: The concept of rotating the camera is
very simple, by reducing its aspect ratio the camera naturally
renders a smaller number of pixels so the individual work
done on a gamelet is reduced. The missing pixels are then
rendered by assisting gamelet with cameras positioned at
the same location but rotated in the direction of the missing
pixels (Figure 6). This method however, does not provide
a perspectively correct image. This is due to the fact that
the near and far clip planes on the cameras view frustums
are not aligned between all rendering units. The result of
rendering using this method is an inverted fish eye view of
the world. While objects which are far away seem to be
rendered correctly, once the objects are moved closer to the
near clip plane, the inverted fish eye effect becomes instantly
distinct (Figure 7). So this method can’t be used.

Fig. 6. Illustration of rotating cameras

2) Reshaping the view frustum: The most appropriate way
to perform multi camera distributed rendering is by reshaping
the view frustum. This can be done and synchronised across
game worlds by setting up a camera with the same settings as

Bhojan Anand, Aw Jia Hao Edwin 4

IEEE-ISPN Seventh International Conference on Mobile Computing and Ubiquitous Networking (ICMU), Singapore 2014

Fig. 7. 3D illustration of fish eye view on objects near and far

the original camera (not distributed), which means same aspect
ratio, near and far clip planes (Figure 8). And by manipulating
the location which the side clip planes intersect the near clip
plane, you will be able to render the exact same image as
the original camera at the same aspect ratio across multiple
cameras.

Fig. 8. Perspectively correct multi camera rendering

D. Content Based Adaptive Streaming

CBAS (Content Based Adaptive Streaming) uses the fol-
lowing techniques to reduce the bandwidth requirement per
client. Based on our analysis, in most of the popular Games
about 30% of the display is used for in-game HUD (Head-up-
Displays). HUDs display the player’s vital information such
as health, ammo and equipment (Figure 9). As HUD area is
relatively static, we stream this area at much lower rate. For
example, 5-8 frames per second instead of usual 25-30 frames
per second. Similarly, when the player is not doing any action
and his view is static, we stream the player’s background much
lower frame rate. This background area, called as Non-key
region, is shown in Figure 10. In addition, when game state
is not important (for example, player is in idle state or slowly
moving state and no other players around him to interact),
we stream the game in lower rate 15-20 frames per second.
Our previous works list several techniques for identifying the
importance of game state [22][23][24][25]. The game state is
computed at the game server. Study on trade-off in computing
game state and its benefits in Gamelet system are deferred to
future work.

Fig. 9. In-game HuD area

Fig. 10. Background region outside the red box (Non-key region)

E. Selecting Adjacent Gamelet
Adjacent Gamelet are selected for rendering assistance

based on three key parameters, network latency, rendering
latency and expected frame rate. At least 25 fps is required
for fluidity of the game play. Hence, the maximum rendering
latency is fixed to 1

25 s which is 40 ms. Which means the
Gamelet should send data to adjacent helping Gamelet, get
it rendered by the helper and receive back the rendered
data within 40 ms. Each Gamelet continuously maintain a
neighbour list of adjacent Gamelet which satisfy this latency
constraint. Gamelet will get their initial list from the Game
server which filters the gamelet based on IP-to-geo location
mapping. Individual Gamelet use this initial list to build their
adjacency list based on round-trip latency to other Gamelet in
the list. Alternatively, to keep it simple, the adjacent Gamelet
search can be restricted to same subnet.

V. EVALUATION

We developed a test game on the architecture of the
Gamelet system and focused our tests on zone distribution
and distributed rendering. Due to lack of space, we present
evaluations with respect to processing efficiency, bandwidth
requirements and user perception of the Gamelet system.

1) Bandwidth: Bandwidth requirement for streaming im-
ages from Gamelet to mobile client (resolution: 800x480
WVGA) is around 1 to 3 Mbps after state-of-the-art com-
pression with CBAS. Efficiency of CBAS depends on the
size of the HuD and player’s state (eg. idle and static view).
Table I shows performance of a CBAS algorithm on an
uncompressed game screen shot. Though there is an average
of 3ms to 5ms processing overhead introduced by CBAS, it
reduces bandwidth requirement effectively. (Note: If the game

