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ABSTRACT
This paper considers the interaction between channel as-
signment and distributed scheduling in multi-channel multi-
radio Wireless Mesh Networks (WMNs). Recently, a num-
ber of distributed scheduling algorithms for wireless net-
works have emerged. Due to their distributed operation,
these algorithms can achieve only a fraction of the max-
imum possible throughput. As an alternative to increas-
ing the throughput fraction by designing new algorithms, in
this paper we present a novel approach that takes advantage
of the inherent multi-radio capability of WMNs. We show
that this capability can enable partitioning of the network
into subnetworks in which simple distributed scheduling al-
gorithms can achieve 100% throughput. The partitioning is
based on the recently introduced notion of Local Pooling.
Using this notion, we characterize topologies in which 100%
throughput can be achieved distributedly. These topologies
are used in order to develop a number of channel assign-
ment algorithms that are based on a matroid intersection
algorithm. These algorithms partition a network in a man-
ner that not only expands the capacity regions of the subnet-
works but also allows distributed algorithms to achieve these
capacity regions. Finally, we evaluate the performance of the
algorithms via simulation and show that they significantly
increase the distributedly achievable capacity region.

Categories and Subject Descriptors: C.2.1 [Computer-
Communication Networks]: Network Architecture and De-
sign — Wireless communication; G.2.2 [Mathematics of Co-
mputing]: Graph Theory — Graph algorithms

General Terms: Algorithms, Performance, Design

Keywords: Stability, Channel assignment, Scheduling, Dis-
tributed algorithms, Wireless mesh networks, Local Pooling,
Matroid intersection

1. INTRODUCTION
Wireless Mesh Networks (WMNs) have recently emerged

as a solution for providing last-mile Internet access [1]. Sev-
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eral such networks are already in use, including testbeds and
commercial deployments. A WMN consists of mesh routers,
that form the network backbone, and mesh clients. Mesh
routers are rarely mobile and usually do not have power con-
straints. The mesh routers are usually equipped with mul-
tiple wireless interfaces operating in orthogonal channels.
Therefore, a major challenge in the design and operation of
such networks is to allocate channels and schedule transmis-
sions to efficiently share the common spectrum among the
mesh routers. Several recent works focused on multi-radio
multi-channel WMNs (e.g. [2, 3, 15, 22]). Specifically, [2, 22]
study the issues of channel allocation, scheduling, and rout-
ing in WMNs, assuming that the traffic statistics are given.
In this paper, we study the issues of channel allocation and
scheduling but unlike most previous works, we do not as-
sume that the traffic statistics are known. Alternatively,
we assume a stochastic arrival process and present a novel
approach that enables throughput maximization by distrib-
uted scheduling algorithms.

Joint scheduling and routing in a slotted multihop wireless
network with a stochastic packet arrival process was consid-
ered in the seminal paper by Tassiulas and Ephremides [24].
In that paper they presented the first centralized policy that
is guaranteed to stabilize the network (i.e. provide 100%
throughput) whenever the arrival rates are within the sta-
bility region. The results of [24] have been extended to vari-
ous settings of wireless networks and input-queued switches
(e.g. [18, 20], and references therein). However, optimal al-
gorithms based on [24] require repeatedly solving a global
optimization problem, taking into account the queue back-
log information for every link in the network. Obtaining
a centralized solution to such a problem in a wireless net-
work does not seem to be feasible, due to the communication
overhead associated with continuously collecting the queue
backlog information. On the other hand, distributed algo-
rithms usually provide only approximate solutions, resulting
in significantly reduced throughput.

Hence, the design of distributed scheduling algorithms has
attracted a lot of attention recently. Lin and Shroff [17]
studied the impact of imperfect scheduling on cross-layer
rate control. Regarding primary interference constraints1,
they showed that using a distributed maximal matching al-
gorithm along with a rate control algorithm may achieve as
low as 50% throughput. Similar results for different settings
were also obtained in [7, 8, 23, 25]. A novel distributed ran-

1Under primary interference constraints, each station can
converse with at most a single neighbor at a time. Namely,
the set of active links at any point of time is a matching.
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domized approach that can achieve 100% throughput has
been recently presented in [19].

In this paper, we show that the multi-radio and multi-
channel capabilities of WMNs provide an opportunity for
simple deterministic distributed algorithms to obtain 100%
throughput. Mesh routers are usually equipped with multiple
radios (transceivers) and can transmit and receive on multi-
ple channels simultaneously [2, 3, 15]. Hence, channels have
to be allocated to the links and the transmissions on each
link have to be scheduled to avoid collisions. By allocating
different channels to different links, several non-interfering
subnetworks can be constructed. We study which subnet-
work topologies enable simple distributed scheduling algo-
rithms to achieve 100% throughput. Based on these results,
we develop network partitioning algorithms that decompose
the network into such subnetworks.

Although in arbitrary topologies the worst case perfor-
mance of simple distributed maximal scheduling algorithms
can be very low, there are some topologies in which they
can achieve 100% throughput. This observation is based on
a recent theoretical work by Dimakis and Walrand [10] in
which they study the performance of the Longest Queue
First (LQF) scheduling algorithm in a graph of interfering
queues2. The LQF algorithm is a greedy maximal weight
scheduling algorithm that selects the set of served queues
greedily according to the queue lengths. We note that un-
like a maximum weight (i.e. optimal) solution a maximal
weight solution can be easily obtained in a distributed man-
ner. Dimakis and Walrand [10] present sufficient conditions
for a maximal weight algorithm to provide 100% through-
put. These conditions are referred to as Local Pooling (LoP)
and are related to the properties of all maximal independent
sets in the conflict graph.3

In this paper we conduct the first thorough study of the
implications of the LoP conditions on the network perfor-
mance. We start by presenting a motivating example demon-
strating that channel allocation algorithms that take into
account LoP can enable distributed throughput maximiza-
tion while increasing the overall capacity. We then conduct
an extensive numerical study of the satisfaction of LoP by
conflict graphs of up to 7 nodes. We show that out of 1,252
graphs, only 14 do not satisfy LoP. It is an indication of the
strength of maximal weight scheduling for achieving 100%
throughput regardless of the network topology, aside from a
few “bad” topologies. Due to computational limitations, ex-
haustively verifying the satisfaction of LoP in graphs with
more than 7 nodes seems infeasible. In order to be able
to utilize larger graphs, we study what general properties
of conflict graphs assist or hinder the LoP conditions. For
example, we show that cliques (complete graphs) that are
connected to each other in different manners satisfy LoP.

These observations provide several building blocks for par-
titioning a graph into subgraphs satisfying LoP. In order
to demonstrate this capability and for the ease of presenta-
tion, we focus on scheduling under primary interference con-
straints (studied in [4, 7, 8, 19, 23, 25, 26]). For example, we
show that a tree network graph, when subject to the primary
interference constraints, yields an interference graph which
satisfies LoP. Hence, in such a tree, maximal weight algo-

2A graph of interfering queues can be constructed from the
network graph according to the interference constraints and
is usually referred to as an interference or conflict graph [14].
3More technical details can be found in Section 3.

rithms achieve 100% throughput. We also study bipartite
network graphs that provide insights regarding the number
of required subgraphs. For instance, we show that in any
K2,n bipartite graph (i.e. a 2×n input-queued switch) max-
imal weight matching algorithms achieve 100% throughput.

Building upon our observations, we design channel allo-
cation algorithms. Similarly to [2] and to the static channel
assignment in [15], we assume that a channel is assigned to
a radio interface for an extended period of time. Under this
assumption, using the minimum number of channels requires
a partitioning of the network into the minimum number of
subnetworks satisfying LoP. The general LoP conditions are
extremely challenging to incorporate into a channel alloca-
tion algorithm. Fortunately, our study provides some useful
building blocks. Since tree network graphs satisfy LoP, a
possible approach (which we pursue) is to partition the net-
work into non-overlapping forests, such that each edge will
be part of a single forest and each forest will use a differ-
ent channel. This problem is closely related to the matroid
intersection and matroid partitioning problems.

