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Abstract. We consider routing problems in ad hoc wireless networks modeled as unit graphs in which nodes are points in the plane and
two nodes can communicate if the distance between them is less than some fixed unit. We describe the first distributed algorithms for
routing that do not require duplication of packets or memory at the nodes and yet guarantee that a packet is delivered to its destination.
These algorithms can be extended to yield algorithms for broadcasting and geocasting that do not require packet duplication. A byproduct
of our results is a simple distributed protocol for extracting a planar subgraph of a unit graph. We also present simulation results on the
performance of our algorithms.
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1. Introduction

Mobile ad hoc networks (MANETs) consist of wireless
hosts that communicate with each other in the absence of
fixed infrastructure. Two nodes in a MANET can communi-
cate if the distance between them is less than the minimum
of their two broadcast ranges [2]. Because stations whose
broadcast areas overlap can interfere with each other and
also because of health problems that can occur because of
long-term exposure to powerful radio signals [10], it is gen-
erally not possible (or desirable) for all hosts in a MANET to
be able to communicate with each other directly. Thus, send-
ing messages between two hosts in a MANET may require
routing the message through intermediate hosts.

In many cases, MANETs are pieced together in an un-
controlled manner, changes in topology are frequent and un-
structured, and hosts may not know the topology of the entire
network. In this paper, we consider routing in MANETs for
which hosts know nothing about the network except their
location and the locations of the hosts to which they can
communicate directly. In particular, we consider the case in
which all hosts have the same broadcast range.

Let S be a set of points in the plane. Then the unit graph
U(S) is a geometric graph that contains a vertex for each el-
ement of S. An edge (u, v) is present in U(S) if and only if
dist(u, v) � 1, where dist(x, y) denotes the Euclidean dis-
tance between x and y. In the remainder of this paper we
will refer to the elements of S alternately as hosts, nodes,
or vertices. Unit graphs are a reasonable mathematical ab-
straction of wireless networks in which all nodes have equal
broadcast ranges.

∗ This work was partly funded by the Natural Sciences and Engineering
Research Council of Canada.

Delivering messages between hosts in a MANET is an
important and difficult problem in mobile computing. There
are several different scenarios. In the routing problem, the
source s and destination t are points of S and t must receive
a message originating at s. In the geocasting problem [7,13]
the source s is a point in S while the destination r is a region,
and all vertices in r must receive a message originating at s.
In this work we take r to be a disk, but our algorithms eas-
ily generalize to arbitrary convex regions. The broadcasting
problem is a special case of geocasting in which r is a disk
with infinite radius.

In this paper we describe algorithms for routing, broad-
casting and geocasting on unit graphs that do not require
global information about U(S). Each vertex v ∈ U(S) rep-
resents a transmission station, and has no information about
U(S) except the set of nodes N(v) to which it is adjacent.
A packet that is stored at vertex v can be transmitted to any
vertex in N(v). In accordance with other papers, our routing
algorithm assumes that the source knows from the beginning
the exact geographical position of the destination [2,8,11]. If
only an approximate location is known, then our geocasting
algorithm can be used to send messages to all hosts near the
location.

Previous algorithms for online routing in unit graphs can
be broadly classified into two categories:

Greedy algorithms apply some type of greedy path-
finding heuristic that does not guarantee that a packet ulti-
mately reaches (all of) its destination(s). These include the
geographic distance routing (GEDIR) algorithm of Lin and
Stojmenović [11], the directional routing (DIR), a.k.a., com-
pass routing algorithm of Basagni et al. [2], Ko and Vaidya
[7], and Kranakis et al. [9], the MFR algorithm of Takagi and
Kleinrock [15], and their 2-hop variants [11].
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Flooding algorithms use some type of controlled packet
duplication mechanism to ensure that every destination re-
ceives at least one copy of the original packet. These are ex-
emplified by the location-aided routing (LAR) protocols of
Ko and Vaidya [7,8]. In order for flooding algorithms to ter-
minate, packets in the network must remember which pack-
ets they have previously seen.

