Geometric Spanner for Routing in Mobile Networks

Jie Gao* Leonidas J. Guibas*

Abstract

We propose a new routing graph, the Restricted Delaunay
Graph (RDG), for ad hoc networks. Combined with a node
clustering algorithm, RDG can be used as an underlying
graph for geographic routing protocols. This graph has the
following attractive properties: (1) it is a planar graph;
(2) between any two nodes there exists a path in the RDG
whose length, whether measure in terms of topological or
Euclidean distance, is only a constant times the optimum
length possible; and (3) the graph can be maintained effi-
ciently in a distributed manner when the nodes move around.
Furthermore, each node only needs constant time to make
routing decisions. We also show by simulation that the RDG
outperforms the previously proposed routing graphs under
the Greedy Perimeter Stateless Routing (GPSR) protocol. In
addition, we investigate theoretical bounds on the quality of
paths discovered using GPSR.

1 Introduction
An ad hoc network consists of a collection of mobile com-
munication nodes. Any two nodes within a certain distance
of each other can communicate directly. Each node’s trans-
mission range is usually modelled as a fixed-radius circle
centered at the node (we assume in this paper that all nodes
have the same transmission range). In an ad hoc network,
there is no centralized control or fixed infrastructure. Each
mobile node operates as a router, relaying packets for other
nodes that may not be within direct transmission range (there
might be some nodes that cannot work as routers, but we will
not consider them in this paper). When the nodes move, the
underlying topology of the network changes constantly.

The constantly changing network topology makes routing
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in ad hoc networks difficult. Many routing protocols have
been proposed for mobile networks. In on-demand rout-
ing [17, 18, 21], a node floods the network to discover a path
when it initiates communication to another node and then
caches the path for later use. However, flooding is expensive,
and the lifetime of a cached path is very short if the nodes
move quickly. One way to avoid the expense of full flooding
is for each node to communicate only with a selected sub-
set of neighboring nodes [13, 20, 22]. This approach can be
viewed as maintaining a subgraph of the underlying topol-
ogy according to certain local rules. The subgraph should at
least preserve the connectivity, i.e., any two nodes that are
connected in the underlying graph should be connected in
the subgraph as well.

Another way to avoid flooding is to use geographic for-
warding, which is applicable if the geographic location of
each node is available to other nodes from a location ser-
vice [2, 15, 16]. In a geographic forwarding scheme, a source
node first acquires the location of the destination node it
wants to communicate with, then forwards the packet to a
neighbor closer to the destination, repeating the process un-
til the packet reaches the destination. A path is found via a
series of local decisions rather than flooding. However, ge-
ographic forwarding methods suffer from the so called local
minimum phenomenon, in which a packet may get stuck at a
node that does not have a closer neighbor to the destination,
even though the source and destination are connected in the
network. To deal with this problem, Karp and Kung pro-
posed the Greedy Perimeter Stateless Routing (GPSR) pro-
tocol, which guarantees the delivery of the packet if a path
exists [13]. Their method requires the maintenance of a pla-
nar subgraph of the underlying connectivity. When a packet
is stuck at a node, the protocol will route the packet around
the faces of the graph to get out of the local minimum. Karp
and Kung proposed to use two planar subgraphs: the relative
neighborhood graph (RNG) and the Gabriel graph (GG), on
the original node set. While the algorithm performs quite
well when each individual node’s visible range is large and
nodes are randomly distributed, it does not perform well in
more general cases. In particular, the GG and RNG are not
good spanners: nodes that can be reached via a path with
few hops might become far apart in the GG or RNG [10].
This fact limits the quality of paths even if we use globally
optimum routing methods on these subgraphs.

The stretch factor of paths in a graph captures this aspect
of path quality. Roughly speaking, the stretch factor of a



subgraph G’ of a graph G measures the worst-case ratio be-
tween the length of a shortest path in G’ to the length of the
shortest path with the same endpoints in G.

We present a routing graph, the restricted Delaunay graph
(RDG), that has nice theoretical guarantees on the stretch
factor of the paths. In particular, the RDG has paths with
Euclidean or topological length only a constant factor longer
than the length of the optimal path. Our routing graph can
be maintained efficiently in a distributed fashion under node
motion. In addition to presenting rigorous theoretical anal-
ysis, we also demonstrate that experimentally, GPSR on our
routing graph improves the routing path quality compared to
the path quality using the GG or RNG, under both uniform
and clustered distributions of the points.

To define our graph, we first group points into clusters.
Each cluster has a clusterhead, and nearby clusters are con-
nected via gateway nodes. For a node u to send a packet
to a non-neighbor node v, w first forwards the packet to its
clusterhead, and the packet is then forwarded among clus-
terheads and gateways until it reaches some clusterhead or
gateway that is visible to v. We use a clustering algorithm
to guarantee that each clusterhead/gateway has only a con-
stant number of neighbors [11]. This simplifies forwarding
during routing. In [13], the greedy geographic forwarding is
done by examining all the neighboring nodes in order to skip
short edges in the graph. This process is expensive when the
nodes are densely distributed. In our routing graph, since we
cluster nodes in the first stage, we can perform the greedy ge-
ographic forwarding by considering only the adjacent nodes
in the routing graph, and this reduces the complexity signif-
icantly. The clustering algorithm also improves the behavior
of GPSR, since we have only essential points in the graph.
In the GG or RNG, GPSR may traverse a short boundary
that consists of a dense sequence of points; but boundaries in
the RDG have only constant density. We also investigate the
trade-off between scaling and the spanning property, and the
efficiency of clusterhead changes.