Given k channels, the problem of partitioning the graph
into k forests such that the number of edges included in
the forests is maximized is referred to as the k-forest prob-
lem [11]. A simple approach is to obtain an approximate
solution by a Breadth First Search (BFS) algorithm. Alter-
natively, since the k-forest problem is actually a specific case
of a Matroid Cardinality Intersection problem, an optimal
solution can be found by the Matroid Cardinality Intersec-
tion (MCI) algorithm of [16] (having polynomial complex-
ity). We show that the MCI algorithm can be adapted to
take into account the scenario in which different nodes have
different numbers of radios. Using either the BFS algorithm
or the MCI algorithm enables a simple distributed schedul-
ing algorithm to achieve the capacity region (i.e. achieve
100% throughput). Yet, the capacity region itself may not
be the best possible. This results from the undesirable prop-
erty that the sizes (number of edges) of the forests are un-
balanced. Therefore, and since the capacity of the largest
forest may be significantly lower than the capacity of the
smallest forest, the network capacity may be affected.

We present three algorithms that aim to expand the ca-
pacity region, while maintaining the LoP conditions in all
the subnetworks. The main objective is to balance the num-
ber of edges across channels and to reduce the node degrees
in each channel. Two of these novel capacity expansion al-
gorithms make use of augmenting paths (in the spirit of the
MCI algorithm of [16]) to balance the node degree across
channels. Thus, they can be viewed as balanced Matroid
Cardinality Intersection algorithms. We evaluate the per-
formance of the algorithms via simulation. We show that
the MCI algorithm significantly outperforms the BFS algo-
rithms. We also compare the performance of the capacity
expansion algorithms and the MCI algorithm and show that
a large capacity improvement can be gained by using these
algorithms. We conclude by exploring the tradeoffs between
the capacities and the algorithms’ complexities.

The main contributions of this paper are two-fold. First,
we conduct a rigorous study of the properties of network
graphs satisfying Local Pooling. The second contribution is
the development of network partitioning (i.e. channel allo-
cation) algorithms that generate subnetworks with large ca-
pacity regions, while enabling distributed throughput max-
imization in each of the subnetworks.
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Figure 1: (a) A network graph GN , (b) the corre-
sponding interference graph GI under the primary
interference constraints, and (c) the matrix M(VI) of
maximal independent sets in GI .

To the best of our knowledge, this is the first attempt to
study the algorithmic implications of Local Pooling. This
work is not only different from previous works on distributed
stability, due to the focus on partitioning mesh networks,
but also different from previous works on optimizing mesh
networks that mostly rely on traffic statistics.

This paper is organized as follows. In Section 2 we present
the network model and formulate the problem. In Section 3
we present and clarify the LoP conditions and demonstrate
their effect on the channel assignment problem. Section 4
studies the characteristics of conflict graphs satisfying LoP.
In Section 5 we present network partitioning and capacity
expansion algorithms and in Section 6 we evaluate their per-
formance. We summarize the results and discuss future re-
search directions in Section 7. Due to space constraints,
some of the proofs are omitted and can be found in [6].

2. MODEL
We consider the backbone of a Wireless Mesh Network

modeled by a network graph GN = (VN , EN), where VN =
{1, . . . , n} is the set of nodes (mesh routers) and EN =
{(i, j) : i, j ∈ VN} is the set of bi-directional links, with

m , |EN |. Depending on the context, we denote a link ei-
ther by (i, j) or by ek. We assume that the time is slotted,
denoted by t, and that the packet length is normalized so as
to be transmittable in a unit time slot. We denote by Kn

a clique having n vertices and by Ki,j a complete bipartite
graph with i and j vertices.

Different wireless technologies pose different constraints
on the set of transmissions that can take place simultane-
ously. For example, under primary interference constraints,
the set of possible transmissions is the set of all possible
matchings on GN . More generally, in many cases an inter-
ference graph (also known as a conflict graph) GI = (VI , EI)
can be defined based on the network graph GN [14]. We as-

sign VI , EN . Thus, each edge ei in the network graph
is represented by a vertex vi of the interference graph and
an edge (vi, vj) in the interference graph indicates a conflict
between network graph links ei and ej (i.e. transmissions
on ei and ej cannot take place simultaneously). In graph
theoretic terminology, the interference graph resulting from
primary interference constraints is called a line graph [12].
For example, Figure 1 illustrates a network graph and the
corresponding interference graph under primary interference
constraints (i.e. the line graph corresponding to the network
graph). Here, We note that the model can be easily gener-
alized to capture network graphs with directional links. In
such a case, link (i, j) may interfere with different links than
those link (j, i) interferes with. Accordingly, the interference
graph will include a node for each directional link.

We consider the application of Local Pooling to multi-
radio multi-channel WMNs. Following the model of [2], we

assume that each node v is equipped with R(v) interfaces
(radios). There are k available orthogonal channels and it
is assumed that each of the R(v) interfaces operates on a
different channel. Similarly to [2] and to the static model of
[15], we consider a static channel allocation model in which a
channel is allocated to each interface for an extended period
of time. Such an approach enables the use of commodity
802.11 radios [2]. We note that the extension of the model
for a dynamic channel allocation is a subject for further
research. We assume that transmissions in different channels
cannot collide. Therefore, once the different channels are
allocated, k disjoint interference graphs are generated.

For the simplicity of presentation, we consider single-hop
bi-directional traffic.4 Let Aij(t) denote the number of pack-
ets arriving at node i or node j that need to be transmitted
on link (i, j) by the end of time-slot t. Aij(t) can be viewed
as the cumulative number of packets arriving at node (i, j)
of the interference graph. We assume that arrivals are mutu-
ally independent and temporally i.i.d. processes with arrival
rate λij , that is E[Aij(1)] = λij . Let the column vector
Λ = (λij , (i, j) ∈ EN) denote the arrival rate vector.

Let Qij(t) denote the number of packets waiting to be
transmitted on link (i, j) at the beginning of time-slot t and
Q(t) denote the queue-size vector. We will use Q(t) as the
system state at time t. Let Π(GN) denote the set of all feasi-
ble link activations in the network graph GN . In particular,
let π = (πij , (i, j) ∈ EN) ∈ Π(GN) be a (0, 1) column vec-
tor representing a possible link activation. Under primary
interference constraints, Π(GN) includes all possible match-
ings, while in general, it corresponds to all independent sets
in the interference graph GI . Following the notation of [10],
we denote by M(VI) the matrix that includes all the maxi-
mal independent sets in GI (i.e. all the maximal elements of
Π(GN)). For example, Figure 1(c) shows the matrix M(VI)
for the interference graph GI in Figure 1(b). We can now
define the stability region (also known as the capacity re-
gion).

Definition 1 (Admissible Rate-Vector). An arri-
val rate vector Λ is called admissible, if there exists a collec-
tion of link activations, πl, 1 ≤ l ≤ L such that

Λ ≤
LX

l=1

αlπl, αl ≥ 0,
LX

l=1

αl < 1.

Definition 2 (Stability Region). The set of all ad-
missible rate vectors Λ is called the stability region and is
denoted by Λ∗.

A scheduling algorithm has to select a schedule that sat-
isfies the transmission constraints at each time slot. Let
Sij(t) ∈ {0, 1} be the indicator variable of whether link (i, j)
is active at time t and S(t) denote the scheduling decision
vector. Then, S(t) ∈ Π(GN). Under a scheduling algorithm,
the state of the system (Q(t), t ≥ 0) evolves according to a
Markov Chain. A stable algorithm is defined as follows.
We will also refer to it as an algorithm that achieves 100%
throughput or a throughput optimal algorithm.