In contrast, our algorithms always guarantee that a packet
will be delivered to (all of) its intended recipient(s) so long as
the unit graph U(S) is static and connected during the time it
takes to route a message. Our algorithms do not make use of
any persistent memory at the nodes of U(S) and require only
that a packet carry a small constant amount of information
in addition to its message. Our algorithms also never require
duplication of a packet, so that at any point in time there is
exactly one copy of each message in the network.

Our algorithms work by finding a connected planar sub-
graph of U(S) and then applying routing algorithms for pla-
nar graphs on this subgraph. In section 2 we show how to
find a connected planar subgraph of U(S) in an online and
distributed manner. In section 3 we describe algorithms for
routing, broadcasting, and geocasting in planar graphs. In
section 4 we describe simulation results for our algorithm.
Finally, in section 5 we summarize and conclude with open
problems in the area.

2. Extracting a connected planar subgraph

In this section we describe a distributed algorithm for ex-
tracting a connected planar subgraph from U(S). In order to
run the algorithm, the only information needed at each node
is the position of each of its neighbors in U(S). Our algo-
rithm works by computing the intersection of U(S) with a
well-known planar graph.

Let disk(u, v) be the disk with diameter (u, v). Then,
the Gabriel graph [6] GG(S) is a geometric graph in which
the edge (u, v) is present if and only if disk(u, v) contains
no other points of S. The following lemma shows that the
Gabriel graph is useful for extracting a connected subgraph
from U(S).

Lemma 1. If U(S) is connected then GG(S)∩U(S) is con-
nected.

Proof. Let MST(S) denote a minimum spanning tree of
the complete graph whose vertices are S and whose edges
are weighted with the Euclidean distance between their end-
points. It is well known that MST(S) is a subgraph of
GG(S), and therefore GG(S) is connected [14]. Thus, we
need only prove that MST(S) ⊆ U(S) if U(S) is connected.
Assume for the sake of contradiction that MST(S) contains
an edge (u, v) whose length is greater than 1. Removing
this edge from MST(S) produces a graph with two connected
components, Cu(S) and Cv(S). Since U(S) is connected it
contains an edge (w, x) of length not greater than 1 such that
w ∈ Cu(S) and x ∈ Cv(S). By replacing the edge (u, v)

with (w, x) in MST(S) we obtain a connected graph on S

with weight less than MST(S), a contradiction. �

Let (u, v) be an edge of U(S) such that (u, v) /∈ GG(S).
Then, by the definition of GG(S) there exists a point w that is
contained in the disk with u and v as diameter, and this point
acts as a witness that (u, v) /∈ GG(S). The following lemma
shows that every such edge can be identified and eliminated
by u and v using only local information.

Lemma 2. Let u and v be points of U(S) such that (u, v) /∈
GG(S) and let w be a witness to this. Then (u,w) ∈ U(S)

and (v,w) ∈ U(S).

Proof. Let m be the midpoint of (u, v). Then dist(u,m) �
1/2, dist(v,m) � 1/2 and dist(w,m) � 1/2. Therefore, by
the triangle inequality, dist(u,w) � 1, dist(v,w) � 1 and
(u,w) and (v,w) are in U(S). �

Thus, upon reaching a vertex v ∈ S, a packet can elimi-
nate the edges incident on v that are not in U(S)∩GG(S) by
simply eliminating any edge that is not in GG(N(v) ∪ {v}).
This leads to the following algorithm that is executed by
each vertex v ∈ S.

