
mumble: Framework for Seamless Message Transfer on
Smartphones

Bhojan Anand, Tan Guo Wei
School of Computing, National University of Singapore

banand@comp.nus.edu.sg, guowei.tan@u.nus.edu

ABSTRACT
This work explores the possibility of transferring data between mo-
bile devices that are nearby each other without the need of pairing,
authentication, superuser access and Internet connectivity. Such
technology can be used for emergency broadcast, traffic congestion
avoidance, IoT, smart city, social and dating systems and games.
Except Bluetooth Low Energy technology, there is no other pro-
tocol or technology available that allows pairing-free data transfer
without Internet connectivity. Bluetooth Low Energy is capable
of doing so but at a relatively short range. Using Wi-Fi Direct’s
Service Broadcast and Discovery, a simple yet novel method is de-
veloped which allows for seamless long range (Wi-Fi range) data
transfer without Internet connectivity.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Framework

General Terms
Design, Message Transfer, Mobile Communication, Proximity

Keywords
Authentication-free, Automatic, Message Transfer, Android, Proximity-
Based, Messaging, Wi-Fi Direct, Pairing-free, Short Message

1. INTRODUCTION
The idea of content sharing between mobile devices which are

nearby is not new and has been gaining popularity in social, dat-
ing, Internet of things (IoT), smart city and game apps. Currently,
content sharing between nearby devices is done using one of the
following methods:

1. Direct peer-to-peer connection between nearby devices through
Wi-Fi ad-hoc mode, Wi-Fi Direct, Bluetooth and Bluetooth
Low Energy.

2. Location information obtained via GPS, Cell-towers or the
Internet, is sent to a server where location matching is done
[3][2].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
Mobicom-SmartObjects’15, September 7, 2015, Paris, France.
c© 2015 ACM. ISBN 978-1-4503-3535-5/15/09 ...$15.00.

DOI: http://dx.doi.org/10.1145/2797044.2797048.

Technology Authent-
ication

Internet
Connec-

tivity

Super-
user

Permis-
sions

Range

Bluetooth
Classic Yes No No Medium

BLE No No No Short
Wi-Fi

Ad-Hoc
Mode

No No Yes Far

Wi-Fi
Direct Yes No No Far

Table 1: Summary of Available Technologies

Although the first method allows accurate detection of nearby de-
vices, it suffers from a major inconvenience; users must physically
authenticate the connection through a button press. This makes
it impossible to be used for automatic content sharing with other
users, as participating users have to be actively using the app to
establish a connection. The second method solves the problem of
authentication requirement as it connects to trusted servers in the
Internet. Although the second method solves the issue of authenti-
cation, location information obtained suffers from either accuracy
and/or power consumption problems - accurate positioning requires
GPS which is high in power consumption and low power position-
ing via cell-towers is inaccurate. Table 1 summarises the current
available technologies for direct messaging.

Naturally, the next step in content sharing between nearby de-
vices would be to develop a method which allows accurate nearby
device discovery, with low power consumption and without the
need for a server or Internet connectivity for location matching.
Most importantly, this new method of content sharing should re-
move both the standard pairing and authentication (any form of key
press) process, allowing seamless message transfer between nearby
devices.

In this paper, we present our framework for seamless message
transfer between nearby smartphones using Wi-Fi Direct’s Service
Broadcast and Discovery (SBD). This method is verified to be fea-
sible on Android devices, transferring data to devices within Wi-
Fi range. Our approach has been implemented as an app on An-
droid devices running Android 4.1 and above. We have proved that
the power consumption of our approach falls within the acceptable
range on mobile devices through tests and simulations. We also
show that the power consumption can be further reduced through
broadcast period reduction and sleep intervals manipulation and the
feasibility of such implementation.

2. RELATED WORK
The Streetpass feature of Nintendo 3DS1 is what our solution

aims to emulate for Andriod platform - automatic data transfer be-
tween nearby devices.

1http://www.nintendo.com/3ds/features/streetpass

Figure 1: How data is transferred using DNS-SD.

In CoCam[9], users attending the same event are able to share
photos and videos taken through Wi-Fi using the tethering capabil-
ities of Android devices. This solution of transferring data is not
feasible for our use cases as it requires a centralised server to group
and coordinate the transfers.