Bhojan Anand, Aw Jia Hao Edwin 5

IEEE-ISPN Seventh International Conference on Mobile Computing and Ubiquitous Networking (ICMU), Singapore 2014

is streamed at 25 frames per second and the HuD area is
streamed at 5 frames per second, effectively HuD transmission
is removed from 20 game frames.)
With 1 to 3 Mbps per client, up to five clients can be supported
per access point over 11 Mbps 802.11b networks. However,
the bandwidth to send game update (20 updates per second
each 6̃0 bytes) from game server to a Gamelet is less than
9.6 Kbps. If we use conventional cloud game system this
server bandwidth will escalate up to 3 Mbps per client which
severely affects the scalability of the server. However, when
there more than 2 clients connected to a Gamelet and if there is
no helper Gamelets nearby, the frame rate drops significantly.
This can be mitigated with increasing the configuration of
the Gamelet, installing more Gamelets for peer assistance or
hosting a Gamelet process in one or more powerful game
clients.

TABLE I
CBAS COMPRESSION AND OVERHEADS ON AN UNCOMPRESSED GAME

SCREEN SHOT (AVERAGE VALUES)

Process Overhead Data size reduction
In-Game HUD Removal 3ms 17%
Non-Key Region Removal 5ms 78%

2) Processing Efficiency: We used windows task manager
to measure CPU usage. GPU performance was recorded using
MSI Afterburner version 2.3.1. In each run for measurement,
the user took the same route through the game and looks
at the same objects. He then comes to a stop and allows
the hardware monitors to level off to determine the average
CPU & GPU usage. The data in Table II shows that multi-
camera distributed rendering reduces the amount of work load
required by the main rendering gamelet and the net workload
is approximately the same. While CPU data remains mostly
the same in both cases and on the render assistant, the GPU
usage decreases linearly as the number of pixels to render
decreases. The marginal increase in CPU usage in cases 2,3
and 4 are attributed to the communication overhead with
adjacent Gamelets.

TABLE II
AVERAGE CPU & GPU USAGE

Case No. Size CPU GPU
1 Rendering full screen 13% 81%
2 Rendering half screen 14% 37%
3 Rendering half screen for another Gamelet 14% 38%
4 Rendering 1/6 of the screen 14% 26%

3) User Perception: To evaluate the user perception we
conducted a small scale user study with seven undergraduate
students. We set the network latency between game server and
Gamelet to 120ms (above the acceptable latency of 100ms)
and 200ms. Game server was run in a computer connected
to our school’s campus network, the Gamelets and clients
were connected to two randomly selected WiFi access points
of the campus wireless network. Users played the traditional
client/server version of our custom developed 3D survival
game called Garden of Eden for first 20 minutes to understand
the game, learn the game mechanics and have a feel of the best

possible version (non-cloud based). We assisted and trained
them during this period.

After initial training, the users played different variants of
the game to evaluate. There were five variants with different
number of Gamelets to render for a client. The variants are
presented to the users in random order. The client side code
of the game simply gets the compressed stream from the
Gamelet and uncompresses it to display. In addition, it captures
all the user actions. We have developed Laptop, iPad and
Samrtphone (Android) version of the client for evaluating. It
is a multiplayer game. We used a mix of Laptops and iPads
for each round in the user study. (A demo of the game with
Gamelet concept is available in Youtube [26]).

The users were asked to look for artefacts (latency, jitter,
visual quality, etc) if any and give a score for each version
using 5-point Likert scale. The results are shown in Figure 11.
Note: Gamelets = zero indicates pure cloud game (rendering
is done in the game server itself). The Gamelet version of the
game used ’dead reckoning’ to hide latency. The pure cloud
version assumes dump client. The client can only display the
streamed images and capture user interactions. Initial results
are encouraging. Gamelet system performs better than pure
cloud based system especially when the delay is high. Hence,
we claim Gamelets are good for multiplayer games over delay
and loss prone wireless networks. However, when number
of Gamelets are increased, the quality drops due to content
synchronisation errors. We defer further work on improving
synchronisation mechanism to future.

Very	 	
No(ceable	

No(ceable	

Barely	 	
No(ceable	

Unno(ceable	

No	 difference	

Number	 of	 Gamelet	 nodes	

1	

2	

3	

4	

5	

4	 2	 1	 0	 8	

120ms	 Latency	

200ms	 Latency	

Fig. 11. User Study Scores

VI. DISCUSSION AND FUTURE WORK

Though the system works very well, there are two key lim-
itations in distributed rendering part. The first limitation is the
zone handling overhead. A constant additional computational
load is added on the Gamelet due to the constant addition and
removal of zones. This can be reduced by using appropriate
zone size. We defer map and game genre based zone size
optimisation to future work.