The rest of the paper is organized as follows: Section 2
surveys previous work, Section 3 gives a detailed descrip-
tion of the RDG and proves the spanning property, Section 4
deals with the distributed implementation of the RDG, Sec-
tion 5 proves theoretical bounds on the length of the actual
routing paths under certain circumstances, Section 6 com-
pares the simulation results of GPSR on the RDG vs. GPSR
on the RNG and discusses various aspects of the RDG,; fi-
nally, Section 7 summarizes our work and gives some future
directions for research.

2 Previous Work

Many routing protocols have been developed for ad hoc mo-
bile networks. Most of them fall into two categories, table-
driven and source-initiated on-demand. A review of cur-
rent routing protocols can be found in [21]. Recently, Karp
and Kung proposed the Greedy Perimeter Stateless Routing
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(GPSR) protocol, in which only the positions of routers and
a packet’s destination are used to make packet forwarding
decisions. GPSR makes greedy forwarding decisions using
only information about a router’s immediate neighbors in the
network topology. When greedy forwarding is not possible,
the packet is forwarded along the perimeter of a face in a
planar graph. The advantage of GPSR over other routing
protocols is that forwarding decisions are made using local
information; there is no need to maintain routing tables or
make global broadcasts. This idea of combining greedy and
perimeter routing on planar graphs is independently investi-
gated by Bose et al. [4].

Clustering is used in many routing protocols in mobile
networks [1, 6, 9, 12]. Our basic clustering algorithm is
similar to the Lowest-ID Cluster Algorithm proposed by
Ephremides, Wieselthier, and Baker [9, 12]. A similar idea
also led to the Max-Min D-clustering scheme proposed by
Amis et al. [1]. Chiang et al. [6] proposed a Least Clus-
ter Change clustering (LCC) algorithm that tries to mini-
mize clusterhead changes. However, there is no guarantee
on the quality of the clustering. They also proposed a Clus-
terhead Gateway Switch Routing (CGSR) protocol that uses
routing tables; yet maintaining the clustering with a rout-
ing table is expensive in a mobile setting. Another class
of routing protocols is based on the Minimum Connected
Dominating Set (MCDS) [7, 23]. Das et al. [7] proposed
a MCDS routing protocol that uses a log n-approximation
of the minimum connected dominating set. Wu et al. used
a distributed algorithm to compute the connected dominat-
ing set; however, this could perform badly in the worst case
(O(n)-approximation) [23].

Spanner graphs have been heavily studied in computa-
tional geometry [10]. The Delaunay triangulation has been
shown to be a planar spanner [5, 8, 14]. However, little is
known about restricted spanner graphs, where only edges
shorter than 1 are allowed. Also, little is known about how
to maintain spanner graphs in a distributed manner when the
points move.

3 Routing Graph with Constant
Stretch Factor

We assume that two mobile nodes can communicate to each
other directly if their separation is no larger than 1. We call
two such nodes visible to each other. The visibility graph
G = (V,E) is defined as follows: the vertex set V' is the
set of all the mobile nodes, and an edge wv is in E if and
only if u and v are visible to each other. The neighborhood
of u, denoted by N (u), is the set of the nodes visible to u
(including w itself). If we assume |V'| = n, then there might
be ©(n?) edges in G. For any two nodes v and v in V, de-
note by 7(u, v) (d(u, v)) the length (Euclidean length) of the
topological (Euclidean) shortest path connecting » and v in
G. For a subgraph G of G, define 7¢(u,v) and dg(u,v) to



be the same quantities in G. Then G has topological (Eu-
clidean) stretch factor at most C' if for any pair of nodes u, v,
16 (u,v) < C-7(u,v) (dg(u,v) < C -d(u,v)). The stretch
factor measures the quality of the subgraph. One of the major
goals of this paper is to construct a subgraph G with constant
stretch factor. This graph G can serve as a routing graph in
the ad hoc network.

Our construction consists of two phases. First, we make
use of the hierarchical clustering algorithm in [11] to select
a small subset of V, called clusterheads, so that each node
in V' can communicate directly to some clusterheads. Each
non-clusterhead node in V' (called a client) is assigned to
a unique clusterhead visible to it. We also identify those
pairs of clusterheads that may communicate to each other via
their clients. For each such pair, we pick one pair of clients,
called gateways, that enable such communication. This re-
duces the routing in G to routing between clusterheads and
gateways. Second, we form a planar routing graph on the
clusterheads and gateways by applying a local rule, called
the restricted Delaunay edge rule. The graph produced this
way is called the restricted Delaunay graph (RDG). Rout-
ing between clusterheads and gateways is then done on the
RDG. Therefore, our final routing graph R is the union of
RDG and the edges that connect clients to clusterheads.

Our routing graph has the following properties:

e RDG is a planar graph (no two edges cross each other
in the graph).

e R has constant stretch factor, in both topological and
Euclidean senses. That is, if there exists a path in G
with length ¢ between two nodes, then there is a path in
R with length C' x £ for some constant C' > 0, where
the length can be either topological or Euclidean.

e R can be efficiently computed and maintained in the
distributed setting.