Algorithm: GABRIEL

1: for each u ∈ N(v) do
2: if disk(u, v) ∩ (N(v) \ {u, v}) 	= ∅ then
3: delete (u, v)

4: end if
5: end for

Lemma 1 guarantees that if we apply this algorithm to
each vertex of S then the resulting graph is connected. Since
GG(S) is planar [14], the resulting graph is also planar. As
described above, the algorithm requires O(d2) time, where
d is the degree of v. By using efficient algorithms for
constructing the Voronoi diagram and Delaunay triangula-
tion [14] of N(v) ∪ {v}, and keeping only the edges of
the Delaunay triangulation that intersect the corresponding
edges of the Voronoi diagram [6,12], this can be reduced to
O(d log d).

Theorem 3. If U(S) is connected then algorithm GABRIEL

computes a connected planar subgraph of U(S). The cost
of the computation performed at vertex v ∈ S is O(d log d)

where d is the degree of v.

3. Routing in planar graphs

In this section we describe algorithms for routing, broadcast-
ing, and geocasting in a connected planar graph G. Since we
have shown that a connected planar subgraph of U(S) is eas-
ily computable by a routing algorithm, these algorithms also
apply to unit graphs.
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Figure 1. Routing from s to t using FACE-1.

3.1. Routing

In this section we describe two algorithms for routing in pla-
nar graphs. The first algorithm, called FACE-1, is due to
Kranakis et al. [9]. The second algorithm, called FACE-2,
is a modification of their algorithm that performs better in
practice.

A connected planar graph G partitions the plane into
faces that are bounded by polygonals made up of edges of G.
Given a vertex v on a face f , the boundary of f can be tra-
versed in the counterclockwise (clockwise if f is the outer
face) direction using the well-known right hand rule [3]
which states that it is possible to visit every wall in a maze
by keeping your right hand on the wall while walking for-
ward. Treating this face traversal technique as a subroutine,
Kranakis et al. [9] give the following algorithm for routing a
packet from s to t .

Algorithm: FACE-1

1: p← s

2: repeat
3: let f be the face of G with p on its boundary

that intersects line segment (p, t)

4: for each edge (u, v) of f

5: if (u, v) intersects (p, t) in a point p′ and
dist(p′, t) < dist(p, t)

6: p← p′
7: end if
8: end for
9: Traverse f until reaching the edge (u, v)

containing p

10: until p = t

The operation of algorithm FACE-1 is illustrated in
figure 1. The following theorem summarizes the perfor-
mance of this algorithm.

Theorem 4 (Kranakis et al. [9]). Algorithm FACE-1 reaches
t after at most 4|E| steps, where |E| is the number of edges
in G.

Notice that this algorithm traverses the entire face f to
determine the point p′, and then must return to the point p′.
The bound 4|E| stated in the theorem can be reduced to 3|E|
by having the return trip to p′ be along the shorter of the two
possible paths around f . However, in practice, as we will
show in section 4, the following modified version of FACE-1
works even better.

Figure 2. Routing from s to t using FACE-2.

Figure 3. A bad input for FACE-2.

Algorithm: FACE-2

1: p← s

2: repeat
3: let f be the face of G with p on its boundary

that intersects (p, t)

4: traverse f until reaching an edge (u, v) that
intersects (p, t) at some point p′ 	= p

5: p← p′
6: until p = t

The operation of FACE-2 is illustrated in figure 2. Clearly
this algorithm also terminates in a finite number of steps,
since the distance to t is decreasing during each round. How-
ever, in pathological cases it may visit �(n2) edges of G.
This can occur, for example, when G is a snakelike path
from s to t that crosses the segment (s, t) many times (see
figure 3).

Theorem 5. Algorithm FACE-2 reaches t in a finite number
of steps.

3.2. Broadcasting

Bose and Morin [4] describe an algorithm for enumerating
all the faces, edges and vertices of a connected embedded
planar graph G without the use of mark bits or a stack.
The algorithm takes O(n log n) time and uses only constant
memory beyond what is required to store the graph G.