Definition 3 (Stable Algorithm). A scheduling al-
gorithm is stable, if for any admissible Λ the Markov Chain
(Q(t), t ≥ 0) is positive recurrent.

4Under this assumption, the joint routing and scheduling
problem reduces to a scheduling problem.
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Tassiulas and Ephremides [24] established the existence of
a stable scheduling algorithm. In particular, the algorithm
that schedules according to S∗(t) where

S∗(t) = arg max
π∈Π(GN )

Q′(t)π (1)

is a stable algorithm (Q′ denotes the transpose of vector Q).
Given an interference graph GI , the algorithm of [24] has to
find the maximum weight independent set in GI at each time
slot. Namely, it has to solve an NP-Complete problem in
every time slot. In the context of switch scheduling and pri-
mary interference constraints, this algorithm has to schedule
the edges of the Maximum Weight Matching at each time
slot, where the edge weights are the queue sizes. The maxi-
mum weight matching in any graph can be found in O(n3)
computation time, using a centralized algorithm [16]. How-
ever in wireless networks, implementing a centralized algo-
rithm is not feasible and distributed algorithms (e.g. [13])
can obtain only an approximate solution, resulting in a frac-
tional throughput. Hence, even under very simple transmis-
sion constraints, it is difficult to obtain 100% throughput in
a distributed manner. This motivates us to develop chan-
nel allocation methods that will enable simple distributed
scheduling algorithms to obtain 100% throughput. There-
fore, we provide a general definition of the Channel Alloca-
tion Problem below. In Section 5 we will develop algorithms
for specific versions of this problem.

Definition 4 (Channel Allocation Problem). Gi-
ven a network graph GN , k channels, and R(v) radios at
each node v ∈ VN , assign channels to links (i, j) ∀(i, j) ∈ EN

such that at most R(v) channels are used by links adjacent to
v and simple (e.g. greedy) distributed algorithms are stable
in each subnetwork operating in a different channel.

3. LOCAL POOLING CONDITIONS

3.1 Definitions
In this section we restate the definition and implications of

Local Pooling (LoP) presented in [10]. We also present and
demonstrate a somewhat simpler set of definitions. Recall
that M(VI) is the collection of maximal independent vertex
sets on GI , organized as a matrix (an example appears in
Figure 1). Denote by Co(M) the convex hull of the columns
of matrix M . We now restate the definition of LoP.

Definition 5 (Local Pooling - LoP [10]). The set
of nodes (queues) V ⊆ VI satisfies local pooling, if there

exists a nonzero vector α ∈ R
|V |
+ such that α′φ is a positive

constant for all φ ∈ Co(M(V )). Local pooling is satisfied, if
every V ⊆ VI satisfies local pooling.

In this paper, we separate the definition of Local Pooling
to two different definitions and present a somewhat simpler
definition for the satisfaction of LoP by a set of nodes. We
show that although this definition does not take into account
the convex hull of M , it is equivalent to the definition in [10].
We designate by e the vector having each entry equal to
unity. We deliberately avoid specifying its size, because it
will be obvious by the context of its use.

Definition 6 (Subgraph Local Pooling - SLoP).
An interference graph GI satisfies Subgraph Local Pooling,

if there exists α ∈ R
|VI |
+ and c > 0 such that α′M(VI) = ce′.

Lemma 1. The definition of Subgraph Local Pooling and
the satisfaction of Local Pooling by a set of nodes (Definition
5) are equivalent.

Proof. Suppose the set of nodes V ⊆ VI satisfies local
pooling as defined in Definition 5. Then, there exists c > 0

and α ∈ R
|V |
+ such that α′φ = c for all φ ∈ Co(M(V )).

Clearly each column of M(V ) belongs to Co(M(V )), which
gives α′M(V ) = ce′. Thus the subgraph of GI over nodeset
V satisfies SLoP. Conversely, suppose that the subgraph of
GI over nodeset V satisfies SLoP. Then there exist c > 0
and α ∈ R

|V |
+ such that α′M(V ) = ce′. Now consider φ ∈

Co(M(V )), which must equal by definition M(V )β for β ∈

R
|M(V )|
+ with e′β =

P
j
βj = 1, βj ≥ 0, ∀j and |M(V )|

equal to the number of columns in M(V ). Then, we have
αφ = αM(V )β = ce′β = c. Note that this value is constant
regardless of the choice of φ. Thus, the set of nodes V
satisfies local pooling as defined in Definition 5.

We can now define the notion of Overall Local Pooling
which requires that Subgraph Local Pooling (SLoP) will be
satisfied in any subgraph of a given interference graph in-
duced by selecting a subset of the nodes.

Definition 7 (Overall Local Pooling - OLoP).
Interference graph GI satisfies Overall Local Pooling if each
induced subgraph over the nodes V ⊆ VI satisfies SLoP.

We continue with the example of the interference graph
GI and the corresponding matrix M(VI) depicted in Fig-
ure 1. We can see that GI satisfies SLoP since for α =
(1, 1, 1, 1, 1), α′M(VI) = 2e′. Similarly, the subgraph com-
posed of the vertex set {2, 3, 4} satisfies SLoP, since for
α = (1, 1, 0), α′M({2, 3, 4}) = e′. In a similar manner, it
can be shown that all subgraphs of GI satisfy SLoP, and
therefore, GI satisfies OLoP.

We can now describe the stability of the system when
the service in each time slot is scheduled according to the
Longest Queue First (LQF) algorithm. This algorithm is an
iterative greedy algorithm that selects the node of GI with
the longest queue, and removes it and its neighbors from the
interference graph. This process is repeated successively un-
til no nodes remain in the graph. When two queues have
the same length a tie-breaking rule has to be applied. The
set of selected nodes is a maximal independent set in the
interference graph. Hence, since the nodes are selected ac-
cording to their weights, we will refer to the LQF algorithm
as the Maximal Weight Independent Set algorithm. Such a
greedy algorithm can be easily implemented in a distributed
manner. In [10] the following theorem is proved:

Theorem 1 (Dimakis and Walrand, 2006 [10]). If
interference graph GI satisfies the OLoP conditions, a Max-
imal Weight Independent Set scheduling algorithm achieves
100% throughput.

To conclude, the satisfaction of OLoP by an interference
graph is a sufficient condition for distributed maximal weight
algorithm to be throughput optimal (i.e. in that case, there
is no need to obtain an optimal solution to (1) in each slot).

3.2 Channel Allocation Example
The following simple example demonstrates the applica-

tion of the LoP conditions, presented above, to a channel
allocation (network partitioning) problem. We consider the
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Figure 2: A 6-node ring network graph and the cor-
responding interference graph.

6-node ring network graph, depicted on the left in Figure 2.
Under the primary interference constraints, this graph has
a corresponding 6-node ring interference graph representa-
tion, which is illustrated on the right in Figure 2. Under
primary interference constraints, the maximal weight inde-
pendent set in the interference graph is equivalent to the
maximal weight matching in the network graph. A maximal
weight matching can be obtained in a distributed manner by
the greedy algorithm of Hoepman [13].

If a single radio is located at each node of the 6-node ring
illustrated in Figure 2(a), then no two adjacent edges can
be simultaneously active. The stability region Λ∗ is then
characterized by the following inequalities:

λ12 + λ23 ≤ b, λ23 + λ34 ≤ b, λ34 + λ45 ≤ b,

λ45 + λ56 ≤ b, λ56 + λ61 ≤ b, λ61 + λ12 ≤ b, (2)

where b = 1. This stability region can be achieved by a cen-
tralized algorithm that finds a maximum weight matching
(i.e. obtains the optimal solution to (1)) in each time slot.