For location based services, there are several works that uses
both GPS and cell towers to pin point the location of devices. Sim-
ilarly, there are also works that uses GPS along with Wi-Fi access
points for indoor positioning of the devices such as [2][4][7]. Al-
though these works are able to pin point the devices both indoors
and outdoors, they require Internet connectivity.

There are also several proximity based content sharing works us-
ing peer-to-peer protocols such as [5][6][10] [8]. These works al-
low content and data transfer between devices based on the location
of the devices. However, they require either Internet connectivity,
superuser permissions or user authentication per peer-to-peer con-
nection.

Silent broadcasting[11] is a connectionless messaging framework
on Android using Wi-Fi Direct’s service broadcast and discovery2.
The requirement of superuser access makes this method of data
transfer not practical in real-world usage.

Our solution differs from the above. We are able to achieve
seamless data transfer between nearby devices without the need for
Internet connectivity. In addtion, our method is power and commu-
nication efficient.

3. MUMBLE - FRAMEWORK DESIGN
3.1 Seamless Message Transfer

Android’s Wi-Fi Direct’s Service Broadcast and Discovery (SBD)
functionality is used for detecting services available on other de-
vices, prior to establishing a peer-to-peer Wi-Fi Direct connection.
There are 2 types of SBDs available on Android’s Wi-Fi Direct;
uPnP and DNS-SD (Bonjour). In particular, Bonjour uses a com-
ponent called Txt Record3 to indicate the services available on a
device. Mumble framework places data in Bonjour’s Txt Record
to transfer data without any device-to-device connection or authen-
tication from the user (as shown in Figure 1). Mumble has the
following design goals - 1) Seamless data transfer, 2) No superuser
access requirement, 3) Accessible to every app installed on the de-
vice, and 4) Device owners must be able to see and moderate apps
using the framework and turn the framework on/off as they prefer.

As shown in Figure 2, the functionalities of the framework are
encompassed within a separate app, installed on the Android de-
vice. Any external app can then make use of the framework by
using the API (Section 3.6), carrying out app-to-app communica-
tion to send and retrieve data. The following is a flow of how the
app works:
1) App passes data to framework app through the API.
2) Device owner can choose to turn on/off the framework through
the app GUI.
3) If the framework is turned on, the app will maintain a back-
ground service which automatically sends and receives data to and
from nearby devices.
4) App can retrieve data from the app through the API.
2http://developer.android.com/training/connect-devices-wirelessly/nsd-wifi-
direct.html
3http://www.ietf.org/rfc/rfc6763.txt

Figure 2: Architecture diagram of the framework.

Figure 3: Packet design used by the framework.

3.2 Packet Design
With reference to the SBD variables and their limitations (eg.

the Service type and Instance name variables are restricted to only
characters, numbers and symbols), the packet is designed in the for-
mat as shown in Figure 3. Each app being broadcasted is mapped
as a single service. If there are multiple apps, multiple services are
broadcasted simultaneously. The following is a detailed discussion
of each variable in the packet:

App Identifier. This is used to identify the app being broadcasted
by the device. The unique identifiers for apps on Android are the
root package names for each app. A shortened package name is
obtained via the following steps: 1) Run 64-bit MurmurHash3 on
the app package name to obtain a 8 byte identifier. 2) Convert the
64-bit hash into a base-36 string representation. 3) Resultant app
identifier is 13 characters (bytes) long consisting of a-z and 0-9.
The 64-bit (8 bytes) hash was converted into a 13 bytes identifier,
using up an additional 5 bytes. This is done so due to the implicit
restriction on special characters and symbols stated above.

Service Type. This is an identifier used to identify services be-
longing the framework. The string “fats” is used as the service
type.

Key. A character used for mapping the data in the Txt Record.
This is required as the Txt Record required by the API is a Java
HashMap class.

Version. This is used for identifying duplicate packets received
by a device.

Packet Number. This is used only when the data is too large
(Section 3.3), and is split into fragments. It is used to recombine
the packet on the receiving device.

Data. Data the app wants to send.
3.3 Limitations

There are several limitations in using Wi-Fi Direct’s SBD for
data transmission.