In the rest of this section, we will first briefly describe the
clustering algorithm in [11] and then present the restricted
Delaunay graph.

3.1 Mobileclustering

The goal of clustering is to select a subset of nodes as the
clusterheads such that the rest of the nodes are visible to
at least one of the clusterheads. While any clustering algo-
rithm can be used in the first stage, the algorithm developed
in [11] is used because we need some special properties of
the clustering algorithm to achieve good properties on the
routing graph. The one-level clustering algorithm analyzed
in [11] works as follows: assume a random ordering on the
IDs of the nodes, and let each node nominate the node with
the highest ordered ID in its visible range *. All nominated

1There is a way to permute the order of the IDs such that every node gets
a fair chance of being a clusterhead.

47

points are clusterheads. A cluster is formed by a cluster-
head and all the nodes that nominated it. This one-level
algorithm was first proposed by Ephremides, Wieselthier,
and Baker [9], but without theoretical analysis. In [11], the
method is rigorously analyzed and extended to a hierarchi-
cal algorithm that achieves a constant approximation factor
in expectation.

The hierarchical algorithm makes use of the one-level al-
gorithm and proceeds in a number of rounds. The basic idea
is that instead of considering all nodes in its visible range,
each node gradually grows its visible range and selects clus-
terheads among nodes in the restricted visible range. Only
clusterheads selected in one round will participate in the
clusterhead selection process in the next round. The overall
outline of the algorithm is as follows: Initially at round 0, all
nodes are clusterheads and participants. At each round each
participant (clusterhead produced by the previous round) se-
lects a new clusterhead out of the participants within a larger
visible range by using the basic one-level algorithm. The
size of the visible range used in round i is 2¢/logn. The
hierarchical algorithm terminates after loglogn — 1 rounds.
A cluster is defined by a final clusterhead and all the nodes
that directly or indirectly nominated it. Gao et al. showed
that all nodes in a cluster are visible to the clusterhead, and
the number of final clusterheads is only a constant factor
more than the minimum possible [11]. The following result
is from [11].

Theorem 3.1 The number of clusterheads in any unit disk is
O(1) in expectation.

In the rest of the paper, we assume the clusterheads have
constant density, with the understanding that this is in the
expected sense.

To enable different clusters to communicate with each
other, we introduce gateways [9]. These are nodes that link
two clusters. For each clusterhead p, define the cluster C(p)
centered at node p to be the set of points that nominated p
and p itself. Note that one node can participate in two clus-
ters, if it nominates another node as its clusterhead, and at
the same time it is nominated by others to be a clusterhead.
We allow such situation. A node z’s clusterhead is denoted
by ¢ For a pair of clusterheads (c1, ¢2), if there exists a pair
of nodes p1 € C(e1), p2 € C(c2) such that p, and ps, are vis-
ible to each other, we define p; and p- to be gateway nodes.
Note that p; and p, might be clusterheads already, in which
case they remain clusterheads. Between each pair of over-
lapping or adjacent clusters, only one pair of gateway nodes
is maintained at any time. We describe the maintenance of
clusterheads and gateways for mobile points in Section 4.
From Theorem 3.1, we can also derive the following fact.
The proof is omitted in this abstract.

Corollary 3.2 The number of clusterheads and gateways in
any unit disk in the plane is O(1) in expectation.
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Figure 1: Example of Linked Cluster organization
of a mobile network

The hierarchical algorithm provides a theoretical bound
that holds for any distribution of points in space. In reality,
distributions that cause bad clustering quality appear very
rarely. In our simulation, we only use the one-level cluster-
ing algorithm described above.

3.2 Restricted Delaunay graph

Our routing graph R includes the edges that connect each
client to the clusterhead it nominated. In addition, we con-
nect together clusterheads via gateways to create a planar
graph among clusterheads and gateways. Figure 1 shows an
example of such a routing graph.

The routing of a packet from « to v (if v is not directly
reachable) is realized by first sending the packet to «’s clus-
terhead, then forwarding the packet among clusterheads and
gateways until it reaches a node visible to v, which forwards
the packet to v. We design a restricted Delaunay graph
(RDG) for connecting clusterheads and gateways, similar to
the GG and RNG used for all the nodes in the perimeter rout-
ing paper [13]. The difference is that the RDG provides the-
oretical guarantees on the Euclidean and topological stretch
factors, while the GG and RNG do not (Section 5). In the
rest of this section, we concentrate on the visibility graph
whose nodes are the clusterheads and gateways, G¢g. Since
the definition of the RDG is independent of the clustering al-
gorithm, we will describe the graph on a set of points. But
the reader should keep in mind that the graph is computed
on clusterheads and gateways, rather than on the full node
setV.

3.2.1 Voronoidiagram, Delaunay triangulation and Re-
stricted Delaunay graph

For a set of point sites in the plane, the Voronoi diagram par-
titions the plane into convex polygonal faces such that all
points inside a face are closest to only one site. The Delau-
nay triangulation is the dual graph of the Voronoi diagram,
obtained by connecting the sites whose faces are adjacent in
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Figure 2: Voronoi diagram and Delaunay triangu-
lation of a set of points.

the Voronoi diagram. These classical geometric structures
have numerous applications [19]. For an edge xy, there is
an empty-circle rule to determine whether zy is a Delaunay
edge: xy is a Delaunay edge if and only if there exists a cir-
cle that contains no other points except z, y. Figure 2 shows
an example of a Voronoi diagram and Delaunay triangulation
of a set of points.