It was shown in [10] that in the 6-node ring, OLoP does
not hold, and that in general a maximal weight matching
algorithm does not achieve 100% throughput in the 6-node
ring5. According to [17], a maximal weight matching algo-
rithm can only guarantee stability for arrival rates that are
50% of the rates in the region above (Λ∗). Hence, the guar-
anteed distributedly achievable region is given by (2) with
b = 0.5.

If we allow two channels to be used simultaneously, and
provide two transceivers to each node, then in every time
slot a node can transmit two packets on the selected link
(similarly to a speedup of two, defined in [9]). Thus, the
guaranteed achievable region (using maximal weight match-
ing) is again given by (2) with b = 1.

Alternatively, links (1, 2), (2, 3), and (3, 4) can use one
channel, while the remaining links use the other channel.
The interference graph on each channel is now a tree (e.g.
the line connecting v12, v23, and v34). Since [10] shows that
the maximal weight independent set algorithm is throughput
optimal in tree interference graphs, the distributedly achiev-
able stability region is now given by

λ12 + λ23 ≤ 1, λ23 + λ34 ≤ 1,

λ45 + λ56 ≤ 1, λ56 + λ61 ≤ 1. (3)

This provides a strict performance improvement over the re-
gion achievable by using two channels (speedup of two) in
the interference graph represented in 2(b). Yet, it is clear
that this channel allocation is not the best possible: the allo-
cation in which links (1, 2), (3, 4), and (5, 6) use one channel,

5In [10], it was shown that under restricted arrival processes
(subject to a variance constraint and a large deviation
bound), a maximal weight matching algorithm is stable in
the 6-node ring. In this work the arrival processes are not
restricted in this way.

while the remaining links use the other channel can provide
each network link with a stable rate of one unit per time
slot (i.e. λij ≤ 1 ∀(i, j) ∈ EN).

For a general network operating under primary interfer-
ence constraints with a speedup of two (similar to allocating
two channels to each link), a greedy maximal weight algo-
rithm (implementable in a distributed manner) can achieve
the network stability region Λ∗ [17]. Our example above
shows for a particular network scenario that when two chan-
nels are allocated such that each component satisfies OLoP,
the stability region (that can be achieved by a distributed al-
gorithm) is strictly larger than the original stability region
Λ∗. This strict performance improvement can be demon-
strated in any network with primary interference constraints
that can be partitioned into two non-trivial components sat-
isfying OLoP (for more details see [6]).

This simple example demonstrates that careful channel al-
location that takes into account topologies that satisfy OLoP
can provide provable and significant improvements over ar-
bitrary channel allocation. Moreover, it shows that parti-
tioning into different OLoP-satisfying components can re-
sult in different capacity regions. Therefore, it provides the
motivation to study the characteristics of network topologies
satisfying OLoP and to design channel allocation algorithms
that take advantage of these characteristics.

4. A STUDY OF LOCAL POOLING

4.1 Exhaustive Numerical Search
We performed a numerical study in which we searched

over all interference graphs of up to 7 nodes. We employed
Mathematica to identify all simple graphs, and Matlab to
determine the maximal configurations (i.e. to obtain the ma-
trices M(VI)) and to verify the satisfaction of the OLoP
conditions for each interference graph. The OLoP condi-
tions are based on the SLoP conditions that were verified
using the following linear program presented in [10].

c∗ = max
c,µ,ν

c

s.t. M(VI)µ ≥M(VI)ν + ce

e′µ = 1, e′ν = 1

µ, ν ∈ R
|VI |
+ , c ∈ R

It has been shown in [10, Proposition 1] that the graph GI

satisfies SLoP if and only if c∗ = 0.
In order to simplify the presentation of the numerical re-

sults, we first show that the OLoP conditions are satisfied
by the disjoint union of two graphs (not sharing any vertices
in common) satisfying the OLoP conditions. This allowed
us to restrict our search to connected simple graphs.

Proposition 1. A graph GI = G1
I ∪G2

I (disjoint union)
satisfies OLoP, if and only if G1

I and G2
I satisfy OLoP.

Proof. Suppose GI satisfies OLoP. Consider all induced
subgraphs restricted to the vertices of G1

I . Then, any such
induced subgraph satisfies the SLoP conditions by our as-
sumption that GI satisfies OLoP. Thus, G1

I satisfies OLoP.
The same reasoning provides that G2

I satisfies OLoP.
Suppose that G1

I and G2
I satisfy OLoP. Then, any induced

subgraph of GI can be split into disjoint induced subgraphs
on G1

I and G2
I . For the induced graph on G1

I , our assumption
provides that there exists nonzero α1 ≥ 0 that multiplies
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Figure 3: 7-node graphs that fail OLoP: (a) con-
figurations where the induced graph over the outer
6 nodes is a 6-ring (the dotted lines indicate edges
that can exist), (b) The only 7-node graph that has
no induced 6-ring subgraph and fails SLoP.

any maximal independent vector on the induced subgraph
to yield a constant c1. Similarly, there exists α2 and c2 for
the induced subgraph on G2

I . Every maximal independent
set of the induced subgraph of GI must be the disjoint union
of a maximal independent set of the induced subgraph on
G1

I and a maximal independent set of the induced subgraph
on G2

I . Thus, the augmented vector (α1, α2) must yield a
constant value of c1 + c2 for all maximal independent sets
of the induced subgraph on GI .

We note that in the following section we will present sev-
eral additional theoretical results regarding LoP in general
graphs. A specific case of one of the results that will be pre-
sented there (Lemma 2) is that graphs that have a node with
degree 1 satisfy SLoP. This allowed us to restrict our search
to graphs that do not have vertices of degree 1, thereby
significantly reducing the computation time. We first con-
sidered all connected interference graphs having up to 5 ver-
tices that do not have vertices of degree 1. There are 15 such
graphs. We obtained the following numerical result.

Numerical Result 1. All connected simple graphs of up
to 5 nodes that do not have vertices of degree 1 satisfy SLoP.

This immediately implies that all graphs having up to 5
vertices (there are 52 such graphs) satisfy OLoP. Next, we
considered graphs of 6 vertices (there are 61 such connected
graphs without degree 1) and obtained the following result.

Numerical Result 2. All graphs of 6 vertices except the
6-node ring satisfy SLoP.

Numerical Results 1 and 2 together imply that all graphs of
up to 6 vertices except the 6-node ring satisfy OLoP.

Finally, we considered all graphs of 7 vertices. We first
removed from consideration all such graphs having a 6-ring
as an induced subgraph, since due to the failure of SLoP in
a 6-ring, OLoP fails in these graphs by definition. There are
12 such graphs, and their general form is depicted in Figure
3(a). Among the remaining graphs of 7 vertices, we can
then guarantee that there are no induced subgraphs, having
6 vertices or fewer, that fail the SLoP conditions.

Numerical Result 3. There is one graph of 7 vertices
which does not have an induced 6-ring on any subset of 6
nodes that fails the SLoP conditions. This graph is depicted
in Figure 3(b).

To conclude, almost all 1,252 graphs of up to 7 nodes
satisfy OLoP (specifically, 14 fail OLoP). All attempts at
numerical evaluations for graphs of greater than 7 vertices
suffered computational difficulty. Therefore, in the following
section we focus on generating large graphs satisfying OLoP
from small components.

v1

v2

v3

v4
v5

v6

K3K4

Figure 4: An interference graph composed of two
cliques and the corresponding tree of cliques graph.

4.2 Constructive Approach
Our first observation is about connecting a graph and a

clique (complete graph).

Lemma 2. If GI satisfies OLoP, then the graph G∗
I , which

consists of GI sharing a single vertex with clique Kn, n ≥ 2,
satisfies OLoP.