Data Size Limit. Android’s Wi-Fi Direct’s SBD limits 105 bytes
per service broadcast (leaving only 85 bytes for the framework),
inclusive of service type, instance name, Txt record and its mapping
key. Service Limit. The number of services that can be broadcasted
simultaneously is also implicitly limited by Android. This limit was
found to be 13 simultaneous services. It is not mentioned in any
Android’s developer reference. If this limit is exceeded, services
being broadcasted is chosen based on the latest 13 services added.

Broadcast Duration Limit. Android’s Wi-Fi Direct’s SBD will
automatically terminate itself after 2 minutes of broadcasting.

1-Way Communication. Transferring data using Wi-Fi Direct’s
SBD is a 1-way communication. As such, the device will con-
stantly broadcast the same set of data from an app. Addition-
ally, Wi-Fi Direct’s SBD on Android will only notify the user that
a service has been discovered once per broadcast session. This

Figure 4: How the broadcast queue works.

means that even if the data being broadcasted by other devices have
changed, the user’s device will not see the changes until the broad-
cast on the user’s device is restarted.

Max Data Rate Achievable. The max data rate achievable is not
really calculable as it depends heavily on the time it takes for an
Android device to start, respond and stop the Wi-Fi Direct’s dis-
covery request. This time value changes across devices and custom
Android implementations by different manufacturers.

3.4 Overcoming Limitations
Due to the limitations mentioned in the previous section, the ba-

sic framework is limited to send 85 bytes of data per app and up to
a total of 13 apps. The following section discusses the additional
features implemented in the framework that help reduced these lim-
itations.

Increase Byte Limit. The 85 bytes of data limit per app can be
increased to 1105 bytes (13 services x 85 bytes) by using several
services to broadcast data from an app. Apps with data more than
85 bytes are fragmented into multiple packets, with each packet
being broadcasted as a service, and then reassembled at the receiver
side.

Scheduled Services. The 13 apps limit is resolved by using a
scheduler implemented in the framework. This scheduler consists
of 2 parts; a broadcast queue and a quick swap feature.

Broadcast Queue. The broadcast queue (Figure 4) is imple-
mented using two queues; a broadcasting queue and a waiting queue.
After a broadcasting period, the app will automatically restart the
broadcast with a new set of data from the waiting queue, while
broadcasted apps will return to the end of queue. This ensures that
all apps will be broadcasted in turn.

Quick Swap Feature. The addition of a broadcast queue intro-
duced a new problem; exchange of data between the same app on
different devices will not be possible unless both devices are broad-
casting the same app at the same time. This problem results in a
reduced efficiency of transferring data as successful data exchange
between an app on two devices can only happen in one of the fol-
lowing three possible scenarios: 1) Both devices not broadcasting
the app (not successful), 2) 1 of the device is broadcasting the app
(not successful), and 3) Both the devices are broadcasting the app
(successful).

In order to improve the efficiency, a quick swap feature is imple-
mented along with the broadcast queue. The quick swap feature is
implemented using a third queue; the Interrupt queue as shown in
Figure 5.

The quick swap feature will quickly swap in packets of apps that
are currently in the Waiting queue into the Interrupt queue, and
subsequently the Broadcast queue, if a nearby device is found to be
broadcasting that app.

By adding the Interrupt queue, data exchange can now occur in
two of the three possible cases: 1) Both devices not broadcasting
the app (not successful), 2) One of the device is broadcasting the
app (successful), and 3) Both the devices are broadcasting the app
(successful).

This increases the chances of devices exchanging data from the
same app as data exchange can occur as long as one of the device is
broadcasting the app. This increases the maximum number of app
data exchanged between two devices from 13 to 26 in the best case

Figure 5: How the interrupt queue works.

scenario. However, in the worst case scenario, devices will still not
be able to exchange data from the same app if neither of the devices
are broadcasting that app.
3.5 Security

As with any communication framework that shares and exchanges
data, a key factor in the usability of the framework is the security
of the data being transferred. Since the framework is designed to
share data between devices automatically, users are therefore not
encouraged to share any sensitive data. Additionally, apps using
the framework are encouraged to encrypt the data before sending it
to the framework for added security. Malicious apps might attempt
to retrieve data from the framework. This is countered by requir-
ing a security key and a reply address to retrieve data from the
framework. A malicious app can pretend to be the framework app,
using the actual package name of the framework app. A third party
certification is used to counter this issue. A DDoS attack can be at-
tempted using a single or multiple device constantly broadcasting
discovery requests with multiple services. However, the targeted
device will only receive each malicious request once per discov-
ery request (targeted device’s own discovery request). A man-in-
middle attack can be easily overcome by advising apps to encrypt
the data being exchanged. Due to space constraints, details about
the security features are moved to project homepage [1].