The Delaunay triangulation is known to be a good spanner
of the complete graph [8, 14]. However, we cannot use this
graph directly in our setting because (1) the Delaunay tri-
angulation may have very long edges, while we are only al-
lowed to connect points within distance 1; and (2) the empty-
circle rule is a global rule that is not suitable for local com-
putation. To deal with those two problems, we define the
restricted Delaunay graph (RDG) and show that it has good
spanning properties and is easy to maintain locally.

Definition 3.3 A restricted Delaunay graph of a set of points
in the plane is a planar graph and contains all the Delaunay
edges with length < 1 (called short D-edges).

Notice that the restricted Delaunay graph always exists
and is not necessarily unique. By its planarity, we also know
that RDG is sparse, i.e. has linearly many edges in terms
of the number of nodes. In the following, we will first show
that any RDG has nice spanning properties. In Section 4, we
will show how to maintain RDG, and therefore our routing
graph R, for mobile points.

3.2.2 Spanning properties of R

The Euclidean spanning property of the Delaunay graph was
first proved in [8] and later improved in [14]. We extend the
proof in [8] to show the Euclidean distance spanning prop-
erty of the graph S, which is a subgraph of a visibility graph
G = (V, E) and contains only the short D-edges. Then the
RDG graph is also an Euclidean distance spanner, since it
contains all the short D-edges.

Lemma 3.4 For any u,v € V, ds(u,v) < Ci - d(u,v),
where C; = %w ~ 5.08, i.e., S is a Euclidean spanner
graph with stretch factor of at most 5.08.

Proof: It suffices to prove that for any two nodes u,v € V,
if their Euclidean distance is £ < 1, then there exists a path



in RDG connecting them whose total Euclidean length is
at most Cy - £. We can use the following spanning prop-
erty proven for regular Delaunay triangulations by Dobkin
et al. [8]: for any two nodes u,w, there exists a path in
the Delaunay triangulation that lies entirely inside the cir-
cle with uv as the diameter, and the path length is no more
than %@r - £. For any two points in the circle with uv as
the diameter, their distance is at most ¢ < 1. Therefore, all
the edges in the path constructed in [8] are short D-edges,
which all exist in S. m|

While the above lemma shows that RDGs are good Eu-
clidean spanners, a RDG is not necessarily a good topolog-
ical spanner. A counterexample can be constructed where
there is a direct path between two nodes yet in the RDG the
length of the shortest path is ©(n). However, if the nodes are
distributed with constant density, i.e., there are O(1) nodes
in any unit circle in the plane, then we can also show the
topological stretch factor is bounded. Fortunately, the graph
G ¢ has constant density by Corollary 3.2.

Lemma 3.5 A RDG is a topological spanner graph with
constant stretch factor. That is, for any two nodes u, v in
Gea, TrpG (u,v) < Cy - 7(u,v) for some constant Cy > 0.

Proof: Since G¢g has constant density, in the proof of
Lemma 3.4, there are at most O(1) points in the circle with
uw as the diameter. Thus, the path in the RDG has a con-
stant number of intermediate nodes. That is, the RDG is a
topological spanner graph with constant stretch factor. O

In addition, our routing graph R is a both Euclidean and
topological spanner.

Theorem 3.6 Graph R is a both Euclidean and topological
spanner graph with constant stretch factor.

Proof: Suppose the (either Euclidean or topological) short-
est path between w and v IS P : wy = u,ug,...,Uppr1 =
v. Suppose the clusterhead of w; is ¢;. Since node wu;

c Co C3

Cq Ckt1

U = Uy Uo us Uy

Figure 3: Spanner property of routing graph R

and wu;41 are visible to each other, there must exist a pair
of gateway nodes between clusterheads ¢; and c¢; 41, i.e.,
Teee (Circiv1) < 3 (Figure 3). From lemma 3.5, there
exists a path P; in the RDG whose length is at most Cs -
Teee (Ciycir1). We define the path P’ to be the union
of P; and the edges ujcy, ugpicre1. Then 7r(u,v) <
2+ Zle Cs - Tgog (CisCiy1) < 3C2 -k + 2.

The Euclidean spanner property follows from the constant
density of the clusterheads and gateways. Basically all the ¢;

Ug+1 =V
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lies in a region whose area is linear to the Euclidean length
of P. Due to the constant density argument, the number of
clusterheads and gateways inside the region is also linear to
the length of P. So the length of the path P’ is only a con-
stant times the length of P. ]

We have shown that our routing graph has constant stretch
factor for both Euclidean and topological distances. In prac-
tice, it is expensive to find the shortest path in a routing
graph. Geographic forwarding is preferable because of its
simplicity. We also prove some theoretical bounds on the
length of the actual paths used by geographic forwarding.
In addition, our experimental results show that our routing
graph performs better than the RNG or GG under geographic
forwarding (Section 6).