Proof. Assume that GI satisfies OLoP. Denote by v the
vertex of GI that is shared with clique Kn. We need only
consider the induced subgraphs of G∗

I containing a vertex
v∗ 6= v belonging to the clique Kn, since all other induced
subgraphs are subgraphs of GI and satisfy SLoP by our
initial assumption. Clearly, the maximal independent sets
of any such induced subgraph (whose vertex set is designated
by V ) either include vertex v or v∗, but never both vertices.
Consequently, the vector α having all zero entries except at
the indices corresponding to vertices of Kn, where the entries
are set to 1, yields α′M(V ) = e′. Thus, such a subgraph
satisfies SLoP. This holds for all induced subgraphs of G∗

I

that include v∗, and we conclude that G∗
I satisfies OLoP.

From the proof of Lemma 2 it can be seen that a graph
that has a node with degree 1 (such a graph can be viewed as
a graph GI sharing a node with K2) satisfies SLoP. Recall
that we have used this result in Section 4.1 to reduce the
number of graphs in our numerical search. Moreover, the
observation in [10] that any interference graph that is a tree
(or forest) satisfies OLoP can be immediately obtained using
Lemma 2. We note that in Section 4.3 we will show that even
under the simple primary interference constraints, the only
interference graph that can be a tree is a line. Therefore,
we now study more complicated interference graphs.

Lemma 3. Every complete graph satisfies OLoP.

Proof. Consider the complete graph GI = Kn. Then
clearly any subset of the nodes of GI , labeled V , also gen-
erates a complete induced subgraph. Each maximal in-
dependent set of a complete graph can only contain one
vertex, from which we conclude that M(V ) is the identity
matrix of size |V |. Thus, we can use α = e, which yields
α′M(V ) = e′ for any V , from which we conclude that every
induced subgraph satisfies SLoP, and consequently that GI

satisfies OLoP.

We define a tree of cliques as follows (an example is pro-
vided in Figure 4) and derive the following Theorem.

Definition 8. A tree of cliques is composed of cliques
connected to each other in a tree structure. Its nodes can be
equated to cliques and its edges imply a shared vertex between
two adjacent cliques. No vertex can be shared by more than
two adjacent cliques.

Theorem 2. A tree of cliques satisfies OLoP.
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Proof. Consider any clique G1
I on the tree. By Lemma 3

this clique satisfies OLoP. Then, consider any clique adjacent
to G1

I in the tree of cliques, and denote the graph of the two
combined cliques G2

I . Since G1
I and the adjacent clique share

only a single vertex, we can apply Lemma 2 to conclude that
G2

I satisfies OLoP. By iteratively adding successive cliques
to the overall graph under consideration, we see that each
resulting graph must satisfy OLoP by Lemma 2. Thus, the
overall tree of cliques must satisfy OLoP.

The next theorem considers cliques connected by disjoint
edges, where no two connecting edges share any vertices
in common. Consequently, at most min{m, n} edges can
connect Km and Kn while maintaining an overall simple
graph. The proof of Theorem 3 is omitted and can be found
in [6]. It considers four possible subgraph configurations
and demonstrates SLoP for each type. The main idea is
that each clique usually contributes a single vertex to every
maximal independent set of each subgraph.

Theorem 3. If two cliques are connected by any number
of disjoint edges, the combined graph satisfies OLoP.

We now consider a generalized structure of the one defined
in Definition 8, which we term “tree-of-blocks”. Here, we
generalize the types of structures that can correspond to
each vertex of a tree. We have already shown that a clique is
one such structure. We next show that two cliques connected
by any number of disjoint edges is another such structure.
As before, we require that two “blocks” can only share at
most one vertex in common. The proof of the following
theorem is along similar lines as the proof of Theorem 3 and
can also be found in [6].

Theorem 4. A “tree-of-blocks”, where each block is ei-
ther a clique Kn, n ≥ 2 or a pair of cliques Kn, Km, n, m ≥
1, connected by any number of disjoint edges, satisfies OLoP.

4.3 Primary Interference Constraints
As mentioned above, the primary interference constraints

yield an interference graph GI which is the line graph of the
network graph GN . In this section, we study the restrictions
imposed on such interference graphs. We begin by consider-
ing the only 7-node graph, which does not have an induced
6-ring, that failed SLoP (depicted in Figure 3(b)).

Proposition 2. Under primary interference constraints,
the interference graph presented in Figure 3(b) cannot cor-
respond to any valid network graph.

Proof. According to [12] a graph is a line graph, if and
only if it does not contain any one of 9 specific induced
subgraphs. In particular, the following graph is one of the 9
subgraphs, with vertices of Figure 3(b) labeled appropriately
to show the correspondence.

v1

v2v3

v4

v7

v6

We conclude that only the 6-ring leads to failure of the
OLoP conditions in any network graph having 7 edges or
fewer. By similar arguments, we can show that other inter-
ference graphs cannot exist under primary interference con-
straints. For example, we can show that there is no network

Figure 5: An example of a network graph whose
interference graph satisfies OLoP.

s1 s2

d1 d2 d3 dn

Kn Kn

(s1, d1)

(s1, d2)

(s1, dn)

(s2, d1)

(s2, d2)

(s2, dn)

Figure 6: A network graph for a K2,n bipartite graph
(2 × n input-queued switch) and the corresponding
interference graph.

graph whose interference graph (line graph) is a tree having
a node degree greater or equal to 3. Any such tree has as an
induced subgraph the complete bipartite graph K1,3 (also
known as the “claw”). According to [12], the existence of
such an induced subgraph precludes the possibility that this
interference graph is the line graph of any network graph.

Although there is no interference graph that is a tree, a
network graph that is a tree can of course exist. It can be
shown that the interference graph of such a network graph is
always a tree of cliques, defined in Definition 8. The follow-
ing corollary is an immediate result of Theorem 2. Accord-
ing to this corollary, maximal weight matching algorithms
are stable (provide 100% throughput) in trees. To the best
of our knowledge, this corollary provides the first non-trivial
network structure in which simple distributed algorithms are
stable. The channel allocation algorithms that will be pre-
sented in Section 5 are based on this observation.

Corollary 1. Under primary interference constraints,
the interference graph of a tree network graph satisfies OLoP.

Based on the results presented in Section 4.2, we can con-
struct other non-trivial networks in which maximal weight
matching algorithms are stable. For example, Theorem 4
implies that the network described in Figure 5 satisfies OLoP,
and thus is stable under distributed scheduling. Developing
network partitioning algorithms that efficiently take advan-
tage of such topologies is a subject for further research.

We have obtained additional results that concern bipartite
graphs. Although mesh networks are usually not bipartite,
bipartite graphs provide insight regarding the performance
of our partitioning algorithms. Since input-queued switches
are bipartite graphs with primary interference constraints,
an additional byproduct is insight regarding switches. The
following corollary generalizes a recent result presented in [5]
regarding a 2× 2 input-queued switch.

Corollary 2. A maximal weight matching algorithm ach-
ieves 100% throughput in a K2,n bipartite graph (i.e. in a
2× n input-queued switch).

Proof. A K2,n bipartite network graph is depicted on
the left in Figure 6. Its interference graph can then easily
be shown to be two cliques of size n (Kn), connected by n
disjoint edges, as depicted on the right in Figure 6. The
result is then directly derived from Theorem 3.

It follows that a K4,n bipartite graph can be partitioned
into two subgraphs, each of whose interference graphs satis-
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fies OLoP. In Section 5.2, we will use this observation to eval-
uate the performance of our channel allocation algorithms.

5. CHANNEL ALLOCATION
The Channel Allocation Problem, introduced in Defini-

tion 2, seeks to assign a channel to every link such that each
partition (operating in a different channel) can achieve 100%
throughput by a distributed maximal weight scheduling al-
gorithm. In this section our objective is to develop channel
allocation algorithms that: (i) provide a large stability re-
gion and (ii) allow simple distributed algorithms to achieve
100% throughput in this region. As in Section 4.3, in or-
der to demonstrate the presented concept, we assume that
primary interference constraints hold.