3.6 API
An API has been developed for communicating with the frame-

work app. The following section discusses the set of functionalities
that has been made available.

Register. Registers the external app. Reply address and data to
be transmitted are recorded.

Unregister. Deletes registered apps and all related data. Once
unregister is called, the framework will no longer broadcast data
from the external app, or respond to any nearby devices that the
external app is available on the device.

Update. After registering data from an external app to the frame-
work, any changes to the data can only be made through Update. A
passcode is required to update the data. The Update functionality
will only work if the external app is registered in the framework.

Retrieve. An external app can retrieve data received by the frame-
work by using the Retrieve functionality. The external app must be
listening on the reply address provided during Register before call-
ing the Retrieve functionality as the data will be sent directly to the
reply address provided. All data received by the framework since
the last retrieval will be sent. A passcode is also required to retrieve
the data.

Passerbys. Apart from retrieving data specific to an external app,
the API also allows users to obtain the following information about
devices that the framework has exchanged data with (Passerbys):

1) MAC address of Passerbys, 2) Device name of Passerbys, 3)
Time the Passerby was last encountered, and 4) Number of times
the Passerby was encountered.

4. IMPLEMENTATION
The framework app that encompasses the framework design and

the API discussed in the previous section has been implemented. It
requires devices running Android 4.1 (Jelly Bean) and above with
Wi-Fi capabilities. The app currently uses Wi-Fi-Direct’s SBD as
the method of seamless data transfer. Developers who want to use
the framework must have both the framework app and their app on
both sending and receiving devices. Communication between the
developer’s app and the framework app must be done using the API
provided. A demo of the framework is available at project page [1].

5. EVALUATION METHODOLOGY
Our goal is to make the framework pratically useable by the app

developers. Hence, we focused on evaluating the feasibility and
communication efficiency of the framework under different power
saving requirements and crowd densities.

5.1 Power Measurement
To measure the amount of power consumed, the following tests

are carried out: 1) Theoretical estimation of the power consumption
of the Wi-Fi chip with reference to the amount of usage according
to the design of the framework, and 2) Real power consumption
measurement on an Android device to verify the usability of the
framework in a real-world scenario.

The framework requires broadcasting in constant intervels to find
the neighbours. As this will result in high in power consumption,
we have employed duty-cycling techniques and studied their effects
on overall power and communication efficiency. We have studied
the effects of manipulating broadcast period, static and dynamic
sleep intervals. The broadcast period reduction sets the broadcast
period between 10 and 120 seconds as compared to the default 120
seconds. This is paired with a sleep interval to achieve a reduction
in overall broadcast duration. A sleep interval is a period of time
whereby the framework stops Wi-Fi Direct’s SBD. The static inter-
val is set between 10 and 120 seconds. The dynamic interval is set
to 10 seconds initially and is automatically adjusted later depending
on the approximated network density. Automatic dynamic interval
adjustment method is given below with an illustration in Figure 6.
Automatic dynamic interval adjustment:
1) Initially, sleep interval is set to 10 seconds.
2) After X amount of broadcast-sleep cycles, double the amount of
sleep interval time (increases duration between sleep interval incre-
ment.
3) Repeat broadcast-sleep cycles and doubling process, keeping the
maximum sleep interval to 120 seconds (ie:10, 20, 40, 80, 120).
4) If any device is discovered during any of the broadcast-sleep cy-
cles, set the sleep interval back to 10 seconds.

The dynamic sleep interval is designed this way due to the as-
sumption that there is a high chance of increase in network density
after a device has been discovered. The results of the two tests with
and without the power saving methods are then compared to verify
the power efficiency of the framework.
5.2 Simulation

A reasonabally realistic user study is hard and requires much
larger time to conduct. Large number of users for several weeks
with live GPS and Indoor location tracking facility are required for
a decent study. Instead, a simulation is carried out to verify the vi-
ability of the design and the power consumption of the framework.