4 Maintaining the Routing Graph

In this section we discuss the maintenance of the routing
graph in the distributed setting. The challenge here is that
each node only has a fixed communication range and only
performs local computation. We aim to design an algorithm
that enables each node to efficiently and consistently main-
tain the relevant part of the routing graph, with only the
knowledge of the neighbors. For the maintenance of clus-
terheads, we use the algorithm described in [11] and refer
the reader to that paper for details. Here we will describe
the maintenance of restricted Delaunay graphs and gateway
nodes.

4.1 Maintaining RDG

According to Lemma 3.5, any RDG has the desired spanning
property. We will describe a distributed algorithm which
maintains a RDG at any instance of time. At the end of the
algorithm, each node « maintains a set of edges E(u) inci-
dent to u, and those edges satisfy that (1) each edge in E(u)
is short, i.e. of length < 1; (2) the edges are consistent, i.e.
the edge ww is in E(u) if and only if it is in E(v); (3) the
graph obtained is planar, i.e. no two edges cross; and (4) all
the short Delaunay edges are guaranteed to be in the union
of E(u)’s.

The algorithm works as follows. First, each node u ac-
quires the position of its neighbors N (u) and computes the
Delaunay triangulation, denoted by T'(u), on N(u). Since
T'(u) is computed only on N (u), the edges we obtained is
a superset of the short Delaunay edges, and some of them
might be non-Delaunay edges. Further, the local graphs at
different nodes might be inconsistent, i.e. an edge uw is in
u’s local graph but not in v’s. Because of this inconsistency,
the union of local graphs might not be planar although they
are planar individually. To resolve these problems, we per-
form one round of information propagation. In the second
step, each node u sends T'(u) to all of its neighboring nodes.
Then each node executes the pseudo-code shown in Figure 4.



E(u) := {uv|uv € T(u)}
For each edge wv in E(u)
For each w in N(u)
If (u,v € N(w) and uv ¢ T'(w)) then
delete wv from E(u)

Figure 4: Pseudo-code for resolving inconsistency

Now, we will argue that after the execution of the above
pseudo code, all the E(u)’s satisfy the stated properties. The
invariant the above pseudo-code achieves is that for each
visible pair » and v, the edge uv belongs to E(u) if and
only if v € T'(w) for all w € N(u) N N(v) (notice that
u,v € N(u) N N(v) since u,v are mutually visible). If an
edge uw is a short Delaunay edge, it has to present in all the
local graph T'(w) for w € N(u)NN (v). Therefore, the prop-
erties (1),(2), and (4) hold. The following simple geometric
fact shows that property (3) holds as well.

Lemma 4.1 For two visible pairs uv and wz, if the edges
wv and wz cross, then one of the four nodes sees all of the
other three.

Proof: Assume that wv (of length < 1) and wz(of length <
1) intersect at point p. By triangle inequality, |wp| + |up| >
|uw| and |vp| + |zp| > |vz|. Summing these two equations,
we have that |uv|+ |wz| > |uw|+ |vz|. Therefore, either uw
or vz has length < 1. Similarly, either uz or vw has length
< 1. No matter in which case, the endpoint shared by two
short edges sees all three other points. m|

By Lemma 4.1, we now argue that no crossing exists in the
final graph. Suppose that the edge uv € E(u) intersects the
edge wz € E(w). Then by the lemma, one of u, v, w, z, say
u sees all the four nodes. Therefore, w must have received
T'(w) when computing E(w). According to Figure 4, both
uwv and wzx must present in 7'(u), contradicting that 7'(u) is
a planar graph. The above procedure could be expensive if
N (u) contains many nodes. Fortunately, it is not the case in
our setting because we apply this algorithm on clusterheads
and gateways. According to Corollary 3.2, those nodes have
constant density. Therefore, E(u) can be computed in con-
stant time for each .

4.2 Maintaining gateway nodes

The maintenance of gateway nodes is similar to the method
described in [9]. Essentially, every node broadcasts its en-
tire neighbor set to every neighboring node. However, each
node might take O(D?) time processing and making deci-
sion about whether or not it should serve as a gateway (D
is the total number of nodes within two hops). While such
a method is needed at the initial phase, it is not efficient as
points are moving. We present here an algorithm to let clus-
terheads select gateways instead of each node make the deci-
sion. Note that changes to clusterheads and gateways occur
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Original Graph
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— Matched Edges

Figure 5: Maximal matching in bipartite graph
B(cy,c¢2). Left: original graph. (1)a pair of nodes
become invisible. (2) a node leaves the cluster.
(3)a new node joins the cluster

only if the underlying visibility graph changes, i.e., when
two nodes « and v become visible or invisible to each other.
We show that when such an event happens, only the nearby
nodes of w and v need proper update, and the update time is
constant per node.

For two clusterheads ¢; and ¢, we define a bipartite graph
B(cy, c2) with vertices C(cq) U C(ez). The edge pq is in
B(cy,co) if p € C(e1), g € Cez), and pis visible to g. The
edges in the bipartite graph B(c1, ¢2) represent all eligible
gateway pairs between ¢; and ¢;. To avoid storing all the
edges in this graph, we only maintain a maximal matching
M (eq,c2) at ¢;. Figure 5 shows such matchings. If pg is
an edge in the matching, we call p is matched to ¢, or to
co (g € C(e2)), or simply, p is matched. By maintaining
maximal matchings, we can reduce storage needed to O(D)
and update time to O(1) per node.

