
Konva: Power and Network Aware Framework and
Protocols for Multiplayer Mobile Games

Bhojan Anand

National University of Singapore

ABSTRACT

Multiplayer mobile games are an increasingly important class of

mobile application. While device features and application quality

are rapidly growing, the battery technologies are not growing at

the same pace. Battery lifetime is one of the key factors that

hinder the usability of the mobile devices for resource-intensive

applications. In this work, we design a framework for power

management that adapts its behavior to the intent of the user and

the game, the characteristics of the network and the network

interface. Our system is being designed to reduce the overall

device power usage without sacrificing the end-user game

experience.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Wireless

Communication; C.2.2 [Network Protocols]: Applications; C.2.4

[Distributed Systems]: Client/Server; K.8.0 [General]: Games.

General Terms

Algorithms, Management, Measurement, Performance, Design,

Security, Human Factors.

Keywords

Mobile games, wireless networks, power management, statistical

prediction, transport protocol, gamelet.

1. SYSTEM ARCHITECTURE
Our system‟s architecture is depicted the Figure 1. We envision a

three-tier architecture comprising of wireless game clients (cell

phones), game servers (highly provisioned back-end servers), and

access point proxies (used to isolate the effect of poor wireless

latencies from the game player).

The consistency manager is used to maintain game server state

between multiple game servers and the proxies. The network

manger is used between the wireless clients and the proxies to

provide the most optimized wireless connectivity for the required

energy profile (proxy might choose to switch to higher latency

lower power Bluetooth over 802.11g for a specific client for

example). Finally, the resource manager is responsible for

monitoring the current resource conditions and for deciding on the

appropriate energy conservation techniques that achieve the best

savings without impacting the end user experience. The resource

manager will use different inputs and algorithms on the three

different components. For example, the client resource manager

will obtain inputs directly from the mobile phone‟s battery and

use CPU and network throttling to achieve power savings while

the server‟s resource manager will collaborate with the proxy to

reduce the network bandwidth to resource constrained clients.

Figure 1 Top-Level System Architecture

2. CLIENT POWER MANAGEMENT
The client‟s resource manager, shown in Figure 2, collects and

maintains data about the hardware status (WNIC mode, Battery

Level, CPU frequency) and the client-server connectivity

(Latency, Estimated bandwidth, Connectivity).

The resource manager computes a State Index for each game

frame ‘i’ using a combination of Action Data (what the player is

doing), Interest Data (what the player is interacting with and his

environment), Network Status and Power Status. This Index is

used to determine the appropriate power conservation technique to

use that best matches the current power and latency requirements.

In particular, the resource manager can change the CPU

frequency, display intensity, the network traffic sending rate, the

type of connection (Bluetooth, WiFi, reliable, etc.), and the

network interface power mode (sleep, etc.).

Figure 2 Information Flow for Resource Management

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

HotMobile 2010, February 22–23, 2010, Annapolis, Maryland,USA.

Copyright 2010 ACM 978-1-4503-0005-6/10/02...$5.00.

We use input from the game (Action Data and Interest Data) to

ensure that our optimizations do not impact the end-user game

experience. For example, during highly interactive game

moments, we do not trigger more aggressive power saving modes.

Our previous works [1] shows that, by learning the game actions

(Action Data) alone we can save significant amount of power by

preserving quality.

2.1 LEARNING GAME ACTIONS
The client‟s resource manager uses the current game state to

trigger specific actions. We obtain these states by augmenting the

game API as this is easier and more accurate than sniffing the

game packets indirectly. We have developed this API extension to

be easy to add to existing game engines. For example, for RPG

games the following functions are defined to learn about the

overall game state.

Action Data @ Game Client: setPlayerAction(int Action);

setFrameValidityThreshold(int fvThreshold);

Interest Data @ Game Server: setPlayerLocation(Boolean

Hostility, int Type); setProximity(int Number, int Distance);

setInteraction(Boolean Intract);setProximityInAngle(int Number,

int Distance); setViewField(int Type);

setExtrapolationThreshold(int drThreshold);

We define a set of common action for each genre of game after

studying several games in the same genre. For RPG games the

following actions are defined: Action.IDLE, Action.ATTACK,

Action.MOVING, Action.MENU_ACCESS, Action.DEAD,

Action.CHAT, Action.TRADING and

Action.ITEM_INTERACTION.