In terms of LoP conditions, we seek to partition the net-
work edges into channels such that the interference graph
in each channel satisfies OLoP. The OLoP requirement is
extremely challenging to incorporate into an optimization
algorithm that generates a channel allocation, because it
seeks the SLoP property for every subgraph on each chan-
nel. However, Corollary 1 shows that network graphs that
are trees satisfy OLoP. Thus, it is sufficient to partition the
edges of the network graph into channels such that each
channel’s network graph is a forest. This is the basis for our
channel allocation algorithms.

Our channel allocation problem is equivalent to a coloring
problem on the network graph. Namely, we seek to color
the network edges such that edges of a single color do not
compose a cycle (i.e. each color composes a forest). The
minimum number of colors is known as the graph arboricity
and can be found by an O(m2) algorithm [11].

Initially, we assume that all nodes have the same num-
ber of radios and that this number is equal to the number
of channels (i.e. R(v) = k ∀v ∈ VN).6 When the number
of available colors (channels) k is fixed, the k-forest prob-
lem [11, 16] seeks to find the maximum number of edges of
the graph that can be colored using only k colors without
closing a single color cycle. This problem can be formulated
as a matroid7 partitioning or a matroid intersection problem.
In order to enable the development of capacity expansion
algorithms, we focus on the matroid intersection formula-
tion. Under this formulation, the k-forest problem makes
use of two matroids: the graphic matroid and the partition
matroid. In our setting, we define these matroids by consid-
ering the graph Gk

N = (V k
N , E), equal to k disjoint copies of

the network graph GN . The graphic matroid M1 = (E ,I1)
assigns to I1 all possible forests in Gk

N . The partition ma-
troid M2 = (E ,I2) partitions E into m , |EN | sets, where
the i-th set, Ei, contains all k copies of edge i. The collec-
tion I2 contains all sets of edges that have no more than a
single element in any set of the partitions: I ∈ I2 implies
|I ∩ Ei| ≤ 1 for i = 1, . . . , m. By associating with each copy
of GN in Gk

N a unique color, it can be seen that the sets
belonging to I1∩I2 can be equated to colorings, where each
subgraph of a particular color is a forest. This directly cor-
responds to a valid channel allocation, where each channel’s
network graph is a forest. The k-forest problem is to find for

6We will show below that this assumption can be relaxed.
7A matroid is a combinatorial structureM = (E ,I) in which
E is a finite set of elements, and I is a collection of subsets
of E satisfying (i) ∅ ∈ I, and if I ∈ I, then all proper subsets
of I belong to I, and (ii) if I1, I2 ∈ I with |I2| = |I1| + 1,
then there exists e ∈ I2 such that I1 ∪ {e} ∈ I.

a given k the largest set of edges belonging to the matroid
intersection of the graphic and partition matroids.

5.1 Partitioning Algorithms
Our first algorithm for the k-forest problem is the subop-

timal Breadth-First Search (BFS) algorithm. Such an algo-
rithm was used in [21] as a heuristic solution to this problem.
Its major advantage is its low complexity of O(k(m + n)).
Yet, in Section 6 we will show that there is a large gap be-
tween the BFS solution and the optimal solution.

Therefore, we selected an optimal algorithm as a basis for
developing our capacity expansion algorithms. The optimal
solution to the k-forest problem can be found in polynomial
time [11,16] by several algorithms. One of these algorithms
is the Matroid Cardinality Intersection (MCI) algorithm of
Lawler [16]. Given a valid coloring I ∈ I1 ∩ I2, the MCI
algorithm searches for an augmenting path, consisting of an
alternating sequence of edges not in I and edges in I , such
that when the edges of the path belonging to I are removed
from I and those not belonging to I are added, the resulting
coloring (channel allocation) belongs to I1 ∩ I2 and its car-
dinality has increased by 1 (for more details see [16]). The
complexity of the MCI algorithm is O(km2n′ + k2mn(n′)2),
where n′ = min{n, m/k}. In the description of the follow-
ing algorithms, we refer to two copies of the same edge on
different colors in Gk

N as parallel edges.
Our channel allocation framework admits the practical sit-

uation where each node v is equipped with R(v) radios (in-
terfaces). Namely, different nodes have a different number
of radios. In the formulation of the matroid intersection
problem, we define the graph Gk

N as the disjoint union of
k identical copies of the network GN . This corresponds to
the case, where each node is equipped with exactly k radios.
Essentially, rather than generating k copies of each network
graph edge, each network link should only have an edge rep-
resented in the i-th copy of the network graph GN when
there is a radio for that link available for use of the i-th
channel.8 Without loss of generality we refer to any graph
defined in this manner as Gk

N = (V k
N , E). The matroid inter-

section properties, the MCI algorithm, and the algorithms
described in Section 5.2 can then be applied to Gk

N .
Once the channel allocation is performed, at each time

slot, one can use the distributed approximation algorithm
of [13] that finds the maximal weight (greedy) solution,
thereby providing 100% throughput. The (local) computa-
tional complexity of this algorithm is O(1). This complexity
is extremely low relative to the O(n3) [16] complexity of a
centralized optimal algorithm required to solve (1). In addi-
tion, the centralized algorithm has to collect queue backlog
information from all the nodes at each time slot (for an ex-
tended comparison see [19]).

In the realistic situation where the number of channels k
is fixed and insufficient to partition all the network edges
into k forests, we apply the MCI algorithm (or BFS) to
generate an initial allocation that is a k-forest, and assign
the unallocated network edges to the k-th channel. Thus,
the first k−1 channels are guaranteed to satisfy OLoP, while
the k-th channel operates at a worst-case 50% throughput.

A (theoretical) optimal solution will partition the graph

8When different nodes have a different number of radios, the
specific allocation of the links to the different copies may
affect the capacity region. An efficient allocation algorithm
is a subject for further research.
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into the minimum number of OLoP satisfying components,
whereas our algorithms partition into forests. In order to
evaluate the performance of our algorithms, we consider
complete bipartite graphs. It can be shown that two chan-
nels are necessary and sufficient to guarantee the satisfaction
of OLoP in K3,3. Applying MCI, we find that the arboricity
of K3,3 is 2 and conclude that MCI achieves the minimum
number of channels to guarantee OLoP. This and similar re-
sults point to the strong performance of the MCI algorithm
in partitioning the network into a small number of channels
satisfying OLoP. Yet, the following lemma provides a lower
bound on the performance in general. Before presenting the
lemma, we define κ∗(GN ) as the minimum number of chan-
nels necessary to partition the edges of a network graph GN

such that the interference graph of each partitioned sub-
graph satisfies OLoP.

Lemma 4. For ε > 0 there is no approximation algorithm
that partitions a network graph GN into κ(GN ) forests, where

κ(GN ) ≤ (1.5− ε)κ∗(GN),∀GN .

Proof. Consider a K4,4 bipartite network graph. It can
be partitioned into two K2,4 network graphs. According to
Corollary 2, under primary interference constraints, an in-
terference graph of K2,4 satisfies OLoP. Therefore, 2 chan-
nels are sufficient to guarantee the satisfaction of OLoP in
K4,4. Namely, κ∗(K4,4) = 2. Since K4,4 has 8 nodes, any
forest in such a graph can have at most 7 edges. Since
K4,4 has 16 edges, its arboricity must be at least 3 (i.e.
κ(K4,4) = 3). Hence, there exists a graph GN for which
κ(GN ) = 1.5κ∗(GN ).