The property of maximal matching guarantees that if there
is at least one edge in the bipartite graph, i.e. clusterheads ¢,
and c» can be connected via gateways, all maximal match-
ings have to contain at least one edge too. To maintain the
maximal matching record, a clusterhead ¢; maintains the
pair (p, c2), where p is visible to ¢y, p is matched to ¢, and
g € C(cz). For each matched node p (which may or may not
be chosen as a gateway node), p maintains the pair (g, c2),
where p is matched to ¢, and ¢ € C(ca). At the begin-
ning, after proper rounds of information propagation, each
clusterhead pair would properly select a maximal matching
from the bipartite graph (to make the matching consistent
on both sides, we let the clusterhead with higher ID selects
the matching and informs the other clusterhead). We let the
clusterhead with higher ID select a gateway pair out of the
available matching. As points move around, if the previ-
ous selected gateways are no longer valid as indicated by the
matching, the clusterhead would select another gateway pair
out of the current matching.

We now turn to the maintenance of a maximal matching.
We first describe how the neighborhood information is or-
ganized inside a node . To be more specific, each node
v would propagate information by broadcasting an update
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Figure 6: Organizing neighbors

entry of the following form [ID [c[c [ei [e2 [ ... ]
, where the ID uniquely identifies v, ¢ and ¢’ are the ID’s
of the clusterheads of the clusters v belongs to(recall that a
node may belong to two clusters) , ¢i, ¢z, ... are the ID’s
of the clusterheads v is matched to. Note that since cluster-
heads have constant density, each such entry is of constant
size. Then « would organize its neighbors’ entries into a ta-
ble that is indexed by a pair of clusterhead ID’s (Figure 6).
The first index is the ID of a clusterhead that a neighbor be-
longs to, and the second index is the ID of a clusterhead that
a neighbor is matched(not matched) to. This table enables
O(1) lookup time to find a neighbor, whose clusterhead is ¢;
and currently matched(not matched) to ¢;. For w, the indices
of the table doesn’t have to include all pairs of clusterheads,
rather only clusterheads that are nearby. Also a neighbor v
might appear in the table several times. But by the constant
density argument, at each node the total number of pairs of
indices in the table is a constant, each neighbor only appears
a constant number of times. So the total storage at each node
is still linear to the neighborhood size. The table and the
maximal matching record are updated upon receiving any
update entry from neighbors.

Changes of the maximal matching can only happen when
two nodes begin or stop seeing each other, this may also
cause one client in C(¢;) to change clusterhead. We will
discuss these situations separately.

1. When two nodes p and ¢ begin to see each other, p €
C(c1), ¢ € C(c2). The change takes place if both p, ¢
are not matched with respect to clusterheads ¢, and ¢;.
They become matched in B(cy, ¢2) by adding ¢z and ¢;
to the update entry respectively. Once the update en-
try is modified, a node would broadcast the entry to its
neighbors (in the succeeding discussions we omit this
step). If two nodes p, ¢ stop seeing each other and they
are matched before in B(cy, ¢c2), we need to find out if
they can be matched with other nodes in the same bi-
partite graph. To do this, p and ¢ would look into their
neighbor set and find unmatched nodes in C(c2) and
C'(cy) respectively (Figure 5(1)). For example, p looks
for a neighbor ¢’ with ¢ as one of the clusterheads and
¢’ is not matched to ¢;.

2. When one node changes its clusterhead. This involves
p disappearing in the original cluster and appearing in
the new cluster. When p disappears in C(c1), if p is
not matched at all, nothing needs to be done. If not
then p needs to broadcast the clusterhead change to its
neighbors. Notice that because of the constant den-
sity of clusterheads, p participates in at most a constant
number of matchings in total. So a clusterhead change
would only affect a constant number of nodes in the
graph. Suppose p was matched to some node ¢ in some
C(cz2), once q receives message from p about cluster-
head changes, ¢ needs to search its neighbors for poten-
tial matchings (Figure 5(2)). When p appears in C(c1),
p needs to find among its neighbors nodes that belong to
other some cluster C'(c2) and are currently not matched
to ¢;. This can be done in a similar way as described in
the previous situation(Figure 5(3)).

5 Quality Analysisof Routing Graphs

As shown in Section 3.2.2, our routing graph has bounded
geometric and topological stretch factors. In literature, there
have been other ways proposed to construct good spanners.
The most popular one is to partition the space around each
point into cones with some fixed angles and then connect the
point to the nearest point in each cone. While such cone-
based construction gives us good geometric spanners, they
are generally non-planar.

Relative Neighborhood Graph (RNG) and Gabriel Graph
(GG) are the planar graphs used in [13]. RNG is defined such
that an edge (u, v) exists if there is no other node w whose
distances to w and v are less or equal to the distance between
u and v. GG is defined such that an edge (u, v) exists if no
other node w is inside the circle with the diameter uv (Fig-
ure 7). Bose et al. [3] proved that the Euclidean stretch factor
of GG and RNG are ©(/n) and ©(n), respectively, where
n is the number of points. The same construction also im-
plies that even for constant density point set, the topological
stretch factors can be Q(+/n) for GG and ©(n) for RNG. If
the density of the points is high, the stretch factor can be as
greatas O(n).