The algorithm works by defining a total order �p on the
edges of G. For each face f of G, there then exists a unique
edge e = entry(f, p) on the boundary of f such that e �p e′
for all e′ on the boundary of f . Bose and Morin [4] (see also
de Berg et al. [5]) show that if one connects all faces f1 and
f2 such that entry(f1, p) is on the boundary of both f1 and
f2, the result is a spanning tree of the faces of G. A traversal
of the vertices of G can then be obtained by a traversal of
this spanning tree. Figure 4 illustrates the spanning tree of
the faces as well as the traversal obtained from this spanning
tree.
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Figure 4. A spanning tree of the faces of G (with square nodes) and the
resulting traversal of the vertices of G (shown as a spline).

This algorithm can be applied almost directly to obtain
a broadcasting algorithm in which a single packet with a
constant-size memory walks around G and visits every ver-
tex. Therefore, we only describe the non-trivial part of the
implementation. The reader is referred to Bose and Morin
[4] and de Berg et al. [5] for further details.

Let f be a face of G whose edges in clockwise order are
e0, . . . , em−1. We say that ei is a k-minimum if ei �p ej for
all i − k � j � i + k.1 We define maxval(ei) as the largest
k for which ei is a k-minimum.

Suppose that a packet is stored at node vi incident on edge
ei . In order to obtain an O(n log n) message broadcasting
algorithm it is sufficient to show how to determine if ei =
entry(f, p) in O(maxval(ei)) steps, where a step involves
moving from one edge to the next on the boundary of f . To
do this, we proceed in rounds using a “repeated doubling”
trick.

During round r , we compare ei to the edges ei+1, . . . ,

ei+2r if r is even or ei−1, . . . , ei−2r if r is odd. At the end
of each round we return to ei . Thus, the number of steps
taken in round r is 2r+1. If during any round we find an
edge ej , j 	= r , such that ej �p ei we terminate and say that
ei 	= entry(f, p). Otherwise we terminate after �log2 |f |�
rounds when we return to ei , in which case we say that ei =
entry(f, p).

Clearly, this algorithm is correct, since it returns false
only when finding an edge ej such that ej �p ei and only
returns true after comparing ei to all edges on the boundary
of f . Furthermore, a simple argument shows that this algo-
rithm terminates after at most 9·maxval(ei) steps (see [1] for
details). We refer to this broadcasting algorithm as BROAD-
CAST. From the previous discussion, we obtain the follow-
ing result.

Theorem 6. In at most O(n log n) steps algorithm BROAD-
CAST terminates after having visited every vertex of G.

3.3. Geocasting

The results of Bose and Morin also extend to window queries
in which all the faces intersecting a rectangular or circular

1 Here and in the remainder of this section, all subscripts are taken mod m.

query region r are to be visited. To start their algorithm, a
vertex contained in r must be given as part of the input.

By applying algorithm FACE-1, such a vertex can be
found in O(n) steps by setting the value of t to the cen-
ter of the query region. The algorithm terminates when it
reaches a vertex v contained in r or when it can no longer
make progress, i.e., it visits the same face twice. In the first
case we then apply the algorithm of Bose and Morin to have
the packet visit every vertex in the query region, while in the
second case we can quit, since there is no vertex of G con-
tained in the query region. We call this algorithm GEOCAST.

Theorem 7. In at most O(n+ k log k) steps algorithm GEO-
CAST terminates after having visited every vertex of G con-
tained in r , where k is the complexity of all faces of G that
intersect r .

Remark. The delivery time for a message in the broadcast-
ing and geocasting algorithms can be improved in practice
by traversing subtrees of the spanning tree in parallel, at the
cost of having several copies of the same packet in the net-
work simultaneously.

4. Experimental results

In this section we measure the quality of the paths found by
our routing algorithms. Our test sets consist of randomly
constructed unit graphs. Test cases were generated by uni-
formly selecting n points in the unit square as vertices, sort-
ing all the n(n − 1)/2 interpoint distances and setting the
value of a “unit” to achieve the desired average degree. Any
such random graph that did not result in a connected graph
was rejected. For each graph generated, routing was per-
formed between all n(n− 1) ordered pairs of vertices in the
graph. Every data point shown in our graphs is the average
of 200 independent trials conducted on 200 different ran-
domly generated graphs. The results of these trials are given
as 95% confidence intervals in appendix.