The second limitation is that the zones are downloaded with
a predictive method. This means a user playing in the game
world close to multiple boundaries will trigger the download
of several zones that he might not require at all. In the worst

Bhojan Anand, Aw Jia Hao Edwin 6

IEEE-ISPN Seventh International Conference on Mobile Computing and Ubiquitous Networking (ICMU), Singapore 2014

case scenario a user may be playing in an area with several
overlapping boundaries, which in turn means he will download
several additional zone data that fills up the Gamelet’s memory
for nothing. This may lead to the gamelet invoking peer
assistance for rendering due to its inability to further download
zone data. However, this case should only occur if the whole
game consists of dense amounts of high polygon count models.
Thus, good game programming practices can mitigate this
limitation.

Our short user study is conducted with small group of
student users in well controlled lab environments. We are
planning to do a large scale user study with general public
game players to study various other dynamics of the Gamelet
system in detail.

Our proposal opens-up various research challenges in-
cluding classical argument of distributed vs centralised con-
trol, synchronisation of Gamelets, compression techniques,
security, Gamelet node trust, fairness of the game play
(eg. connecting to powerful Gamelet vs average Gamelet
node), mobility of players, dynamic zone resizing, energy
efficiency [27] [28], overheads, resource provisioning and
resource accountability. We plan to progressively address these
challenges in our future works.

VII. CONCLUSION
In this paper we have made a first attempt for a distributed

micro-cloud infrastructure with a next generation conceptual
device called the Gamelet, which can be a separate device or
integrated with the current wireless access point or a powerful
game client to improve the performance and decrease the
limitations faced by cloud game Industry. Key advantages
over pure cloud games are: decreased latency, possibilities
for latency hiding and synchronisation techniques, increased
server scalability (esp. bandwidth). We strongly believe that
Gamelet system and its variations will push the Cloud game
Industry (especially, massively multiplayer mobile games)
to next level. We sincerely thank Chong Ming Xun, Ngin
Guan Wei Brain and Lee Tai Yun for their great help in
implementing and testing the prototype game. Our special
thanks to Yong U-Wern Justin for implementing content based
adaptive streaming.

REFERENCES

[1] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile
cloud computing: architecture, applications, and approaches,” Wireless
Communications and Mobile Computing, 2011. [Online]. Available:
http://dx.doi.org/10.1002/wcm.1203

[2] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing: A
survey,” Future Gener. Comput. Syst., vol. 29, no. 1, pp. 84–106, Jan.
2013. [Online]. Available: http://dx.doi.org/10.1016/j.future.2012.05.023

[3] C. Pettey, “Saas revenue to reach $14.5 billion in 2012,” http://www.
gartner.com/newsroom/id/1963815, Gartner, Mar. retrieved 2013.

[4] IDC, “Saas revenue to grow five times faster than traditional packaged
software through 2014,” http://www.idc.com/about/viewpressrelease.jsp?
containerId=prUS22431810§ionId=null&elementId, IDC, Jun. re-
trieved 2013.

[5] R. Shea, J. Liu, E.-H. Ngai, and Y. Cui, “Cloud gaming: architecture
and performance,” Network, IEEE, vol. 27, no. 4, pp. 16–21, 2013.

[6] L. Pantel and L. C. Wolf, “On the suitability of dead reckoning schemes
for games,” in Proceedings of the NetGames, ser. NetGames ’02.
New York, NY, USA: ACM, 2002, pp. 79–84. [Online]. Available:
http://doi.acm.org/10.1145/566500.566512

[7] P. Sharkey, M. Ryan, and D. Roberts, “A local perception filter for
distributed virtual environments,” in Virtual Reality Annual International
Symposium, 1998. Proceedings., IEEE 1998, 1998.

[8] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” Pervasive Computing, IEEE,
vol. 8, no. 4, pp. 14–23, 2009.