The simulation is designed to mimic the exchange of data and
power consumption of the framework in the real-world use case.

Figure 6: How Dynamic Sleep Interval works

The goal is to measure the difference in contact/communication ef-
ficiency of the framework with different power saving methods im-
plemented. The following describes how the simulation is designed
to track a single user device with multiple other devices passing by,
1) The user’s device will be running the framework, with and with-
out power saving implemented, continuously from the start till the
end of simulation. 2) Devices passing by will be running the frame-
work with the following randomly generated variables: i) State of
the framework (broadcasting / sleep) when device meets the user,
ii) Time remaining in the current state, and iii) Amount of time the
device will stay within the range of the user; minimum of 1 second
and maximum of 60 seconds.
3) Interval between devices passing by are randomly generated ac-
cording to the following network types: Dense - maximum of 5
minutes interval, Medium - maximum of 30 minutes interval, and
Sparse - maximum of 6 hours interval.
4) For each network type, 2 test cases of 1000 devices passing by
are randomly generated.

As the design of the framework makes it impossible to exchange
data between devices that are not broadcasting concurrently, all
passing by devices are configured to broadcast for at least 1 sec-
ond(after exiting sleep state) during the time it is within range of
the user. This improves the accuracy of the simulation as devices
that do not broadcast when they are within the range should not be
measured, since these devices do not contribute to the measure of
devices missed due to the power saving methods implemented.

The simulation is repeated for all networks types with every
combination of the power saving methods mentioned in the previ-
ous section. In each simulation round, the following variables are
measured - Total broadcast duration, Devices met, Devices missed,
and Efficiency measure. As the power consumption of the Wi-Fi
can vary across different devices, the total broadcast duration is
used as a common variable for power measurement in the simula-
tion. The efficiency of each simulation is determined by the number
of devices met and total broadcast duration in comparison with the
control simulation. This allows a clear comparison between the ef-
ficiency of the default framework and the framework with power
saving methods implemented.

6. EVALUATION RESULTS
The parameters used in the evaluation are given in Table 2. The

results show the feasability of power efficient communication with
our framework.

6.1 Power Measurement
The theoretical estimation of power consumption of the frame-

work takes into account only the Wi-Fi power consumed as the
there are no intensive operations in the framework app. As such,

Parameter Description
Duration of tests 1 hour
Control (Default) Constantly broadcasting
Static 10 10s broadcast, 10s sleep per cycle
Static 60 10s broadcast, 60s sleep per cycle
Static 120 10s broadcast 120s sleep per cycle
Dynamic Sleep 1 5 cycles, 10s broadcast

Dynamic Sleep 2
5 cycles, 10s broadcast, met device at
approximately 30 minute mark

Table 2: Experiment parameters

Mode Active State (sec) Standby State (sec)
Control 3600 0
Static Sleep 10 1800 1800
Static Sleep 60 540 3060
Static Sleep 120 360 3240
Dynamic Sleep 1 450 3150
Dynamic Sleep 2 520 3080

Table 3: Estimated duration of active and standby states

the power consumed by the CPU while using the framework app is
considered to be negligible.

A more generic approach is taken for the theoretical calculation.
Table 3 shows the number of seconds the Wi-Fi chip is in active
and standby state across the different power saving methods over 1
hour. Control mode represents the default framework without any
power saving features. As an example, these values are then used
to calculate the power consumption on a Galaxy Nexus whose Wi-
Fi draws 120mA & 4mA in Wi-Fi active and Wi-Fi on (standby)
modes respectively at 3.7 Volts. The following formula is used:
Amperage×Time(hour) = Power Consumption (mAh).

The results are shown in Table 4. The broadcast period reduction
and sleep intervals did play a part in reducing the power consump-
tion of the Wi-Fi chip. The power consumption differences were
mainly in line with the proportion of broadcast duration to sleep
interval ratio. The results are also verified with real power mea-
surement with Xiaomi RedMi 1 Smartphone. Keeping the default
(control mode) framework turned on for 1 hour it consumed about
3% of battery and for static sleep mode it consumed 2%. Note, Wi-
Fi is completely turned OFF during sleep the interval. The power
savings are slightly less than simulation due to the penalties in-
volved in turning the Wi-Fi to ON and OFF states.