2.2 LEARNING INTEREST DATA
The game server will compute the Interest Data for each client

connected and sends a single Interest Index value to the client‟s

resource manager for making power management decisions. The

Interest Data [2] is computed based on the following parameters:

Proximity to other players and AI characters; Location of the

player; Player’s interaction with other players and environmental

objects; Player’s viewing angle and view field.

These parameter values can be directly sent to the client but, it

will result in security/cheating risk. Encrypting these data will

create additional computational overhead to the client which in

turn will defeat the purpose (saving power). Furthermore,

evaluating these parameters and analyzing the environment at the

server side will reduce the computations required at client side.

2.3 POWER AWARE GAME TRANSPORT

PROTOCOL (PAGTP)
Online games require multiple streams of different types in single

association (using one socket pair) to each client: reliable ordered

streams, reliable unordered streams, partially reliable streams and

unreliable streams. After initial evaluations of current

transmission protocols – TCP [5], UDP [4], DCCP based [8] and

SCTP[6], SCTP and its variation PR-SCTP [7] looks more

suitable for online games. Our PAGTP acquires knowledge about

the Game State and Hardware State from the Resource Manager

and manages the transport queues according to the current power

saving mode. PAGTP can be implemented on top of SCTP.

However, for the following reasons we have implemented it as a

separate transport protocol suitable for resource constrained

mobile environments.

- SCTP is basically a connection oriented protocol and offers

unreliable service with unnecessary additional overheads.

For eg., a typical packet which contains data and

acknowledgement, takes at least 44 bytes overhead for SCTP

headers. Since most game packets are less than 32 bytes,

more than half of the packet contains non-data and this

makes SCTP very inefficient. Most of the traffic a game

generates is for unreliable delivery and only a few for

reliable delivery. SCTP is only suitable for traffic which

needs mostly reliable delivery with few packets for

unreliable delivery.

- SCTP do not support intermittent connection failures which

are common in mobile environments. Custom modifications

can be made but the potential amount of change and effort

may warrant it impractical.

- If PR-SCTP cannot send a packet before its lifetime expires,

it is simply dropped. This is required behavior for online

games. However, if the packet has been sent but not yet

acknowledged, it will still be re-sent even if the retry time

exceeds the lifetime. This is unnecessary for time-sensitive

packets.

- For priority processing, pSCTP assigns each stream a priority

and SCTP sends Heartbeat chunks to periodically probe an

idle stream. Since high priority game packets are usually

sparse and infrequent, this introduces needless network

traffic. Our PAGTP uses game state aware priority

processing hence it improves quality of the game or player

satisfaction index.

- Games need multihoming for automatic transport layer level

redundancy and load sharing. SCTP‟s multihoming is only

for redundancy.

PAGTP also supports split connection: client-proxy and proxy-

server. The proxy is partially aware of the game state. It gets the

Interest Data and State Index to know the game state and optimize

the traffic for wireless clients for various power saving profiles.

3. CONCLUSION & EXTENSIONS
Design of the game action learning technique, the resource

manager algorithms and PAGTP are our primary interest for

discussion in consortium. We also present about, 1. additional

architectural components and, 2. making our proxy extensively

game state aware by running „gamelets‟ (part of the game server

in a distributed fashion) in proxy to optimize traffic and hide

latency for wireless clients.

4. REFERENCES
[1] Anand, B., Ananda, A. L., Chan, M. C., Long, L. T., and

Balan, R. K., “Game action based power management for

multiplayer online game”, MobiHeld’09, ACM SIGCOMM

workshop.

[2] Ashwin Bharambe et.al., “Donnybrook: Enabling Large-

Scale, High-Speed, Peer-to-Peer Games”, SIGCOMM’08.

[3] Chen, K.T., Huang, C.Y., Huang, P., and Lei, C.L., “An

Empirical Evaluation of TCP Performance in Online

Games”, June 2006.

[4] RFC 768, “User Datagram Protocol”, August 1980.

[5] RFC 793, “Transmission Control Protocol”, September 1981.

[6] RFC 2960, “Stream Control Transmission Protocol”, October

2000.

[7] RFC 3758, “Stream Control Transmission Protocol, Partial

Reliability Extension”, May 2004.

[8] RFC 4340, “Datagram Congestion Control Protocol”, 2006