[9] K.-T. Chen, Y.-C. Chang, P.-H. Tseng, C.-Y. Huang, and C.-L. Lei,
“Measuring the latency of cloud gaming systems,” in Proceedings of
the 19th ACM international conference on Multimedia, ser. MM ’11.
New York, NY, USA: ACM, 2011, pp. 1269–1272. [Online]. Available:
http://doi.acm.org/10.1145/2072298.2071991

[10] D. Perry, “Why sony chose gaikai over onlive,” http://www.gamestm.
co.uk/discuss/why-sony-choose-gaikai-over-onlive/, gamestm, Jun. re-
trieved 2013.

[11] J. Cox, “Zynga grows to #1 social gaming site with rightscale,” http:
//www.rightscale.com, rightscale, Jun. retrieved 2013.

[12] IDC, “The digipede framework sdk whitepaper,” http://www.digipede.
net/downloads/Digipede SDK Whitepaper.pdf, Digipede Technologies,
Jun. retrieved 2013.

[13] J. Goodman and C. Verbrugge, “A peer auditing scheme for cheat
elimination in mmogs,” in Proceedings of the ACM Netgames, ser.
NetGames ’08. NY, USA: ACM, 2008.

[14] W.-c. Feng, E. Kaiser, and T. Schluessler, “Stealth measurements for
cheat detection in on-line games,” in Proceedings of the Netgames, ser.
NetGames ’08. NY, USA: ACM, 2008.

[15] H. K. Stensland, M. O. Myrseth, C. Griwodz, and P. Halvorsen, “Cheat
detection processing: a gpu versus cpu comparison,” in Proceedings of
the Netgames, ser. NetGames ’10. Piscataway, NJ, USA: IEEE Press,
2010.

[16] D. Rubinstein, I. Georgiev, B. Schug, and P. Slusallek, “RTSG: Ray
Tracing for X3D via a Flexible Rendering Framework,” in Proceedings
of the 14th International Conference on Web3D Technology 2009
(Web3D Symposium ’09). New York, NY, USA: ACM, 2009, pp. 43–50.

[17] M. Lohse and M. Gmbh, “Network-integrated multimedia middleware,
services, and applications,” 2007.

[18] Unity, “Unity game engine,” http://unity3d.com/, Unity Technologies,
Jun. retrieved 2013.

[19] EpicGames, “Unreal game engine,” http://www.unrealengine.com/, Epic
Games, Inc., Jun. retrieved 2013.

[20] Rockstar, “Rockstar advanced game engine,” www.rockstargames.com,
RAGE Technology Group, Rockstar San Diego, Jun. retrieved 2013.

[21] CRYTEK, “CryENGINE,” http://www.crytek.com/cryengine, CRYTEK,
Jun. retrieved 2013.

[22] B. Anand, Z. Qiang, and A. L. Ananda, “Energy efficient multi-
player smartphone gaming using 3d spatial subdivisioning and pvs
techniques,” in Proceedings of the 21th ACM International Conference
on Multimedia, IMMPD, Barcelona, Spain, Oct. 2013.

[23] B. Anand, K. Thirugnanam, L. T. Long, D. D. Pham, A. L. Ananda,
R. K. Balan, and M. C. Chan, “Arivu: Power-aware middleware for
multiplayer mobile games,” in Proceedings of the Ninth IEEE NetGames,
Teipei, Taiwan, Nov. 2010.

[24] A. Bhojan, A. Akhihebbal, M. Chan, and R. Balan, “Arivu: Making
networked mobile games green,” Mobile Networks and Applications,
pp. 1–8, may 2011, 10.1007/s11036-011-0312-8. [Online]. Available:
http://dx.doi.org/10.1007/s11036-011-0312-8

[25] B. Anand, A. L. Ananda, M. C. Chan, L. T. Long, and R. K. Balan,
“Game action based power management for multiplayer online games,”
in Proceedings of the 1st ACM SIGCOMM Workshop on Networking,
Systems, and Applications on Mobile Handhelds (MobiHeld), Barcelona,
Spain, Aug. 2009.

[26] DEMO: Gamelets - Multiplayer Mobile Games with Distributed Micro-
Clouds, http://www.comp.nus.edu.sg/∼bhojan/gamelets/index.html, Na-
tional University of Singapore, 2013.

[27] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” Computer, vol. 43, no. 4, pp. 51–
56, 2010.

[28] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in MobiSys’10, 2010.

Bhojan Anand, Aw Jia Hao Edwin 7