6.2 Simulation
The simulation was run with the following combination of power

saving settings:
Control: Broadcasting the entire duration of simulation.
Broadcast period (seconds): 10, 20, 30, 60, 90, 120.
Static sleep interval (second): 10, 20, 40, 80, 120.
Dynamic sleep interval cycles: 3 (very fast), 5 (fast), 10 (slow).
The simulation results of every single combination can be found

in the project homepage [1]. The Efficiency Measure(EM) is cal-
culated using the following formula:

Devices Met
Total Number of Devices ÷

Broadcast Duration
Control Broadcast Duration = EM

The control mode simulation will give an efficiency measure
of 1; an efficiency measure of more than 1 means that it is bet-
ter than the control. Figure 7 shows the efficiency measure of the
framework with static sleep intervals across the dense and sparse

Mode Power Comparison
- Consumption with Control
Control 120 mAh 1.0
Static Sleep 10 62 mAh 0.52
Static Sleep 60 21.4 mAh 0.18
Static Sleep 120 15.6 mAh 0.13
Dynamic Sleep 1 18.5 mAh 0.15
Dynamic Sleep 2 20.8 mAh 0.17

Table 4: Approximated power consumption on a Galaxy Nexus

(a) Dense (b) Sparse
Figure 7: Efficiency of static sleep interval in different networks

(a) Dense (b) Sparse
Figure 9: Comparison of efficiency of dynamic and static sleep
intervals different networks

networks. As observed from Figure 7, static sleep intervals with
shorter broadcast periods and sleep intervals achieved better effi-
ciency across sparse and dense networks. Efficiency is best when
broadcast period to sleep interval ratio is 1:1. Most optimal value
is achieved when both broadcast period and sleep interval are set to
10 seconds.

Figure 8 shows the efficiency measure of the framework with
very fast, fast and slow dynamic sleep interval cycles across the
dense, medium and sparse networks. As observed from Figure
8, fast dynamic sleep interval is slightly more efficient than slow
dynamic sleep interval. Fast and slow dynamic sleep interval has
better efficiency in sparse network as compared to dense network.
Very fast dynamic sleep interval suffers a significant drop in effi-
ciency.

Figure 9 shows a comparison between the minimum and maxi-
mum static sleep intervals, and the fast dynamic sleep interval over
both dense and sparse networks. Dynamic sleep interval is more
efficient across both dense and sparse networks. Dynamic sleep in-
terval is significantly more efficient in the sparse network as com-
pared to the static sleep intervals.

As such, from the observations, the dynamic sleep interval power
saving method proved to be a much better choice in real-world us-
age due to its ability to adapt the power consumption according to
the current density of the network.
6.3 Discussions

Power Saving Methods and Variables. For the best efficiency
in terms of power consumption to devices-met ratio, it is recom-
mended that the dynamic sleep interval power saving method should
be used in combination with shorter broadcast period. The follow-
ing values are recommended: 5 cycles dynamic sleep interval and
10 seconds broadcast period. However, even though the above rec-
ommended settings give the best efficiency, it might not be the most
optimal setting for real-world use case. This is because of signifi-
cant drop in the percentage of devices met. Figure 10 highlights the
problem with the dynamic sleep interval. Referring to Figure 10, it
can be seen that, hit rate of the slow cycle dynamic sleep interval
has slightly higher number of devices met. Significant drop in hit
rate for both dynamic sleep intervals in sparser networks. Broad-
cast period of 10 seconds has the worst performance.

(a) (b) (c)
Figure 8: Efficiency of dynamic sleep interval with very fast(a), fast(b) and slow(c) cycles

(a) Fast (b) Slow
Figure 10: Comparison of hit rate of different dynamic sleep inter-
vals

Broadcast (s) Sleep (s) Duration (s) Hits Misses HitRate % Efficiency
10 10 79254 901 99 90.09 1.966
10 120 13215 121 879 12.01 1.572

Table 5: Partial results of static sleep interval simulation

This problem is further highlighted using the static sleep interval
simulation results as shown in Table 5. Dynamic sleep interval per-
form well with shorter sleep intervals. when When sleep interval
increases, there is a significant drop of hit rate to 12%. There is only
12% chance for broadcasting speed to return to maximum. As it is
unclear how this drastic drop in hit rate will affect the real-world
use case, a large scale user study is required, which is deferred to
future work.