For comparison purposes the performance of our algo-
rithms were measured against, and in combination with, ge-
ographic distance routing (GEDIR) as described by Lin and
Stojmenović [11]. The GEDIR algorithm is a greedy al-
gorithm that always moves the packet to the neighbour of
the current vertex whose distance to the destination is mini-
mized. The algorithm fails when the packet crosses the same
edge twice in succession. The GEDIR algorithm was chosen
for comparison purposes because, of the three basic algo-
rithms tested by Lin and Stojmenović, GEDIR had compara-
ble performance with other algorithms in terms of delivery
rate and average dilation (defined below).

The experiments measured two quantities. Let X be the
set of pairs of vertices (u, v) ∈ G, u 	= v such that rout-
ing algorithm A succeeds in finding a path from u to v and
let |X| denote the cardinality of X. The delivery rate of A is
defined as

DRA(G) = |X|
n(n− 1)

.
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Figure 5. Delivery rates for the GEDIR algorithm.

Figure 6. Average dilation of the FACE-1 and FACE-2 algorithms.

Note that because our algorithms guarantee the delivery of a
packet, they have a delivery rate of 1. The average dilation
of A is defined as

ADA(G) = 1

|X|
∑

(u,v)∈X

AP(u, v)

SP(u, v)
,

where AP(u, v) is the number of edges in the path from u

to v found by A and SP(u, v) is the number of edges in the
shortest path from u to v. Note that having a low average
dilation is only useful if the delivery rate is high since an
average dilation of 1 is easily achieved by (for example) an
algorithm that only succeeds in routing between two nodes
if they are directly adjacent.

To illustrate the importance of having guaranteed delivery
of messages, figure 5 shows the delivery rate of GEDIR on
graphs with varying average degrees and number of nodes.
These results show that delivery failures are not uncommon
with the GEDIR algorithm, and in very sparse graphs delivery
rates can be as low as 50%. I.e., there are some vertices from
which half of the graph is unreachable using only the GEDIR

algorithm.
Figure 6 compares the FACE-1 algorithm with the FACE-2

algorithm in terms of average dilation for varying average
degrees and number of nodes. Not surprisingly, FACE-2 out-
performs FACE-1 due to the fact that it does not require the

Figure 7. Average dilation of the GEDIR and GEDIR+FACE-2algorithms.

Figure 8. Average dilation of GFG algorithm.

packet to travel all the way around each face. What may
be surprising is that the average dilation for both strategies
seems to increase as the average degree increases. This can
be explained by the fact that the subgraph GG(S)∩U(S) on
which these algorithms operate is a planar graph and there-
fore has average degree at most 6, but they are being com-
pared to the shortest path in U(S) whose average degree is
increasing. Thus, the algorithms are handicapped “from the
start”.

Although these observations may lead one to believe that
algorithms FACE-1 and FACE-2 are not very good on their
own, they may nevertheless be useful in combination with
another algorithm. We tested two such combinations and
compared their average dilation with the average dilation of
GEDIR.

Figure 7 shows the results of combining the GEDIR algo-
rithm with FACE-2 by applying the GEDIR algorithm until
it either fails or reaches the destination. If the GEDIR al-
gorithm fails, routing is completed using the FACE-2 algo-
rithm. In this scenario FACE-2 can be viewed as acting as a
backup for the GEDIR algorithm. We refer to this algorithm
as GEDIR+FACE-2.

Figure 8 shows the results of applying GEDIR until the
packet reaches a node v such that all of v’s neighbours are
further from the destination than v is. The FACE-2 algorithm
is then applied until the packet reaches another node u that
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is strictly closer to the destination than v, at which point the
GEDIR algorithm is resumed. In this scenario, FACE-2 can
be seen as a means of overcoming local minima in the ob-
jective function (distance to the destination). We refer to this
algorithm as GFG.