Figure 7: RNG and GG

One problem with maintaining a sparse graph of the un-
derlying topology is that we may have to traverse many short
edges when the density of the point set is high. In GPSR, the
problem is avoided by using the sparse graph only for getting
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Figure 8: Examples of Greedy Forwarding and
One-sided Perimeter Routing

out of local minimum. During the greedy geographic for-
warding, the protocol considers all the visible nodes but not
just adjacent nodes in the graph. Therefore, the complexity
of each routing step can be high if the density is high. Nev-
ertheless, the routing can be benefited by considering all the
visible points. For example, we are able to prove the follow-
ing result on the quality of path in a special case where the
forwarding has never stuck at a local minimal?.

Theorem 5.1 If a packet can be greedily forwarded from u
to v, i.e. no local minimum is reached during the forward-
ing, then the routing path length is bounded by O(¢?) if the
shortest path between u, v has length 2.

Proof: Recall that by greedy forwarding, each time we check
all the visible neighbors and forward the packet to the one
closest to the destination. Let the path be: P,, : w1 =
u, Uz, ..., U, = v. Note that the distance between «; and
v is decreasing when ¢ increases. Since the optimum path is
of length £, the distance between « and v is at most £. Thus
all u;’s lie inacircle of radius ¢ centered at v. Also, we know
that the points u; and u;4x, for & > 2, cannot see each other
because otherwise we would have chosen w; instead of
ui+1 as the successor of w; in the path. Therefore, the points
U1,U3, - - -, Uz[m/2]—1 are mutually invisible. According to
a simple packing lemma, we know that there can be at most
O(#?) such points in a disk with radius . |

Note that the above bound is tight. Figure 5 (a) illustrates
a situation where a path with ©(¢?) nodes is discovered by
greedy geographic forwarding while the optimum path has
length £. While considering all the visible vertices can help
to skip short edges, it incurs high cost when deciding to
which node the packet is forwarded. Our algorithm does
not have this problem since we perform the clustering first
and only maintain sparse graph for clusterheads and gateway
nodes. This effectively “smooth out” the point set so that our
analysis enjoys the property that the points are distributed
with constant density. In addition to the stretch factor and

2As noted in [13], this is the typical case.
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the low maintenance cost for RDG as described before, we
can also prove the quality of perimeter routing on our graph,
again in a special case. We call that a perimeter routing fol-
lows right-hand (left-hand) rule, if we always traverse a face
in a counter-clockwise (clockwise) direction. We call a path
connecting u, v right-sided (left-sided) if the path lies en-
tirely on the right (left) side of the line passing through u, v.
Then, we have that

Theorem 5.2 If the shortest path is right-sided (left-sided)
and has length /, then the path discovered by the perimeter
routing following right (left) hand rule has length at most
0(¢?).

Proof: Suppose that the optimum path is to the right of line
w. If the perimeter routing follows the right-hand rule, then
all the points traversed lie entirely inside the region bounded
by the line segment wv and the optimum path from « to v
(Figure 5 (b)). The area of that region is O(¢2). By the
constant density property, the number of nodes in that region
is at most O(¢?). Therefore, the length of the path is at most
O(£2) as well. m|

The above theorem does not specify a way to figure out
which side the shortest path lies. This is in general a difficult
question in perimeter routing — by following a wrong direc-
tion, we may have to traverse a very long path while a short
path exists by following the other direction. We do not know
of any good local rule to resolve this problem. However, one
trick one may use is to try both directions. Specifically, we
can forward the packet to the right ¢ hops, and then come
back to u and forward the packet to the left ¢ hops. Then we
double ¢’s value and repeat the process until either we reach
a point where greedy forwarding is available, or we enter
another face, or we come back to the starting edge, which
means there is no path between u,v. We may obtain com-
petitive bounds about this method, but the details are omitted
in this paper.

In GPSR, when a packet cannot reach its destination, it
would find this out by traversing along a face and getting
back to the edge where it began. If the destinations are
beyond the source’s reachable capacity, the undeliverable
packets have to travel at the outer face of the source’s con-
nected component. The RDG shortens such travel. In the
RDG, routing is done in a much smaller graph than the RNG
and GG and the undeliverable packet travels through much
fewer nodes before it realizes the unreachability. This is also
demonstrated by the simulation in the next section.

6 Experimentsand Discussions

In the previous sections, the analyses are mostly theoretical
and help us to understand the quality of the algorithm in the
extreme cases. To demonstrate the quality of our algorithm,
we have also performed simulations on various distribution
of points. We will summarize those experimental results in



this section and discuss some other practical issues in imple-
menting and measuring the method.

6.1 Simulation results

We conduct experiments under both uniform and non-
uniform distributions.

6.1.1 Uniform distribution

In this simulation, we used 300 random points in a square
of side length 24. Each node can see all the nodes in a disk
of radius 2 around itself. The density of nodes is about 8.
We only use the one-level clustering algorithm to select the
clusterheads. The simulation is firstly done in a static case.
We evaluate the quality of the path found by GPSR on the
RNG and RDG. The RDG on clusterheads and gateways is
shown as Figure 9(b). The RNG is as Figure 9(a).