5.2 Capacity Expansion Algorithms
An important undesirable feature of the MCI and BFS

algorithms is that each successive channel has a maximal
number of network edges assigned to it, given the assign-
ment to the previous channels. We wish to balance the
trees in order to expand the capacity, thereby expanding
the achievable throughput.

We present three algorithms for improving the network
capacity properties. Since the admissible region restricts
the summed throughput of all edges incident on the same
vertex in the network graph to 1, it is desirable to mini-
mize the maximum vertex degree over the network graphs
on each channel. The first algorithm is called R-Greedy,
and it operates by greedily selecting edges incident on ver-
tices of maximum degree and seeking any channel that they
can be reallocated to, such that the new allocation belongs
to I1 ∩ I2 and the allocation has an improved maximum
degree. We note that e = (vi, vj) implies that vi ∈ e and
vj ∈ e. The algorithm makes use of the function TF1(I),
which returns a negative value when the maximum degree
or number of vertices at maximum degree under allocation
I improves upon that of a reference allocation, I0.

TF1(I) = ∆∗
I −∆∗

I0

+ 1{∆∗

I
=∆∗

I0
}

�P
v 1{∆I (v)=∆∗

I
} −

P
v 1{∆I0

(v)=∆∗

I0
}

�
.

Above, ∆I(v) denotes the degree of vertex v in graph (V k
N , I),

∆∗
I indicates the maximum vertex degree in graph (V k

N , I),
and 1{·} is the indicator function. The complexity of the R-
Greedy algorithm is O(dnmkn′), where d is the maximum
vertex degree in GN .

Algorithm Greedy Reallocation (R-Greedy)

1: begin with any edge set I ∈ I1 ∩ I2 (this could be the
output of BFS or MCI)

2: repeat
3: I0 ← I
4: if ∃e1 ∈ I, e2 /∈ I such that ∃v ∈ e1, ∆I(v) =

∆∗
I , TF1((I \ {e1}) ∪ {e2}) < 0 then

5: I ← (I \ {e1}) ∪ {e2}
6: until I equals I0

Our second and third capacity expansion algorithms search
for capacity improvements by directly attempting to balance
the vertex degrees over all channels. They make use of aug-
menting paths in the spirit of the MCI algorithm to find
new locations for edges that are incident on heavily-loaded
vertices. The maximum degree reallocation algorithm (R-
MaxD) seeks to minimize the maximum degree over ver-
tices in all channels. It proceeds by disabling edges incident
on maximum degree vertices and searching for augmenting
paths that do not use such edges. The algorithm uses the
function TF1 for evaluating channel allocations, and the
function ESF0

1(I) for selecting candidate edges to disable.
ESF0

1(I) returns all edges incident on vertices having maxi-
mum degree in graph (V k

N , I),

ESF0
1(I) = {e ∈ I : v ∈ e, ∆I(v) = ∆∗

I}.

The average degree reallocation algorithm (R-AvgD) seeks
to reduce any vertex degree in the graph so long as the re-
duction does not lead to higher vertex degrees or more ver-
tices of maximum degree elsewhere in the graph. R-AvgD
employs the performance evaluation function TF2,

TF2(I) =
P∆∗

I

i=1 2isign
�P

v
1{∆I(v)=i} − 1{∆I0

(v)=i}

�
.

Above, the function sign(x) = −1 if x < 0, sign(x) = 1
if x > 0, and sign(0) = 0. The function TF2(I) returns
a negative value when the first entry at which the degree
sequence9 of (V k

N , I) differs from that of (V k
N , I0) is lower in

the sequence of (V k
N , I) than that in (V k

N , I0). This function
encourages trading higher degree vertices for more vertices
of lower degree. R-AvgD also makes use of the function
ESFv

2(I), which returns all edges incident on vertex v in I ,
ESFv

2(I) = {e ∈ I : v ∈ e}. We simultaneously present both
algorithms as Algorithms 1/2, making use of the parameter
PARAMi, with PARAM1 = {0}, and PARAM2 = V k

N .

Algorithm 1/2 Maximum Degree/Average Degree Reallo-
cation algorithms (R-MaxD [i = 1]/R-AvgD [i = 2])

1: begin with any edge set I ∈ I1 ∩ I2
2: repeat
3: I0 ← I
4: for v ∈ PARAMi do
5: I ← arg minĨ{TFi(Ĩ) :

Ĩ = CE-MCI(I ,{e},ESFv
i ,TFi,1), e ∈ ESFv

i (I)}
6: until I equals I0

R-MaxD and R-AvgD employ the recursive procedure
CE-MCI that successively disables edges until an improved
augmenting path is found, or all possible configurations are

9The degree sequence of a graph G is a nondecreasing se-
quence of the vertex degrees of G.
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Algorithm CE-MCI(I0,E0,ESF,TF,Depth)

1: I = {I0 \ E0}
2: while ∃I ∈ I with |I | < m do
3: I ← I \ {I}
4: remove labels from all edges; assign I+ = I− ← ∅
5: label ‘+’ on every edge e such that I ∪ {e} ∈ I1 and

e ∩ E0 = ∅
6: while e = [edge with oldest unscanned label] 6= ∅ do
7: if e is labeled ‘+’ and I ∪ {e} ∈ I2 then
8: trace the alternating path of ‘+’ and ‘-’ labels

that lead to the ‘+’ label at e by assigning edges
labeled ‘+’ to I+ and those labeled ‘-’ to I−

9: I ← I ∪ {(I \ I−) ∪ I+}
10: else if e is labeled ‘+’ then
11: label ‘-’ on the edge in I that is parallel to e (if

the edge is unlabeled)
12: else
13: label ‘+’ on each unlabeled edge in the unique

cycle in (V k
N , I ∪ {e})

14: I ← I ∪ {I0}; Irmci ← arg minI∈I TF(I)
15: if TF(Irmci) = TF(I0) then
16: (failed to generate an improved augmenting path)
17: if Depth < D MAX then
18: Irmci ← arg minI{TF(I) :

I = CE-MCI(I0,E0 ∪ {e},ESF,TF,Depth+1),
e ∈ ESF(I0 \ E0)}

19: else
20: Irmci ← I0

21: return Irmci

exhausted. CE-MCI takes as input the initial channel allo-
cation I , the set of edges E0 to exclude when it attempts
to search for augmenting paths, the functions ESF and TF,
and an integer to track the depth of the recursion. The
maximum depth of the recursion can be set using the con-
stant D MAX. While the MCI algorithm modifies the chan-
nel allocation at each iteration upon the discovery of its first
augmenting path, CE-MCI labels over the entire graph and
selects the best augmenting path available between all such
paths found, in terms of the function TF.

The complexity of the algorithms is a function of the com-
plexity of the MCI algorithm, which we denote by c(MCI).
The complexity of R-MaxD is O(dnmD MAXc(MCI)) and
of R-AvgD is O(dD MAXnmc(MCI)). As long as the search
depth D MAX is low, the complexity is reasonable. In the
following section, we will see that significant capacity im-
provement is achieved for D MAX = 2.

6. PERFORMANCE EVALUATION
The partitioning and capacity expansion algorithms pre-

sented in Section 5 were implemented in Matlab and tested
on numerous randomly generated networks. In this sec-
tion we briefly describe the numerical results obtained for a
number of representative cases. All presented results have
been obtained for randomly generated instances in which the
nodes are uniformly distributed in a plane of size 1000m ×
1000m, with a link existing between two nodes if the dis-
tance between them is at most 250m. We intentionally
present results regarding relatively dense networks, since in
very sparse networks the partitioning solution is often trivial
and does not shed light on the tradeoffs involved in capac-
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Figure 7: Average number of channels in the opti-
mal solution, the number required by the BFS algo-
rithm, and the upper bound.

ity expansion. As in the previous sections, we assumed that
primary interference constraints hold. The presented results
were obtained under the assumption that the number of ra-
dios is equal to the number of channels and is the same for
all the nodes (i.e. R(v) = k ∀v). As described in Section
5.1, this assumption can be easily relaxed.