Both GEDIR+FACE-2 and GFG exhibit similar perfor-
mance in terms of delivery rate with the GFG algorithm
showing a slight advantage in very sparse graphs. These re-
sults show that the average dilation of GEDIR is consistently
low, but this comes at the price of low delivery rate in sparse
graphs. On the other hand, the combined algorithms some-
time have high average dilation, but this only occurs when
the delivery rate of GEDIR is low and the combined algo-
rithms are often forced to apply the FACE-2 algorithm.

5. Conclusions

We have described algorithms for routing, broadcasting, and
geocasting in unit graphs. The algorithms do not require du-
plication of packets, or memory at the nodes of the graph,

and yet guarantee that a packet is always delivered to (all of)
its destination(s). The empirical results for our routing algo-
rithms suggest that although the FACE-1 and FACE-2 algo-
rithms are not very efficient on their own, they can be useful
in conjunction with simpler algorithms that do not guarantee
delivery.

There are several open problems and directions for future
work in this area. One such direction is the extension of
this work to dynamically changing networks. Although it is
possible to extend our algorithms with the hope of handling
dynamically changing networks, it is not at all clear what is a
reasonable (mathematical or simulation) model under which
to study these modified algorithms.

Appendix. Simulation results

This appendix presents the results of simulations in tabular
form (see tables 1–6). The variable d is the average degree
of the graph and the variable n is the number of vertices in
the graph.

Table 1
95% confidence intervals for delivery rates of GEDIR.

n \ d 4 5 7 9 11

20 0.89± 0.0178 0.95± 0.0110 0.99 ± 0.0049 1.00 ± 0.0020 1.00 ± 0.0000
30 0.79± 0.0210 0.88± 0.0168 0.95 ± 0.0139 0.99 ± 0.0047 1.00 ± 0.0009
40 0.70± 0.0203 0.84± 0.0199 0.95 ± 0.0123 0.99 ± 0.0053 1.00 ± 0.0038
50 0.68± 0.0222 0.79± 0.0211 0.92 ± 0.0161 0.98 ± 0.0072 0.99 ± 0.0042
60 0.62± 0.0212 0.74± 0.0215 0.91 ± 0.0159 0.96 ± 0.0105 0.99 ± 0.0037
70 0.57± 0.0172 0.70± 0.0233 0.88 ± 0.0199 0.96 ± 0.0089 0.99 ± 0.0049
80 0.54± 0.0168 0.65± 0.0239 0.86 ± 0.0184 0.96 ± 0.0096 0.99 ± 0.0052
90 0.51± 0.0179 0.63± 0.0216 0.85 ± 0.0204 0.94 ± 0.0122 0.99 ± 0.0047

100 0.47± 0.0157 0.61± 0.0185 0.81 ± 0.0208 0.93 ± 0.0144 0.98 ± 0.0057

Table 2
95% confidence intervals for average dilation of GEDIR.

n \ d 4 5 7 9 11

20 1.01± 0.0013 1.01± 0.0010 1.00 ± 0.0006 1.00 ± 0.0003 1.00 ± 0.0000
30 1.01± 0.0011 1.01± 0.0013 1.01 ± 0.0010 1.00 ± 0.0006 1.00 ± 0.0002
40 1.01± 0.0013 1.01± 0.0013 1.01 ± 0.0011 1.00 ± 0.0007 1.00 ± 0.0006
50 1.01± 0.0013 1.02± 0.0013 1.01 ± 0.0009 1.01 ± 0.0008 1.00 ± 0.0006
60 1.02± 0.0012 1.02± 0.0013 1.02 ± 0.0013 1.01 ± 0.0010 1.01 ± 0.0006
70 1.02± 0.0015 1.02± 0.0012 1.01 ± 0.0009 1.01 ± 0.0009 1.01 ± 0.0007
80 1.02± 0.0011 1.02± 0.0015 1.02 ± 0.0011 1.01 ± 0.0010 1.01 ± 0.0008
90 1.02± 0.0012 1.02± 0.0012 1.02 ± 0.0012 1.01 ± 0.0009 1.01 ± 0.0009