The RDG is a sparser backbone compared to the RNG,
containing fewer nodes. Therefore, when we do perimeter
routing along a face in RDG, the number of hops experi-
enced is much smaller than in the RNG. This is also shown
in the simulation results. Figure 10(a) shows the comparison
of performance in the RNG and RDG. For all pairs of reach-
able nodes, we compute the number of hops of the optimal
path, and the path we get using GPSR on both the RNG and
RDG. For the pairs with the same optimal length, we take
the average length of the paths from GPSR. We can see that
the RDG outperforms the RNG in terms of the routing path
quality. Figure 10(b) shows the maximal number of hops by
GPSR on RNG and RDG. Also, when we look at all the un-
reachable pairs, on average 67 hops are travelled in RDG and
139 hops are travelled in RNG.

We also experiment with motion. We assume every point
moves with a constant velocity in a random direction at a ran-
dom speed between 0 and 1. Points are constrained to move
within the square (of side length 24), so a point bounces back
once hitting the virtual boundary 2. In this study we are inter-
ested in how the path quality between 2 fixed points changes
over time. We track the topology of the network under mo-
tion over 1000 frames at 1 frame per second. We then com-
pute the path length between these two specific points per
each frame. On average RDG outperforms RNG by more
than 37% (23 hops vs. 37 hops).

6.1.2 Non-uniform distribution

In the real world, the nodes are far from uniformly dis-
tributed. In this case, the advantage of the RDG over the
RNG is shown more obviously by the simulation. Here
we show a simulation with 300 points, 100 points are ran-
domly distributed, and another 200 points are clustered in
four groups. The size of a node’s visible range is a disk of
radius 3.5. The RNG and RDG are shown in Figure 11.

Sthis models the situation that one point moves into and one point moves
out of the specified region
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The comparison of path length in RNG and RDG is shown
as Figure 12. We can see from the figures that most of the
packets follow a shorter path in RDG, compared to RNG.
The advantages are clearer when the length of the optimal
path gets longer.

6.2 Discussion
6.2.1 Scaling vs. spanner property

Another desirable property of the routing graph is that every
node has small degree, so no node can be overloaded. How-
ever, there is a trade-off between the constant degree and the
spanner property. If we allow constant degree of the routing
graph, the spanner property can’t be achieved. Consider the
situation in which n nodes are very near to each other such
that every node can see all the other nodes. If we let each
node’s degree in the routing graph be at most C, then one
node z can reach at most C' nodes in one hop, and C? nodes
in two hops, and C'* nodes in k hops. Then there must exist
a node that 2 can reach in at least log n hops.

6.2.2 Efficiency of clusterheads

One common issue in using clusterheads in routing protocols
is that, frequent clusterhead changes may adversely affect
routing protocol performance since nodes are busy in cluster-
head selection rather than packet forwarding. For example,
consider the Clusterhead Gateway Switch Routing (CGSR)
protocol proposed by Chiang et al. [6]. Each node keeps a
cluster member table, where it stores the destination clus-
terhead for each mobile node in the network. So when a
node changes its clusterhead, the updated information must
be broadcast to every node in the network, which causes a lot
of traffic. In addition, each node keeps a routing table that is
used to determine the next hop in order to reach the destina-
tion. Changes of the clusterheads also cause a lot of changes
in the routing table. To minimize the changes of cluster-
heads, they proposed a Least Cluster Change (LCC) cluster-
ing algorithm, in which clusterheads only change when two
clusterheads come to see each other, or when a node moves
out of the visible range of all the clusterheads.

However, the above is not a problem in our routing graph,
GPSR doesn’t require any routing tables. The routing graph
changes locally and needs not be broadcast over the whole
network. Changes to clusterheads and gateways occur only
when the underlying visibility graph changes. In addition,
from [11], if all the nodes follow bounded-degree algebraic
motion, the number of changes of our clustering is at most
O(n?loglogn), which is near optimal. They also showed
in [11] that under such motion, to maintain the minimum
number of clusters at all times, the number of clusterhead
changes is ©(n?). To maintain a constant ¢ approximation,
the number of clusterhead changes is at least Q(n?). In sum-
mary, our clustering changes only when the network topol-
ogy changes. Any routing graph such as the RNG or GG
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needs to be updated according to the network topology as
well. On the other hand, it is not the case that RDG would
change more frequently than RNG or GG. Under certain con-
ditions RDG doesn’t change, while both GG and RNG suffer
from a lot of changes. Consider nodes moving on a line with
the same speed, except a special node moves faster. Since
the probability that the fast node has the 1D high enough to
be a clusterhead is small, most of the time the RDG doesn’t
change. But the RNG or GG could change Q(n) times.

7 Summary and Future Work

In this paper, we have presented a routing graph that is a
planar spanner. In this work we assumed that pathloss be-
tween two nodes in a wireless network is entirely dependent
on the distance between those nodes. We would like to fur-
ther investigate the possibility of incorporating other issues
such as terrain and interference between nodes. Another in-
teresting open problem is how to find a short path in this
routing graph. Currently we use GPSR protocol on our rout-
ing graph. But only a O(k) approximation bound is given
for greedy forwarding and perimeter routing in the right di-
rection. It would be good to design a routing protocol on the
RDG that can find a path within a constant approximation of
the optimal path.
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