6.1 Partitioning Algorithms
Figure 7 compares the average number of channels (k) re-

quired by the BFS and the MCI algorithms. The results
are presented as a function of the number of nodes in the
network (n), where for each value of n, the average was ob-
tained over 100 different random instances. Over all cases
tested, the BFS algorithm required on average 32% more
channels than the optimal MCI algorithm. Such a perfor-
mance gap was observed throughout our numerical studies.
Consequently, it seems that despite the higher computa-
tional complexity, using a matroid intersection algorithm is
beneficial. This is one of the reasons the MCI algorithm was
chosen as the basis for our capacity expansion algorithms.

Figure 7 also presents an upper bound on the edge chro-
matic number, which is the minimum number of colors (chan-
nels) such that an edge coloring exists having no two equally
colored edges incident on the same vertex. The large gap be-
tween the optimal solution and the edge chromatic number
upper bound results from the fact that under edge color-
ing, all edges can be active simultaneously, while MCI cre-
ates trees on which transmissions still have to be scheduled.
Hence, by using edge coloring, the capacity region is en-
larged to λij ≤ 1 ∀(i, j) ∈ EN . In many network instances,
such a large capacity expansion requires numerous channels.

6.2 Capacity Expansion Algorithms
We now demonstrate the operation of the different ca-

pacity expansion algorithms on a specific randomly gener-
ated network with 20 nodes. Figure 8 illustrates an example
of the channel allocations performed by the different algo-
rithms in a network in which the required number of chan-
nels is 4. The figure presents the network and then, for each
algorithm, the 4 forests. Figure 8(a) presents the solution
obtained by the MCI algorithm. It can be seen the left-
most forest is relatively very dense, while the rightmost tree
is very sparse (it includes only a single edge). It is clear
that the capacity is not efficiently allocated in this solution.
Namely, most of the nodes do not use the fourth channel,
while the first channel has to be shared by many links.
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Figure 8: Channel assignments by (a) MCI (b) R-
Greedy (c) R-MaxD, and (d) R-AvgD.

Figure 8(b) presents the allocation performed by algo-
rithm R-Greedy, using the MCI solution as input. It can
be seen that several edges have now been migrated to the
fourth (rightmost) channel. Figure 8(c) presents the alloca-
tion performed by algorithm R-MaxD, using the R-Greedy
solution as input. The R-Greedy solution had two ver-
tices of degree three, and R-MaxD manages to manipu-
late the allocation such that only a single vertex has degree
three. Finally, the solution from R-MaxD is used as input
in R-AvgD to obtain the channel allocation of Figure 8(d).
Though the maximum vertex degree remains at three, lower
degree vertices have had their degrees improved, with many
more edges in this allocation entirely disconnected.

The example above demonstrates the operation of the ca-
pacity expansion algorithms. We now quantitatively evalu-
ate their performance. Given a specific channel allocation
it is not straightforward to represent the capacity region.
This results from the fact that it is a polytope in R

m
+ . Yet,

in order to obtain some insight, we make the following sim-
plifying assumption regarding the capacity allocation that
takes place once the channels are assigned to the links. We
assume that some degree of fairness exists, and therefore,
if possible, all edges connected to a node receive an equal
share of the node capacity. This is sometimes impossible,
due to a capacity limit resulting from the other node con-
nected to an edge. Consequently, under this assumption the
throughput on an edge (i, j) operating in channel k will be
at least (max(∆i,k, ∆j,k))−1, where ∆i,k is the number of
edges adjacent to node i that are using channel k.

Accordingly, the first performance measure is Average Ca-
pacity, which is the average over all edges (i, j) ∈ EN of the
above value. The second performance measure is the Worst-
Case Capacity, which is the lowest capacity allocated to a
link in the network. This is inversely proportional to the
maximum node degree over all nodes and all channels. Us-
ing the above notation, it is equal to (maxi,k ∆i,k)−1.
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Figure 9: Average and worst-case capacities.

Figure 9 illustrates these performance metrics for random
networks with different numbers of nodes (n). For each value
of n, the results were averaged over 50 different random
network instances. It can be seen that both for the worst
case and the average case, R-Greedy provides significant
throughput improvement over the MCI algorithm (average
improvement of 29% and 40% in the average and worst-case
capacity, respectively). This is notable, since the complexity
of the greedy capacity expansion algorithm is small relative
to that of MCI. When using the R-MaxD and R-AvgD, we
employed a maximum search depth of D MAX = 2. This
implies that the complexities of R-MaxD and R-AvgD are
respectively O(dnm2) and O(d2nm) times the complexity
of MCI. Despite the higher complexities, the value of these
algorithms is evident from their ability to significantly im-
prove the performance metrics. Relative to the MCI solu-
tion, R-MaxD achieves average improvements of 36% and
56% in the average and worst-case capacities, respectively,
while R-AvgD achieves 45% and 56%, respectively.10 There
is an evident tradeoff between complexity and performance.
Since the channel allocation problem is solved in a different
time scale from the scheduling problem, it seems beneficial
to use R-MaxD or R-AvgD.

In realistic situations the number of channels and radios is
bounded. Figure 10 depicts the average capacity metric ver-
sus the number of available channels (k) for a network with
20 nodes. For each value of k, the results were averaged over
50 different random network instances. Given a fixed k, the
MCI, R-Greedy, R-MaxD, and R-AvgD algorithms were
enlisted to obtain and expand the capacity of k-forests. In
instances where there were edges that could not be included
in a valid k-forest, these edges were added to the last gener-
ated forest (at channel k). As explained in Section 5.1, the
first k − 1 channels are guaranteed to satisfy OLoP, while
the k-th channel operates at a worst-case 50% throughput.
If there was a cycle in the k-th channel, we assumed that the
edges in the k-th channel achieve only 50% throughput when
calculating the average capacity. Algorithms R-Greedy, R-
MaxD and R-AvgD provide significant improvement over
the MCI algorithm alone.

7. CONCLUSIONS
In this paper we have applied techniques stemming from

stability theory and matroid theory to obtain novel results

10Note that the plots of the worst-case capacity for R-AvgD
and R-MaxD overlap.
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regarding the design of Wireless Mesh Networks. The appli-
cation of these theories allows us to develop algorithms for
partitioning a mesh network into a number of high capac-
ity subnetworks such that in each of the subnetworks simple
distributed algorithms can obtain 100% throughput.

We have performed a thorough study of the implications
of Local Pooling on network design and shown that although
the notion of Local Pooling is rather abstract, its implica-
tions are quite powerful. Based on some of our observa-
tions, we developed matroid intersection algorithms for effi-
cient network partitioning. In Section 6 we have shown that
these algorithms perform very well in terms of capacity. We
note that the scope of this work spans more than multi-radio
multi-channel WMNs. It seems to be relevant to any wire-
less network with stochastic arrivals in which transmissions
can be differentiated in the time domain (i.e. scheduling) as
well as in other domains (frequency, code, etc.).

This paper primarily provides a theoretical contribution
that lays the foundation for developing practical algorithms.
Hence, there are still many problems to deal with. For exam-
ple, a future research direction is to allow dynamic channel
allocation. This will require to tailor the channel allocation
algorithms for online and perhaps distributed operation. In
addition, Lemma 4 indicates that partitioning into trees may
be suboptimal. Therefore, we would like to develop matroid
intersection algorithms that will partition into other com-
ponents similar to the ones identified in Section 4. In gen-
eral, we would like to develop algorithms that partition the
network to the minimum number of OLoP-satisfying com-
ponents. It seems that this may be done by utilizing con-
nections between the maximal independent sets in the in-
terference graph and the characteristics of the graphic and
partition matroids.
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