100 1.02± 0.0013 1.02± 0.0011 1.02 ± 0.0011 1.02 ± 0.0010 1.01 ± 0.0007

Table 3
95% confidence intervals for average dilation of FACE-1.

n \ d 4 5 7 9 11

20 4.27± 0.0911 4.74 ± 0.0838 5.63 ± 0.1025 6.42± 0.1040 7.15 ± 0.1171
30 5.26± 0.1094 5.88 ± 0.1116 6.60 ± 0.1229 7.49± 0.1312 8.10 ± 0.1291
40 6.02± 0.1254 6.70 ± 0.1388 7.47 ± 0.1448 8.02± 0.1524 8.62 ± 0.1514
50 6.83± 0.1150 7.40 ± 0.1493 8.11 ± 0.1661 8.44± 0.1613 9.25 ± 0.1581
60 7.56± 0.1238 7.99 ± 0.1351 8.75 ± 0.1893 9.07± 0.2025 9.69 ± 0.2179
70 8.09± 0.1511 8.69 ± 0.1647 9.08 ± 0.2184 9.44± 0.2121 9.97 ± 0.1947
80 8.62± 0.1426 9.15 ± 0.1843 9.68 ± 0.2420 9.71± 0.1828 10.18 ± 0.1762
90 9.24± 0.1484 9.79 ± 0.1419 10.12 ± 0.2562 10.17 ± 0.2364 10.42 ± 0.2047

100 9.78± 0.1605 10.28 ± 0.1852 10.57 ± 0.2596 10.54 ± 0.2766 10.62 ± 0.2012
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Table 4
95% confidence intervals for average dilation of FACE-2.

n \ d 4 5 7 9 11

20 3.69 ± 0.1691 3.62 ± 0.1863 3.71 ± 0.1881 3.90 ± 0.1762 4.11± 0.1989
30 4.70 ± 0.2117 4.64 ± 0.2065 4.24 ± 0.2273 4.28 ± 0.1954 4.29± 0.1855
40 5.48 ± 0.1947 5.17 ± 0.2473 4.59 ± 0.2213 4.26 ± 0.1845 4.19± 0.1856
50 6.11 ± 0.2216 5.63 ± 0.2554 4.93 ± 0.2341 4.28 ± 0.1836 4.43± 0.1686
60 6.79 ± 0.2564 6.09 ± 0.2560 5.22 ± 0.2642 4.59 ± 0.2334 4.50± 0.2275
70 7.45 ± 0.2891 6.69 ± 0.2891 5.29 ± 0.2868 4.67 ± 0.2286 4.52± 0.1981
80 7.74 ± 0.2585 7.13 ± 0.3522 5.66 ± 0.3077 4.70 ± 0.1818 4.49± 0.1707
90 8.58 ± 0.3291 7.47 ± 0.3143 5.92 ± 0.3304 4.91 ± 0.2264 4.50± 0.1775

100 9.02 ± 0.3510 7.64 ± 0.3272 6.18 ± 0.3495 5.12 ± 0.2713 4.53± 0.1766

Table 5
95% confidence intervals for average dilation of GEDIR+FACE-2.