Power Consumption and Usability. The low power consump-
tion of the framework with and without power saving implemented
shows that it is feasible for real-world use. When power saving
mechanisms are enabled it reduces power consumption by approx-
imately 30% to 60% depending on network density, consumes ap-
proximately 25% battery power over 10 hours in dense network,
and averages around 15% battery power consumption over 10 hours,
depending on usage.

However, a major problem that plagues the power saving meth-
ods is Android’s implementation of Wi-Fi Direct. The power con-
sumption does not reduce even with the power saving methods im-
plemented, due to some issues with Android’s implementation of
Wi-Fi Direct. This proves to be a problem as constantly turning
on and off the Wi-Fi of a user’s device is not something an app
should do; it will affect the user if they are using Wi-Fi for Internet.
As such, the viability of power reduction is not possible with the
current Android API.

Due to the limitations of Android API, the real-world usability of
the app is slightly affected. Users of the app must set aside slightly
more battery power for it as compared to a power saving version of
the app.

Overall - The Framework is a Viable Solution. From the
above discussions, it is clear that the framework system can be
pratically used for seamless peer-to-peer communication by appli-
cations in user space without getting superuser permissions. The
framework consumes less than 3% (per hour) of the battery en-

ergy even without power saving measures which makes it suitable
for real-world use cases. Overall, the framework system is viable,
works very well, simple and ready to use.
7. CONCLUSION

This paper discussed the technical factors involved in ensuring
the feasibility of a framework to transfer data between nearby smart-
phones without the need of pairing, user authentication and Inter-
net. The framework is evaluated to show its communication and
power efficiency under various conditions and real-world use cases.
A demo is available at project homepage [1]. The framework will
be open sourced.

8. REFERENCES
[1] Anand, B. and Wei, T. G. Seamless Message Transfer on

Smartphones - Demo. National University of Singapore.
http:
//www.comp.nus.edu.sg/~bhojan/fats/index.html,
Nov 2014.

[2] Bisio, I. et al. Smartphone-based automatic place recognition
with wi-fi signals for location-aware services.
Communications (ICC), 2012 IEEE International
Conference on, pages 4943–4948, June 2012.

[3] Gressmann, B. et al. Towards ubiquitous indoor location
based services and indoor navigation. WPNC, 2010 7th
Workshop on, pages 107–112, March 2010.

[4] Kao, K.-F. et al. An indoor location-based service using
access points as signal strength data collectors. IPIN, 2010
International Conference, pages 1–6, Sept 2010.

[5] Konstantinidis, A. et al. Smartp2p: A multi-objective
framework for finding social content in p2p smartphone
networks. MDM, 2012 IEEE 13th International Conference
on, pages 324–327, July 2012.

[6] Pyattaev, A. et al. Proximity-based data offloading via
network assisted device-to-device communications. VTC
Spring, 2013 IEEE 77th, pages 1–5, June 2013.

[7] Sadhukhan, P. et al. A scalable location-based services
infrastructure combining gps and bluetooth based positioning
for providing services in ubiquitous environment. IMSAA,
2010 IEEE 4th International Conference on, pages 1–6, Dec
2010.

[8] Salmon, J. and Yang, R. A proximity-based framework for
mobile services. MS, 2014 IEEE International Conference
on, pages 124–131, June 2014.

[9] Toledano, E. et al. Cocam: A collaborative content sharing
framework based on opportunistic p2p networking. CCNC,
2013 IEEE, pages 158–163, Jan 2013.

[10] Trifunovic, S. et al. Wifi-opp: Ad-hoc-less opportunistic
networking. Proceedings of the 6th ACM Workshop on
Challenged Networks, CHANTS ’11, pages 37–42, New
York, NY, USA, 2011. ACM.

[11] Yun, M. et al. Silent broadcast: Experience of connectionless
messaging using wi-fi p2p. ICIDT, 2012 8th International
Conference on, volume 2, pages 239–242, June 2012.