n \ d 4 5 7 9 11

20 1.21 ± 0.0373 1.10 ± 0.0280 1.03 ± 0.0131 1.01 ± 0.0042 1.00± 0.0000
30 1.51 ± 0.0579 1.32 ± 0.0496 1.13 ± 0.0381 1.02 ± 0.0179 1.00± 0.0036
40 1.84 ± 0.0682 1.48 ± 0.0665 1.17 ± 0.0391 1.05 ± 0.0169 1.02± 0.0119
50 2.08 ± 0.0970 1.69 ± 0.0779 1.29 ± 0.0581 1.07 ± 0.0228 1.04± 0.0158
60 2.45 ± 0.1172 1.92 ± 0.0911 1.36 ± 0.0687 1.14 ± 0.0423 1.04± 0.0139
70 2.86 ± 0.1262 2.23 ± 0.1111 1.46 ± 0.0817 1.16 ± 0.0360 1.06± 0.0209
80 3.08 ± 0.1136 2.53 ± 0.1443 1.56 ± 0.0878 1.17 ± 0.0350 1.06± 0.0218
90 3.50 ± 0.1661 2.69 ± 0.1378 1.66 ± 0.1051 1.25 ± 0.0547 1.07± 0.0233

100 3.92 ± 0.1736 2.87 ± 0.1392 1.85 ± 0.1282 1.33 ± 0.0763 1.09± 0.0250

Table 6
95% confidence intervals for average dilation of GFG.

n \ d 4 5 7 9 11

20 1.22 ± 0.0368 1.12 ± 0.0259 1.03 ± 0.0130 1.01 ± 0.0053 1.00± 0.0001
30 1.53 ± 0.0574 1.32 ± 0.0463 1.14 ± 0.0323 1.03 ± 0.0136 1.01± 0.0036
40 1.77 ± 0.0655 1.46 ± 0.0576 1.18 ± 0.0369 1.06 ± 0.0160 1.02± 0.0132
50 1.99 ± 0.0932 1.66 ± 0.0777 1.27 ± 0.0483 1.08 ± 0.0198 1.05± 0.0189
60 2.30 ± 0.1139 1.85 ± 0.0867 1.36 ± 0.0602 1.14 ± 0.0384 1.04± 0.0121
70 2.61 ± 0.1218 2.05 ± 0.0915 1.41 ± 0.0684 1.16 ± 0.0311 1.06± 0.0182
80 2.75 ± 0.1061 2.26 ± 0.1189 1.50 ± 0.0750 1.16 ± 0.0280 1.06± 0.0199
90 3.12 ± 0.1504 2.43 ± 0.1298 1.57 ± 0.0905 1.23 ± 0.0455 1.08± 0.0228

100 3.48 ± 0.1748 2.51 ± 0.1219 1.74 ± 0.1134 1.30 ± 0.0673 1.09± 0.0198
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[11] X. Lin and I. Stojmenović, Geographic distance routing in ad hoc
wireless networks, Technical report TR-98-10, SITE, University of
Ottawa (December 1998).

[12] D.W. Matula and R.R. Sokal, Properties of Gabriel graphs relevant to
geographic variation research and the clustering of points in the plane,
Geographical Analysis 12 (July 1980) 205–222.

[13] J.C. Navas and T. Imielinski, Geocast – geographic addressing and
routing, in: ACM/IEEE International Conference on Mobile Comput-
ing and Networking (Mobicom’97) (1997) pp. 66–76.

[14] A. Okabe, B. Boots and K. Sugihara, Spatial Tesselations: Concepts
and Applications of Voronoi Diagrams (Wiley, 1992).

[15] H. Takagi and L. Kleinrock, Optimal transmission ranges for ran-
domly distributed packet radio terminals, IEEE Transactions on Com-
munications 32(3) (1984) 246–257.



616 BOSE ET AL.

Prosenjit Bose completed his Ph.D. (1994) in com-
puter science at McGill University where he re-
ceived the D.W. Ambridge Award as the outstand-
ing Ph.D. graduate in McGill. Currently, he is an
Associate Professor at Carleton University in Ot-
tawa. His main research area is applied geometric
computing where he has published over 80 journal
and conference papers.

Pat Morin received his B.C.S., M.C.S., and Ph.D.
from Carleton University in 1996, 1998, and 2001,
respectively. He is currently an NSERC post-
doctoral fellow at McGill University. His research
interests include computational geometry and dis-
tributed algorithms.
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